
MUSCLE PC/SC IFD Driver API

David Corcoran & Ludovic Rousseau
corcoran@musclecard.com, ludovic.rousseau@free.fr

July 28, 2004

Abstract

This toolkit and documentation is provided on an as is basis. The authors shall
not be held responsible for any mishaps caused by the use of this software.

For more information please visit http://www.musclecard.com/.

Document history:
3.0.1 August 9, 2003 latest PDF only version
3.1.0 July 28, 2004 reformat using LATEX, correct bugs and add information
3.2.0 Jan 10, 2007 document IFD_GENERATE_HOTPLUG capability

1

corcoran@musclecard.com
ludovic.rousseau@free.fr
http://www.musclecard.com/

Contents

1 Introduction/Overview 4

2 Definitions 4

2.1 Defined types . 4

2.2 Error codes . 4

3 Readers’ configuration 5

3.1 USB readers . 5

3.2 Serial readers . 7

4 IFD Capabilities 8

4.1 IFD GENERATE HOTPLUG . 8

5 API Routines 9

5.1 IFDHCreateChannel . 9

5.2 IFDHCreateChannelByName . 11

5.3 IFDHCloseChannel . 12

5.4 IFDHGetCapabilities . 12

5.5 IFDHSetCapabilities . 14

5.6 IFDHSetProtocolParameters . 15

5.7 IFDHPowerICC . 16

5.8 IFDHTransmitToICC . 17

5.9 IFDHControl . 19

5.10 IFDHICCPresence . 20

6 API provided by pcsc-lite 21

6.1 log msg . 21

6.2 log xxd . 22

7 API changes 23

7.1 API version 2.0 . 23

2

7.2 API version 3.0 . 23

3

1 Introduction/Overview

This document describes the API calls required to make a PC/SC driver for a device to
be supported under the MUSCLE PC/SC resource manager. By implementing these calls
correctly in a driver or shared object form, reader manufacturers can fit their hardware
into an already existing infrastructure under several operating systems and hardware
platforms. This IFD Handler interface is not restricted to smart cards and readers and
could also be used for other types of smart card like devices. I would really like to hear
from you. If you have any feedback either on this documentation or on the MUSCLE
project please feel free to email me at: corcoran@musclecard.com.

2 Definitions

2.1 Defined types

The following is a list of commonly used type definitions in the following API. These
definitions and more can be found in the ifdhandler.h file.

PC/SC type C type

DWORD unsigned long

LPSTR char *

PDWORD unsigned long *

PUCHAR unsigned char *

RESPONSECODE long

VOID void

2.2 Error codes

The following is a list of returned values:

IFD_SUCCESS

IFD_COMMUNICATION_ERROR

IFD_ERROR_CONFISCATE

IFD_ERROR_EJECT

IFD_ERROR_NOT_SUPPORTED

IFD_ERROR_POWER_ACTION

IFD_ERROR_PTS_FAILURE

IFD_ERROR_SET_FAILURE

IFD_ERROR_SWALLOW

IFD_ERROR_TAG

IFD_ERROR_VALUE_READ_ONLY

IFD_ICC_NOT_PRESENT

IFD_ICC_PRESENT

4

corcoran@musclecard.com

IFD_NOT_SUPPORTED

IFD_PROTOCOL_NOT_SUPPORTED

IFD_RESPONSE_TIMEOUT

IFD_NO_SUCH_DEVICE

The IFD_NO_SUCH_DEVICE error must be returned by the driver when it detects the reader
is no more present. This will tell pcscd to remove the reader from the list of available
readers.

3 Readers’ configuration

3.1 USB readers

USB readers use the bundle approach so that the reader can be loaded and unloaded upon
automatic detection of the device. The bundle approach is simple: the actual library is
just embedded in a directory so additional information can be gathered about the device.

A bundle looks like the following:

GenericReader.bundle/

Contents/

Info.plist - XML file describing the reader

MacOS/ - Driver directory for OS X

Solaris/ - Driver directory for Solaris

Linux/ - Driver directory for Linux

HPUX/ - Driver directory for HPUX

The Info.plist file describes the driver and gives the loader all the necessary informa-
tion. The following must be contained in the Info.plist file:

• ifdVendorID

The vendor ID of the USB device.

Example:

<key>ifdVendorID</key>

<string>0x04E6</string>

You may have an OEM of this reader in which an additional <string> can be used
like in the below example:

<key>ifdVendorID</key>

<array>

<string>0x04E6</string>

<string>0x0973</string>

</array>

5

If multiples exist all the other parameters must have a second value also. You may
chose not to support this feature but it is useful when reader vendors OEM products
so you only distribute one driver.

The CCID driver from Ludovic Rousseau1 uses this feature since the same driver
supports many different readers.

• ifdProductID

The product id of the USB device.

<key>ifdProductID</key>

<string>0x3437</string>

• ifdFriendlyName

Example:

<key>ifdFriendlyName</key>

<string>SCM Microsystems USB Reader</string>

• CFBundleExecutable

The executable name which exists in the particular platform’s directory.

Example:

<key>CFBundleExecutable</key>

<string>libccid.so.0.4.2</string>

• ifdCapabilities

List of capabilities supported by the driver. This is a bit field. Possible values are:

– 0

No special capabilities

– 1 IFD_GENERATE_HOTPLUG

The driver supports the hotplug feature. See 4.1.

Complete sample file:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>CFBundleDevelopmentRegion</key>

<string>English</string>

1http://pcsclite.alioth.debian.org/ccid.html

6

http://pcsclite.alioth.debian.org/ccid.html

<key>CFBundleInfoDictionaryVersion</key>

<string>6.0</string>

<key>CFBundlePackageType</key>

<string>BNDL</string>

<key>CFBundleSignature</key>

<string>????</string>

<key>CFBundleVersion</key>

<string>0.0.1d1</string>

<key>ifdCapabilities</key>

<string>0x00000000</string>

<key>ifdProtocolSupport</key>

<string>0x00000001</string>

<key>ifdVersionNumber</key>

<string>0x00000001</string>

<key>CFBundleExecutable</key>

<string>libfoobar.so.x.y</string>

<key>ifdManufacturerString</key>

<string>Foo bar inc.</string>

<key>ifdProductString</key>

<string>Driver for Foobar reader, version x.y</string>

<key>ifdVendorID</key>

<string>0x1234</string>

<key>ifdProductID</key>

<string>0x5678</string>

<key>ifdFriendlyName</key>

<string>Foobar USB reader</string>

</dict>

</plist>

As indicated in the XML file the DTD is available at http://www.apple.com/DTDs/

PropertyList-1.0.dtd.

3.2 Serial readers

Serial drivers must be configured to operate on a particular port and respond to a par-
ticular name. The reader.conf file is used for this purpose.

It has the following syntax:

Configuration file for pcsc-lite

7

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

David Corcoran <corcoran@musclecard.com>

FRIENDLYNAME Generic Reader

DEVICENAME /dev/ttyS0

LIBPATH /usr/lib/pcsc/drivers/libgen_ifd.so

CHANNELID 1

• The pound sign # denotes a comment.

• The FRIENDLYNAME field is an arbitrary text used to identify the reader. This text is
displayed by commands like pcsc_scan2 that prints the names of all the connected
and detected readers.

• The DEVICENAME field was not used for old drivers (using the IFD handler version
2.0 or previous). It is now (IFD handler version 3.0) used to identify the physical
port on which the reader is connected. This is the device name of this port. It
is dependent of the OS kernel. For example the first serial port device is called
/dev/ttyS0 under Linux and /dev/cuaa0 under FreeBSD.

• The LIBPATH field is the filename of the driver code. The driver is a dynamically
loaded piece of code (generally a drivername.so* file).

• The CHANNELID is no more used for recent drivers (IFD handler 3.0) and has been
superseded by DEVICENAME. If you have an old driver this field is used to indicate the
port to use. You should read your driver documentation to know what information
is needed here. It should be the serial port number for a serial reader.

CHANNELID was the numeric version of the port in which the reader will be located.
This may be done by a symbolic link where /dev/pcsc/1 is the first device which
may be a symbolic link to /dev/ttyS0 or whichever location your reader resides.

4 IFD Capabilities

The reader may announce some supported capabilities to the pcscd daemon.

4.1 IFD GENERATE HOTPLUG

This capability allows pcscd to avoid continuously scanning the USB bus for new readers
supported by the driver. The driver has two obligations:

• tell pcscd when a new reader is connected

• tell pcscd when a reader has been removed.

2http://ludovic.rousseau.free.fr/softwares/pcsc-tools/

8

http://ludovic.rousseau.free.fr/softwares/pcsc-tools/

Reader connection

When a reader supported by the driver is connected the driver infrastructure shall call
pcscd -hotplug to signal it to pcscd.

On recent GNU/Linux systems you can use a udev rule file to do that. For example
create a file /etc/udev/rules.d/pcscd_ccid.rules containing something like:

udev rules for pcscd and CCID readers

generic CCID device

BUS=="usb", SYSFS{bInterfaceClass}=="0b", ACTION=="add", RUN+="/usr/sbin/pcscd --hotplug"

Reader disconnection

Pcscd will not detect the reader is gone unless the driver tells it so. When the driver
detects the reader is no more there (by getting an ENODEV (No such device) error for
example) it shall return the error code IFD_NO_SUCH_DEVICE to pcscd.

If the driver fails to return IFD_NO_SUCH_DEVICE then pcscd will continue trying to con-
tact the reader and will fail endlessly. This will generate a lot of errors.

5 API Routines

The routines specified hereafter will allow you to write an IFD handler for the PC/SC
Lite resource manager. Please use the complement developer’s kit complete with headers
and Makefile at: http://www.musclecard.com/drivers.html.

This gives a common API for communication to most readers in a homogeneous fashion.
This document assumes that the driver developer is experienced with standards such as
ISO-7816-(1, 2, 3, 4), EMV and MCT specifications. For listings of these specifications
please access the above web site.

5.1 IFDHCreateChannel

Synopsis:

#include <PCSC/ifdhandler.h>

RESPONSECODE IFDHCreateChannel(DWORD Lun,

DWORD Channel);

9

http://www.musclecard.com/drivers.html

Parameters:

Lun IN Logical Unit Number
Channel IN Channel ID

Description:

This function is required to open a communications channel to the port listed by Channel.
For example, the first serial reader on COM1 would link to /dev/pcsc/1 which would be
a symbolic link to /dev/ttyS0 on some machines This is used to help with inter-machine
independence.

On machines with no /dev directory the driver writer may choose to map their Channel
to whatever they feel is appropriate.

Once the channel is opened the reader must be in a state in which it is possible to query
IFDHICCPresence() for card status.

• Lun - Logical Unit Number

Use this for multiple card slots or multiple readers. 0xXXXXYYYY - XXXX multiple
readers, YYYY multiple slots. The resource manager will set these automatically. By
default the resource manager loads a new instance of the driver so if your reader
does not have more than one smart card slot then ignore the Lun in all the functions.

PC/SC supports the loading of multiple readers through one instance of the driver
in which XXXX is important. XXXX identifies the unique reader in which the driver
communicates to. The driver should set up an array of structures that associate
this XXXX with the underlying details of the particular reader.

• Channel - Channel ID

This is denoted by the following:

0x000001 /dev/pcsc/1

0x000002 /dev/pcsc/2

0x000003 /dev/pcsc/3

0x000004 /dev/pcsc/4

USB readers can ignore the Channel parameter and query the USB bus for the
particular reader by manufacturer and product id.

Returns:

IFD_SUCCESS Successful
IFD_COMMUNICATION_ERROR Error has occurred
IFD_NO_SUCH_DEVICE The reader is no more present

10

5.2 IFDHCreateChannelByName

Synopsis:

#include <PCSC/ifdhandler.h>

RESPONSECODE IFDHCreateChannelByName(DWORD Lun,

LPSTR deviceName);

Parameters:

Lun IN Logical Unit Number
DeviceName IN String device path

Description:

This function is required to open a communications channel to the port listed by DeviceName.

Once the channel is opened the reader must be in a state in which it is possible to query
IFDHICCPresence() for card status.

• Lun - Logical Unit Number

Use this for multiple card slots or multiple readers. 0xXXXXYYYY - XXXX multiple
readers, YYYY multiple slots. The resource manager will set these automatically. By
default the resource manager loads a new instance of the driver so if your reader
does not have more than one smart card slot then ignore the Lun in all the functions.

PC/SC supports the loading of multiple readers through one instance of the driver
in which XXXX is important. XXXX identifies the unique reader in which the driver
communicates to. The driver should set up an array of structures that associate
this XXXX with the underlying details of the particular reader.

• DeviceName - filename to use by the driver.

For drivers configured by /etc/reader.conf this is the value of the field DEVICENAME.

For USB drivers under platforms using libusb3 for USB abstraction (Any Unix
except MacOSX) the DeviceName field uses the string generated by:

printf("usb:%04x/%04x:libusb:%s:%s",

idVendor, idProduct,

bus->dirname, dev->filename)

So it is something like: usb:08e6/3437:libusb:001:042 under Linux.

It is the responsibility of the driver to correctly identify the reader. This scheme
was put in place to be able to distinguish two identical readers connected at the
same time.

3http://libusb.sourceforge.net/

11

http://libusb.sourceforge.net/

Returns:

IFD_SUCCESS Successful
IFD_COMMUNICATION_ERROR Error has occurred
IFD_NO_SUCH_DEVICE The reader is no more present

5.3 IFDHCloseChannel

Synopsis:

#include <PCSC/ifdhandler.h>

RESPONSECODE IFDHCloseChannel(DWORD Lun);

Parameters:

Lun IN Logical Unit Number

Description:

This function should close the reader communication channel for the particular reader.
Prior to closing the communication channel the reader should make sure the card is
powered down and the terminal is also powered down.

Returns:

IFD_SUCCESS Successful
IFD_COMMUNICATION_ERROR Error has occurred
IFD_NO_SUCH_DEVICE The reader is no more present

5.4 IFDHGetCapabilities

Synopsis:

#include <PCSC/ifdhandler.h>

RESPONSECODE IFDHGetCapabilities(DWORD Lun,

DWORD Tag,

PDWORD Length,

PUCHAR Value);

12

Parameters:

Lun IN Logical Unit Number
Tag IN Tag of the desired data value
Length INOUT Length of the desired data value
Value OUT Value of the desired data

Description:

This function should get the slot/card capabilities for a particular slot/card specified by
Lun. Again, if you have only 1 card slot and don’t mind loading a new driver for each
reader then ignore Lun.

• Tag - the tag for the information requested

– TAG_IFD_ATR

Return the ATR and it’s size (implementation is mandatory).

– SCARD_ATTR_ATR_STRING

Same as TAG_IFD_ATR but this one is not mandatory. It is defined in Microsoft
PC/SC SCardGetAttrib().

– TAG_IFD_SIMULTANEOUS_ACCESS

Return the number of sessions (readers) the driver can handle in Value[0].

This is used for multiple readers sharing the same driver.

– TAG_IFD_THREAD_SAFE

If the driver supports more than one reader (see TAG_IFD_SIMULTANEOUS_ACCESS
above) this tag indicates if the driver supports access to multiple readers at
the same time.

Value[0] = 1 indicates the driver supports simultaneous accesses.

– TAG_IFD_SLOTS_NUMBER

Return the number of slots in this reader in Value[0].

– TAG_IFD_SLOT_THREAD_SAFE

If the reader has more than one slot (see TAG_IFD_SLOTS_NUMBER above) this
tag indicates if the driver supports access to multiple slots of the same reader
at the same time.

Value[0] = 1 indicates the driver supports simultaneous slot accesses.

• Length - the length of the returned data

• Value - the value of the data

This function is also called when the application uses the PC/SC SCardGetAttrib()

function. The list of supported tags is not limited. The ones above are used by the
PC/SC lite resource manager.

13

Returns:

IFD_SUCCESS Successful
IFD_ERROR_TAG Invalid tag given
IFD_NO_SUCH_DEVICE The reader is no more present

5.5 IFDHSetCapabilities

Synopsis:

#include <PCSC/ifdhandler.h>

RESPONSECODE IFDHSetCapabilities(DWORD Lun,

DWORD Tag,

DWORD Length,

PUCHAR Value);

Parameters:

Lun IN Logical Unit Number
Tag IN Tag of the desired data value
Length INOUT Length of the desired data value
Value OUT Value of the desired data

Description:

This function should set the slot/card capabilities for a particular slot/card specified by
Lun. Again, if you have only 1 card slot and don’t mind loading a new driver for each
reader then ignore Lun.

• Tag - the tag for the information needing set

– TAG_IFD_SLOTNUM

This is used in IFDHandler v1.0 to select the slot to use for the next IFD_*

command. This tag is no more used with versions 2.0 and 3.0 of the IFD
Handler.

• Length - the length of the data

• Value - the value of the data

This function is also called when the application uses the PC/SC SCardGetAttrib()

function. The list of supported tags is not limited.

14

Returns:

IFD_SUCCESS Success
IFD_ERROR_TAG Invalid tag given
IFD_ERROR_SET_FAILURE Could not set value
IFD_ERROR_VALUE_READ_ONLY Trying to set read only value
IFD_NO_SUCH_DEVICE The reader is no more present

5.6 IFDHSetProtocolParameters

Synopsis:

#include <PCSC/ifdhandler.h>

RESPONSECODE IFDHSetProtocolParameters(DWORD Lun,

DWORD Protocol,

UCHAR Flags,

UCHAR PTS1,

UCHAR PTS2,

UCHAR PTS3);

Parameters:

Lun IN Logical Unit Number
Protocol IN Desired protocol
Flags IN OR’d Flags (See below)
PTS1 IN 1st PTS Value
PTS2 IN 2nd PTS Value
PTS3 IN 3rd PTS Value

Description:

This function should set the Protocol Type Selection (PTS) of a particular card/slot
using the three PTS parameters sent

• Protocol - SCARD_PROTOCOL_T0 or SCARD_PROTOCOL_T1

T=0 or T=1 protocol

• Flags - Logical OR of possible values to determine which PTS values to negotiate

– IFD_NEGOTIATE_PTS1

– IFD_NEGOTIATE_PTS2

– IFD_NEGOTIATE_PTS3

15

• PTS1, PTS2, PTS3 - PTS Values

See ISO 7816/EMV documentation.

Returns:

IFD_SUCCESS Success
IFD_ERROR_PTS_FAILURE Could not set PTS value
IFD_COMMUNICATION_ERROR Error has occurred
IFD_PROTOCOL_NOT_SUPPORTED Protocol is not supported
IFD_NOT_SUPPORTED Action not supported
IFD_NO_SUCH_DEVICE The reader is no more present

5.7 IFDHPowerICC

Synopsis:

#include <PCSC/ifdhandler.h>

RESPONSECODE IFDHPowerICC(DWORD Lun,

DWORD Action,

PUCHAR Atr,

PDWORD AtrLength);

Parameters:

Lun IN Logical Unit Number
Action IN Action to be taken
Atr OUT Answer to Reset (ATR) value of the inserted card
AtrLength INOUT Length of the ATR

Description:

This function controls the power and reset signals of the smart card reader at the partic-
ular reader/slot specified by Lun.

• Action - Action to be taken on the card

– IFD_POWER_UP

Power and reset the card if not done so (store the ATR and return it and it’s
length)

– IFD_POWER_DOWN

Power down the card then power up if not done already (Atr and AtrLength

should be zeroed)

16

– IFD_RESET

Perform a quick reset on the card. If the card is not powered then power up
the card. (Store and return Atr and Length)

• Atr - Answer to Reset of the card

The driver is responsible for caching this value in case IFDHGetCapabilities()

is called requesting the ATR and its length. The ATR length should not exceed
MAX_ATR_SIZE.

• AtrLength - Length of the Atr

This should not exceed MAX_ATR_SIZE.

Notes:

Memory cards without an ATR should return IFD_SUCCESS on reset but the Atr should
be zeroed and the length should be zero Reset errors should return zero for the AtrLength
and return IFD_ERROR_POWER_ACTION.

Returns:

IFD_SUCCESS Success
IFD_ERROR_POWER_ACTION Error powering/resetting card
IFD_COMMUNICATION_ERROR An error has occurred
IFD_NOT_SUPPORTED Action not supported
IFD_NO_SUCH_DEVICE The reader is no more present

5.8 IFDHTransmitToICC

Synopsis:

#include <PCSC/ifdhandler.h>

RESPONSECODE IFDHTransmitToICC(DWORD Lun,

SCARD_IO_HEADER SendPci,

PUCHAR TxBuffer,

DWORD TxLength,

PUCHAR RxBuffer,

PDWORD RxLength,

PSCARD_IO_HEADER RecvPci);

17

Parameters:

Lun IN Logical Unit Number
SendPci IN Protocol structure
TxBuffer IN APDU to be sent
TxLength IN Length of sent APDU
RxBuffer OUT APDU response
RxLength INOUT Length of APDU response
RecvPci INOUT Receive protocol structure

Description:

This function performs an APDU exchange with the card/slot specified by Lun. The
driver is responsible for performing any protocol specific exchanges such as T=0, 1, etc.
differences. Calling this function will abstract all protocol differences.

• SendPci - contains two structure members

– Protocol - 0, 1, ... 14

T=0 ... T=14

– Length - Not used.

• TxBuffer - Transmit APDU

Example: "\x00\xA4\x00\x00\x02\x3F\x00"

• TxLength - Length of this buffer

• RxBuffer - Receive APDU

Example: "\x61\x14"

• RxLength - Length of the received APDU

This function will be passed the size of the buffer of RxBuffer and this function
is responsible for setting this to the length of the received APDU response. This
should be ZERO on all errors. The resource manager will take responsibility of
zeroing out any temporary APDU buffers for security reasons.

• RecvPci - contains two structure members

– Protocol - 0, 1, ... 14

T=0 ... T=14

– Length - Not used.

18

Notes:

The driver is responsible for knowing what type of card it has. If the current slot/card
contains a memory card then this command should ignore the Protocol and use the MCT
style commands for support for these style cards and transmit them appropriately. If your
reader does not support memory cards or you don’t want to implement this functionality,
then ignore this.

RxLength should be set to zero on error.

The driver is not responsible for doing an automatic Get Response command for received
buffers containing 61 XX.

Returns:

IFD_SUCCESS Success
IFD_COMMUNICATION_ERROR An error has occurred
IFD_RESPONSE_TIMEOUT The response timed out
IFD_ICC_NOT_PRESENT ICC is not present
IFD_PROTOCOL_NOT_SUPPORTED Protocol is not supported
IFD_NO_SUCH_DEVICE The reader is no more present

5.9 IFDHControl

Synopsis:

#include <PCSC/ifdhandler.h>

RESPONSECODE IFDHControl(DWORD Lun,

DWORD dwControlCode,

PUCHAR TxBuffer,

DWORD TxLength,

PUCHAR RxBuffer,

DWORD RxLength,

PDWORD pdwBytesReturned);

Parameters:

Lun IN Logical Unit Number
dwControlCode IN Control code for the operation
TxBuffer IN Bytes to be sent
TxLength IN Length of sent bytes
RxBuffer OUT Response
RxLength IN Length of response buffer
pdwBytesReturned OUT Length of response

19

Description:

This function performs a data exchange with the reader (not the card) specified by Lun. It
is responsible for abstracting functionality such as PIN pads, biometrics, LCD panels, etc.
You should follow the MCT and CTBCS specifications for a list of accepted commands to
implement. This function is fully voluntary and does not have to be implemented unless
you want extended functionality.

• dwControlCode - Control code for the operation

This value identifies the specific operation to be performed. This value is driver
specific.

• TxBuffer - Transmit data

• TxLength - Length of this buffer

• RxBuffer - Receive data

• RxLength - Length of the response buffer

• pdwBytesReturned - Length of response

This function will be passed the length of the buffer RxBuffer in RxLength and it
must set the length of the received data in pdwBytesReturned.

Notes:

*pdwBytesReturned should be set to zero on error.

Returns:

IFD_SUCCESS Success
IFD_COMMUNICATION_ERROR An error has occurred
IFD_RESPONSE_TIMEOUT The response timed out
IFD_NO_SUCH_DEVICE The reader is no more present

5.10 IFDHICCPresence

Synopsis:

#include <PCSC/ifdhandler.h>

RESPONSECODE IFDHICCPresence(DWORD Lun);

Parameters:

Lun IN Logical Unit Number

20

Description:

This function returns the status of the card inserted in the reader/slot specified by Lun.
In cases where the device supports asynchronous card insertion/removal detection, it is
advised that the driver manages this through a thread so the driver does not have to send
and receive a command each time this function is called.

Returns:

IFD_ICC_PRESENT ICC is present
IFD_ICC_NOT_PRESENT ICC is not present
IFD_COMMUNICATION_ERROR An error has occurred
IFD_NO_SUCH_DEVICE The reader is no more present

6 API provided by pcsc-lite

pcsc-lite also provides some API to ease the development of the driver.

6.1 log msg

Synopsis:

#include <debuglog.h>

void debug_msg(const int priority,

const char *fmt,

...);

Parameters:

priority IN priority level
fmt IN format string as in printf()

... IN optionnal parameters as in printf()

The priority parameter may be:

PCSC_LOG_DEBUG for debug information
PCSC_LOG_INFO default pcscd level
PCSC_LOG_ERROR for errors
PCSC_LOG_CRITICAL for critical messages (like the driver fails to start)

21

Description:

This function is used by the driver to send debug or log information to the administrator.
The advantage of using the same debug function as pcsc-lite is that you also benefit from
the debug redirection provided by pcsc-lite. You will then get pcscd and the driver’
debug messages in the same place.

The log messages are displayed by pcscd either on stderr (if pcscd is called with
-foreground) or using syslog(3) (default).

The level is set using pcscd arguments -debug, -info, -error or -critical.

The levels are ordered. if -info is given all the messages of priority PCSC_LOG_INFO,
PCSC_LOG_ERROR and PCSC_LOG_CRITICAL are displayed.

You should not use log_msg directly but use the Logx() macros defined in <debuglog.h>

instead. Using the macro you will also get the file name, line number and function name
the macro is called from.

Example:

#include <debuglog.h>

Log2("received bytes: %d", r);

6.2 log xxd

Synopsis:

#include <debuglog.h>

void log_xxd(const int priority,

const char *msg,

const unsigned char *buffer,

const int size);

Parameters:

priority IN priority level
msg IN text string
buffer IN buffer you want to dump in hex
size IN size of the buffer

22

Description:

Same idea as log_msg() put print the hex dump of a buffer.

Example:

log_xxd(PCSC_LOG_DEBUG, "received frame: ", buff, buff_size);

7 API changes

The IFD handler API changed over the time.

If the driver provides a IFDHCreateChannelByName() function is supposed to use API
v3.0. Otherwise it is used with API v2.0.

7.1 API version 2.0

• DEVICENAME in reader.conf is not used.

• IFDHControl() API was:

RESPONSECODE IFDHControl(DWORD Lun,

PUCHAR TxBuffer,

DWORD TxLength,

PUCHAR RxBuffer,

PDWORD RxLength);

7.2 API version 3.0

• Introduction of IFDHCreateChannelByName().

For serial drivers, CHANNELID is no more used and DEVICENAME is used instead.

For USB drivers the device name if usb:%04x/%04x:libusb:%s:%s. See 5.2.

• IFDHControl() API changed

See 5.9.

23

	Introduction/Overview
	Definitions
	Defined types
	Error codes

	Readers' configuration
	USB readers
	Serial readers

	IFD Capabilities
	IFD_GENERATE_HOTPLUG

	API Routines
	IFDHCreateChannel
	IFDHCreateChannelByName
	IFDHCloseChannel
	IFDHGetCapabilities
	IFDHSetCapabilities
	IFDHSetProtocolParameters
	IFDHPowerICC
	IFDHTransmitToICC
	IFDHControl
	IFDHICCPresence

	API provided by pcsc-lite
	log_msg
	log_xxd

	API changes
	API version 2.0
	API version 3.0

