PostgreSQL 7.4.2 Documentation

The PostgreSQL Global Development Group

PostgreSQL 7.4.2 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2003 by The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2002 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written
agreement is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all
copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE

AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PRO-
VIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

L (=] = (o TSR i
1. What iS POSIOrESQL 2. ..ceeieeeeeecieseseseeeeee st se ettt e e srestestesee e enennensenes i
2. A Brief History Of POSIGreSQL. ..ottt st ii

2.1. The Berkeley POSTGRES PrOjJECL.......ccovirieirieireenietesese e ii
2.2, POSIGIESO5....c.ee ittt e e nren ii
2.3, POSIGIESQL. ...ttt e iii
B T @0 1= o1 1o o 1= TSR iii
o N1 a1l T (o] 4 aT= LT o SR iv
5. Bug RepOrting GUIEIINES.........coiiiiiriierierieeree ettt iv
5.1, 1deNtifying BUGS......c.civeuirieiirieiirieieieieesiee ettt iv
5.2, WRALE L0 FEPOLL. ...ttt v
5.3. WhHEre t0 repOIt DUGS......cceiiiiiiiiiinieerieiereet ettt sneea vii
TR 1110] = 1 USSR 1
1. GEttiNG SEAMEM. ..ot b et et b e s bt e b e e e e ebeebeseeseen 1
I O [151 7= = LT o OO 1
1.2. Architectural FUNdamentalS..........cccociiiiiiieiee e s 1
1.3. Creating a Database.........ccocceiiieeie e e e 2
1.4. ACCeSSING @ DAtabase..........cccevvieeieiicese e 3
P o TSI O L I - T To T - Vo T SRS 5
2.1, INEFOAUCTION.....etiieee ettt ettt ettt b et sb bt ne et ebesbeseesren 5
A ©10] g To1=T o] £ TSRS 5
2.3. Creating @ NeW Table.......c.ccv i ens 5
2.4, Populating a Table With ROWS.........ccccoviiieieeeece e 6
2.5. QUENYING @ TADIE.....c.eoecece et re s re e nnens 7
2.6.30INS BEIWEEN TADIESo 8
2.7. Aggregate FUNCHONS. ..ot r e e 10
B2 < T U o o - =1 12
2.9, DEIEBLIONS ...ttt ettt et b e ere e 12
3. AQVANCEA FEAIUIBS......ccuiie e seeeeeeeere s te e e e et se e saesaeae e e e esesaeseeseenseneenensesenns 13
B 700 I T 1 0T [T 1o 1o P 13
G T Y 1= S 13
3.3, FOreigN KEYS.....oeeeeee ettt s bbb 13
B I - g 7= od 1T T S 14
BT] =1 = g = PSP 15
B 7L T O o T (o] 113 o T S 17

[I. ThE SQL LANQUAGE.c.ectieitieetiirieeriees ettt s bbb 18

4. SQL SYNTAX.....cctiitiieeeietise sttt et r e r e e nne 20

4.0, LEXICAl STIUCTURouiitiie ettt ettt st st se e nesae e 20
4.1.1. Identifiers and Ky WOIAS.........ccoureiririeninese et 20
4.01.2. CONSEANTS.....coitiiieiie ettt b e b ae e b s ae e e sae e e e besaeenneereenes 21
4.1.2.1. String CONSLANLS......cciiiiiiirierie et 21
4.1.2.2. Bit-String CONSLANLS........cccoiirieieeinere e 22
4.1.2.3. NUMENC CONSLANLS......coeitiriiieeeeniere e 22
4.1.2.4. Constants of Other TYPaS......ccocvcevereeiereeee e 23
R T @ 011 = | (0] = YU SRR 23
4.1.4. Special CharaCterS......ccccvieiieeeiise s 24
4.1.5. COMMENTS. ..ottt sn s se e e e renreennenreenes 24
4.1.6. Lexical PreCeAENCE. ..ot 25

4.2, ValUB EXPIESSIONS....c.civiuirieeirieterieteseetee sttt ss st s s bbb e sb e seens 26
4.2.1. ColUMN REFEIENCES.....eoeeeeeeeese st 27
4.2.2. POSItional ParameterS.........ccoovviiirieeieeeee e 27
4.2.3. SUDSCHIPES ...ttt ettt 27
4.2.4. Field SeIECHON.. ...t 28
4.2.5. Operator INVOCALIONSc.ooruirerrierieerieereee et 28
4.2.6. FUNCLION CallS....c..iiiiiiieeeeeee et 28
4.2.7. Aggregate EXPreSSIQNS. ... 29
4.2.8. TYPE CASHS...eiti ettt ettt b e b st se e s ae et saeenn e re s 30
4.2.9. Scalar SUDQUETES......c.oieeerere et 30
4.2.20. Array CONSIIUCTOIS......coueiueeiieieeierte ettt see e e s e b e enne e e 30
4.2.11. Expression Evaluation RULES...........cccociiiininiicneeeee e 32

5. Data DEfINITION.....c..eiuiitiieeeeeeee ettt s b e b e st e e ae s sn 33

5.1, TADIE BASICS....ceiiieeeeeeiee et e 33

5.2, SYSLEM COlUMNS.... .ottt ettt sre e e tesre e renreenes 34

5.3. DEfaUIt VAIUES.......c.eoeeeeeiiie et e 35

5.4, CONSIIAINTS. ..ottt sb bt ne b b e 36
5.4.1. CheCK CONSIIAINLS......cccctiirieirieeriee sttt st st se b 36
5.4.2. NOt-NUIl CONSEIAINTS ..o s sre e 37
5.4.3. UNIQUE CONSIIAINES......cceiieeeeetereseseeeeesese st esee e e sse e seeseesessessessesnens 38
5.4.4. PrIMArY KEYS......covieiiitisieieieeestestesteseessesesesseseessesaessesessesseseesaessssessessessens 39
5.4.5. FOIrEIgN KEYS.....ooeiiirstisietere et st seee e st sne st saesee e eneenesnesnens 40

5.5, INNEIIEANCE......eeeec bbb st st sbe e 42

5.6. MOdifyiNg TADIES......oiiiiiciereee ettt s 44
5.6.1. AddiNG @ COIUMN......ciiiiiiiiiiereere e 44
5.6.2. ReMOVING @ COIUMUIN.......ccoiiiriiirieeneee e 45
5.6.3. AddiNg @ CONSIIAINL.ccoiueirieerieerete st 45
5.6.4. Removing @ CONSLIAINL.......cccoririeirieereeiereeieee e 45
5.6.5. Changing the Defaull..........cccoirinceec e 45
5.6.6. Renaming @ COIUMMN.........ccociiiiriiree et 46
5.6.7. Renaming @ Table........cooiiiriiiiecee e 46

D7 PrIVIIEOES. ..ottt b e b 46

5.8, SCREMAS ...t bbb e a7
5.8.1. Creating @& SCEMA..........coeoiiiirieireee e a7
5.8.2. The PUbIIiC SChema.........coieie e 48
5.8.3. The Schema Search Path...........ccocooiiiiiiine e 48
5.8.4. Schemas and Privileges..........ccoeieiireinini e 49
5.8.5. The System Catalog SChema..........ccceoriiiiiinireeeeee e 50
5.8.6. USAQE PALEINS......octiiiiiieeieie et s 50
5.8.7. POrability......c et e 51

5.9. Other Database ODJECLS.......cccveviieceie et st 51

5.10. Dependency TraCKing........ccceveierierienieii e esee et e e sae e st sne s 51

6. Data ManipUIALION..........ccv ittt e e r e nesneennes 53

LT I [E1=T U o T = = W 53

LR O o To = 1] o [o T I T = 54

LSRRG B =1 1= 1 g o [T | = VO S 54

A O LU =T = OO 56

7.1 OVEIVIBW. ...ttt sttt sttt st st st s et etk e et e st sae b st et e seebeseebenesbeneas 56

7.2. Table EXPrESSIONS.....ccciiiieiesieece ettt ettt sttt eeneere e s 56
7.2.1. TREFROMCIAUSE. ...ttt sttt st sttt 57

7.2.1.1. J0IN€d TAbIES......cceieiireeireeree e 57
7.2.1.2. Table and Column AlIASES......cceivvivrererecerere e s 60

7.2.1.3. SUDQUETIES. ...t 61

7.2.1.4. Table FUNCHONS. ..o 61

7.2.2. TRAWHERECZIAUSE.oveeeieeeeetesie sttt enen 62
7.2.3. TheGROUP BENAHAVINGCIAUSES......coerireiieiieieeeeeiee e 63

7.3 SEIECTE LISES...c.eiieiiiieeeeetes ettt st st benee e 65
7.3.1. SeleCt-LiSt HEMS.....cci it s 65
7.3.2. COlUMN LADELS.....cc.iiiiiee e e 66

80 TR T T 1S I 1N USSR 66

7.4. ComMDINING QUEIIES. ..ottt s b e e 67
7.5, SOMING ROWS ..ottt et bbb e e 67
ST L =V Lo [T 8] 68
T D= L e Y/ 01T TSP U T PR URPPPR 70
o T O 10T =T ol 1] 1= 71
 J O I [01 =T 0 =T Y o 1 SRR 72
8.1.2. Arbitrary Precision NUMDELS.........ccoceviieeie e 72
8.1.3. Floating-POINt TYPES....ccvceeee ettt 73
8.1.4. Serial TYPES .t ieeeceeerte ettt et enees 74

8.2. MONELAIY TYPES.... i ei ettt sttt st sttt et sbe s re b e s aaesreebee e 75
TR T O =T = (o (T g)Y/ 01 75
8.4, BiNAry Data TYPES...ceccvericieresieieeeserestestes e sae e e e reste e saee e e s e sreste e e e e enessenseses 77
8.5. DAtE/TIME TYPES..cueeueeeeteriesiestereeeetesesre e e sae e e sreste s e sseeeseesessesresteteseeneenensenseses 78
8.5.1. DAte/TIME INPUL......oiiiriieeeee e snen 79
8.5.1. 1. DALES.....cececieriereet et e e s 80

o R0 2 I 1= 80

8.5.1.3. TIME STAMPS.....iiiuiiitieriierierere e 81

8.5. 1.4, INtEIVAIS.....cciii ettt ene e e 82

8.5.1.5. Special ValUES.......cccoiiiiie s 82

8.5.2. DALe/TIME OULPUL......eeitierieieriee ettt 83
8.5.3. TIME ZONEBS ..ottt sttt nesnesnens 83
8.5.4. INTEINAIS.....ciieeieeeeeee ettt nne 84

8.6. BOOIEAN TYPE....euiieiirietereete ettt sttt b ettt bbb e eb e ene e 85
8.7. GEOMELIIC TYPES.. ettt ettt ettt ettt b e sb et se et b e e b e b e ene e 85
S A I = o T | £ PSRRN 86
8.7.2. LINE SEUMENLS.....coeiiitiirtiirtetrieie ettt sttt be s eb e b eb e 86

S T ARG T =10) (L USRS PR 86
B.7.4. PANS......ciieciice ettt et 87
8.7.5. POIYGONS....ceieieie et et e 87
B.7.6. ClICIES ..ttt bbbt e e e 87

8.8. NetWOrk AAAreSS TYPES....ciui ettt sttt bbb e e 88
BL8.LUINBL et ——————————— 88
BLB.2.CHAN i e naan s 88
8.8.3.INBL VS.CIAr coveeiiiiiieesee st 89
8.8.4.MACAUAN ...viiiiiiie it e naae s 89

8.9, Bil SIHNG TYPES e ciiiieiete ettt sttt et et e sae et e sre s e e tesraensenneenes 90
S IO 4 = | T PSSR RURRRI 90
8.10.1. Declaration Of Array TYPES......ccvevereeieeieresresesiereese e e siesaesaeasessesnens 90
8.10.2. Array Value INPUL.......ccoeeeeeeese st s snens 91
8.10.3. ACCESSING AITAYS....ccueiteieeeeeresteseseeseeesessessessesseseesessessessessessesessessessens 93
8.10.4. MOIfYING AITAYS.....cciieieeeeetesesteseeseeesese s e e e e ese e seesaesaesassessesnens 94
8.10.5. Searching iN ArTayS.....ccccceeeeeerieseseereeesese e e seeseee e seeseeseeseesesnesnens 96
8.10.6. Array Input and OULPUL SYNTAX.......ccererrererirerereereses e seens 97
8.11. Object [dentifier TYPEScccir ettt s 98

8.12. PSEUO-TYPES ..c ettt ettt sttt sttt sb et a b e b et seebenesbeneas 99

9. FUNCLIONS @Nd OPEIALOLS. .. .cuteeuiieiiiriiesieesieereee ettt 101
9.1. LOQICAl OPEIALOLS.....cecvierteirteertee sttt sttt ettt 101
9.2. COMPAriSON OPEIALAIS......ceiveirieierieierieie ettt sttt sttt snes 101
9.3. Mathematical FUNctions and OPEratorS........ccoeevereririeenieeneesese e 103
9.4. String FUNCions and OPEeratars...........ccoeerrerieereseiesiee e 105
9.5. Binary String Functions and OPEeratorsS.........cccccoeverereerernieniene e 113
9.6. Pattern MatChiNg......ccccceereie e 114

9.6, L.LIKE ..ottt ettt st b ettt b et b et nn e 115
9.6.2.SIMILAR TO and SQL99 Regular EXpressions.........cccuoevevereereeienenn 115
9.6.3. POSIX Regular EXPresSSiONS.o veeerereriesieneseeesesie s 116
9.6.3.1. Regular Expression Detalls.........c.ccooevereirinieneneneeeeenee, 117

9.6.3.2. Bracket EXPreSSIONS.......cccvcceeieeeerieseesiesieeae e seesne e eseeseesneens 120

9.6.3.3. Regular EXpression ESCapes.......ccccoceveveeiesieciese e 121

9.6.3.4. Regular Expression MetasyntaX........ccoccoeeeeereeieeseseesessnninens 123

9.6.3.5. Regular Expression Matching Rules..........ccccoveveviviiveve s, 124

9.6.3.6. Limits and Compatibility..........ccceoererieeie i 125

9.6.3.7. Basic Regular EXPressions.........ccccvevevveveeesesesesieseeseeessennns 126

9.7. Data Type Formatting FUNCLIONS.........ccccviieiereeece st 126
9.8. Date/Time Functions and OPEratars.........cccceeeeerieresiereeseeiesiesreseseseeseeessenees 131
9.8.1.EXTRACTAALE_PAIt .ooceeiveeeieeireesteecire et e ste e sreereesre e srreereere e e e sreeree e 134

LIRS 2o =Y (T ((V] oS 137
O0.8.3.AT TIME ZONE....iiiiiieiiieeeeseesteseesesteeneesseeeessesseessesseesaessesseensessnenssssessanns 137
9.8.4. CUIENt DAE/TIME.....iiviieereeeeeesie e seeeeee et ene s e 138

9.9. Geometric FuNctions and OPEratarS.........coccerrerereierieiereenee e 139
9.10. Network Address Type FUNCLIONS.........ccovrerneneneresee e 142
9.11. Sequence-Manipulation FUNCHONS.........cooirririneieree e 144
9.12. ConditioNal EXPrESSIONS......ccoeirieirieierieie sttt 145
.12, 0 .CASE ...ttt et et e ae et e e sreeneens 146
0.12.2.COALESCE ...ttt it ete et stee e te et e te et et e s te et e et e s e et e e be e sra e e e ereenras 147

LS T 52 8 N | SR 147
9.13. Miscellaneous FUNCHONS.ccoiiirieiere et 147
9.14. Array FUNCLIONS and OPEIatOrS......c.coereeuerrierisieresiee et 153
9.15. AgQregate FUNCLOMNS.ccoiiieiriee ettt 154
9.16. SUDQUETY EXPrESSIONS....c.eiieieeeeierieiie et ieie ettt see e sae et see e e eae e 156
0.18. LEXIST S ecutuiieeieieeeres ettt sttt bbbt et s e bbbttt nn e 156
9.18.2.IN ettt bbb bbb bbbt ne e e 156
9.16.3.NOT IN etttk b ettt 157
9.16.4. ANYSOME.......ctiuiiirerieteiteseres ettt et be bt e sttt e sttt snsnena 157
9.1B.5.ALL 1.ttt bbbt 158
9.16.6. ROW-WiSE COMPAIISQN.......cecceerierieeiienteeeesteeee e seeae e seeseesreesaesresnaens 159
9.17. Row and Array COMPATISOLIS.cceeiueriereeiresreeseestesseestesseessesseseesseseesssssessaens 159
.17 1IN ittt R e 159
9.07.2.NOT INueiuiirereeteieeeses ettt ses ettt b e sa et b et e b n e nnsnenas 159
9.17. 3 ANYSOMEAITAY)....cueeirerreeieeieeeeestesteestesseeeesseseessessesssessesseassesseesssssessanns 160

Q. 17.4ALL (BITAY)...ccteieereererrestestesieseeeesestestessessesessessessestessessessssessessessessensssessenns 160
9.17.5. ROW-WIiSE COMPANISQN....ceeieririeriereereeeseseesresteseeseeessesseseeseessesessessenns 160

10. TYPE CONVEISION....cuiitiiteieeeeeteetesesteseeeesesessestes e e seesessestessesaesseneesessessestessessesenensenses 162
L0, 1. OVEIVIEW.....cuieeerereieesere ettt 162
O I @ o= > o] = 163
10.3. FUNCHONS ...ttt 166
10.4. VAlUE SEOTAQE.i ittt e 168

Vi

10.5.UNION, CASE aNAARRAYCONSIIUCES......cccvieiteeerieiteesteeceessreesreessesssessseesseessenans 169

T [0 To Lo TSROSO 171
I I [o To (1 o 1o) o TSROSO 171
11,2, INUEX TYPES . eiieiirietertet ettt bbbt b e b et bt b e s 172
11.3. MURICOIUMN INAEXES.......ocee ettt st 172
11.4. UNIQUE INAEXES ...ttt 173
11.5. INdEXES ON EXPIrESSIONS....c.iitieeeeuirtirieriereeee e st ste e see e ae s seesseeeneeneenens 174
11.6. OPEratOr ClASSES....ceciruiriirierie e reeiertesie ettt st st be e e ae b sbe b ese e eneanens 174
11.7. Partial INAEXES.......ccvevuiiiieee ettt sttt re et st e era s 175
11.8. EXamining INAEX USAQE.......ccereieeeriirieriirieieeeese st s sne s 177

12. CoNCUITENCY CONLIAL ..c.eiiiiiiiiiiteie ettt ene s 179
D2 I 11 o o 18 od 1 T o PSPPSR 179
12.2. Transaction ISOIALION.ooereieiirere e e 179

12.2.1. Read Committed Isolation Level...........ccccovirineiinisnee e, 180
12.2.2. Serializable 1Solation LEVEL...........cooveinininieeee e 181
12.3. EXPlICIt LOCKING ..c.tiitieieiieeieesieseee st ees ettt sae et s renne s 181
12.3.1. Table-LeVel LOCKS........ccoiiiiieinieeeeeeee e 182
12.3.2. ROW-LEVEI LOCKS......cooiiiiirieie e 183
12.3.3. DEAAIOCKSc.ccuieeeieeierie et e 183
12.4. Data Consistency Checks at the Application Level........ccccocvevvvvvicieeccennns 184
12.5. LOCKING @Nd INAEXES.......ccvivirierieeeieetisiesesteieeee e ste s e eseese s e sressenseneennenens 185

13, PerfOrmManCe TIPS ...coiireriereeeeestesieseeseeeesesesseseesesaeseesessestessessesssssesessessessessessensesessenses 187
13,1, USINGEXPLAIN ...oviteeieeieeectestesteseeseesestestesaessasseseesessessessessesessessessesssssensensensensasens 187
13.2. Statistics Used by the PIaNNEr..........cocccveiineineeeeese e 190
13.3. Controlling the Planner with EXpliciDIN Clauses........cccoovrverrenneneneennes 191
13.4. Populating & Database..........ccccviririereieeiees e 193

13.4.1. Disable AUTOCOMIMUL........cceiiieiiieieee ettt e 193
13.4.2. USECOPY FROM....ociitiiitiiiteisiesesteistesesesesseessessssssessssensssessssessssensssens 193
13.4.3. REMOVE INUEXES....cei ittt et et 194
13.4.4, INCrEASEOM_MEM ...oiiiuieierieeeeeie st e e st st ste sttt bt see e seesbesneesbesaeenes 194
13.4.5. RUMNALYZEAFEIWArdS.........coeeeeiiiieeee et 194
[, Server ADMINISIIALIONccciciiiiice et re e st e b e ee st e eaeeresneeneas 195

14. Installation INSIFUCTIONS........cciiiiiece et see e ne s 197
S o T A /=T 67T o S 197
14.2. REQUIFEIMENIS.eieieieieieetestesie ettt se e st beseese e e s aesbesee b ense e eneanens 197
14.3. GEettiNg THE SOUICE.....coi ittt e sne s 199
14.4. 1f YOU Are UPGrading......ccccoerereereeinierie et s see e sne s 199
14.5. Installation ProCEAULE..........coi ittt sne 200
14.6. Post-Installation SEUP.........ccoeeiiiieieee e 206

14.6.1. Shared LiDraries........cooiiiineereeee e 206
14.6.2. Environment Variables...........cocoiiieneinininceeere e 207
14.7. Supported PlatfOrmiS........ccie e 207

15. Installation 0N WINAOWS..........coiiiiiiieeeene e ene s 212

16. Server Run-time ENVIFONMENL........ccviiiririeirieere et 214
16.1. The PostgreSQL USEr ACCOUML.........ccocirierieieeesesteseseseeeees e seeseesseseseeeenens 214
16.2. Creating a Database CIUSIEN........ccciviiirieee e 214
16.3. Starting the DatabasSe SEIVEL..........ccvviirereeeeee s enen 215

16.3.1. Server Start-up FailUres........ccccoovvevereeeecece e 216
16.3.2. Client Connection ProblemS.........cccoeirrinrinninsenseese e 217
16.4. Run-time ConfiguIatiOn..........cccoeriiiereeees e 218
16.4.1. Connections and AuthentiCation..........ccccovvvvvvrvrereeenie e 219

Vii

16.4.1.1. CONNECLION SENGS....cevveirieirieirieerree e 219

16.4.1.2. Security and AuthentiCation............ccovoeevernenneneneneseeee 220

16.4.2. Resource CONSUMPLION.cciueireireirieierieeessese e 221
16.4.2.1. MEIMOIY...iitiitiieieeeerinte sttt nnen 221

16.4.2.2. Free SPace Map........c.covveeevererininine s 221

16.4.2.3. Kernel ReSOUICe USAQE.......cccureiriririnieneesieese e 222

16.4.3. Writ€ ANEAA LOG....ciui ittt e 222
16.4.3.1. SEINGS ...cvieiieriiirieireisie et 222

16.4.3.2. CheCKPOINIS......cociiuiriiriiieiieieene ettt 223

16.4.4. QUETY PlanninNg........ccoiiirieireie et 224
16.4.4.1. Planner Method ConfiguratiQn............ccoeeeenerenenieneieniennns 224

16.4.4.2. Planner Cost CONSLANIS.........ccoevrveirininereeseeseses e 225

16.4.4.3. Genetic Query OPtimMIZEE.......cccevieveeveseeeere e 225

16.4.4.4. Other Planner OPtioNS......ccccceeceeveveeieseseere e 226

16.4.5. Error Reporting and LOGQiNg.......ccccvvveeeerereerieseeeeseeceeseesesee e 226
16.4.5.1. SYSIOQ.. ittt e 226

16.4.5.2. WheN TO LOG.....cceieiieiiee ettt 227

16.4.5.3. What TO LOG......cuoriirieirieirieesie e 228

16.4.6. RUNIME SEALISHICS. ... 229
16.4.6.1. StatisticsS MONITONNG.......ccceveieeeresesieseseeesese e enens 229

16.4.6.2. Query and Index Statistics Collectar..........ccccvevvvrereereriennns 229

16.4.7. Client Connection Defaults...........cccovvrereinnnnecnnneeeee e 230
16.4.7.1. Statement BENAVIQL..........ccovvereinnreeee s 230

16.4.7.2. Locale and FOrmatting..........cccoevevrenrennennenneneseesee e 231

16.4.7.3. Other DefaultS.......cccovvviireeeece e 232

16.4.8. LOCK MANAgEMENL........ceoiuieriririeiriees e 233
16.4.9. Version and Platform Compatibility.............cccovoirrinnennienneineee 233
16.4.9.1. Previous PostgreSQL VErSIONS........cccooerrerrenereneseneseeniens 233

16.4.9.2. Platform and Client Compatibility...........ccccoovernirnieineiennn. 234

16.4.10. Developer OPLiONS........cccoveieirieiree et 234
16.4.11. SNOIt OPLONS....c.iiiitiiriiirieer e 235
16.5. Managing Kernel RESOUICES........couoiiereerieerieesie e 236
16.5.1. Shared Memory and SemMaphores.cccoevrrirnerrennese e 236
16.5.2. RESOUICE LIMILS....ciuiiiiieiieiecee sttt 240
16.5.3. Linux Memory OVEIrCOMMIL.........cccoieieererereriereenie s 241
16.6. Shutting DOWN the SEIVEL.......coeiiieiie e 242
16.7. Secure TCP/IP Connections With SSL........cccociiiiniienciennee e 242
16.8. Secure TCP/IP Connections with SSH Tunnels..........cccccevniiinineneinienens 243
17. Database Users and PriVIIEgES ..ot 245
17.1. DAtabASE USEIS.....corieiieeiieriiiri sttt 245
17.2. USEI AIIDULES ...t 245
G T 1 (01U o =SSR 246
A e 4171 =T o TS 246
17.5. FUNCHIONS @Nd THQQEES .cceeieieeieceeete e e et sre et nae e ene s 247
18. Managing Databases.........ccccueviieeie et 248
18. 1. OVEIVIEW.. ..ttt b ettt 248
18.2. Creating a Database........ccovvveieeerise e e 248
18.3. Template DatabasEs........ccccvvererieiriresesee e e e ene s 249
18.4. Database ConfiguratiQn............ccceceeireiineseieeiese s esnens 250
18.5. Alternative LOCALIONS.c.covrrerrereiirere e 250
18.6. DesStroying a Database.........cccveveeerireiiriieeee s e e e nnens 251
19. Client AUNENLICALION.ccveeee e ne e enenes 253

viii

19.1. Thepg_hba.conf i€ ... e 253

19.2. Authentication MEthOAS........cooiiereiereee e 258
19.2.1. Trust authentiCatiQn...........cccocveereiere e 258

19.2.2. Password authentiCation............cooevereerinienesenee e 258

19.2.3. Kerberos authenticatian............c.coevereenenieneseree e 258

19.2.4. Ident-based authenticatiQn............ccceveeririereneneee e, 259

19.2.4.1. Ident Authentication over TCPPR.......ccccooiiiiiiiiieeens 259

19.2.4.2. Ident Authentication over Local Sockets..........cccooeieercennnns 260

19.2.4.3. 1dENE MANS...c.eiiieieeirierie ettt 260

19.2.5. PAM AUtNENTICALION.......iieieeee st 261

19.3. Authentication probIEMS...........ooiiiiii e 261

PO I o Tox 1174 11 [0 ST PR PSSR 263
D24 T R o o= 1 L= TS U o] o o 1o PRSI 263
20.1. 1. OVEIVIEW.....eeetieeteieteesteesiee e e seetesesteses e e sbe e sbesestesesessesessesessenessesessens 263

20.1.2. BENEFIES it e 264

20.1.3. ProBIEMS....ceiiet et e 264

20.2. Character Set SUPPOLL.....ccvceeeere e eeee e e e e ste s ete e e e sae e eseesreeneens 265
20.2.1. Supported Character SEtS........ccovvvveieeiene e 265

20.2.2. Setting the Character Sef.........ccoovvevccrinie e 266

20.2.3. Automatic Character Set Conversion Between Server and Client 267

20.2.4. FUrther REAAING........cuoierereeeeiseseseeeeesese sttt s 269

21. Routine Database Maintenance TaSKS........ccourereiineineens e 270
21.1. ROULINE VACUUMINGeiiiiteieereeeeereseeseesesseseesessessesesseesesseesessesssssessessensesensenses 270
21.1.1. Recovering diSK SPACE.......ccccevurrerirenereresie et 270

21.1.2. Updating planner StatiStiCS.........covrerrenneienieereesee e 271

21.1.3. Preventing transaction ID wraparound failures...........ccccocevevreenne 272

21.2. ROULINE REINAEXING......citiiiteerieeriee ettt e 273
21.3. Log File MaINtENANCE........cceiireiriee et 273

22. BaCKUP AN RESIOLE. ..ot 275
22. 1. SQL DUMI. .ottt ettt et ene s 275
22.1.1. Restoring the dUM.......ccoeiieiiierinereese e 275

27205 W2 U £ o To oo e (01431 o - | R 276

22.1.3. Large Dat@bases........cccccureirieirinenineresee st 277

22,04, CAVEALSottt e b e e bt a e s e e e nanan 277

22.2. File system level DACKUP..........ccoiiiiiiee e 278
22.3. Migration Between RelEaSES.......coccoi i 278

23. Monitoring Database ACHIVILY.........curerererereses e e e 280
23.1. Standard UNiX TOOIS......ccciiiieeerirese ettt 280
23.2. The StatistiCS COIECLOL. ..ot 280
23.2.1. Statistics Collection Configuration..............ccoerererrineneseseceeenene 281

23.2.2. Viewing Collected StatiStiCS.........cevvreeieeriieere e 281

23.3. VIEWING LOCKS.....cciiiiieiecticiese ettt sttt enne e naesneennens 285

24. MoNitoring DISK USAQE.......cccviceeiiesieeiisie et e et s e e ae e et e e e naesrennaens 286
24.1. Determining DiSK USAQE........ccceveierieseseee e eee st ste s eae e e e seesae e eneens 286
24.2. DISK FUIl FAIUIE.....eiiiiiee et 287

25. Write-Ahead Logging (WAL)......coeceeieieeee sttt ettt s n e 288
25.1. BENETItS Of WAL.....c.oiecierieieiete ettt 288
25.2. FULUIE BENETIIS.....c.i ittt 288
A TS T VLN IR @0 1o U 1 =1 1 o] o S 289
25,4, INEEINAIS ...t bbbt 290

26. REOIESSION TESIS....iciiiierieeeueetisestesteteeee st sre s e teseeseeseesessesresaeseeeseesesseseeseeseeneenessessenns 292
26.1. RUNNING the TESIS... oot 292

I WY V= 1 LU= (o o TR 293

26.2.1. Error message differenCes.. ... 293
26.2.2. Locale differEnNCeS.......cooeeeieiere e 293
26.2.3. Date and time differenCes.........covvereeeeni i 294
26.2.4. Floating-point differences...........cooovinniineineeeeee e 294
26.2.5. Row ordering differenCes........coevevmerrenneieret e 294
26.2.6. The “random” tESL......cceieeeeeeee e 295
26.3. Platform-specific comparison fileS.........cooironnini e 295
V. CHENE INTEITACESeeieeieiei et ettt b e b b e e e nne e 297
A 11o] o 1o I O I o] = Y S TSSO U PSSP 299
27.1. Database Connection Control FUNCLIONS..........cocoviiireieinienenee e 299
27.2. Connection Status FUNCHIQNS.........ccooiiiiiieieeeere e 304
27.3. Command EXecution FUNCHONS...........ccoeiieieenene e 307
27.3.1. MaIN FUNCLONS.....coiiiiiieieeeteeere et e 308
27.3.2. Retrieving Query Result Information...........cccocevoveveneeesvsceere s 312
27.3.3. Retrieving Result Information for Other Commands....................... 316
27.3.4. Escaping Strings for Inclusion in SQL Commands..........cccccceeenene. 316
27.3.5. Escaping Binary Strings for Inclusion in SQL Commands.............. 317
27.4. Asynchronous Command ProCeSSING......cccevveeriereieresieiesiesesesesaeseeessenes 318
27.5. The Fast-Path INterface.........coceoveiriiinninee e 322
27.6. Asynchronous NOtIfiCatiON..........cceovrirenierereeeces e 323
27.7. Functions Associated with tl®PYCommand............ceeeervierenienenereeenenens 324
27.7.1. Functions for SENdim@OPYDALA.........cccceerereieriee e 325
27.7.2. Functions for ReceivimQOPYData........c.ccovererieirieenrenese s 325
27.7.3. Obsolete FUNCHIONS FOOPY.......ccoiiieeene e 326
27.8. CONIOl FUNCHIONS.....c.eetieierie ettt st ene e 328
27.9. NOUICE PrOCESSING....ccvieiteerteirtet ettt 329
27.10. Environment Variables.........cccoiiiiiiinienereeeeese e 330
27.11. The PaSSWOIA File.......ccooi it 331
27.12. Behavior in Threaded Programs..........cccoeereenneneneeneense e 331
27.13. Building libpg Programs..........cccoeereereenneneseresee s 332
27.14. EXample Programs........c.cocoeeireirieeneeseee st 333
2 T 1o Tl @][Tox £ PSS 341
B T I o T3 (] Y SO 341
28.2. Implementation FEAUIES..........ccoo it 341
28.3. ClIeNt INTEITACES. ... eiireeeierie e e 341
28.3.1. Creating a Large ObJeCL........ccooiiiercrere e 341
28.3.2. Importing a Large ODJECL........cccvi et 342
28.3.3. Exporting a Large ODjJecCt........ccccveiicieecr e 342
28.3.4. Opening an Existing Large ObJeCL.......c.cccoveve e 342
28.3.5. Writing Data to a Large ODbjecCL........cccccvviieeve v 342
28.3.6. Reading Data from a Large ObJECL........ccooceveveeiesecee e 343
28.3.7. Seeking on a Large ODjJecCt..........ccccovvveeeve i 343
28.3.8. Obtaining the Seek Position of a Large Object..........cccccoevevveenene. 343
28.3.9. Closing a Large Object DeSCHPLOL.......cccvvvererereeeeese e seeeeesens 343
28.3.10. Removing a Large ObJECL......ccccveveeeerr e 343

28.4. Server-Side FUNCHONS.........coo e 344
28.5. EXAMPIE PrOgra........ccovieierieeeiseseseseseseeessesieseeseesessessessesssssessesasssssessenses 344
2SI oo | (ol IR ol =110V [T qTo I o] - Vo S 349
29. 1. OVEIVIEW.....etiieieeeeseeeetestesieseeseeeesesse s e seesteseseeseesessesaeseenanneesessessessessessensenensenses 349
29.2. Loading pgtcl into an AppliCation...........ccverrennenneinereerese e 349

29.3. pgtcl Command REFEIENCE.......coeiieiree e 350
1o I o0] 0] 0 [T o APPSR 350
PO_JISCONNECLE.....c.eeviiciiietertert e 352
PY_CONNAETAUILS.......oeieiiciiii e 353
PO_EXEC.. ittt e e e 354
PO_TESUIL ...ttt 355
[oT0 JEST=] (= o! SO SSR 357
PO_EXECULR......eeieteteeeeete ettt ettt b e ae e ettt esbe et e bt e aeeneesaeeseesbeennenbesneanns 359
ST T LS 1= o VOSSPSR 361
PG_ON_CONNECLION_IOSS.....iiiiiiiiiieieeee sttt s e 362
o1 T (o T o (== 1 SRR 363
o1 T (o T o) 0 1= 4 PSSRV P USSP 364
o7 R [0 T o [0 1= =S 365
o7 R [0 T (=T o PSS 366
Lo (o TR] (=SS 367
Lo R (o TR Y=< S 368
oo {0 T (= | S 369
o7 TR (o T 1 L1 1SS 370
o7 TR (o T 12] o1 o PSS 371
o7 TR Lo TR =4 o1 i S 372

29.4. EXQMPIE PrOQra.......ccccivieiereeeeesesestesesieseeessesteseeseesessassessessessessessessessnsenses 373

30. ECPG - Embedded SQL IN.C.....cooi ettt sttt sre s 374

L0 5 T I o =T o =7 o) S 374

30.2. Connecting to the Database SEIVET..........occcrerrerneieneeree e 374

30.3. CloSING & CONNECLIQN......c.citiirieirieeriee et 375

30.4. Running SQL COMMANGAS........ccotriirieirinererieresie st 376

30.5. ChooSIiNG 8 CONNECHIOM.......cciiuiirieirieereeie st 377

30.6. Using HOSt Variables...........ooi i 377
30.6. 1. OVEIVIEBW.c...eeeueeeeeieiiesiesie ettt st see e see st te e e e esesteseeseeneeneenennens 377
30.6.2. DECIAre SECHONS.......eiieeeeeetieese et 377
30.6.3.SELECT INTOQNAFETCH INTO...cccciiietieieireeieriesieeie e eaee e e see e ennens 378
BT G g o [o= 1 o) 5= 379

30.7. DYNAMIC SQL....ciiiiiieiirieieetee ettt e 379

30.8. UsiNg SQL DESCIIPIOr ATCAS......cccetrieuireeiererieresienesie st 380

30.9. Error HANAING. ...c.ceeeeeeeiee e e 382
30.9.1. Setting CallDacKS.........coeieririiere e 382
O o | (o= ST 384
30.9.3.SQLSTATEVS SQLCODE.ttiiiieititiieereesies e esseestes e ssse e ssasssesseesees 385

30.10. INCIUAING FlES ...t 387

30.11. Processing Embedded SQL Programs..........cccccveverererienieneseseseeseeesnenees 388

30.12. Library FUNCHIONS........cci ettt sae s nae e ennens 388

30.13. INEINAIS ..ot 389

31, IDBC INTEITACE. ... c.citeeereeeireeiireetere et 392

31.1. Setting UP the JIDBC DIIVEL......ccccv et ste s eae st sae e sae e eneens 392
31.1.1. Getting the DIIVEL.......cccvece et 392
31.1.2. Setting up the Class Path.........cccveveeiviscceeceees e 392
31.1.3. Preparing the Database Server for IDBC........cccccocevnivvievereeceeienens 392

31.2. INItialiZING the DIVEL......ccce ettt ene s 393
31.2.1. IMPOrting JDBC.......cccvieiereeeerieesieseeeeesese st e et s ene s 393
31.2.2. Loading the DIVEL......cccceeeeceese e seeeeeeese st et s 393
31.2.3. Connecting to the Database...........ccceeveeeverenenereceeese e 394
31.2.4. Closing the CONNECHION.........ccoviirrenrer e 394

Xi

31.3. Issuing a Query and Processing the RESUIL..........cccoccoveineiennenneneeeee 394

31.3.1. Getting results based 0N @ CULSOL.........cccoeireerieenine e 395
31.3.2. Using th&Statement or PreparedStatement Interface.................... 396
31.3.3. Using th®ResultSet INterface.........cccoorivneiineiinireeeereee e 396
31.4. Performing UPAteS.......cccoeireirieirieereeiesesieresie et 396
31.5. Calling Stored FUNCLIOMNS.........ccoieirieereeeseierese et 397
31.5.1. Using th&allableStatement INterface......ccoov e 397
31.5.2. ObtainingresultSet from a stored function...........cccocvvrerecnnnne 397
31.6. Creating and Modifying Database Objects..........cccoeveerininnenereneceee, 398
31.7. Storing Binary Data.........ccoco v 398
31.8. PostgreSQL Extensions to the IDBC ARL........cccooi i, 401
31.8.1. Accessing the EXIENSIONS........ccii e 401
31.8.1.1. Classrg.postgresgl.PGConnection ..ccccevevceerieeeeseeereennn, 401
31.8.1.1.1. MethOUS......coiriiriiieeeireee e 402
31.8.1.2. Classrg.postgresgl.Fastpath .occevvvceeve e, 403
31.8.1.2.1. MEthOUS......cooiiiieiieeeeeeeeee e 403
31.8.1.3. Classrg.postgresql.fastpath.FastpathArg ..o, 405
31.8.1.3.1. CONSIIUCIOLS......eiueeriereeie e 405
31.8.2. GEOMELNC DAta TYPES ...vereeeererierierieeeesesteste e see e e sse st se e seeeesesneens 406
T IS T B - o [l @] o] = o3 £ 418
31.8.3.1. Classrg.postgresgl.largeobject.LargeObject ~ 418
31.8.3.1.1. VariabIes........ccoceiiiireee e 419
31.8.3.1.2. MEtNOUS.....cceiiriiirieierieeriee et 419

31.8.3.2. Classrg.postgresql.largeobject.LargeObjectManager

420

31.8.3.2.1. VariabIES.......cccovveieeeee st 420
31.8.3.2.2. MEthOUS......cociii et 421
31.9. Using the Driver in a Multithreaded or a Servlet Environment.................... 421
31.10. Connection Pools and Data SOUICES.......ccoceovrerierereeneeeeere e 422
3 I O R @Y= V1= S 422
31.10.2. Application Server€onnectionPoolDataSource c.ccoceveeeeeenenn 422
31.10.3. ApplicationSDAtaASOUICE ccerereererrererieesiee et 423
31.10.4. Data Sources and JNDI..........cooivireninininere e 425
31.11. FUrther REAAING......ceieueeeiei sttt 426
32. The INformation SChEMA.........cccooiiiiiee e e 427
32.1. THe SCREMAL. ..o e bbb e 427
32.2. DALA TYPES....oeeeeeiierieeiesteeee sttt see ettt bt e s sae st e beshe et e b e sae e bt eaeeeesaenanen 427
32.3.information_schema_catalog_Name ...occeeiiiiiiesien e 427
32.4.applicable_IOlES i 428
32.5.CheCk _CONSIIAINIS oeiecciec et e et ne e e s are e e nr e e enns 428
32.6.column_dOmMAaiN_USAQE ..iceeecerriieerieisieeieesieeseesteessessseessseesbeessaesssessesssesssessnsens 428
32.7.COlUMN_PIIVIIEGES tooieiieeie ettt st et b e s e e e b s 429
32.8.COlUMN_UOL_USAJE .vevirieiieieieiieesiee sttt sttt saa e san e e b s saae b s 430
32.9.COIUMNS .ottt st b e s b e a e a e b b e nra b s 430
32.10.constraint_ColumMN_USA0E ..icicceeeeieeeeiee e sree e stre e eseee e st e e et e e sne e e snre e e enreeenes 434
32.11.constraint_table_USAgE .ccccciiceecie e 435
32.12.data_type_PrivilBOES e e 435
32.13.domain_CONSITAINIS .evicieeecieeciee e s e eree e see e e st e e ene e e st e e e e e e sane e e snreeennreeennes 436
G Y o (o) o =T T U Lo | U1 Uo = YU 436
0 170 W [0 ' - U SRS 437
32.16.€1EMENL_LYPES ereeeeieecee et ree st et e e e e e a e e re e sreenaaeenre s 440
32.17.NADIEA_TOIES oot e e sneeneens 442

Xii

32.18.KEY_COIUMN_USAGE .eouveverueiieeieesiesieeeesiesieetesteseesaesseestesbeente st sneensesneeneesaesneens 443

32.09.DArAMELEIS .iviieeiieriieiesteee ettt e see st ee sttt be et sbe et be bt e st et e aesaeeneesreennens 443
32.20.referential_CoNnStraintS oot e e 446
32.21.r0le_COIUMN_QrantS ueeoeeiieceiee ettt sttt s a e s seesaeennen 447
32.22.10le_TOULINE_QrANtS .eocieiiiieriesieeee ettt e et st sb et esa e sae e saenneen 447
32.23.r0le_table_grantsS i s s ne 448
R Y (o) [VIsY-Yo (I o = La | T SR 449
32.25.10UtiNe_PrVIIEgES coiicecee e 449
A T (o TU 11T SRS 450
Y (ol o 1= 1 1 - L= SRR 454
B Y o | I (T (0 4= RSP RRRR 455
32.29.sgl_implementation_iNfO i 455
32.30.501_1aNQUAGES evicieeiiie it naa e n 456
32.31.S01_PACKAGES woiveeeieiiiie ettt naa e s 457
32.32.S01SIZING teoiiiiie et n 457
32.33.501_SIZING_ProfilesS e 458
32.34.table_CONSIrAINS .eiiiiiee e e et e e e e e snre e e enre e enns 458
32.35.table_privilEges oo e 459
32.36.ADIES e e ettt 459
G Y2 7 8 11T To =Y £ 460
32.38.USAQE_PrIVIIBIES eoocieeieece ettt s eaaeenre s 461
32.39.VIEW_COIUMN_USAGE veeieeeeeeieesieesteeteesteeseesreesteesseesnse e teesaaesnneenteesneesnnesnsens 462
32.40.ViEW_tabI@_USAJE .iicieeieeeeeeieesieeeeeete e s e e seeste e ste e s aeesaae e te e saaesane e be e sneenneeenre s 463
TSR 463
V. SEIVEr PrOgramMIMiNg ...c.coceoiiiriesieriereeestesesteseeseeessessessessessesseseesessessessessessesessessessessessensessesesses 465
33 EXIENAING SQL....eiiiiiiieieeieseeie ettt ettt 467
33.1. How EXtensibility WOTKS.......cccoceoireiinerneeeees e 467
33.2. The PostgreSQL TYPE SYSEIMN.....c.coviriirrireeieese st 467
33.2.1. BASE TYPES. ..ottt e 467
33.2.2. COMPOSILE TYPES. ettt 467

IS T2 T B T 4= 11 1= TSP 468
33.2.4. PSEUAO-TYPES. ..ottt sttt sttt 468
33.2.5. PolyMOrphiC TYPES....ooieeeeeeeee et 468
33.3. User-Defined FUNCHIONS........cocoiiiiiiieie et 468
33.4. Query Language (SQL) FUNCLANS.........cooiirirerire e 469
33.4.1. SQL FUuNCtions 0N BASE TYPES.....cccreererereinieiereeeee st 469
33.4.2. SQL Functions on COMPOSIte TYPES....ccccerererererienenienie e 471
33.4.3. SQL Functions as Table SOUICES.........cccccevevericiese e 473
33.4.4. SQL Functions Returning SetS........ccccccevvieereveeieseeeese e e 473
33.4.5. Polymorphic SQL FUNCLONS........ccccviieierr e 474
33.5. Procedural Language FUNCLONS.......cccveieiineeie et seeie e see e 475
33.6. INterNal FUNCLIONS......ccoiiii ettt e 476
33.7. C-Language FUNCLOMS.........ccccceeieieeieseeeee s sses st seeste s eee st eseesae e esaesneeneens 476
33.7.1. Dynamic LOAdiNg........cccciereeeeririiieieiecisese et eae e s 476
33.7.2. Base Types in C-Language FUNCLIONS.........c.cccceveeeeeeneneveseeseeennens 477
33.7.3. Calling Conventions Version 0 for C-Language Functions............. 480
33.7.4. Calling Conventions Version 1 for C-Language Functions............. 482

I3 I A8 ST YL 111 o T @ Lo = 484
33.7.6. Compiling and Linking Dynamically-Loaded Functions.................. 485
33.7.7. Composite-Type Arguments in C-Language Functions.................. 487

33.7.8. Returning Rows (Composite Types) from C-Language Functians489

Xiii

33.7.9. Returning Sets from C-Language Functions...........cccocevevveneneennn 490

33.7.10. Polymorphic Arguments and Return TYPesS.......ccoevvvrvenenenenecennee 495

33.8. FUNCLION OVEIOAAING.ceiteirieirieierieie et 496
33.9. User-Defined AQQregates........cccu et 496
33.10. USer-Defined TYPES......cco ittt 498
33.11. User-Defined OPeratorS........cccueireereerenienesene ettt 501
33.12. Operator Optimization INfOrmMation.............ccceoerieiiieneerine e 502
33.12. 1.COMMUTATOR....ccttetee st cteeiteestesstesteeste s sbeeseesbesssaesse e bessraesnresseesens 502

IS I 2 N (€7 @] = S 503

A B 02 I = L I [S 504

I TN 02 N | SRS 504

I S NS o TS 505
33.12.6 MERGE$SORT1 SORT2 LTCMR GTCMP.....oceeieceeieeeceee e 506
33.13. Interfacing EXteNsSioNs TO INAEXES.......ccuccieieve e 507
33.13.1. Index Methods and Operator ClasSeS.......ccccvveeverieeceerrseeresenaens 507
33.13.2. Index Method Strategies.........cvveiereeieere e e 507
33.13.3. Index Method Support ROULINES.........ccccvieevevire e 509
33.13.4. AN EXAMPIE...eieiie et s 510
33.13.5. System Dependencies on Operator ClassSes......ccocoevvvvereereeernenns 512
33.13.6. Special Features of Operator Classes........ccccevvevveverieveveseeseeienenns 512

34. The RUIE SYSIEML. ...ttt sttt ne bt sae e e e enenneens 514
T I oI @ T 1= Y (=T S 514
34.2. Views and the RUIE SYStEM.........ccccvvvviriereseeecese e 516
34.2.1. HOWSELECTRUIES WOIK.....ceeviriiiiiieeieiecsieseesiese e 516
34.2.2. View Rules in NOISELECTStatemeNts......cocvvvrereereeereseseneeeeenens 521
34.2.3. The Power of Views in POStgreSQL........cccooveeirrinniinniennenesieeee 522
34.2.4. UPAating @ VIEW....c..oiiiiiieeeriee ettt 522
34.3. Rules ONSERT, UPDATE @NADELETE......c.cccotrrureeeeeerereeeeneeseseseeeeseneseseseenens 522
34.3.1. How Update RUIES WOIK..........ccocoeriririiieeeeeee e 523
34.3.1.1. AFirst Rule Step DY STEP.......ccveverrerrerseereesee e 524

34.3.2. Cooperation With VIBWS..........ccoeirrerireneneeniee e 527
34.4. RUleS and PrIVIIEGES........cccoiiiieirieeiee e 532
34.5. Rules and Command StatUS........ccccierirererieienere e sae e 533
34.6. RUIES VEISUS THOOERIS ..cveirteerieitrieie sttt sttt 534
BT I o To =] £ TSSO 537
35.1. Overview of Trigger BENAVIQL..........cocoiiiiiiirere e 537
35.2. Visibility of Data Changes.........cccceeririreieieeeese e 538
35.3. Writing Trigger FUNCHONS N C.....cocoiiiiiiieeeeee e 538
35.4. A Complete EXAMPIE......oii e 540
36. Procedural LANQUAGES. ..ottt sttt et b e se e 544
36.1. Installing Procedural LaNQUAGES........c.ceevevuieeeieeiesieeseseeieseeeesaeseeseesneennens 544
37. PL/pgSQL - SQL Procedural LanQUagE.........ccccevueeierieeeerieieesieseeeesieseesee e eseeseeennens 546
7.1, OVEIVIBWL. ettt sttt bbbt b e b b e e e ettt sb e b et e e e e e eneneas 546
37.1.1. Advantages of Using PL/PGSQL......ccccoevviieie e 547
37.1.2. Supported Argument and Result Data TYPeS......cccocveeevvieevesennens 547
37.2. Tips for Developing in PL/IPGSQL.......ccociiieieeeese e 547
37.2.1. Handling of Quotation MarkS..........cccccceevvereneneneesesese e 548
37.3. Structure of PL/PGSQL.....cv ettt 549
7.4, DECIATAtIONS.....c.e ittt sttt et 550
37.4.1. Aliases for Function Parameters........c.oovevreeneienniense s 551

A S O] o)/ T o N Y/ 0 1= = 552
37.4.3. ROW TYPES ..ottt sttt sttt r e e sn e 552

Xiv

37.4.4. RECON TYPES .. itiirieiriet ettt sttt 553

BT 4.5 RENAME......ciiiie ittt ste e te et e te et s e e st e et e et e e sateete e be e sraeenreenreesres 553
7.5, EXPrESSIONS. .. .cutiiieriete ettt sttt bbbt 553
37.6. BASIC StAtEMENLS.......oieiiiiie et 555
37.6.1. ASSIGNIMENL. ..ottt 555
37.6.2.SELECT INTOuiiiiiiiiieieesieecteeieestessteeteestesssteeseestessaaesseesesssaesnsesnseesens 555
37.6.3. Executing an Expression or Query With No Result..............ccc...... 556
37.6.4. Executing Dynamic Commands.........ccccvererenenernenienese e 557
37.6.5. Obtaining the Result StatlLS........ccocooeriniieee e 558
37.7. CONLIOl STIUCLUIES......ccuiitirii ettt et s eae s 559
37.7.1. Returning From a FUNCLON..........ccoiiiiee e 559
7. 7. LARETURNM . c.ectiittirieteteese sttt st 559
37.7.1.2RETURN NEXT . iiiiiteriiirriesieeseesnnesiesssessnssssesssessssssssesssnsssesssens 559
37.7.2. CoNAItIONAIS.......ceiireiirciree e 560
3B7.7.2.1IF-THEN .ottt 560
37.7.2.2IF-THEN-ELSE ...iiiitirieriieriiesie st see st ssas st n 560
37.7.2.3IF-THEN-ELSE IF oottt 561
37.7.2.4IF-THEN-ELSIF-ELSE ...iiiiierieriiesieente ettt 561

G A ARG TS 141 0] (=31 o o] o 1= 562

7. 7.3 LLOO0P....c.ce sttt 562
7. 7.3 2EXIT ottt 562
7.7 3. 3WHILE ..ttt 563
37.7.3.4FOR(INtEQEr VAIiANt)......ccccerierereeeeese s sreseeesese e seeseeesnenes 563

37.7.4. Looping Through Query ReSUILS........ccccoveiireiireieneeneee e 564
- TR 1 U = o] SRR 565

37.8.1. Declaring Cursor Variables..........ccoonieineineeeeseee e 565

37.8.2. OPENING CUISOIS...c..iirieiirieierieiereeie sttt ses e st besesbe e sbens 565

37.8.2.10PEN FOR SELECT ..iiicririrerirerieeneseresesteenesesesassesesesesessenens 565
37.8.2.20PEN FOR EXECUTE....ccocesieiiiesieesee e etee e see e e 566

37.8.2.3. Opening a BouNd CUISQL.........coeovreerenenenieeneeseee e 566

37.8.3. USING CUISOIS......iiiiiiiitieee ittt sttt sttt 566
7.8 3.1 FETCH ittt ettt 566

B7.8.3.2. CLOSE ..ttt 567

37.8.3.3. REtUrNING CUISOIS......ccueirieiirietirieiereere sttt seese e seere e 567

37.9. Errors and MESSAQES.coueiuereeiririeriesiesiesie e eaesie e seeseees e see e besaeneenesaeseas 568
37.10. Trigger PrOCEAUIES........ciui ettt ettt st st ene s 569
37.11. Porting from Oracle PL/SQL.......ccoi i 571
37.11.1. Porting EXamPIES....cccoeiiieerie ettt 571
37.11.2. Other Things to WatCh FOrL........ccooiiiiiiiiee e 576
37112 1 EXECUTE ettt ettt ettt 576

37.11.2.2. Optimizing PL/pgSQL Functians..........ccccceveevvevesveseneenen, 576

G700 I TG T AN o] 1= o < GRS 577

38. PL/Tcl - Tcl Procedural LangUAagE..........cccoveeeieieeiiesieeeesteseesie e e sreesee e sasseesnaens 580
8.1, OVEIVIEW. ...ttt sttt n s 580
38.2. PL/Tcl Functions and ArgUMENLS.......ccveveruereereereseeseseeee e seesaeseeseeseesnaens 580
38.3. Data Values in PLITCL.....coiiieeeenrceeeseres e 581
38.4. Global Data in PLITCL......coieiireeeerere e 581
38.5. Database AcCeSS from PLITCL......cccovrieeiirreeeeerese e 582
38.6. Trigger Procedures in PLITCL.....ccoov e 584
38.7. Modules and thenknown COMMANC.........ccoeiirrmrrereirrree s 585
38.8. TCl Procedure NAMES........ccvirrrrereeereree et 586
39. PL/Perl - Perl Procedural LAnQUAGE.........cccoeerrererinrenese e 587

XV

39.1. PL/Perl Functions and ArQUMEILS.........ccurreririerireiesiee s 587

39.2. Data Values iN PL/PEIL........ooeeeece e 588
39.3. Database Access from PLIPEIL........ccviriineeeeeee e 588
39.4. Trusted and Untrusted PL/PELL.........ccoooieieeeeee e 589
39.5. MiSSING FEATUIES.......cuiiirieietceeeee e e 589
40. PL/Python - Python Procedural Language..........c.coceoeenienineieneeneeesesesesie e 591
40.1. PL/PYthON FUNCHONS. ..ottt e e 591
40.2. Trigger FUNCLIONS.coiiieeeeeeee sttt s e e 591
40.3. DAtADASE ACCESS.....couiiiiriiieieeeeet ettt b e b et 592
41. Server Programming INTEraCe..........cooiiiiii e 594
41.1. INterface FUNCLIONS........cooiieit e e e 594
0] o o0 o1 = o A RPN 594
SPLFINISH.c.cee e 596

] o = (T oSO UR R 597
SPI U PIEPAIE. .ttt ———————— 600

] o = (S o] O R R OURRS 602

0] o I o 01 C=To] g o] 011 o FO PSR URPR S 604

Y o I w0 £=To 1o ST 605

S o I o0 £=To] g (= (o o T 606
SPI_CUISOI_IMOVE ...ttt st b e s r e re e e 607

] o I o0 £=To] o [0 = 608

] o IET= 1YL= o] = 609
41.2. Interface SUPPOIt FUNCHIONS.........covverereeeeeeese st steeee e 610
SPI_NAME ..o 610
SPI_NUMDEL. ..o 611
SPI_gEVAIUE. ... 612
SPI_gethinual........c.coooiiiiee e 613

SP QI PO et 614
SPI_QEttYPEIG....c.ecue e 615
SPI_getrelNaME.oiciieeee e 616
41.3. Memory ManagemeNt.........ccecvririiinrenereeeeesesre et e s 617
SPI_PAIIOC. ..ottt 617
SPI_TEPAIIOC......ceceiieetireteeee e 619

SP P T s 620

SP COPYUPIE et e e 621

] ol I el0] o)V 18] o1 [T0 (=2 oS ST 622
SPI_COPYLUPIEINTOSIOL......couiieiieieeeeeteee e e 623
SPL_MOAIfYTUPIE....eeeee e e 624
SP_fTEEIUPIE. e e 626
SPL_freetuptable.... ... 627

] T (==] = o TSRS 628
41.4. Visibility of Data Changes..........ccccveieieieiie et 629
T e T] o] [TR 629
VI RETEIENCE. ..ottt ettt n e r ettt 632
[, SQL COMMANGS.....ccuiiitiitiiiiite ettt eite et e ste e estesresaesbesbeesbesbesasessesseestesbesssebesseensesreenss 634
ABORT ...ttt 635
ALTER AGGREGATE ...ttt 637
ALTER CONVERSION. ..ottt sesnenenens 638
ALTER DATABASE ...ttt 639
I = 10T 1Y | PP 641
ALTER FUNCTION ...ttt see et eseesae e neesseenaessesseesnsneenees 643

XVi

ALTER GROUP......ooteiceee s s 644

ALTER LANGUAGEociiitiieeeeeet st e 646
ALTER OPERATOR CLASS ...ttt e e 647
ALTER SCHEMA. ..ottt e s 648
ALTER SEQUENCE........co ittt e 649
ALTER TABLE ..ot e e 651
ALTER TRIGGERI......co ot s 656
ALTER USER ...ttt e s 657
ANALYZE ..ottt e e e s 660
BEGIN ...t s 662
CHECKPOINT ...ttt s s e 664
CLOSE ... e s 665
CLUSTERA. ...t et s e 666
COMMENT . e 669
COMMIT e e 671
COPY e 672
CREATE AGGREGATE ... 678
CREATE CAST...o i e s 681
CREATE CONSTRAINT TRIGGER........ccoiiiii 684
CREATE CONVERSION......cciiiiiiiriiiii s 685
CREATE DATABASE.......o oottt 687
CREATE DOMAIN.....ctiiitieete ettt 690
CREATE FUNCTION.....otiiiiierenteie ettt 692
CREATE GROURP......ceiieeeetetee ettt e 696
CREATE INDEX .. .ottt ettt et enenns 698
CREATE LANGUAGE.......ci et 701
CREATE OPERATOR......o ottt e ene s 704
CREATE OPERATOR CLASS..... oottt 707
CREATE RULE ...ttt e e 710
CREATE SCHEMAL. ..ottt e 713
CREATE SEQUENCE ...ttt e 715
CREATE TABLE ...ttt e 718
CREATE TABLE AS......o ettt s e 727
CREATE TRIGGER.......ooiiiiiiii ettt e 729
CREATE TYPE ...ttt et 732
CREATE USER......i it e 737
CREATE VIEW.....iiiti e e 740
DEALLOCATE ...t e e s 742
DECLARE. ... oo s 743
DELETE ...t e e e 746
DROP AGGREGATE ..ottt e s 748
DROP CAST...o e e s 749
DROP CONVERSION......occiiiiiiiiti s s 750
DROP DATABASEo ot s s 751
DROP DOMAIN ..ottt s 752
DROP FUNCTION......coiiiiiiirint i s 753
DROP GROURP........ocii i s 754
DROP INDEX... .ot s s 755
DROP LANGUAGE ... 756
DROP OPERATOR......cotitrteerrcerree e 757
DROP OPERATOR CLASS ..ot 759
DROP RULE......cotiiitiitere ettt e e s 760

XVil

DROP SCHEMA ... oottt e 761

DROP SEQUENCQGE.......c ettt sttt 762
]] I AN = ST 763
DROP TRIGGER...... ettt ettt sttt sttt e naeenne e saaeareeneesnes 764
DROP TYPE.....o ottt sttt sttt s et se st ese s e se s sensesensssanen 765
DROP USER ..ottt sttt ettt st s s s aesensesensssanen 766
DROP VIEW......o ettt sttt sttt et st se st s sesensssensnsenes 767
EIND ottt ettt bttt bR ARt R et R et Rt s e nnnnenen 768
EXECUTE. ..ottt sttt ettt s et b s s e e e senen 769
) AN 1TSS 770
o 1O o TSR R 773
(1 7Y VSO 777
INSERT ..ttt sttt ettt ettt et e b et e s s b e s et e se st e s e ne e s e s s e s s enensenen 781
LISTEN oottt sttt s et st s et e bt e b e e s e e b e e nsenes 783
0 A I TSSO 785
1 11 TSSO 786
IMOVE ...ttt bbbt b bbb bttt b e e e s s 789
INOTIFY ettt ettt s et s et b et e b et e b e e s e e b enesenes 790
PREPARE ...ttt sttt et ettt b ettt 792
REINDEX. ...ttt ettt sttt b et s et se st bt b et b e b e nsenes 794
RESET. ...ttt b et s et b et st b et b et bt 797
REVOKE ...ttt ettt 799
ROLLBACK ...ttt ettt sttt sttt ettt ettt nenes 802
SELEC T e ittt et a et et e et e et 803
] I O I | 1 S 814
S TSRS 816
SET CONSTRAINTSttt see e e e st e s e e s e e nteenseesraeereenneesnneans 819
SET SESSION AUTHORIZATION.tiiiieeiecte et estee e sve et e e e snee e e nneesnne e 820
SET TRANSACTION. ...ttt sttt et e s e s et e s e snneeteenneesnneans 822
L [ST 824
START TRANSACTION.....cccte ettt eeste et s e eae et esaeeae e beesneesnaeenren 826
I L0 1 L A I P 827
UNLISTEN. ..ottt sttt et st se s e s e s s s senssanes 828
UPDATE ...ttt ettt sttt b et et et ese st e s et e s e st ese st esesseseseseneesenensenen 830
VACUUM L.ttt st sttt se e s e et e se et e seebe e et e e sbeseseesesaesesentesens 832
[I. PostgreSQL Client APPlCALIONS........coi i 835
Lo 101 =] o | o H SRR 836
CrEALEAN. ... e bbb e eaeaas 839
CPEALEIANG. ... ettt et bbb e et s a e bt e e eae e 842
CTALEUSEN ...ttt e eeste st ettt et e st e aeese e s bt e aee s beeae e s e ebe e e e saeemeesbesheensenbesneensesreeeesreennens 845
Lo 10T o | o T OSSP 848
Lo 10T o] F= T o o T O RS 851
Lo 10T oW 1= oS 853
LT o oo TR SR SPRRTR 856
7o oo 1 T S 858
o7 T L8 1 1] o TSRS 860
o7 T L8 141 o =1 RSP SR 866
010 T (=153 0] = PSP PRURROPR 869
0| £ RSP SRN 875
011156 NSRS 876
15 o | RSSO 877
1722 (o 811 .o | 1 899

XViii

[1l. PostgreSQL Server APPIICALIONS. ...ttt 902

7170 | PR STRSRN 903
1711 o TF= o o TSRS 906
0 oo [= - o TSRS 907
[oTo I eTe] g1 (0] o F-\ = VS SSRSRR 908
o7 [| SRS 909
10 I C=25T=1 074 0T TSP 913
POSEGIES ...ttt ettt sttt sttt b e st e bt e ae e e e she et e s b e e Re e b e e bt e e e Rt eaeeneesheenrenrenanenes 915
POSTMBISTEL.ttt b e s se e et b e s ae e e e ebe e e e eaesaeesbesaeennenbennnanes 919
VL INEEINAIS ...ttt b e b et e et e ae b b et e e et eneneas 924
42. Overview of POStgreSQL INterNals.........cccecveeeii e 926
42.1. The Path 0f @ QUELY ... e 926
42.2. How Connections are Established............ccccooiiininicinieccee 926
42.3. THe Parser STAQE......ccccciieieieciee st ee e e ettt enaenn e sne e 927
R T N == 1] PP U PSPPI 927
42.3.2. Transformation PrOCESS.........ocvvveiieiree e 928
42.4. The PostgreSQL RUIE SYSEML.......ccivieieeeceeise e 928
42.5. Planner/OPtiMIZEr........ccuivieieeee e sese et ettt s a e ene s e 928
42.5.1. Generating POsSIbIE Plans........cccovveveieeiesinie e seseae e 929
42.6. EXECULOL......ctiieeeeeeeeteste sttt ettt s b e e e s nne s 929
T VA1 (=11 (O = [0 o S 931
e Ft @ Y= V= S 931
G B oo I Voo | 1= T-1 1= U 932
G TG TN oo - 0 o PR 932
G B0 oo - 102 To] o JEU SRR 934
G ST oo - 1211 oo o2 PR 934
G G oo - Lo [USSP TRS 934
G O oo I L1 T L USRS 935
7RG IR oo I o7 1) SRS 938
A3.9.P0_ClASS ettt ettt b et a e et be et e b eae e e saeeneas 939
A3.10.D0_CONSITAINT .eoeieeeeiee ettt ettt ettt b e ae e st se e b e e e e b e sae e e e saeeneas 941
G 20 o o To T o700 1V =Y £ To o OO USSR 943
e I o Yo e = = o Y- TSP 943
e 0 G o Yo o (=Y o =Y o o SRR 944
0 0 7 0 o Yo o [T o T 1T o PR 946
e B o Yo T o o U J PR 946
e 0 I o Yo T g To = PR 947
e I o Yo T T T 1 £ USSP 948
B e o To T - UgTo [N - Vo =TSP 949
43.19.pg_largEODJECE eiiiiii i e 950
43.20.pG_lISLENET it aes 950
o It N o To T = T (L= o = T USSP 951
NG B o To [) o = Tt SRR 951
ARG T2 W oo [l) 0 =1 -1 (o] SRS 952
G B N o To [o (Yo S 953
G B2 ST o To T (=1L 1(= S 955
L S o Yo TR = Lo (o1, 956
A G o Yo =] =Y 11 [957
L 1 o Yo T 1T o =Y G 958
G B oo T 1 o1 T 959
43.30. SYSEM VIEBWS.....ceiuirieiirieie ettt sttt st sttt st e e b neebe e 965

XiX

G e 3 o To T 11 [P RS 966

G IR Y o To T [o o1 U RTR 966
G G 1 oo T (111 ST 968
G R 7 o To TR Y=Y 1113 Vo LSRR 968
G e 1SN o To T - LT OO UROR TR 969
43.36.P0_tADIES .o e e e b e ae e eae e 971
e R A o Yo T U 1Y PR 972
TS o Yo TR/ LTS 972
44. Frontend/Backend ProtOCAL...........ccoiiiieiiininese et s 974
AA. 1. OVEIVIEW ...ttt ettt sbe bt se et ae e b e s bt sb e st e b et et eaeebesbesee st e e eneenenaeene 974
44.1.1. MeSSAQiNG OVEIVIEW.......cceruiruiriiieieereee st eeene e e e sseee e snesaens 974
44.1.2. Extended QUETY OVEIVIEW.........orueieirereeiese et sne 975
44.1.3. Formats and FOrmat COAeS.......cooururirierinine e 975
44,2, MESSAYE FIOW......ceeceeeee et sttt sne s 976
N NS = L4 U o TSSO 976
44.2.2. SIMPIE QUEIY.....ciuiieeecieetieeeteeeeste st et ae et sae e eneeaesneeneas 978
By e T = (=] T =T I @ U= 979
A4.2. 4. FUNCHON CaAll.....oieiiiieiereeeee et 981
44.2.5. COPY OPEIatiONS....ccceiveieeeeetiriesiessesieseeesestestessessesessessssssssessesssssssessens 982
44.2.6. Asynchronous OPEratiQnsS.........ccoeeuereereeesesieseneeseeseseseeseessessesessessens 983
44.2.7. Cancelling Requests iN ProgreSS......ccocuovvivvierereereeiesieseseesieseeseseneens 983
¥ T =T 0 11 F= Vi o] o PSSR 984
44.2.9. SSL SesSioN ENCIYPLON.....ccciviireeeeese e e eese e seeseeaeesne e 985
44.3. MeSSAQE Data TYPES.....ciereeeeerierie sttt sr e s 985
44,4, MESSAJE FOIMALS.......cci it 986
44.5. Error and Notice Message Fields.........cccoevvnnnnenneineeese e 1001
44.6. Summary of Changes since ProtoCol.2.0.........cocovierneineineenrereeeeee 1002
45. PostgreSQL Coding CONVENTIONS......c.oouiuiiriiirieirieerieesie e 1004
A5. 1. FOIMALING. ...t ittt sttt 1004
45.2. Reporting Errors Within the Server..........cnnnenneeeeesseeee 1004
45.3. Error Message Style GUILE........cccoeireirieenee et 1006
45.3.1. What g08S WNEEE........cooiiiriiirice e 1006
45.3.2. FOrMALING. ...c.eiveeeieeeereeteseeieestee ettt 1007
45.3.3. QUOLALION MAIKS.......ciiieeeeieeire e 1007
45.3.4. USE Of QUOLESoiuiiiieeeeeeet ettt 1007
45.3.5. Grammar and pUNCLUALION..........ccereiriere e 1008
45.3.6. Upper Case VS. IOWEI CASE.........cuvireeriere e 1008
45.3.7. AVOId PASSIVE VOICE.....ceeeeuireiriiriisieieee ettt 1008
45.3.8. Present VS Past tENSE........cciiirirriieeree et 1008
45.3.9. Type Of the ODJECL....ceoeieeie e 1009
45.3.10. BraCKetS......cccoiiieiriiriereeeeeet ettt e 1009
45.3.11. Assembling rror MESSAGESccvcveereieeieeriereertesreereesreseeseesreeeenes 1009
45.3.12. REASONS fOF ITQAIS....c..ciiuietirieiiesieie et 1009
45.3.13. FUNCLION NAIMESoitiieeeiieterie ettt 1009
45.3.14. Tricky words t0 avoid..........cccveeereiceere e 1010
45.3.15. Proper SPelliNg.......ccccveeieiie e 1010
45.3.16. LOCAIIZALION......coevieeieeeieesie e e 1011

46. Native Language SUPPQLL.......cccccereriririeriereeesesesiessesaeesesse e eseesesssssessesssssessesenses 1012
46.1. FOr the TranSIator........ccooeiirinnere e e 1012
46.1.1. REQUIFEMENTS.....ccisiiiiereeeeeeeteste st steeeee e ese st e st see e ese s sreseen e neeneens 1012

T O o (o7 =T o (= 1012
46.1.3. Creating and maintaining message catalogs........ccoeeerrvererenennnn. 1013

XX

46.1.4. Editing the PO fil@S.....c.ooeeeee e 1014

46.2. FOIr the PrOgrammMeL.........ccooeiiieninieieniee sttt 1014
00 I 1Y (=Tl = g[SSR 1015

46.2.2. Message-writing gUIdeliNes...........cccoeerrennenneireee e 1016

47. Writing A Procedural Language HandIer...........ccciiineineineeeesesesese e 1017
48. Genetic QUETY OPLIMIZEL........ccoucirieirieirieie et 1019
48.1. Query Handling as a Complex Optimization Prohlem............cccoccooeveinene 1019
48.2. Genetic AlgOrtNMS.....oco e e 1019
48.3. Genetic Query Optimization (GEQO) in PostgreSQL........cccccovenerirenenncns 1020
48.3.1. Future Implementation Tasks for PostgreSQL GEQAQ.................. 1021

48.4. FUrther REAAINGS........eiiieeerierie ettt st s 1021

49. Index Cost EStimation FUNCLONS. ..o 1022
50. GIST INAEXES.....ccviueeeiirietirietese ettt e s s s sn s s 1025
50.1. INTFOAUCTION. ...t 1025
50.2. EXIENSIDIIILY......coeiriieieeiieiiresieieeesese s s 1025
LI T [Y 11T g T=T o 7= Lo 1025
50.4. LIMITALIONS.....ccviiriiireeirieirreeree et 1026
LTI e 11 0] o] =TSSP 1026

o3 I == To L= 1 o 1028
52. BKI Backend INtErfaCe.......ccoviiiirirreeesenseee s 1031
52.1. BKI Fil& FOMMAL.....ccoiviiiiirisiiceeresesee s 1031
52.2. BKI COMMANTUS.....cviririiiirenireieieresesreree s 1031
L T b - 1 4] o = SRS 1032

RV Y o] o T=T o DS SR 1033
A. POStGreSQL Error COUES.......oiuiuiriiiireriereriee ettt st s 1034
B. DAtE/TIME SUPPOKL....ceitiiiteerteerteertet ettt ettt sttt b e 1040
B.1. Date/Time Input INterpretatiQn...........oeeeeereeneereeneesee e 1040

B.2. Date/Time KeY WOIAS........ccociieiireeneiereeieesie st 1041

B.3. HIStOrY Of UNItS.....ccuiiiiiiicee ettt 1046

C. SQL KEY WOIUS... .ttt b ettt s 1047
D. SQL CONfOMIANCE.....ccuiiiiieieeeeetes ettt sttt st et saesbesbeseeneeeenens 1062
D.1. SUPPOITE FEAIUIES......ccvceieeeireete ettt 1062

D.2. UNSUPPOIEd FEALUIES.......coi ettt 1072

E. REICASE NOTES......eiuiiiitiiee ettt sttt b e bbbt sae b b e bene e e enea 1078
E. L REICASE 7.4.2 ...t bbb e 1078
E.1.1. Migration t0 VEIrSiON 7.4.2.......ccciiiiiireieeene e 1078

E.L1.2. ChANQES.....ciiriririeirierer ettt 1079

E.2. REICASE 7.4. L.t 1080
E.2.1. Migration tO VEISION 7.4 L......c.occveceieeeeseceeee et 1080

[O o T T Vo 1= 1080

E.3. REICASE 7.4 ...t 1081
E.3. L. OVEIVIEW. ...eiuiiieeteieeesiie ettt 1081

E.3.2. Migration tO VEISION 7.4........cccieeeee e steees et 1083

R R O o - T o =SSR 1084

E.3.3.1. Server Operation Changes.......ccccocvivveveeceeienieseseseseneeens 1084

E.3.3.2. Performance IMprovemMentS.........ccocvevereereeeseseseesesseeneeens 1085

E.3.3.3. Server Configuration Changes..........ccocevevevereervsenereseeenns 1087

E.3.3.4. QUEIY ChangES......ccceoviviirirreeeeie e stes e see e 1088

E.3.3.5. Object Manipulation Changes........cccccveevereeieveeneserereereeens 1089

E.3.3.6. Utility Command Changes.......c.cocurverrrrreirneneeseeseeens 1090

E.3.3.7. Data Type and Function Changes..........cccoceevreereereennnenes 1091

XXi

E.3.3.8. Server-Side Language Changes...........ccccveeereereereeeneneens 1093

E.3.3.9. PSOI ChanQES.....ccoevurerieiirieireeteeees s 1094

E.3.3.10. pg_dump ChangEsS........coceererireriinerieirieeseeesieieseeseseeseseenees 1094

E.3.3.11. [ibpg Changes.......cccveirrireinnisiese s 1095

E.3.3.12. IDBC ChanQes.....cccorurueireririeieienesesisisiesesesisissesesesssesseseseseses 1096

E.3.3.13. Miscellaneous Interface Changes..........cccccveeereiereennenene 1096

E.3.3.14. Source Code Changes.......cccceorerereiereereeene e 1096

E.3.3.15. Contrib Changes..........cocurerierieresere e 1097

E.4. REIEASE 7.3.6.....oeiee ettt e 1098
E.4.1. Migration t0 VErsion 7.3.6.......ccoceirirereieeene e 1098
E.4.2. CRANQES......oiiieieeeeieete ettt s 1098

E.5. REICASE 7.3.5. .o 1098
E.5.1. Migration to VErsion 7.3.8. ...t 1099
E.5.2. ChaNQES......cceeiiieee ettt st nas 1099

E.B. REICASE 7.3 4 oot 1099
E.6.1. Migration tO VEISION 7.3 4.....ccooveeeie e 1099
E.6.2. ChaNQES......ccoeeiiiiieee ettt ettt nas 1100

E.7. REICASE 7.3 3. .ottt 1100
E.7.1. Migration t0 VErSioN 7.3.3...c.cececeseriereeesese e seesesee e sre e e seeeenens 1100
E.7.2. ChaNQES......cci ettt sttt s nenea 1100

E.8. REICASE 7.3.2. ..ot 1102
E.8.1. Migration t0 VEIrSIiON 7.3.2......ccccveerieiereeeeeseseseeseeeeesse e ste e seeneenens 1102

S 2 O - T g To =SSR 1102

E.O. REIECASE 7.3. 1.ttt et 1103
E.9.1. Migration to VErsion 7.3 1. 1103
E.9.2. CRANGES....ci ittt 1104
E.L10. REIEASE 7.3 .ottt ettt st et ene st st enaenenns 1104
E.L0.1. OVEIVIEW.uiieeeeeeeeeiesieseeieieeee st ste e seeeesesse e saesseneeeenesseseeseeseeneenens 1104
E.10.2. Migration t0 VEIrSION 7.3ccveireireineeiessieereeseee s 1105
E.10.3. ChANQES....coiieiiriieiereeereere e 1106
E.10.3.1. Server OPeration.........ccoeereereeeenerrenereeesseeseeeeseeseseeseseesenes 1106

E.10.3.2. PerfOrmancCe.......ccccoviiiiineeeeee e 1106

E.10.3.3. PriVIIEgES ..ot 1107

E.10.3.4. Server ConfiguratiQn............ccoeerrereneeieneeneereeeseeseeees 1107

E.10.3.5. QUETIES......eooi ettt st s st ene e 1107

E.10.3.6. Object Manipulation............cccoererenereneeeeenene e 1108

E.10.3.7. Utility COMMANAS.......ceiiriiieiriene e 1109

E.10.3.8. Data Types and FUNCHONS.......c.cccoerirencnenenene e 1110

E.10.3.9. InternationalizatiQn............ccccoeoereneneneneeeeene e 1111
E.10.3.10. Server-side LangUagEeS........cccoeeerereereerereresieseeseeseeneeeene 1112

E.10.3. 11, PSOL ittt 1112
E.10.3.12. lIDPG ecveuinireieieieiisisieteese st 1112
E.10.3.13. IDBC.....ciiriieieietrerieieteee sttt 1112

E.10.3.14. Miscellaneous INterfaces.........ccocuvvvvereeereeneeneeneeens 1113
E.10.3.15. SOUICE COUE......coiireerirrerireeteeee s 1113

E.10.3.16. CONriD....cciiiieieiiieecre s 1115

E.11. REICASE 7.2.4 oottt 1115
E.11.1. Migration tO VEIrSION 7.2.4.......cccovvieiereeeeeseseseesieeesese e stesesaenennens 1115
S 5 2 1 - T o =SSR 1115
E.12. REICASE 7.2.3. .ottt 1116
E.12.1. Migration tO VEISION 7.2.3.......ccocvverereeeeeseseeseeseeeeesne e sseseeseenennens 1116
E.12.2. ChANQES....coiiiiieiiereeer et 1116

XXil

N ST = =] [=T= Y I A TR 1116

E.13.1. Migration t0 VErSiON 7.2.2.......cccveirrineinneeerieeseeeseee e 1116
E.13.2. ChANQES. ..ottt 1117
E.14. REIEASE 7.2. 1.ttt sttt st 1117
E.14.1. Migration tO VErsion 7.2.L.......cccveireineinnieerieeseeeseee e 1117
E.14.2. ChANQES... oottt 1117
E.15. REIEASE 7.2ttt bbb e e 1118
E.15.1. OVEIVIEW. .c.tiiiieeeiieieie ettt sttt s b et sbe b b e e e eneas 1118
E.15.2. Migration tO VEISION 7.2.......cccoiiireiereeienenie e 1119
E.15.3. ChAnQES. ..ottt st s e 1119
E.15.3.1. Server OPeratiOn.........occoeoueeeriereneresie e 1119

E.15.3.2. PerformancCe.......ccccoiiiiiniieeere s 1120

E.15.3.3. PriVIIEQES ..ottt 1120

E.15.3.4. Client AuthentiCatiQn............ccceererirereneeeeene e 1120

E.15.3.5. Server ConfiguratiQn............ccceeeveevenecceese e, 1121

E.15.3.6. QUETIES.....cieitiireeeirieierieesiete sttt nes 1121

E.15.3.7. Schema Manipulation...........cccccceeveneecene e, 1121

E.15.3.8. Utility Commands..........ccccevueveienesenie s 1122

E.15.3.9. Data Types and FUNCLONS.........ccccvieveveeceeene e 1122

E.15.3.10. Internationalization.............cccoeerverneeneenscseeseeseeens 1123
E.15.3.11. PL/PGSQL.ctiiiiiiieirieerieteiees e 1124
E.15.3.12. PL/PEIl.cuiiiiiieeereeet et 1124
E.15.3.13. PLITCLuitiiieeree et 1124
E.15.3.14. PL/PYINON.....ci i 1124
E.15.3.15. PSAlcvurririreiereeieeeieeeeeeeseeseeesseeesessessesseese s sssses e eenessnesa 1124
E.15.3.16. IDPG...rweoeveeeeeeeeeeeseeeeeseeeseeeesesessees s seesees s asenesa 1124
E.15.3.17. IDBC..... ettt ettt 1125
E.15.3.18. ODBCo 1126

E.15.3.19. ECPG....cci oottt ettt snn e 1126
E.15.3.20. MiSC. INtErfaces........cocvreriereriere s 1126
E.15.3.21. Build and Install...........cooereieiniiinereeeeee e 1126

E.15.3.22. SOUICE COUE......cuiiiiiieiieieeeee et 1127

E.15.3.23. CONLIRL....oiiiiisiisieeree e 1127

E.16. REIECASE 7.1.3. .ottt et st b e e e s 1128
E.16.1. Migration tO VErsion 7.1.3........cccoiieiereeeene e seeieee e 1128
E.16.2. ChANQES. ..ottt 1128
E.17. REIEASE 7.1.2. .ottt st e 1128
E.17.1. Migration tO VErsion 7.1.2........ccccuuiiereienenere e 1128
E.17.2. ChANQES. ..ottt et s s s 1128
E.18. REIEASE 7. 1. L.ttt st st sttt et sae e neas 1129
E.18.1. Migration t0 VErsion 7.1.1.......cccoeveiieieceeeee e 1129
S T O o - T Vo T S 1129
E.19. REIEASE 7.1 ..ottt et s 1129
E.19.1. Migration tO VEISION 7.1......cccocveieieieeseseeese s 1130

S B O o =TT 1= S 1130
E.20. REIEASE 7.0.3. ...ttt st sttt 1134
E.20.1. Migration t0 VErsion 7.0.3........ccccvieierereeiereseseesieeesese e e seseeseenens 1134
2 O 2 O g - T o =SSR 1134
E.21. REIEASE 7.0.2. ...ttt sttt 1135
E.21.1. Migration t0 VErsion 7.0.2........ccccviererereeereseseeseseesesesresieseseeneenens 1135

N I 1 g - T o =SSR 1135
E.22. REIEASE 7.0. 1o ittt sttt st 1135

XXii

E.23.

E.24.

E.25.

E.26.

E.27.

E.28.

E.29.

E.30.

E.31.

E.32.

E.33.

E.34.

E.35.

E.36.

E.37.

E.38.

E.39.

E.22.1. Migration to version 7.0.L.......ccccocerrinninniereereeeseeeseees s 1135

E.22.2. ChANQES.. ..ottt s 1135
REIEASE 710ttt eaea 1136
E.23.1. Migration to Version 7.0........coeereereinninnerieseeesee s 1137
E.23.2. ChAnQes.. ..ottt 1137
REIEASE B.5.3..... et e et 1143
E.24.1. Migration t0 Version 6.5.3.........cciiiiiieeere e 1143
E.24.2. ChANQES. ..ottt st s e 1143
REIEASE B.5. 2.t b 1143
E.25.1. Migration t0 Version 6.5.2.........ccccoeiiriinnene e 1144
E.25.2. ChANQES....ui ettt s e 1144
REIEASE B.5. L.t 1144
E.26.1. Migration to Version 6.5.1........cccccveveeienieiene e 1144
E.26.2. ChaNQES......ccoiieeeee ettt e 1144
REIEASE B.5.....o it 1145
E.27.1. Migration tO VErsioN B.5.........ccceeeeieveeie e 1146

E.27.1.1. Multiversion Concurrency Control.........cccceeeeeveeveevesvennenn. 1146
A O g - 1 g To =TSSR 1147
REIEASE B.4.2. ..ottt 1150
E.28.1. Migration t0 VErsion 6.4.2...........cccceveveieeienesesesseesese e sseseseeneenens 1150
2 S 0 O g - T To =TSSR 1150
REIEASE B.4. L. ...t 1150
E.29.1. Migration t0 VErsion 6.4.1........cc.ccoceverereeierieseseenieeesese e sieseseeneenens 1150
E.29.2. ChANQES.. ..ot 1150
=] (ST LTSI SRS 1151
E.30.1. Migration t0 VErSion 6.4........ccccceveirrinninneerieeseeeseee s 1152
E.30.2. ChANQES....coiiuieriiiiere et 1152
REIEASE B.3. 2.ttt st eeneas 1155
E.31.1. ChANQES....coieiiiriiertete ettt 1156
REIEASE 6.3 L.ttt et eneas 1156
E.32.1. ChANQES....coiciieieieetere et 1157
REIEASE B3ttt se e enea 1157
E.33.1. Migration t0 VErsion 6.3........cccccereirminninsienieeseeesee s 1159
E.33.2. ChanQes....coociriiieriee et 1159
REIEASE B.2. 1. et b 1162
E.34.1. Migration from version 6.2 to version 6.2.1.........cccccoovvenenenenennne 1162
E.34.2. ChANQES. ..ottt b e s 1162
REIEASE B.2.....ceieeeee e e b 1163
E.35.1. Migration from version 6.1 t0 Version G.2...........cccceeveereneneneenenncns 1163
E.35.2. Migration from version £.t0 vVersion 6.2...........cccccceerenenenenenennens 1163
E.35.3. ChanQES....c.ccoiiiee ettt st 1163
REIEASE B.1. L.t et 1165
E.36.1. Migration from version 6.1 to version 6.1.L.........cccccevvvvvcvnrceenen. 1165
E.36.2. ChaNQES......ccoiii ettt st s 1165
REIEASE B.1.....oeiiieeeeet e e b 1166
E.37.1. Migration t0 VEIrSioN B6.1........ccccccovvievieriereeene e stesieeeseee e ste e seeneenens 1166
R O g - T o =TSSR 1167
REIEASE B.0......ccuieeiieiiciese e 1168
E.38.1. Migration from version 1.09 to version 6.0........ccccccveevivnivrieriereenens 1169
E.38.2. Migration from pre-1.09 to version 6.0.........ccccovevevereenenesieseesennens 1169
TS TG TR 1 o= T o =SSR 1169
REIEASE 1.Q9......ccececeeeeeee ettt ne e eneas 1171

XXiV

E.40. REICASE 1.Q2.......eeeeeeie ettt ettt eae st e s et e e s ae e s saee s sabe e s eatesssaees 1171

E.40.1. Migration from version 1.02 to version 1.02.1........cccccoecereivnennene 1171
E.40.2. Dump/Reload ProCedUr ... 1172
E.40.3. ChAnQeS.. ..ottt 1172
E.41. RElASE 1.QL. ..ot sttt 1173
E.41.1. Migration from version 1.0 to version 1.01........ccccvevreieneinnnene 1173
I O g - T o =SSP 1174
E.42. REIEASE 1.0......oiiiiieeeee ettt st e 1175
E.42.1. ChANQES...ccuiieieeieieeie ettt sttt s e 1175
E.43. Postgres95 Release Q.03.........coo e 1176
E.43.1. ChAnQES. . ..ottt bbb e 1176
E.44. Postgres95 Release Q.02........ccoccoiiieiiesiceese ettt 1178
2t I O g =TT = S 1178
E.45. Postgres95 Release Q.0L.........coooiiiiiiesecee et 1179
F. The CVS REPOSIIONY.....iiieiecticeeste et sttt ste e este st te st e st e e saesreetesteeneenreennannas 1180
F.1. Getting The Source Via Anonymous CVS........cccocevvierienieneenese e e seeneens 1180
F.2. CVS Tree OrganiZatiOon.........ccccceieeceerieseeieseeeesieseeseesessaesesseessessessessesneensnss 1181
F.3. Getting The Source Via CVSUP........cccciviie e ste e s 1182
F.3.1. Preparing A CVSup Client System........cccccvvvvvvrrnreiesieseseseseeseenens 1183
F.3.2. Running a CVSUP ClIENt.....ccccceeceeiiese e 1183
F.3.3. INStalliNg CVSUP.....ciiiiiitieeeee st eenea 1185
F.3.4. Installation from SOUICES.......ccoeireirriresee s 1186

L B o Tot U4 g =T o) 1 1T o OSSR 1188
(00 I To Tod 2 T T <R SRSR 1188
(T o To] ST SRS 1188
G.2.1. Linux RPM INStallation.........covevreivierieieese e s 1189
G.2.2. FreeBSD INStallation.........ccccoveuerereienieeese e 1189
G.2.3. Debian PaCKAQgES. ..ot 1190
G.2.4. Manual Installation from SOUICE.......cccrevcerinenere e 1190
G.2.4.1. Installing OpenJade..........ccoeorereineienneeeee e 1190

G.2.4.2. Installing the DOcBOOK DTD Kit.........cccoeiririnininncneneneeee 1191

G.2.4.3. Installing the DocBook DSSSL Style Sheets..........coceu..... 1191

G.2.4.4. Installing JAdeTeX.......ccvuererieerieerieere et 1192

G.2.5. Detection DEONfIgUre ..o 1192

G.3. Building The DOCUMENTALION.......c.cooiiiiireiereeeeeeie e 1192
LR 0 R o 8 I ST 1193

LCTRC I |V = g o T= To [TP URPRORP 1193
G.3.3. Print Output Via JAAETEX.....ccccereriireeieirere et 1193
G.3.4. Print Output Via RTE.......couieiet e 1194
G.3.5. Plain TEXE FIlES....coiiieiieeeceeese et 1195
G.3.6. SYNtAX ChECKci ettt 1195

G.4. Documentation AUtNOING........cccoiiiieiieceee e 1195
G.4.1. EMACS/PSGML.....oiiiiiriiiriisise st 1196
G.4.2. Other EMacs MOAES.......ccoeiriririeieeeeieere et 1197

G.5. SLYIE GUITE. ...t 1197
G.5.1. ReferenCe PAgeS......cccceieieeiesieeese et ae et 1197

1231 0] [0 [ir= o] 0)Y/ 1200
a0 = OSSR 1202

XXV

List of Tables

4-1. Operator Precedence (AECIEASING)......cicurereeererrsrirertereeeeesesesresaeeeessessesses e saeseesessesseses 25
o I D = 1 = B Y] 1= 3 70
oS N1 4 1= Y o 1 o =R 71
8-3. MONELAIY TYPES....e ettt sttt et r b e et b bt e e s eneenennes 75
S N O T T = ot (=T g Y] L= OSSR 75
8-5. SpeCial CharaCler TYPES.....ocirieirieieriet ettt ettt s e 77
8-6. BINAIY DAt TYPES.....c ettt sttt sttt b et bbb 77
8-7.bytea Literal ESCAPEU OCIELS......ccoiiiieirieeriee ettt s e 77
8-8.bytea OULPUL ESCAPET OCLELS.......couiiiiiieeierieie ettt e 78
8-9. DAL/ TIME TYPES .ttt ettt sttt b et b et b et bbbt e b e st ket e bbbt e b e 79
8-10. DALE INPUL......oitiiriiereeeeiet ettt r e e et b bt e sren et eneenes 80
8-11. TIME INPUL...eeeee ettt bbb bbbt ekt b et bt bbb 81
8-12. TIME ZONE INPUL......eiitiieiti ettt b ettt b et b et b e e 81
8-13. Special Date/TimMe INPULS........ceireiriei ettt ettt 82
8-14. Date/TImMe OULPUL SEYIES... .o .ot st 83
8-15. Date Order CONVENTIONS.oouieeereeieeiesie ettt et sbe st st se e e ebesae e se e e e e e e enesreseas 83
e e ST CT=To] g 1] ([Y] 012U 86
8-17. NEtWOIrK AQUIESS TYPES. ..ot ittt sttt sttt bbb e e e besbe b e e b e e e e enesneneas 88
8-18.cidr Type INPUL EXAMPIES.....c.ooiiiiiii ettt e s 89
8-19. ObjJeCt IHENTITIET TYPES.....eitiieirieee ettt st st ae e e e sbe e 98
LS O O Y= TN o (o Tl 1Y o= 99
9-1. COMPAriISON OPEIALQIS.....ccueieeieeireeiiesteeteeteereestesessaesesseestesteessesseseessesseessestesssessesseessessesneens 101
9-2. MathematiCal OPEIatOrS.......cccocviiiieerieeeie st ere s e st e et sre e e s te e e aestesseeaesreeaesreeneens 103
9-3. Bit String BitWiSE@ OPEIALOLS.......ceeceeiiicteeiecte e st s e e e e e sae e ste s esaeste s e enaesneenaesreeneens 103
9-4. MathematiCal FUNCHONS.........ccociririeeeree e 104
9-5. TrigONOMELNC FUNCHIONS.......citiiiiieieeee et sttt sa e saesr e sense e eneenens 105
9-6. SQL String FUNCIONS and OPEIatQIS........ccveveeieeereiesienieseieeeses e seseeseeessesresressessesessessens 105
9-7. Other StriNg FUNCLONS.........coiiiiieeeeee e st e st e st aesae e e ssesaeseessenseneeneenens 107
9-8. BUIIt-IN CONVEISIONS.....ccuieiireirereiieresee ettt r s 110
9-9. SQL Binary String FUNCtions and OPeratorS.......ccccvvverereererieseseseseeseereseseseesseseesessessens 113
9-10. Other Binary StriNg FUNCHONS........coeiiiiresereeecese s seesieae et e e s e e sse s e senseessesnens 114
9-11. Regular EXpression MatCh OPEratorS........ccovioieirieirieerieesieesese et 117
9-12. Regular EXPreSSioN ALOMS... ..ottt ettt et 118
9-13. Regular EXpression QUANTIfIErS.........co i e 119
9-14. Regular EXpression CONSIIAINIS.........coiiiiiirieriecrieesie e e 119
9-15. Regular Expression Character-Entry ESCaPeS........cccveireinieininensese s 121
9-16. Regular Expression Class-Shorthand ESCAPES.........ccoecreireinininiseserese s 122
9-17. Regular EXpression CONStraint ESCAPES........ccvo it 122
9-18. Regular Expression Back REfErenCes.........cccviirciieineee e 123
9-19. ARE Embedded-Option LEHALS. ...ttt 123
9-20. FOrmMatting FUNCHIONScoueirieirieiiietee et 126
9-21. Template Patterns for Date/Time FOrmatting..........c.cccveoireineiinninsesesesee e 127
9-22. Template Pattern Modifiers for Date/Time FOrmatiing.........c.ccooererereinienesenenereneenens 128
9-23. Template Patterns for Numeric FOrmatting..........ccocovererrinieniene s 129
9-24.t0_char EXAMPIES......coiiiiiiee ettt et nae 130
9-25. DAt/ TIME OPEIALOIS.....ciuiiirtitiieeeerte ettt sttt sttt sbe st e s be e e e e e sbesbesbese e e e eneenens 131
9-26. DAte/TIME FUNCHONS.couiitiitiiieereee ettt st s s e eae 132
9-27.AT TIME ZONEVANANTScueirieiirieiirietisisieesieess st 137
9-28. GEOMELIIC OPEIALOLS......ccviiueeieiteeiesteeteete et estesressae s e steetesteeeessesseestesseessestesssensesseensessensenns 139

XXVi

9-29. GEOMETINIC FUNCLIONS.eeieicteie ettt ettt e st e et e e s et e s s e bt e s sebae e sbeessabeessseesssreessarenesans 141

9-30. Geometric Type CONVErsion FUNCHOMSoiiiirieirieenieeseeesie e e 141
9-31.cidr ANAINEt OPEIALOIS.......ciueuireeeiieiiieieiri ettt b e bbb 143
9-32.cidr andinet FUNCHONS........ooiieeeee et e e ene 143
9-33.Macaddr FUNCLIONS.......coiiiiiitiee ettt st se e sae b st se e e e eneenen 144
9-34. SEQUENCE FUNCHIOMS......ccuteeiiieiirieeeieteeee ettt e 144
9-35. Session INformation FUNCHONS. ..ottt e 148
9-36. Configuration Settings FUNCLIONS.........ccooo it e en 148
9-37. Access Privilege INqQUiry FUNCHOMNS.........cooiiiiiiiee et e 149
9-38. Schema Visibility INQUINY FUNCHOMNS.........cooiieiiene et 150
9-39. System Catalog Information FUNCLONS.........ccoiiiriiieeee e 151
9-40. Comment INformation FUNCHONS........c.oiiiiiieiiirere et s ene 152
o R I 1 VA @ 0[] = 1] =TSRSS 153
LS R o =\ VA U od T SRR 153
9-43. AQQregate FUNCLONS.cccvii e ceeies e steete e eeese s e st e te e sre e e stesreensesteeneensesneeaesrenneens 154
12-1. SQL Transaction ISolation LEVEIS..........ccceeeieieee e s 179
G I aTo T o] o] 1o 1 (=Y S 235
16-2. SYSteEM V IPC PArAMELELS......ccuiiieeitii ittt sttt st sttt sae e saae st naeesaaeen 236
20-1. Server CharaCter SELS........ccoveiirririeirri ettt sene 265
20-2. Client/Server Character Set CONVEISIONS........ccviirieireerieesieesiseses st 267
23-1. Standard StatiStICS VIEWScirieiririririrerieesie sttt 281
23-2. StatisStiCS ACCESS FUNCHIONS.......coiiiriirirertere et 283
4SRN oo | I o 4] 0 =g o =3RS 349
31-1.ConnectionPoolDataSource IMpPlEMENLALIONS......co i 422
31-2.ConnectionPoolDataSource Configuration Properties..........cceeveereereensenscneneens 423
31-3.DataSource IMPIEMENTALIONS.......cooviirire e e 424
31-4.DataSource Configuration PrOPErtiEsS.........ccocviiieirieirieereesee e 424
31-5. Additional PoolingpataSource Configuration Properties.........ccooovrerrennennencneennens 424
32-1.information_schema_catalog_name COlUMNS. ..o 428
32-2.applicable_roles L0] (1] 331 o 1S R SRSRN 428
32-3.check_constraints (O] (17271 o 1= 0SS 428
32-4.column_domain_usage COIUMNS........c.oiiiiieieire e e ene 429
32-5.column_privileges (0] (11271 0 1= PSS 429
32-6.column_udt_usage COIUMNS. ..ottt se e e e neene 430
32-7.colUMNS COIUMNS.....ctiiiee ettt et e esaesae e tesbeessesbeeneensesreennesreeneens 431
32-8.constraint_column_usage COIUMNS ...ttt e eare s 434
32-9.constraint_table_usage COIUMNS ..ottt aeesaneens 435
32-10.domain_constraints COIUMNS....ccteeecee ettt ettt st as 435
32-11.domain_constraints COIUMNS....cceteetee ettt st et s eane et s 436
32-12.domain_udt_usage COIUMNS.......cciiiiiice e s naesreeneens 437
32-13.d0MAINS COIUMNS......ccuiiiiiieieie et ste et e e e e st et este e e e saesseestesseessesteeseensesreeneesrenneens 437
32-14.element_types COIUMNS.......ccecieiiieteetiee e st e e te e s e sae e e aesbeeseeaesreeaesreeneens 440
32-15.enabled_roles COIUMNS.......coiiiiiiee ettt e e et s e e sare e beesaeesnnesnreas 442
32-16.key_column_usage COIUMNS......ccciiieiice st e e s aesreennens 443
32-17.parameters COIUMNS.....c.oi ittt et e e s e e eare e beesaeesaeeenbeesaeesnnesnreas 443
32-18.referential_constraints COlUMNS ..o 446
32-19.role_column_grants (7o) 11140] s -SSP 447
32-20.role_routine_grants COlUMNS.....eetectecee ettt e s re e 447
32-21.role_table_grants COlUMNS ...t be et e et ebe e b e ebeennas 448
32-22.role_usage_grants COlUMNS ...ttt st b b e b ennas 449
32-23.routine_privileges COlUMNS. ...t re s 449
32-24.10UtiNES COIUMNS.....ueiiiiiticie ettt ettt et e et e e e s tesae e besbeesbesbesaeensesreeneesaeennens 450

XXVii

32-25.5CNEMAta COIUMNS......ouvieicteie ettt ettt e et s st e e st e s et e s sebeessabeessasesssbeesssbessaseesssrenesarenesn 454

32-26.sql_features {00} (11331 o 3PS 455
32-27.sql_implementation_info COlUMNS ... e 455
32-28.5ql_languages COIUMNS........coiiieeeeee et se e e e ene 456
32-29.501_packages COIUMNS.......ooiiiiiirieese ettt e ae st e e ene 457
32-30.501_SIZING COIUMNS ..ottt sttt st se e be b seesse e e e e e enens 457
32-31.sql_sizing_profiles COlIUMNS.....ecceee e s s 458
32-32.table_constraints (O00] (1101 4 1S3OS 458
32-33.table_privileges (701 18] '] 1SS 459
32-34.1aD1ES COIUMNS. ... ettt ettt sttt s b et s b e e e e se e b sbe b e s e e e e enenaen 459
32-35.1rggers COIUMINS.......cii ettt e e s a e s ae e te s aeessesbeeaeesesaeenesreennens 460
32-36.usage_privileges (701 [1] '] 1S SRS 461
32-37.view_column_usage COIUMNS.......ccoiciiiicie e eneens 462
32-38.view_table_usage COIUMNS......ccoiiieiice e sreenaens 463
32-39.VIEWS COIUMNS ...t sttt b et s se et besbe e s e e e e e e ene 463
33-1. Equivalent C Types for Built-In SQL TYPES.....cecceiiieeese e seee e sae e s eneens 479
33-2. B-1r8 SIralBQIES. ... uetieeeeie e eie sttt ettt e e st e te s r e e aenbeeneenesneeaesreeneens 508
33-3. HASh SHrat@QIeS......ccueeceicice ettt s st e et s ae st e tenee e eneenens 508
G B o { (=TI (= L (=0 [RRR 508
33-5. B-tre€ SUPPOIt FUNCHONS.......ccviieeeeeeestesieseeseees s e st stes e e e ste e s e sae s snesneseessensenesnennens 509
33-6. Hash SUPPOrt FUNCLIONS........coiiieieecesese et sr et ene 509
33-7. R-tree SUPPOIt FUNCHONS......cciceeeeee s seeeses s st ee ettt e e sre e e e eneenens 509
33-8. GIST SUPPOIT FUNCLOMS.....ccuiiiieeeeeeesesteseeseesesesseseeseesaeeeessessessesseseeeesessesssssessensesessessens 509
e S A3 (T o ¢ [OF= 1 (oo LSOO 931
VI S oTo I To o =To =X (=T O o L1] 0T =S 932
e T N o To - U2 1O o] 110 1o S 933
e B o Yo I Uy Lo o J @] 1] o LSS 934
43-5.pg_amproC COIUMNS.......ooiiieeiee ettt s e e e e se e e saeseesteseeneeneenenes 934
Ve BT o Yo - Ui (o =1 A @] ¥ o1 1= SRS 935
43-7.pg_attribute (0 0] (17291 o =3RS 935
e Bt S N oo I or= A @0] 1 o LTSRS 938
43-9.pg_Class COIUMNS.......oiiiiiieee ettt st se e e e e e saesbesbesee e eneeneneas 939
43-10.pg_constraint (O] 01191 0 1SS 941
43-11.pg_conversion COIUMNS.......c.ciiiiiie ettt st ene e 943
43-12.pg_database COIUMNS........ccciiicie et s sre et sae e et e eaaeresreennas 943
Ve R G o Yo o [T o =T Lo I @) 8 3o o =S 945
43-14.pg_description (701 18] /0] 1SS 946
Ve R N o Yo e [(o]0 o N @ U4 1 S 947
e N o Yo 1T L= G @] [V ¢ 1 S 947
43-17.pg_inherits (0] 18] '] 13U 948
43-18.pg_language COIUMNS......c.ocicecee sttt s sre e ste st et e sne et e sneeneas 949
43-19.pg_largeobject (701 18] '] 1S 950
43-20.pg_listener (0] 1] '] 13U 951
43-21.pg_namespace COIUMNS.......cciiieieiicee ettt a e e eneeeesreeneas 951
43-22.pg_0PCIasS COIUMNS ...ttt et be e see e ere e be e saeeebeebeesaeeenneenreesees 951
43-23.pg_0perator COIUMNS......ceiciieticee ettt st ete st e et e e reebesbeestesbeeasesbesbeenresreennes 952
A3-24.p9_ProC COIUMNS.....ceieeitictiereete ettt re et e et ste e e sbesbeessesbeebeebesbeesesbesssebesbsensesreenees 953
A43-25.pg_reWrite COIUMNSttt ettt et sttt et e ebeebesbeentesbeensesbesaeenreereennas 955
43-26.pg_ShadoW COIUMNScciiirieiiiteeie ettt ettt s ste b e eabesbesbeebesbeestesbeessesbesaeensesreennas 956
43-27 .pg_statistic COlUMNS. ...ttt ettt et s ae e be s be et e beebeetesreennes 957
43-28.pg_triIgger COIUMNS. ..ottt et be s e st e eae e besreentesbesasebesbeenresreeneas 958
e B I oo T 1Y, o L= T O] [V 33 S 959

XXViii

A3-30. SYSIEIM VIBWS......eitiiiieieieeiere et sttt sttt sttt st st b et b et bbbt b bt e b ettt ettt bne 966

43-31.pg_indexes COIUMNS......ccciiieieeeere ettt sttt e e e e enenes 966
Ve T 2N oo T [oTox ST @ 0 o] LSS 967
43-33.p0_rUIES COIUMNS.....ciuiiiiitieieiee ettt se e et e tesee st eneeseeneeaesbesbeseeneeneeneneas 968
43-34.pg_Settings COIUMINS.....cuiiiieieieiere ettt s b e bt e e eneneas 968
e T 1o oo TRt V(T @0 | [0 o LTSRS 969
43-36.pg_tables COIUMNScouiiiieiieecee ettt st e st ae e s e sbeetesreeneebeeaeenresreennas 971
G Ry A o Yo TV (=1 @] (13 T =S 972
43-38.pg_VIEWS COIUMNS.....ccueiitiiticiiceeee ettt e e be s te e e beeaeesesaeeeesreeneetesneensesreeneas 972
51-1. SAMPIe PAQE LAYQUL......c.coiiiiiieieeee ettt e st 1028
51-2. PageHeaderData LaYQUL............ccccorirereriereeieeieriese e s s 1028
51-3. HeapTupleHeaderData LAyQUL.............cooiririeiirirere et 1029
A-1. POSIOreSQL EITOr COUBS.. ..ottt sttt et st sre e te st e e s e re s e e snesneenens 1034
B-1. MONth ADDIeVIAtIONS......cooeiiiiie e e e 1041
B-2. Day of the Week ADDreviations..........ccccooiveieciciice e 1041
B-3. Date/Time Field MOGIfIErS. ...t e 1042
B-4. TIMe Z0oNe ADDIEVIALIONS........cccoiiriieeireest ettt s 1042
B-5. Australian Time Zone ADDreVviations...........ccocereinninnereenee s 1045
O S @ T (= VY17 0] (o LTSS 1047

List of Figures

48-1. Structured Diagram of a Genetic AlgOtRM..........ccocviiiiineiree e 1020

List of Examples

8-1. USING the CharaCter tYPS.....ccvieeeee ettt s enenes 76
e U LS o g T= oo o [=Y= Vo T 4 o - 85
8-3. USING the Dit StHNG tYPES....cci it e e sre e 90
10-1. Exponentiation Operator Type ReSOIULIQN.ccoocireriririrrreree s 164
10-2. String Concatenation Operator Type ReSOIULON.ccviriireirereereeeee s 165
10-3. Absolute-Value and Factorial Operator Type ResolutiQn...........ccccveereereennennencnienes 165
10-4. Rounding Function Argument Type ReSOIULION..........ccooriririirieireree s 167
10-5. Substring Function Type RESOIULIQN.ccoiiriiriirrirereere e 167
10-6.character ~ Storage TYPE CONVEISION........ccurueireirierireetiesiee st see s sse s seenes 168
10-7. Type Resolution with Underspecified Types in a Union...........coeoveneennennennenneens 169
10-8. Type Resolution in a Simple UNIOM........cccririeceeseeeseesee e 170
10-9. Type Resolution in a TranspOSEed UNION..........ccoeereiiririineriiesieesieesee s seseeseesseeseens 170
11-1. Setting up a Partial Index to Exclude Common Values...........ccoecveineeneinnenseeneens 175
11-2. Setting up a Partial Index to Exclude Uninteresting Values..........c.ccccveveveinninnnneneenn 176
11-3. Setting up a Partial UniqUe INAEX.........coiiiieeeee e e 177
19-1. An exampl®g_hba.conf — fil@ ..o e 256
19-2. An exampleg_ident.conf L= USSR 261
27-1. libpg EXampPle Programi.L. ...t e e e sne s 333
27-2. libpg EXAmMPIE Programi.2... ...ttt en s 335
27-3. libpg EXample Programi.d... ..ot st sne s 338
28-1. Large Obijects with libpg Example Programi...........ccceecierieieneiceese e eeese e 344
29-1. pgtcl EXampPle PrOQIalL........cccoiieieiiieieiieecctestesieestesteestesteeeessesseestesaeessessesssensesneenssssesnenns 373
31-1. Processing a Simple Query in IDBEC ..ot s 395

XXIX

31-2. Setting fetch size to turn cursors 0N and.off...........cccccrieinne s 395

31-3. Deleting ROWS iN IDBC.........cociiiieiisiesierieesie ettt 397
31-4. Calling @ built in Stored fFUNCHAN..........c.oii e 397
31-5. Gettingefcursor values from a fUNCHOM..........coeoiiireine e 397
31-6. Treatingefcursor @S & AISINCE LYPQ......cviuiireiiriere e 398
31-7. Dropping a Table in IDBC.......c.ooiieeeee e 398
31-8. Processing Binary Data in JDBC..........ooi et 399
31-9.DataSource COAE EXAMPIE......cceiiiiiieiieie et e 425
31-10.DataSource JNDI COAE EXAMPIE.....coiiiiiieieiiriere et ea 425
36-1. Manual Installation of PL/PGSQL.....cc.oiiiiiieiiirere et s 545
37-1. APL/PGSQL Trigger ProCEAULE.........cociiirieeeeirie ettt ene 570
37-2. Porting a Simple Function from PL/SQL to PL/PGSQL......cccoiiiiireirnere e 571
37-3. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL........... 572
37-4. Porting a Procedure With String Manipulation andgirParameters from PL/SQL to PL/pgSQL
573
37-5. Porting a Procedure from PL/SQL t0 PL/POSQL.......oore e 575

XXX

Preface

This book is the official documentation of PostgreSQL. It is being written by the PostgreSQL devel-
opers and other volunteers in parallel to the development of the PostgreSQL software. It describes all
the functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been orga-
nized in several parts. Each part is targeted at a different class of users, or at users in different stages
of their PostgreSQL experience:

« Part lis an informal introduction for new users.

- Part ldocuments the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every PostgreSQL user should read this.

- Part Il describes the installation and administration of the server. Everyone that runs a PostgreSQL
server, be it for private use or for others, should read this part.

- Part IV describes the programming interfaces for PostgreSQL client programs.

- Part V contains information for advanced users about the extensibility capabilities of the server.
Topics are, for instance, user-defined data types and functions.

- Part VIcontains information about the syntax of SQL commands, client and server programs. This
part supports the other parts with structured information sorted by command or program.

- Part VIl contains assorted information that can be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database sys-
tems much later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports SQL92 and
SQL99 and offers many modern features:

« complex queries

- foreign keys

. triggers

« views

- transactional integrity

- multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

- data types

- functions

- operators

- aggregate functions
+ index methods

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html

Preface

- procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by everyone
free of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over a decade of devel-
opment behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Ad-
vanced Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science
Foundation (NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial con-
cepts for the system were presented e design of POSTGRESd the definition of the initial data

model appeared ilthe POSTGRES data mod&he design of the rule system at that time was de-
scribed inThe design of the POSTGRES rules systEne rationale and architecture of the storage
manager were detailed the design of the POSTGRES storage system

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
The implementation of POSTGREfS released to a few external users in June 1989. In response

to a critique of the first rule systenh (commentary on the POSTGRES rules syktta rule system

was redesigneddn Rules, Procedures, Caching and Views in Database Systems/ersion 2 was
released in June 1990 with the new rule system. Version 3 appeared in 1991 and added support for
multiple storage managers, an improved query executor, and a rewritten rule system. For the most
part, subsequent releases until Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an aster-
oid tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, lllustra Infor-

mation Technologies (later merged into Inforfiwhich is now owned by IBM) picked up the code

and commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia
2000 scientific computing project.

The size of the external user community nearly doubled during 1993. It became increasingly obvious
that maintenance of the prototype code and support was taking up large amounts of time that should
have been devoted to database research. In an effort to reduce this support burden, the Berkeley
POSTGRES project officially ended with Version 4.2.

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes im-
proved performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the
Wisconsin Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following
were the major enhancements:

« The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries
were not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with
user-defined SQL functions. Aggregate functions were re-implemented. SupportGrdwr BY
query clause was also added.

- In addition to the monitor program, a new program (psql) was provided for interactive SQL queries,
which used GNU Readline.

- A new front-end librarylibpgtcl , supported Tcl-based clients. A sample shadlclsh , pro-
vided new Tcl commands to interface Tcl programs with the Postgres95 server.

- The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

« The instance-level rule system was removed. Rules were still available as rewrite rules.

- A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

« GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled
with an unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version nhumbering to start at 6.0, putting
the numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing prob-
lems in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capa-
bilities, although work continues in all areas.

Details about what has happened in PostgreSQL since then can be folmgendix E

3. Conventions

This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasitaéc Everything that represents

input or output of the computer, in particular commands, program code, and screen output, is shown
in a monospaced fonexample). Within such passages, italicexample) indicate placeholders;

you must insert an actual value instead of the placeholder. On occasion, parts of program code are
emphasized in bold faceXample), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: braglatd]() indicate optional
parts. (In the synopsis of a Tcl command, question matksae used instead, as is usual in Tcl.)
Braces{ and}) and vertical lines|() indicate that you must choose one alternative. Dats) mean
that the preceding element can be repeated.

Preface

Where it enhances the clarity, SQL commands are preceded by the promand shell commands
are preceded by the prom@tNormally, prompts are not shown, though.

An administratoris generally a person who is in charge of installing and running the serugseA

could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms
should not be interpreted too narrowly; this book does not have fixed presumptions about system
administration procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL.:

FAQs

The FAQ list contains continuously updated answers to frequently asked questions.
READMEs

READMEHiles are available for most contributed packages.
Web Site

The PostgreSQL web sftearries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists

The mailing lists are a good place to have your questions answered, to share experiences with
other users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing
support. As you begin to use PostgreSQL, you will rely on others for help, either through the
documentation or through the mailing lists. Consider contributing your knowledge back. Read
the mailing lists and answer questions. If you learn something which is not in the documentation,
write it up and contribute it. If you add features to the code, contribute them.

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part
of PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but it tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a
newer version to see if the bug happens there. Or we might decide that the bug cannot be fixed before
some major rewrite we might be planning is done. Or perhaps it is simply too hard and there are
more important things on the agenda. If you need help immediately, consider obtaining a commercial
support contract.

5. http://www.postgresql.org

Preface

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something
or not, please report that too; it is a bug in the documentation. If it turns out that a program does
something different from what the documentation says, that is a bug. That might include, but is not
limited to, the following circumstances:

- A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

- A program produces the wrong output for any given input.
- A program refuses to accept valid input (as defined in the documentation).

- A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of
the mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known.
If you cannot decode the information on the TODO list, report your problem. The least we can do is
make the TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do
not speculate what you think went wrong, what “it seemed to do”, or which part of the program has a
fault. If you are not familiar with the implementation you would probably guess wrong and not help
us a bit. And even if you are, educated explanations are a great supplement to but no substitute for
facts. If we are going to fix the bug we still have to see it happen for ourselves first. Reporting the bare
facts is relatively straightforward (you can probably copy and paste them from the screen) but all too
often important details are left out because someone thought it does not matter or the report would be
understood anyway.

The following items should be contained in every bug report:

- The exact sequence of stéfpam program start-umecessary to reproduce the problem. This should
be self-contained; it is not enough to send in a baELECT statement without the preceding
CREATE TABLEand INSERT statements, if the output should depend on the data in the tables.
We do not have the time to reverse-engineer your database schema, and if we are supposed to make
up our own data we would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything inyqagirc start-up file.)

An easy start at this file is to use pg_dump to dump out the table declarations and data needed to set
the scene, then add the problem query. You are encouraged to minimize the size of your example,
but this is not absolutely necessary. If the bug is reproducible, we will find it either way.

Preface

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries. We will probably not set up a web server to reproduce your problem. In any case
remember to provide the exact input files; do not guess that the problem happens for “large files”
or “midsize databases”, etc. since this information is too inexact to be of use.

The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,

show it, even if you do not understand it. If the program terminates with an operating system error,

say which. If nothing at all happens, say so. Even if the result of your test case is a program crash
or otherwise obvious it might not happen on our platform. The easiest thing is to copy the output

from the terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the mes-
sage. In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message
from the server log, set the run-time parameter log_error_verbosity to verbose so that all
details are logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not
keep your server’s log output, this would be a good time to start doing so.

The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the
exact semantics behind your commands. Especially refrain from merely saying that “This is not
what SQL says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking,
nor do we all know how all the other relational databases out there behave. (If your problem is a
program crash, you can obviously omit this item.)

Any command line options and other start-up options, including concerned environment variables
or configuration files that you changed from the default. Again, be exact. If you are using a prepack-
aged distribution that starts the database server at boot time, you should try to find out how that is
done.

Anything you did at all differently from the installation instructions.

The PostgreSQL version. You can run the comm8BLOECT version(); to find out the version

of the server you are connected to. Most executable programs also suppertian option; at
leastpostmaster --version andpsgl --version should work. If the function or the options

do not exist then your version is more than old enough to warrant an upgrade. If you run a prepack-
aged version, such as RPMs, say so, including any subversion the package may have. If you are
talking about a CVS snapshot, mention that, including its date and time.

If your version is older than 7.4.2 we will almost certainly tell you to upgrade. There are tons of
bug fixes in each new release, that is why we make new releases.

Platform information. This includes the kernel name and version, C library, processor, memory
information. In most cases it is sufficient to report the vendor and version, but do not assume

Vi

Preface

everyone knows what exactly “Debian” contains or that everyone runs on Pentiums. If you have
installation problems then information about compilers, make, etc. is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your
input files are huge, it is fair to ask first whether somebody is interested in looking into it.

Do not spend all your time to figure out which changes in the input make the problem go away. This
will probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still
have time to find and share your work-around. Also, once again, do not waste your time guessing why
the bug exists. We will find that out soon enough.

When writing a bug report, please choose non-confusing terminology. The software package in total
is called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the
backend server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend
server process is quite different from crash of the parent “postmaster” process; please don't say “the
postmaster crashed” when you mean a single backend process went down, nor vice versa. Also, client
programs such as the interactive frontend “psql” are completely separate from the backend. Please try
to be specific about whether the problem is on the client or server side.

5.3. Where to report bugs

In general, send bug reports to the bug report mailing lispgt&l-bugs@postgresgl.org >. You
are requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site
http://www.postgresqgl.org/. Entering a bug report this way causes it to be mailed to the
<pgsql-bugs@postgresgl.org > mailing list.

Do not send bug reports to any of the user mailing lists, suchpgsgksgl@postgresgl.org >

or <pgsql-general@postgresq|l.org >, These mailing lists are for answering user questions, and
their subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to
fix them.

Also, please do not send reports to the developers’ mailing list
<pgsql-hackers@postgresqgl.org >. This list is for discussing the development of PostgreSQL,
and it would be nice if we could keep the bug reports separate. We might choose to take up a
discussion about your bug report pgsgl-hackers , if the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing
list <pgsql-docs@postgresql.org >. Please be specific about what part of the documentation you
are unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org >, so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses
are closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it.
(You need not be subscribed to use the bug-report web form, however.) If you would like to send
mail but do not want to receive list traffic, you can subscribe and set your subscription option to
nomail . For more information send mail to <majordomo@postgresgl.org > with the single word
help in the body of the message.

Vii

|. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple in-
troduction to PostgreSQL, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers.
No particular Unix or programming experience is required. This part is mainly intended to give you
some hands-on experience with important aspects of the PostgreSQL system. It makes no attempt to
be a complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reaBarg |l to gain a
more formal knowledge of the SQL language Rart IV for information about developing applica-
tions for PostgreSQL. Those who set up and manage their own server should alBanteifd

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is
already installed at your site, either because it was included in your operating system distribution

or because the system administrator already installed it. If that is the case, you should obtain infor-
mation from the operating system documentation or your system administrator about how to access
PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your ex-
perimentation then you can install it yourself. Doing so is not hard and it can be a good exercise.
PostgreSQL can be installed by any unprivileged user, no superuser (root) access is required.

If you are installing PostgreSQL yourself, then referGbapter 14for instructions on installation,
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you may have some more work
to do. For example, if the database server machine is a remote machine, you will need to set the
PGHOS®nvironment variable to the name of the database server machine. The environment variable
PGPORTNay also have to be set. The bottom line is this: if you try to start an application program and
it complains that it cannot connect to the database, you should consult your site administrator or, if
that is you, the documentation to make sure that your environment is properly set up. If you did not
understand the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding
how the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the
following cooperating processes (programs):

« A server process, which manages the database files, accepts connections to the database from client
applications, and performs actions on the database on behalf of the clients. The database server
program is calleghostmaster

- The user’s client (frontend) application that wants to perform database operations. Client applica-
tions can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a
web server that accesses the database to display web pages, or a specialized database maintenance
tool. Some client applications are supplied with the PostgreSQL distribution, most are developed
by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that
case they communicate over a TCP/IP network connection. You should keep this in mind, because
the files that can be accessed on a client machine might not be accessible (or might only be accessible
using a different file name) on the database server machine.

The PostgreSQL server can handle multiple concurrent connections from clients. For that purpose
it starts (“forks”) a new process for each connection. From that point on, the client and the new
server process communicate without intervention by the originsimaster process. Thus, the

Chapter 1. Getting Started

postmaster is always running, waiting for client connections, whereas client and associated server
processes come and go. (All of this is of course invisible to the user. We only mention it here for
completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In this case you can omit this step and skip ahead to the next
section.

To create a new database, in this example namei, you use the following command:
$ createdb mydb
This should produce as response:

CREATE DATABASE

If s0, this step was successful and you can skip over the remainder of this section.

If you see a message similar to

createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or the search path was
not set correctly. Try calling the command with an absolute path instead:

$ lusr/local/pgsgl/bin/createdb mydb
The path at your site might be different. Contact your site administrator or check back in the installa-
tion instructions to correct the situation.

Another response could be this:

createdb: could not connect to database templatel: could not connect to server:
No such file or directory

Is the server running locally and accepting

connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started ehetedb expected it. Again,
check the installation instructions or consult the administrator.

If you do not have the privileges required to create a database, you will see the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your
site administrator if this occurs. If you installed PostgreSQL yourself then you should log in for the
purposes of this tutorial under the user account that you started the server as.

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. If you
connect to a database, you can choose what PostgreSQL user name to connect as; if you don't, it will default to the same name
as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the same

Chapter 1. Getting Started

You can also create databases with other names. PostgreSQL allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
characters in length. A convenient choice is to create a database with the same name as your current
user name. Many tools assume that database name as the default, so it can save you some typing. To
create that database, simply type

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the databaseydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More aboutreatedo anddropdb may be found ircreatedtanddropdbrespectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

« Running the PostgreSQL interactive terminal program, casg, which allows you to interac-
tively enter, edit, and execute SQL commands.

- Using an existing graphical frontend tool like PgAccess or an office suite with ODBC support to
create and manipulate a database. These possibilities are not covered in this tutorial.

- Writing a custom application, using one of the several available language bindings. These possibil-
ities are discussed further iRart IV.

You probably want to start ujpsql , to try out the examples in this tutorial. It can be activated for the
mydb database by typing the command:

$ psql mydb

If you leave off the database name then it will default to your user account name. You already discov-
ered this scheme in the previous section.

In psql , you will be greeted with the following message:

Welcome to psqgl 7.4.2, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

mydb=>

name as the operating system user that started the server, and it also happens that that user always has permission to create
databases. Instead of logging in as that user you can also specify tiption everywhere to select a PostgreSQL user nhame
to connect as.

Chapter 1. Getting Started

The last line could also be
mydb=#

That would mean you are a database superuser, which is most likely the case if you installed Post-
greSQL yourself. Being a superuser means that you are not subject to access controls. For the purpose
of this tutorial this is not of importance.

If you have encountered problems startisgl then go back to the previous section. The diagnostics
of psgl andcreatedb are similar, and if the latter worked the former should work as well.

The last line printed out bysgl is the prompt, and it indicates thgdqgl is listening to you and that
you can type SQL queries into a work space maintainepshy . Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 7.4.2 on i586-pc-linux-gnu, compiled by GCC 2.96
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
(1 row)

mydb=> SELECT 2 + 2;
?column?

The psgl program has a number of internal commands that are not SQL commands. They begin

with the backslash charactek,”™ Some of these commands were listed in the welcome message. For
example, you can get help on the syntax of various PostgreSQL SQL commands by typing:

mydb=> \h

To get out ofpsqgl , type
mydb=> \q

andpsgl will quit and return you to your command shell. (For more internal commands\2y@e
thepsgl prompt.) The full capabilities ofsgql are documented ipsql If PostgreSQL is installed
correctly you can also typean psgl at the operating system shell prompt to see the documentation.
In this tutorial we will not use these features explicitly, but you can use them yourself when you see
fit.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial
is only intended to give you an introduction and is in no way a complete tutorial on SQL. Numer-
ous books have been written on SQL, includidgderstanding the New SQand A Guide to the

SQL StandardYou should be aware that some PostgreSQL language features are extensions to the
standard.

In the examples that follow, we assume that you have created a databasenmaiess described in
the previous chapter, and have started psql.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory
src/tutorial/ . Refer to theREADMEile in that directory for how to use them. To start the tutorial,
do the following:

$ cd ... [src/tutorial
$ psqgl -s mydb

mydb=> \i basics.sql

The\i command reads in commands from the specified file.-§heption puts you in single step
mode which pauses before sending each statement to the server. The commands used in this section
are in the filebasics.sql

2.2. Concepts

PostgreSQL is aelational database management syst@gDBMS). That means it is a system for
managing data stored imelations Relation is essentially a mathematical termtimole The notion

of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating
systems form an example of a hierarchical database. A more modern development is the object-
oriented database.

Each table is a named collection mfws Each row of a given table has the same set of named
columnsand each column is of a specific data type. Whereas columns have a fixed order in each row,
it is important to remember that SQL does not guarantee the order of the rows within the table in any
way (although they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL
server instance constitutes a databasster.

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar(80),
temp_lo int, -- low temperature
temp_hi int, -- high temperature

Chapter 2. The SQL Language

prcp real, -- precipitation
date date

);

You can enter this int@sgl with the line breakspsgl will recognize that the command is not
terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) may be used freely in SQL commands. That means you
can type the command aligned differently than above, or even all on one line. Two dashgs$n*

troduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive
about key words and identifiers, except when identifiers are double-quoted to preserve the case (not
done above).

varchar(80) specifies a data type that can store arbitrary character strings up to 80 characters in
length.int is the normal integer typeeal is a type for storing single precision floating-point num-
bers.date should be self-explanatory. (Yes, the column of tgpee is also namedate . This may

be convenient or confusing -- you choose.)

PostgreSQL supports the usual SQL types, smallint , real , double precision , char(N),

varchar(N), date , time , timestamp , andinterval , as well as other types of general utility and

arich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-defined
data types. Consequently, type names are not syntactical key words, except where required to support
special cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar(80),
location point

)i
Thepoint type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differ-
ently you can remove it using the following command:

DROP TABLEtablename ;

2.4. Populating a Table With Rows

TheINSERT statement is used to populate a table with rows:
INSERT INTO weather VALUES ('San Francisco’, 46, 50, 0.25, '1994-11-27");

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes &s in the example. Thdate type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

Thepoint type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES ('San Francisco’, '(-194.0, 53.0));

The syntax used so far requires you to remember the order of the columns. An alternative syntax
allows you to list the columns explicitly:

Chapter 2. The SQL Language

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES ('San Francisco’, 43, 57, 0.0, '1994-11-29";

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES ('1994-11-29’, 'Hayward’, 54, 37);
Many developers consider explicitly listing the columns better style than relying on the order implic-
itly.
Please enter all the commands shown above so you have some data to work with in the following
sections.

You could also have usedOPYto load large amounts of data from flat-text files. This is usually
faster because t@OPYcommand is optimized for this application while allowing less flexibility than
INSERT. An example would be:

COPY weather FROM ’'/home/user/weather.txt’;

where the file name for the source file must be available to the backend server machine, not the client,
since the backend server reads the file directly. You can read more abagifeommand irCOPY.

2.5. Querying a Table

To retrieve data from a table, the tablegiseried An SQL SELECTstatement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of tedlther |, type:

SELECT * FROM weather;

(here* means “all columns”) and the output should be:

city | temp_lo | temp_hi | prcp | date
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29
(3 rows)

You may specify any arbitrary expressions in the select list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:
city | temp_avg | date
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Chapter 2. The SQL Language

Notice how theAS clause is used to relabel the output column. (It is optional.)

Arbitrary Boolean operator&\\DQ OR andNOT) are allowed in the qualification of a query. For exam-
ple, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather
WHERE city = 'San Francisco’
AND prcp > 0.0;

Result:
city | temp_lo | temp_hi | prcp | date
+ + e +
San Francisco | 46 | 50 | 0.25 | 1994-11-27
1 row)

As a final note, you can request that the results of a query can be returned in sorted order or with
duplicate rows removed:

SELECT DISTINCT city
FROM weather
ORDER BY city;

Hayward
San Francisco
(2 rows)

DISTINCT andORDER BYan be used separately, of course.

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. A query that accesses multiple rows of the same or different tables at one time is called a
join query. As an example, say you wish to list all the weather records together with the location of
the associated city. To do that, we need to compare the city column of each row of the weather table
with the name column of all rows in the cities table, and select the pairs of rows where these values
match.

Note: This is only a conceptual model. The actual join may be performed in a more efficient
manner, but this is invisible to the user.

This would be accomplished by the following query:

SELECT *
FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location
+ + +ommem + + +
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(2 rows)

Chapter 2. The SQL Language

Observe two things about the result set:

« There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will
see shortly how this can be fixed.

« There are two columns containing the city name. This is correct because the lists of columns of the
weather and thecities table are concatenated. In practice this is undesirable, though, so you
will probably want to list the output columns explicitly rather than using

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

Exercise: Attempt to find out the semantics of this query whenwWieERElause is omitted.

Since the columns all had different names, the parser automatically found out which table they belong
to, but it is good style to fully qualify column names in join queries:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do
is to scan theveather table and for each row to find the matchitides row. If no matching row

is found we want some “empty values” to be substituted forctties table’s columns. This kind

of query is called amuter join (The joins we have seen so far are inner joins.) The command looks
like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

city | temp_lo | temp_hi | prcp | date [name | location
+ + e + + +
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(3 rows)

This query is called &ft outer joinbecause the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

Chapter 2. The SQL Language

We can also join a table against itself. This is calleseH join As an example, suppose we wish to

find all the weather records that are in the temperature range of other weather records. So we need to
compare theemp_lo andtemp_hi columns of eachweather row to thetemp_lo andtemp_hi

columns of all otheweather rows. We can do this with the following query:

SELECT Wi1.city, Wl.temp_lo AS low, W1l.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE W1l.temp_lo < W2.temp_lo
AND W1l.temp_hi > W2.temp_hi;

city | low | high | city | low | high
--------------- [R R — S S—
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather tabl@/aandw?2to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, €.9.:

SELECT *
FROM weather w, cities ¢
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute theount , sum, avg (average)max (maximum) andnin (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with

SELECT max(temp_lo) FROM weather;

If we wanted to know what city (or cities) that reading occurred in, we might try
SELECT city FROM weather WHERE temp_lo = max(temp_lo); WRONG

but this will not work since the aggregatex cannot be used in th&yHEREIlause. (This restriction

exists because th&#HERElause determines the rows that will go into the aggregation stage; so it has

to be evaluated before aggregate functions are computed.) However, as is often the case the query can
be restated to accomplish the intended result, here by usobguery

SELECT city FROM weather
WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

10

Chapter 2. The SQL Language

San Francisco
(2 row)

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination v@ROUP B¥lauses. For example, we can get the
maximum low temperature observed in each city with

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

city | max
_______________ SR
Hayward | 37
San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows match-
ing that city. We can filter these grouped rows ust#/ING

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max(temp_lo) < 40;

Hayward | 37
(1 row)

which gives us the same results for only the cities that haverafl_lo values below 40. Finally, if
we only care about cities whose names begin wi&h tve might do

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE 'S%’ O
GROUP BY city
HAVING max(temp_lo) < 40;

0 TheLIKE operator does pattern matching and is explainegeation 9.6

It is important to understand the interaction between aggregates and S(IEREnd HAVING
clauses. The fundamental difference betwegfEREANdHAVING s this: WHERBelects input rows

before groups and aggregates are computed (thus, it controls which rows go into the aggregate com-
putation), whereaBIAVING selects group rows after groups and aggregates are computed. Thus, the
WHERElause must not contain aggregate functions; it makes no sense to try to use an aggregate to
determine which rows will be inputs to the aggregates. On the other HamiiNGclause always con-

tains aggregate functions. (Strictly speaking, you are allowed to wit@\ANG clause that doesn’t

use aggregates, but it's wasteful: The same condition could be used more efficiently\atERE
stage.)

Observe that we can apply the city name restrictioWHEREsince it needs no aggregate. This is more
efficient than adding the restriction HAVING because we avoid doing the grouping and aggregate
calculations for all rows that fail th&yHEREheck.

11

Chapter 2. The SQL Language

2.8. Updates

You can update existing rows using ti®DATEcommand. Suppose you discover the temperature
readings are all off by 2 degrees as of November 28. You may update the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > '1994-11-28’;

Look at the new state of the data:

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
+ + e +
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Suppose you are no longer interested in the weather of Hayward. Then you can do the following to
delete those rows from the table. Deletions are performed usirpehETEcommand:

DELETE FROM weather WHERE city = 'Hayward’;
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form
DELETE FROMablename ;

Without a qualification DELETEwiIll remove all rows from the given table, leaving it empty. The
system will not request confirmation before doing this!

12

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in
PostgreSQL. We will now discuss some more advanced features of SQL that simplify management
and prevent loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples foun€hapter 20 change or improve them, so it

will be of advantage if you have read that chapter. Some examples from this chapter can also be found
in advanced.sgl in the tutorial directory. This file also contains some example data to load, which

is not repeated here. (Refer$ection 2.1for how to use the file.)

3.2. Views

Refer back to the queries fBection 2.6 Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can createviewover the query, which gives a name to the query that you can refer
to like an ordinary table.

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to en-
capsulate the details of the structure of your tables, which may change as your application evolves,
behind consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is
not uncommon.

3.3. Foreign Keys

Recall theweather andcities tables fromChapter 2 Consider the following problem: You want
to make sure that no one can insert rows inweather table that do not have a matching entry
in thecities table. This is called maintaining threferential integrityof your data. In simplistic
database systems this would be implemented (if at all) by first looking aitite table to check

if a matching record exists, and then inserting or rejecting theweather records. This approach
has a number of problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
city varchar(80) primary key,
location point

);

13

Chapter 3. Advanced Features

CREATE TABLE weather (

city varchar(80) references cities,
temp_lo int,

temp_hi int,

prcp real,

date date

);
Now try inserting an invalid record:
INSERT INTO weather VALUES ('Berkeley’, 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint "$1"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you @hapter Sor more information. Making correct use of

foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactionsre a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well
as total deposit balances for branches. Suppose that we want to record a payment of $100.00 from

Alice’s account to Bob’s account. Simplifying outrageously, the SQL commands for this might look
like

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’'Bob’);

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank’s officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for
a system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice
long remain a happy customer if she was debited without Bob being credited. We need a guarantee
that if something goes wrong partway through the operation, none of the steps executed so far will
take effect. Grouping the updates intéransactiongives us this guarantee. A transaction is said to
beatomic from the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly

14

Chapter 3. Advanced Features

thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance
that the debit to his account will disappear in a crash just as he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic up-
dates: when multiple transactions are running concurrently, each one should not be able to see the
incomplete changes made by others. For example, if one transaction is busy totalling all the branch
balances, it would not do for it to include the debit from Alice’s branch but not the credit to Bob’s
branch, nor vice versa. So transactions must be all-or-nothing not only in terms of their permanent
effect on the database, but also in terms of their visibility as they happen. The updates made so far by
an open transaction are invisible to other transactions until the transaction completes, whereupon all
the updates become visible simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transaction with
BEGIN andCOMMITcommands. So our banking transaction would actually look like

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’Alice’;

-- etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the comnRdid.BACKnstead ofCOMMIT and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not
issue aBEGIN command, then each individual statement has an im@EGIN and (if successful)
COMMITwrapped around it. A group of statements surrounde8®@IN and COMMITis sometimes

called atransaction block

Note: Some client libraries issue BEGIN and COMMITcommands automatically, so that you may
get the effect of transaction blocks without asking. Check the documentation for the interface you
are using.

3.5. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A tabldties and a tableapitals . Naturally, capitals are also cities, so
you want some way to show the capitals implicitly when you list all cities. If you're really clever you
might invent some scheme like this:

CREATE TABLE capitals (

name text,
population real,

altitude int, -- (in ft)
state char(2)

15

Chapter 3. Advanced Features

CREATE TABLE non_capitals (

name text,
population real,
altitude int -- (in ft)

);

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, to
name one thing.

A better solution is this:

CREATE TABLE cities (

name text,
population real,
altitude int -~ (in ft)

);

CREATE TABLE capitals (
state char(2)
) INHERITS (cities);

In this case, a row ofapitals inheritsall columns game, population , andaltitude) from its

parent cities . The type of the columnameistext , a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL, a
table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500 ft.:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ R —
Las Vegas | 2174
Mariposa | 1953
Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude of 500 ft. or higher:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude

16

Chapter 3. Advanced Features

___________ oo

Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here theONLYbeforecities indicates that the query should be run over onlydiiies table, and
not tables belowities in the inheritance hierarchy. Many of the commands that we have already
discussed -SELECT, UPDATE andDELETE-- support thisONLYnotation.

3.6. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL wéliositnks to
more resources.

1. http://www.postgresgl.org

17

Il. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database,
and how to query it. The middle part lists the available data types and functions for use in SQL
data commands. The rest treats several aspects that are important for tuning a database for optimal
performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a
complete description of a particular command should look rdd VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged tBadddirst. SQL commands are
typically entered using the PostgreSQL interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how the SQL commands are applied to define and modify
data.

We also advise users who are already familiar with SQL to read this chapter carefully because there
are several rules and concepts that are implemented inconsistently among SQL databases or that are
specific to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequenceaafmmandsA command is composed of a sequenceobens
terminated by a semicolon (*;”). The end of the input stream also terminates a command. Which
tokens are valid depends on the syntax of the particular command.

A token can be &«ey word anidentifier, a quoted identifier a literal (or constant), or a special
character symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not
be if there is no ambiguity (which is generally only the case if a special character is adjacent to some
other token type).

Additionally, commentgan occur in SQL input. They are not tokens, they are effectively equivalent
to whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are
operands or parameters. The first few tokens are generally the command name, so in the above ex-
ample we would usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for
instance the&JPDATECommand always requiresSET token to appear in a certain position, and this
particular variation ofINSERT also requires &ALUESIn order to be complete. The precise syntax
rules for each command are describeéart VI.

4.1.1. Identifiers and Key Words

Tokens such aSELECT, UPDATE or VALUESIn the example above are exampleskey words that

is, words that have a fixed meaning in the SQL language. The tak¥nFABLEand A are exam-

ples ofidentifiers They identify names of tables, columns, or other database objects, depending on
the command they are used in. Therefore they are sometimes simply called “names”. Key words and
identifiers have the same lexical structure, meaning that one cannot know whether a token is an iden-
tifier or a key word without knowing the language. A complete list of key words can be found in
Appendix C

SQL identifiers and key words must begin with a leti@iz(but also letters with diacritical marks

and non-Latin letters) or an underscorg. (Subsequent characters in an identifier or key word can be
letters, underscores, digi3-0), or dollar signs$). Note that dollar signs are not allowed in identifiers
according to the letter of the SQL standard, so their use may render applications less portable. The

20

Chapter 4. SQL Syntax

SQL standard will not define a key word that contains digits or starts or ends with an underscore, so
identifiers of this form are safe against possible conflict with future extensions of the standard.

The system uses no more thBWMEDATALEN characters of an identifier; longer names can be
written in commands, but they will be truncated. By defaNWMEDATALERs 64 so the maximum
identifier length is 63. If this limit is problematic, it can be raised by changingNARRIEDATALEN
constant irsrc/include/postgres_ext.h

Identifier and key word names are case insensitive. Therefore
UPDATE MY_TABLE SET A = 5;
can equivalently be written as
uPDaTE my_TabLE SeT a = 5;
A convention often used is to write key words in upper case and names in lower case, e.g.,

UPDATE my_table SET a = 5;

There is a second kind of identifier: tidelimited identifieror quoted identifierIt is formed by en-
closing an arbitrary sequence of characters in double-qubjes delimited identifier is always an
identifier, never a key word. Seelect' could be used to refer to a column or table named “select”,
whereas an unquotestlect would be taken as a key word and would therefore provoke a parse
error when used where a table or column name is expected. The example can be written with quoted
identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character other than a double quote itself. (To include a double
guote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifié&¥®Q foo , and"foo" are considered the same by PostgreSQL, but
"Foo" and"FOQ" are different from these three and each other. (The folding of unquoted names to
lower case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names
should be folded to upper case. Thie®, should be equivalent tt=OO" not"foo" according to the
standard. If you want to write portable applications you are advised to always quote a particular name
or never quote it.)

4.1.2. Constants

There are three kinds dafplicitly-typed constants PostgreSQL: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. The implicit constants are described below; explicit constants
are discussed afterwards.

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single ¢)iogeg.(
'This is a string’ . SQL allows single quotes to be embedded in strings by typing two adjacent

21

Chapter 4. SQL Syntax
single quotes, e.gDianne”s horse’ . In PostgreSQL single quotes may alternatively be escaped
with a backslash\(), e.g.,'Dianne\'s horse’

C-style backslash escapes are also availablas a backspacaf is a form feed)n is a newline,

\r is a carriage returnj is a tab, and xxx , wherexxx is an octal number, is a byte with the
corresponding code. (It is your responsibility that the byte sequences you create are valid characters
in the server character set encoding.) Any other character following a backslash is taken literally.
Thus, to include a backslash in a string constant, type two backslashes.

The character with the code zero cannot be in a string constant.

Two string constants that are only separated by whitespétheat least one newlinare concatenated
and effectively treated as if the string had been written in one constant. For example:

SELECT ’foo’
‘bar’;

is equivalent to
SELECT ‘foobar’;
but
SELECT 'foo’ ‘bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. Bit-String Constants

Bit-string constants look like string constants witlB &upper or lower case) immediately before the
opening quote (no intervening whitespace), eByLp01’ . The only characters allowed within bit-
string constants ai@and1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leadipger
or lower case), e.gX'1FF’ . This notation is equivalent to a bit-string constant with four binary digits
for each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants.

4.1.2.3. Numeric Constants

Numeric constants are accepted in these general forms:

digits

digits [digits][e[+-] digits]
[digits]. digits [e[+-] digits]
digits e[+-] digits

wheredigits is one or more decimal digits (0 through 9). At least one digit must be before or after

the decimal point, if one is used. At least one digit must follow the exponent magkeif bne is

present. There may not be any spaces or other characters embedded in the constant. Note that any
leading plus or minus sign is not actually considered part of the constant; it is an operator applied to
the constant.

These are some examples of valid numeric constants:

22

Chapter 4. SQL Syntax

42

3.5

4.

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
typeinteger if its value fits in typeinteger (32 bits); otherwise it is presumed to be typgint

if its value fits in typebigint (64 bits); otherwise it is taken to be typemeric . Constants that
contain decimal points and/or exponents are always initially presumed to beuygéc .

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type de-
pending on context. When necessary, you can force a numeric value to be interpreted as a specific data
type by casting it. For example, you can force a humeric value to be treated asdiypé€float4)

by writing

REAL '1.23' -- string style
1.23:REAL -- PostgreSQL (historical) style

4.1.2.4. Constants of Other Types

A constant of ararbitrary type can be entered using any one of the following notations:

type ' string
‘string i type
CAST ('string ' AS type)

The string’s text is passed to the input conversion routine for the type dgibed. The result is a
constant of the indicated type. The explicit type cast may be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is passed as an argument to a non-overloaded
function), in which case it is automatically coerced.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string ')

but not all type names may be used in this way; Seetion 4.2.8or details.

The:: , CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discusse&étction 4.2.8But the formtype ' string ' can only be used

to specify the type of a literal constant. Another restrictiontyge * string ° is that it does not

work for array types; use or CAST() to specify the type of an array constant.

4.1.3. Operators

An operator name is a sequence of uNEMEDATALEN (63 by default) characters from the follow-
ing list:

<>~ 1@FWBNE&]?

23

Chapter 4. SQL Syntax

There are a few restrictions on operator names, however:

- -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

- A multiple-character operator name cannot end ar - , unless the name also contains at least one
of these characters:

~1@#%NE&|'?

For example@-is an allowed operator name, but is not. This restriction allows PostgreSQL to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator
named@ you cannot writeX*@Y, you must writex* @Yto ensure that PostgreSQL reads it as two
operator names not one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an

operator. Details on the usage can be found at the location where the respective syntax element is
described. This section only exists to advise the existence and summarize the purposes of these char-
acters.

A dollar sign &) followed by digits is used to represent a positional parameter in the body of a
function definition or a prepared statement. In other contexts the dollar sign may be part of an
identifier.

- Parentheseg)() have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

- Brackets|[|) are used to select the elements of an array.S&etion 8.1For more information on
arrays.

« Commas () are used in some syntactical constructs to separate the elements of a list.

« The semicolon;() terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

- The colon () is used to select “slices” from arrays. (S8ection 8.10 In certain SQL dialects
(such as Embedded SQL), the colon is used to prefix variable names.

« The asterisk¥) has a special meaning when used in 8§ ECTcommand or with theCOUNT
aggregate function.

« The period () is used in numeric constants, and to separate schema, table, and column names.

24

Chapter 4. SQL Syntax

4.1.5. Comments

A comment is an arbitrary sequence of characters beginning with double dashes and extending to the
end of the line, e.g.:

-- This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment */
*/

where the comment begins with and extends to the matching occurrence/of These block com-
ments nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks
of code that may contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Lexical Precedence

Table 4-1shows the precedence and associativity of the operators in PostgreSQL. Most operators
have the same precedence and are left-associative. The precedence and associativity of the operators is
hard-wired into the parser. This may lead to non-intuitive behavior; for example the Boolean operators

< and> have a different precedence than the Boolean operatosnd>=. Also, you will sometimes

need to add parentheses when using combinations of binary and unary operators. For instance

SELECT 5 ! - 6;

will be parsed as
SELECT 5 ! (- 6);

because the parser has no idea -- until it is too late - timtlefined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write

SELECT (5) - 6;

This is the price one pays for extensibility.

Table 4-1. Operator Precedence (decreasing)

Operator/Element IAssociativity Description
left table/column name separator
left PostgreSQL-style typecast

[1 left array element selection

- right unary minus

" left exponentiation

* 1 % left multiplication, division, modulo

+ - left addition, subtraction

25

Chapter 4. SQL Syntax

Operator/Element IAssociativity Description

IS IS TRUE, IS FALSE, IS
UNKNOWNS NULL

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defingd
operators

IN set membership

BETWEEN containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

<> less than, greater than

= right equality, assignment

NOT right logical negation

IAND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used iOBERATORYnNtax, as for example in
SELECT 3 OPERATOR(pg_catalog.+) 4;

the OPERATORoONSstruct is taken to have the default precedence showabte 4-1for “any other”
operator. This is true no matter which specific operator name appears ORHRATOR()

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target liss&lLtheTcommand,

as new column values INSERT or UPDATE or in search conditions in a number of commands. The
result of a value expression is sometimes callegtalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also sedlied expressionr even
simply expressions The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:

+ A constant or literal value.

« A column reference.

« A positional parameter reference, in the body of a function definition or prepared statement.
« A subscripted expression.

- Afield selection expression.

« An operator invocation.

- A function call.

26

Chapter 4. SQL Syntax

« An aggregate expression.
« Atype cast.

- A scalar subquery.

- An array constructor.

- Another value expression in parentheses, useful to group subexpressions and override precedence.

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate locatiorGhapter 9An example is théS NULL clause.

We have already discussed constantSéation 4.1.2The following sections discuss the remaining
options.

4.2.1. Column References

A column can be referenced in the form

correlation . columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a
table defined by means ofRROMclause, or one of the key word&EwWor OLD (NEwand OLD can

only appear in rewrite rules, while other correlation names can be used in any SQL statement.) The
correlation name and separating dot may be omitted if the column name is unique across all the tables
being used in the current query. (See &¥@pter 7)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL

statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

$number

For example, consider the definition of a functidapt , as
CREATE FUNCTION dept(text)y RETURNS dept
AS 'SELECT * FROM dept WHERE name = $1’
LANGUAGE SQL;

Here thes1 will be replaced by the first function argument when the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be
extracted by writing

expression [subscript]

27

Chapter 4. SQL Syntax

or multiple adjacent elements (an “array slice”) can be extracted by writing
expression [lower_subscript : upper_subscript]

(Here, the bracketp] are meant to appear literally.) Eashbscript is itself an expression,
which must yield an integer value.

In general the arragxpression must be parenthesized, but the parentheses may be omitted when
the expression to be subscripted is just a column reference or positional parameter. Also, multiple
subscripts can be concatenated when the original array is multi-dimensional. For example,

mytable.arraycolumn[4]
mytable.two_d_column[17][34]
$1[10:42]
(arrayfunction(a,b))[42]

The parentheses in the last example are requiredS8eton 8.1Gor more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression . fieldname

In general the rovexpression must be parenthesized, but the parentheses may be omitted when
the expression to be selected from is just a table reference or positional parameter. For example,

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)).col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.)

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where theoperator token follows the syntax rules &ection 4.1.3or is one of the key wordsND
OR andNOT, or is a qualified operator name in the form

OPERATOR{chema. operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the u§drapter Adescribes the built-in operators.

28

Chapter 4. SQL Syntax

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name),
followed by its argument list enclosed in parentheses:

function ([expression [[expression 1)

For example, the following computes the square root of 2:

sqrt(2)

The list of built-in functions is irChapter 9 Other functions may be added by the user.

4.2.7. Aggregate Expressions

An aggregate expressiaepresents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression)
aggregate_name (ALL expression)
aggregate_name (DISTINCT expression)
aggregate_name (*)

where aggregate_name is a previously defined aggregate (possibly qualified with a schema
name), andexpression is any value expression that does not itself contain an aggregate
expression.

The first form of aggregate expression invokes the aggregate across all input rows for which the given
expression yields a non-null value. (Actually, it is up to the aggregate function whether to ignore null
values or not --- but all the standard ones do.) The second form is the same as the firsiLkince

is the default. The third form invokes the aggregate for all distinct non-null values of the expression
found in the input rows. The last form invokes the aggregate once for each input row regardless of
null or non-null values; since no particular input value is specified, it is generally only useful for the
count() aggregate function.

For examplegount(*) yields the total number of input rowsount(fl) yields the number of input
rows in whichfl is non-null;count(distinct f1) yields the number of distinct non-null values
of f1.

The predefined aggregate functions are describ&eation 9.150ther aggregate functions may be
added by the user.

An aggregate expression may only appear in the result lispaiNGclause of eSELECTcommand.
It is forbidden in other clauses, such\W$lIEREbecause those clauses are logically evaluated before
the results of aggregates are formed.

When an aggregate expression appears in a subquergdéstien 4.2.&ndSection 9.15 the aggre-

gate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s
argument contains only outer-level variables: the aggregate then belongs to the nearest such outer
level, and is evaluated over the rows of that query. The aggregate expression as a whole is then an
outer reference for the subquery it appears in, and acts as a constant over any one evaluation of that
subquery. The restriction about appearing only in the result listtafiNGclause applies with respect

to the query level that the aggregate belongs to.

29

Chapter 4. SQL Syntax

4.2.8. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression : type

The CASTsyntax conforms to SQL; the syntax with is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion function is available. Notice that this is subtly
different from the use of casts with constants, as show8dntion 4.1.2.4A cast applied to an
unadorned string literal represents the initial assignment of a type to a literal constant value, and so it
will succeed for any type (if the contents of the string literal are acceptable input syntax for the data
type).

An explicit type cast may usually be omitted if there is no ambiguity as to the type that a value expres-
sion must produce (for example, when it is assigned to a table column); the system will automatically
apply a type cast in such cases. However, automatic casting is only done for casts that are marked
“OK to apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting
syntax. This restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example,
double precision can't be used this way, but the equivaléhtats8 can. Also, the names
interval , time , andtimestamp can only be used in this fashion if they are double-quoted,
because of syntactic conflicts. Therefore, the use of the function-like cast syntax leads to
inconsistencies and should probably be avoided in new applications. (The function-like syntax is
in fact just a function call. When one of the two standard cast syntaxes is used to do a run-time
conversion, it will internally invoke a registered function to perform the conversion. By convention,
these conversion functions have the same name as their output type, and thus the “function-like
syntax” is nothing more than a direct invocation of the underlying conversion function. Obviously,
this is not something that a portable application should rely on.)

4.2.9. Scalar Subqueries

A scalar subquery is an ordina®ELECTquery in parentheses that returns exactly one row with one
column. (SeeChapter 7for information about writing queries.) THeELECTquery is executed and

the single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery. See d@®ution 9.160r other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
FROM states;

30

Chapter 4. SQL Syntax

4.2.10. Array Constructors

An array constructor is an expression that builds an array value from values for its member elements.
A simple array constructor consists of the key wa@f@RAY a left square brackdt, one or more
expressions (separated by commas) for the array element values, and finally a right squaré bracket
For example,

SELECT ARRAY[1,2,3+4];
array

The array element type is the common type of the member expressions, determined using the same
rules as fotUNIONor CASEconstructs (se8ection 10.5

Multidimensional array values can be built by nesting array constructors. In the inner constructors,
the key wordARRAYmay be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];
array

{{1.2}.{3.4}}
(1 row)

SELECT ARRAYI[1,2],[3.4]];
array

{{1.2}.{3.4}}
1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a SubARRAYconstruct. For example:

CREATE TABLE arr(fl int[], f2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY][[5,6],[7,8]]);

SELECT ARRAYI[f1, f2, '{{9,10}{11,12}}:int]] FROM arr;
array

{{{1,2},{3,41},{{5.6}.{7.8}},{{9,10},{11,12}}}
(1 row)

Itis also possible to construct an array from the results of a subquery. In this form, the array construc-
tor is written with the key wordaRRAYfollowed by a parenthesized (not bracketed) subquery. For
example:

SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE ’bytea%’);
?column?

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}
(1 row)

31

Chapter 4. SQL Syntax

The subquery must return a single column. The resulting one-dimensional array will have an element
for each row in the subquery result, with an element type matching that of the subquery’s output
column.

The subscripts of an array value built wiliRRAYalways begin with one. For more information about
arrays, se&ection 8.10

4.2.11. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote

SELECT true OR somefunc();

thensomefunc() would (probably) not be called at all. The same would be the case if one wrote
SELECT somefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found

in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation ordeHERBNdHAVINGclauses, since

those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(ANDORNOTcombinations) in those clauses may be reorganized in any manner allowed by the laws

of Boolean algebra.

When it is essential to force evaluation ordeGASEconstruct (se&ection 9.1 may be used. For
example, this is an untrustworthy way of trying to avoid division by zero\WwHERElause:

SELECT ... WHERE x <> 0 AND y/x > 1.5
But this is safe:
SELECT ... WHERE CASE WHEN x> 0 THEN y/x > 1.5 ELSE false END;

A CASEconstruct used in this fashion will defeat optimization attempts, so it should only be done
when necessary. (In this particular example, it would doubtless be best to sidestep the problem by
writingy > 1.5*x instead.)

32

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can
be assigned to tables. Finally, we will briefly look at other features that affect the data storage, such
as views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is
variable -- it reflects how much data is stored at a given moment. SQL does not make any guarantees
about the order of the rows in a table. When a table is read, the rows will appear in random order,
unless sorting is explicitly requested. This is covere@livapter 7 Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This
is a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in
this chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned
to a column and assigns semantics to the data stored in the column so that it can be used for com-
putations. For instance, a column declared to be of a numerical type will not accept arbitrary text
strings, and the data stored in such a column can be used for mathematical computations. By contrast,
a column declared to be of a character string type will accept almost any kind of data but it does not
lend itself to mathematical calculations, although other operations such as string concatenation are
available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also
define their own data types. Most built-in data types have obvious names and semantics, so we defer
a detailed explanation t8hapter 8 Some of the frequently used data typesiateger for whole
numberspumeric for possibly fractional numbergxt for character stringslate for datestime

for time-of-day values, antinestamp for values containing both date and time.

To create a table, you use the aptly nan@REATE TABLEEommand. In this command you specify
at least a name for the new table, the names of the columns and the data type of each column. For
example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

);

This creates a table namedy first_table with two columns. The first column is named
first_column and has a data type @fxt ; the second column has the naseeond_column and

the typeinteger . The table and column names follow the identifier syntax explaine8eiction

4.1.1 The type names are usually also identifiers, but there are some exceptions. Note that the
column list is comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give nhames to your
tables and columns that convey what kind of data they store. So let's look at a more realistic example:

CREATE TABLE products (
product_no integer,

33

Chapter 5. Data Definition

name text,
price numeric

);

(Thenumeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern
for the tables and columns. For instance, there is a choice of using singular or plural nouns for
table names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is
between 250 and 1600. However, defining a table with anywhere near this many columns is highly
unusual and often a questionable design.

If you no longer need a table, you can remove it usingdROP TABLEommand. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script
files to unconditionally try to drop each table before creating it, ignoring the error messages.

If you need to modify a table that already exists look iS&ction 5.6ater in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahe&htapter Gand read the rest of

this chapter later.

5.2. System Columns

Every table has severalstem columnthat are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate
from whether the name is a key word or not; quoting a name will not allow you to escape these
restrictions.) You do not really need to be concerned about these columns, just know they exist.

oid
The object identifier (object ID) of a row. This is a serial number that is automatically added by
PostgreSQL to all table rows (unless the table was created WAiRgOUT OIDSIin which case

this column is not present). This column is of tywe (same name as the column); s&ection
8.11for more information about the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that
select from inheritance hierarchies, since without it, it's difficult to tell which individual table a
row came from. Theableoid can be joined against thd column ofpg_class to obtain

the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is
an individual state of a row; each update of a row creates a new row version for the same logical
row.)

34

Chapter 5. Data Definition

cmin
The command identifier (starting at zero) within the inserting transaction.
xXmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version: That usually indicates that the
deleting transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that althougtctiie can be
used to locate the row version very quickly, a rowtsl will change each time it is updated or
moved byVACUUM FULLThereforectid is useless as a long-term row identifier. The OID, or
even better a user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-
lived database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that
OIDs are unique, unless you take steps to ensure that they are unique. Recommended practice when
using OIDs for row identification is to create a unique constraint on the OID column of each table for
which the OID will be used. Never assume that OIDs are unique across tables; use the combination
of tableoid and row OID if you need a database-wide identifier. (Future releases of PostgreSQL are
likely to use a separate OID counter for each table, sotéibétoid ~ mustbe included to arrive at a
globally unique identifier.)

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction
IDs to wrap around. This is not a fatal problem given appropriate maintenance procedutisapgts

21for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit ¢f Billion) SQL com-
mands within a single transaction. In practice this limit is not a problem --- note that the limit is on
number of SQL commands, not number of rows processed.

5.3. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, the columns will be filled with their respective default values. A data manipu-
lation command can also request explicitly that a column be set to its default value, without knowing
what this value is. (Details about data manipulation commands &hapter 6)

If no default value is declared explicitly, the null value is the default value. This usually makes sense
because a null value can be thought to represent unknown data.

In a table definition, default values are listed after the column data type. For example:
CREATE TABLE products (
product_no integer,

name text,
price numeric DEFAULT 9.99

35

Chapter 5. Data Definition

The default value may be a scalar expression, which will be evaluated whenever the default value is
inserted fotwhen the table is created).

5.4. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,

however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no data type that accepts only positive num-
bers. Another issue is that you might want to constrain column data with respect to other columns or
rows. For example, in a table containing product information, there should only be one row for each

product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as
much control over the data in your tables as you wish. If a user attempts to store data in a column
that would violate a constraint, an error is raised. This applies even if the value came from the default
value definition.

5.4.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a
certain column must satisfy an arbitrary expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0)

As you see, the constraint definition comes after the data type, just like default value definitions.
Default values and constraints can be listed in any order. A check constraint consists of the key word
CHECHKollowed by an expression in parentheses. The check constraint expression should involve the
column thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product_no integer,
name text,
price numeric CONSTRAINT positive_price CHECK (price > 0)

);

So, to specify a named constraint, use the key vadiSTRAINTfollowed by an identifier followed
by the constraint definition.

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price.

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),

36

Chapter 5. Data Definition

CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from the column definitions. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible. The above example could also be
written as

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)

);
or even

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0 AND price > discounted_price)

);
It's a matter of taste.

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the
null value. Since most expressions will evaluate to the null value if one operand is null, they will not
prevent null values in the constrained columns. To ensure that a column does not contain null values,
the not-null constraint described in the next section should be used.

5.4.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL
name text NOT NULL
price numeric

A not-null constraint is always written as a column constraint. A not-null constraint is function-
ally equivalent to creating a check constralfECK ¢olumn_name IS NOT NULL), but in Post-
greSQL creating an explicit not-null constraint is more efficient. The drawback is that you cannot give
explicit names to not-null constraints created that way.

37

Chapter 5. Data Definition

Of course, a column can have more than one constraint. Just write the constraints after one another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
);

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULLconstraint has an inverse: thNeJLL constraint. This does not mean that the column
must be null, which would surely be useless. Instead, this simply defines the default behavior that the
column may be null. Th&lULL constraint is not defined in the SQL standard and should not be used

in portable applications. (It was only added to PostgreSQL to be compatible with some other database
systems.) Some users, however, like it because it makes it easy to toggle the constraint in a script file.
For example, you could start with

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

);

and then insert thiOTkey word where desired.

Tip: In most database designs the majority of columns should be marked not null.

5.4.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with
respect to all the rows in the table. The syntax is

CREATE TABLE products (
product_no integer UNIQUE
name text,
price numeric

);
when written as a column constraint, and

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

);

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,

38

Chapter 5. Data Definition

UNIQUE (a, ¢)

It is also possible to assign names to unique constraints:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

In general, a unique constraint is violated when there are (at least) two rows in the table where the
values of each of the corresponding columns that are part of the constraint are equal. However, null
values are not considered equal in this consideration. That means even in the presence of a unique
constraint it is possible to store an unlimited number of rows that contain a null value in at least one
of the constrained columns. This behavior conforms to the SQL standard, but we have heard that other
SQL databases may not follow this rule. So be careful when developing applications that are intended
to be portable.

5.4.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null
constraint. So, the following two table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)i

CREATE TABLE products (
product_no integer PRIMARY KEY
name text,
price numeric

)i

Primary keys can also constrain more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)

A primary key indicates that a column or group of columns can be used as a unique identifier for
rows in the table. (This is a direct consequence of the definition of a primary key. Note that a unique
constraint does not, by itself, provide a unique identifier because it does not exclude null values.) This
is useful both for documentation purposes and for client applications. For example, a GUI application

39

Chapter 5. Data Definition

that allows modifying row values probably needs to know the primary key of a table to be able to
identify rows uniquely.

A table can have at most one primary key (while it can have many unique and not-null constraints).
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by PostgreSQL, but it is usually best to follow it.

5.4.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintaireféinential integritybetween
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

Let’s also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no)
quantity integer

);

Now it is impossible to create orders witihoduct_no entries that do not appear in the products
table.

We say that in this situation the orders table is teerencingtable and the products table is the
referencedable. Similarly, there are referencing and referenced columns.

You can also shorten the above command to

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

);

because in absence of a column list the primary key of the referenced table is used as the referenced
column.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be
written in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
a integer PRIMARY KEY,
b integer,
c integer,
FOREIGN KEY (b, ¢) REFERENCES other_table (cl, c2)

40

Chapter 5. Data Definition

Of course, the number and type of the constrained columns needs to match the number and type of
the referenced columns.

A table can contain more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to
allow one order to contain possibly many products (which the structure above did not allow). You
could use this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

);

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

);

Note also that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to specify that as
well. Intuitively, we have a few options:

- Disallow deleting a referenced product
+ Delete the orders as well
« Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example
above: When someone wants to remove a product that is still referenced by an order (via
order_items), we disallow it. If someone removes an order, the order items are removed as well.

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)i
CREATE TABLE order_items (

product_no integer REFERENCES products ON DELETE RESTRICT
order_id integer REFERENCES orders ON DELETE CASCADE

41

Chapter 5. Data Definition

quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common of®B83RICT can also be written
asNO ACTIONand it's also the default if you do not specify anything. There are two other options
for what should happen with the foreign key columns when a primary key is defgggddNULLand

SET DEFAULT Note that these do not excuse you from observing any constraints. For example, if an
action specifieSET DEFAULTbut the default value would not satisfy the foreign key, the deletion of
the primary key will fail.

Analogous tadON DELETEhere is als®©ON UPDATRvhich is invoked when a primary key is changed
(updated). The possible actions are the same.

More information about updating and deleting data i€apter 6

Finally, we should mention that a foreign key must reference columns that are either a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documenta-
tion for CREATE TABLE

5.5. Inheritance

Let’s create two tables. The capitals table contains state capitals which are also cities. Naturally, the
capitals table should inherit from cities.

CREATE TABLE cities (

name text,
population float,
altitude int -~ (in ft)

);

CREATE TABLE capitals (
state char(2)
) INHERITS (cities);

In this case, a row of capitaleheritsall attributes (name, population, and altitude) from its parent,
cities. The type of the attribute nametést , a native PostgreSQL type for variable length character
strings. The type of the attribute populatiorfligt , a native PostgreSQL type for double precision
floating-point numbers. State capitals have an extra attribute, state, that shows their state. In Post-
greSQL, a table can inherit from zero or more other tables, and a query can reference either all rows
of a table or all rows of a table plus all of its descendants.

Note: The inheritance hierarchy is actually a directed acyclic graph.

For example, the following query finds the names of all cities, including state capitals, that are located
at an altitude over 500ft:

SELECT name, altitude
FROM cities

42

Chapter 5. Data Definition

WHERE altitude > 500;

which returns:

name | altitude
___________ N
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at
an altitude over 500ft:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ B ——
Las Vegas | 2174
Mariposa | 1953

Here the “ONLY"” before cities indicates that the query should be run over only cities and not tables
below cities in the inheritance hierarchy. Many of the commands that we have already discussed --
SELECT, UPDATEandDELETE-- support this “ONLY” notation.

In some cases you may wish to know which table a particular row originated from. There is a system
column calledTABLEOIDin each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities ¢
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude
+ +
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join
with pg_class you can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities c, pg_class p
WHERE c.altitude > 500 and c.tableoid = p.oid;

which returns:

relname | name | altitude
cities | Las Vegas | 2174
cities | Mariposa | 1953
capitals | Madison | 845

43

Chapter 5. Data Definition

Deprecated: In previous versions of PostgreSQL, the default behavior was not to include child
tables in queries. This was found to be error prone and is also in violation of the SQL99 standard.
Under the old syntax, to get the sub-tables you append * to the table name. For example

SELECT * from cities*;

You can still explicitly specify scanning child tables by appending *, as well as explicitly specify
not scanning child tables by writing “ONLY”. But beginning in version 7.1, the default behavior for
an undecorated table name is to scan its child tables too, whereas before the default was not to
do so. To get the old default behavior, set the configuration option SQL_Inheritance to off, e.g.,

SET SQL_Inheritance TO OFF;

or add a line in your postgresgl.conf file.

A limitation of the inheritance feature is that indexes (including unigue constraints) and foreign key
constraints only apply to single tables, not to their inheritance children. Thus, in the above example,
specifying that another table’s colunREFERENCES cities(name) would allow the other table

to contain city names but not capital names. This deficiency will probably be fixed in some future
release.

5.6. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the applica-
tion changed, then you can drop the table and create it again. But this is not a convenient option if the
table is already filled with data, or if the table is referenced by other database objects (for instance a
foreign key constraint). Therefore PostgreSQL provides a family of commands to make modifications
on existing tables.

You can

« Add columns,

« Remove columns,

« Add constraints,

- Remove constraints,
« Change default values,
« Rename columns,

« Rename tables.

All these actions are performed using tieTER TABLEcommand.

5.6.1. Adding a Column

To add a column, use this command:
ALTER TABLE products ADD COLUMN description text;

The new column will initially be filled with null values in the existing rows of the table.

You can also define a constraint on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMN description text CHECK (description <> ")

44

Chapter 5. Data Definition

A new column cannot have a not-null constraint since the column initially has to contain null values.
But you can add a not-null constraint later. Also, you cannot define a default value on a new column.
According to the SQL standard, this would have to fill the new columns in the existing rows with the
default value, which is not implemented yet. But you can adjust the column default later on.

5.6.2. Removing a Column

To remove a column, use this command:

ALTER TABLE products DROP COLUMN description;

5.6.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_ no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.6.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Oth-
erwise the system assigned a generated name, which you need to find out. The psql céenmand
tablename can be helpful here; other interfaces might also provide a way to inspect table details.
Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name$ikedon't forget that you'll need to double-
guote it to make it a valid identifier.)

This works the same for all constraint types except not-null constraints. To drop a not null constraint
use

ALTER TABLE products ALTER COLUMN product no DROP NOT NULL;

(Recall that not-null constraints do not have names.)
5.6.5. Changing the Default

To set a new default for a column, use a command like this:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

45

Chapter 5. Data Definition

To remove any default value, use

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is equivalent to setting the default to null, at least in PostgreSQL. As a consequence, it is not an
error to drop a default where one hadn’t been defined, because the default is implicitly the null value.

5.6.6. Renaming a Column

To rename a column:

ALTER TABLE products RENAME COLUMN product_ no TO product_number;

5.6.7. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

5.7. Privileges

When you create a database object, you become its owner. By default, only the owner of an object can
do anything with the object. In order to allow other users to ugwiitjlegesmust be granted. (There
are also users that have the superuser privilege. Those users can always access any object.)

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLE command.

There are several different privilegeSELECT, INSERT, UPDATE DELETE RULE REFERENCES
TRIGGER CREATE TEMPORARMYEXECUTEUSAGE andALL PRIVILEGES. For complete informa-
tion on the different types of privileges supported by PostgreSQL, refer ®R#ANTreference page.
The following sections and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

To assign privileges, theRANTcommand is used. So,jde is an existing user, angtcounts is an
existing table, the privilege to update the table can be granted with

GRANT UPDATE ON accounts TO joe;
The user executing this command must be the owner of the table. To grant a privilege to a group, use
GRANT SELECT ON accounts TO GROUP staff;

The special “user” nameUBLIC can be used to grant a privilege to every user on the system. Writing
ALL in place of a specific privilege specifies that all privileges will be granted.

To revoke a privilege, use the fittingly namr&VOKEommand:

46

Chapter 5. Data Definition
REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the table owner (i.e., the right t&®P GRANTREVOKEetc.) are always
implicit in being the owner, and cannot be granted or revoked. But the table owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

5.8. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client con-
nection to the server can access only the data in a single database, the one specified in the connection
request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the
cluster. Sharing of user names means that there cannot be different users named, say, joe in
two databases in the same cluster; but the system can be configured to allow joe access to only
some of the databases.

A database contains one or more naraeldemaswhich in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, fdtbmal andmyschema may

contain tables namenhytable . Unlike databases, schemas are not rigidly separated: a user may
access objects in any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

- To allow many users to use one database without interfering with each other.
- To organize database objects into logical groups to make them more manageable.

« Third-party applications can be put into separate schemas so they cannot collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.8.1. Creating a Schema

To create a separate schema, use the comm@&RATE SCHEMAive the schema a name of your
choice. For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, wri@alified nameconsisting of the schema name and
table name separated by a dot:

schema. table
Actually, the even more general syntax

database .schema. table

47

Chapter 5. Data Definition

can be used too, but at present this is just for pro-forma compliance with the SQL standard; if you
write a database name it must be the same as the database you are connected to.

So to create a table in the new schema, use

CREATE TABLE myschema.mytable (

%

This works anywhere a table name is expected, including the table modification commands and the
data access commands discussed in the following chapters.

To drop a schema if it's empty (all objects in it have been dropped), use
DROP SCHEMA myschema;

To drop a schema including all contained objects, use
DROP SCHEMA myschema CASCADE;

SeeSection 5.10or a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to
restrict the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMAchemaname AUTHORIZATION username ;

You can even omit the schema name, in which case the schema name will be the same as the user
name. Se&ection 5.8.6or how this can be useful.

Schema names beginning wiih_ are reserved for system purposes and may not be created by users.

5.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default, such
tables (and other objects) are automatically put into a schema named “public”. Every new database
contains such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and

CREATE TABLE public.products (...);

5.8.3. The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into

applications anyway. Therefore tables are often referred tongalified nhameswhich consist of

just the table name. The system determines which table is meant by followeayeh pathwhich is

a list of schemas to look in. The first matching table in the search path is taken to be the one wanted.
If there is no match in the search path, an error is reported, even if matching table names exist in other
schemas in the database.

48

Chapter 5. Data Definition

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be createdCIREASE TABLE
command does not specify a schema name.

To show the current search path, use the following command:

SHOW search_path;

In the default setup this returns:

search_path

$user,public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That
is the reason that by default objects are created in the public schema. When objects are referenced
in any other context without schema qualification (table modification, data modification, or query
commands) the search path is traversed until a matching object is found. Therefore, in the default
configuration, any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use
SET search_path TO myschema,public;

(We omit thesuser here because we have no immediate need for it.) And then we can access the
table without schema qualification:

DROP TABLE mytable;

Also, sincemyschema is the first element in the path, new objects would by default be created in it.

We could also have written

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.
See als@ection 9.13or other ways to access the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATORgChema. operator)

This is needed to avoid syntactic ambiguity. An example is

SELECT 3 OPERATOR(pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

49

Chapter 5. Data Definition

5.8.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner
of the schema needs to grant th8AGEprivilege on the schema. To allow users to make use of the
objects in the schema, additional privileges may need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow tE&REATRE
privilege on the schema needs to be granted. Note that by default, everyodBE@sEANdUSAGE
privileges on the schemumblic . This allows all users that are able to connect to a given database to
create objects in itsublic schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is
an identifier, in the second sense it is a reserved word, hence the different capitalization; recall the
guidelines fromSection 4.1.])

5.8.5. The System Catalog Schema

In addition topublic and user-created schemas, each database containgatalogy schema,
which contains the system tables and all the built-in data types, functions, and op@ratoatalog

is always effectively part of the search path. If it is not named explicitly in the path then it is implicitly
searchetbeforesearching the path’s schemas. This ensures that built-in names will always be findable.
However, you may explicitly placpg_catalog at the end of your search path if you prefer to have
user-defined names override built-in names.

In PostgreSQL versions before 7.3, table names beginningpgittwere reserved. This is no longer

true: you may create such a table name if you wish, in any non-system schema. However, it's best to
continue to avoid such names, to ensure that you won't suffer a conflict if some future version defines

a system table named the same as your table. (With the default search path, an unqualified reference to
your table name would be resolved as the system table instead.) System tables will continue to follow
the convention of having names beginning with , so that they will not conflict with unqualified
user-table names so long as users avoigtheprefix.

5.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are
recommended and are easily supported by the default configuration:

- If you do not create any schemas then all users access the public schema implicitly. This simu-
lates the situation where schemas are not available at all. This setup is mainly recommended when
there is only a single user or a few cooperating users in a database. This setup also allows smooth
transition from the non-schema-aware world.

« You can create a schema for each user with the same name as that user. Recall that the default
search path starts witbuser , which resolves to the user name. Therefore, if each user has a
separate schema, they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it
altogether), so users are truly constrained to their own schemas.

- Toinstall shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow

50

Chapter 5. Data Definition

the other users to access them. Users can then refer to these additional objects by qualifying the
names with a schema name, or they can put the additional schemas into their path, as they choose.

5.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does
not exist. Moreover, some implementations do not allow you to create schemas that have a different
name than their owner. In fact, the concepts of schema and user are nearly equivalent in a database
system that implements only the basic schema support specified in the standard. Therefore, many
users consider qualified names to really consistsefname . tablename . This is how PostgreSQL

will effectively behave if you create a per-user schema for every user.

Also, there is no concept of gublic schema in the SQL standard. For maximum conformance to
the standard, you should not use (perhaps even removpjitie schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.9. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible.

+ Views
- Functions, operators, data types, domains
« Triggers and rewrite rules

Detailed information on these topics appearRant V.

5.10. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints,
views, triggers, functions, etc. you will implicitly create a net of dependencies between the objects.
For instance, a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered irSection 5.4.5with the orders table depending on it, would result in an error message
such as this:

DROP TABLE products;
NOTICE: constraint $1 on table orders depends on table products

ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

51

Chapter 5. Data Definition

The error message contains a useful hint: if you do not want to bother deleting all the dependent
objects individually, you can run

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check wbROP ... CASCADE will do, run
DROPwithout CASCADENd read th&NOTICEmessages.)

All drop commands in PostgreSQL support specifyixsCADEOf course, the nature of the possible
dependencies varies with the type of the object. You can also RESTRICTinstead 0fCASCADEO
get the default behavior, which is to prevent drops of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICT or CASCADHS required. No
database system actually implements it that way, but whether the default behavior is RESTRICTor
CASCAD®aries across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL
versions prior to 7.3 are not maintained or created during the upgrade process. All other depen-
dency types will be properly created during an upgrade.

52

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We
also introduce ways to effect automatic data changes when certain events occur: triggers and rewrite
rules. The chapter after this will finally explain how to extract your long-lost data back out of the
database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row at a time. Even if you know only some
column values, a complete row must be created.

To create a new row, use thieSERT command. The command requires the table name and a value
for each of the columns of the table. For example, consider the products tabl€fapter 5

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, 'Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid that you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns
will be filled with their default values. For example,

INSERT INTO products (product_no, name) VALUES (1, 'Cheese’);
INSERT INTO products VALUES (1, 'Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

53

Chapter 6. Data Manipulation

Tip: To do “bulk loads”, that is, inserting a lot of data, take a look at the COPY command. It is not
as flexible as the INSERT command, but is more efficient.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To perform an update, you need three pieces of information:

1. The name of the table and column to update,
2. The new value of the column,
3. Which row(s) to update.

Recall fromChapter Shat SQL does not, in general, provide a unique identifier for rows. Therefore

it is not necessarily possible to directly specify which row to update. Instead, you specify which
conditions a row must meet in order to be updated. Only if you have a primary key in the table
(no matter whether you declared it or not) can you reliably address individual rows, by choosing a
condition that matches the primary key. Graphical database access tools rely on this fact to allow you
to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This may cause zero, one, or many rows to be updated. It is not an error to attempt an update that does
not match any rows.

Let's look at that command in detail: First is the key warBDATEfollowed by the table name. As

usual, the table name may be schema-qualified, otherwise it is looked up in the path. Next is the key
word SET followed by the column name, an equals sign and the new column value. The new column
value can be any scalar expression, not just a constant. For example, if you want to raise the price of
all products by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can also refer to the old value. We also lefMaHEIRE

clause. If it is omitted, it means that all rows in the table are updated. If it is present, only those rows
that match the condition after teHERRre updated. Note that the equals sign ing&& clause is an
assignment while the one in tieHERElause is a comparison, but this does not create any ambiguity.

Of course, the condition does not have to be an equality test. Many other operators are available (see
Chapter 9. But the expression needs to evaluate to a Boolean result.

You can also update more than one column iv@DATEcommand by listing more than one assign-
ment in theSET clause. For example:

UPDATE mytable SET a = 5, b = 3, ¢ = 1 WHERE a > 0;

54

Chapter 6. Data Manipulation

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to
discuss how to remove data that is no longer needed. Just as adding data is only possible in whole
rows, you can only remove entire rows from a table. In the previous section we discussed that SQL
does not provide a way to directly address individual rows. Therefore, removing rows can only be
done by specifying conditions that the rows to be removed have to match. If you have a primary key
in the table then you can specify the exact row. But you can also remove groups of rows matching a
condition, or you can remove all rows in the table at once.

You use theDELETEcommand to remove rows; the syntax is very similar toWr®ATECcommand.
For instance, to remove all rows from the products table that have a price of 10, use

DELETE FROM products WHERE price = 10;

If you simply write
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

55

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipu-
late that data. Now we finally discuss how to retrieve the data out of the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is aglled;dn SQL
theSELECTcommand is used to specify queries. The general syntax &fEhECTcommand is

SELECT select_list FROMtable_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort specifi-
cation.

The simplest kind of query has the form

SELECT * FROM tablel,;

Assuming that there is a table calledlel , this command would retrieve all rows and all columns

from tablel . (The method of retrieval depends on the client application. For example, the psql
program will display an ASClIl-art table on the screen, while client libraries will offer functions to
extract individual values from the query result.) The select list specificatmpeans all columns that

the table expression happens to provide. A select list can also select a subset of the available columns
or make calculations using the columns. For examplablel has columns named b, andc (and

perhaps others) you can make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming thatt andc are of a numerical data type). S8ection 7.3or more details.

FROM tablel is a particularly simple kind of table expression: it reads just one table. In general,
table expressions can be complex constructs of base tables, joins, and subqueries. But you can also
omit the table expression entirely and use S ECTcommand as a calculator:

SELECT 3 * 4,

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random();

7.2. Table Expressions

A table expressiogmomputes a table. The table expression contaifR@Mclause that is optionally
followed byWHEREGROUP BYandHAVINGclauses. Trivial table expressions simply refer to a table

on disk, a so-called base table, but more complex expressions can be used to modify or combine base
tables in various ways.

The optionaWHEREGROUP BYandHAVING clauses in the table expression specify a pipeline of
successive transformations performed on the table derived irRB&tlause. All these transforma-

56

Chapter 7. Queries

tions produce a virtual table that provides the rows that are passed to the select list to compute the
output rows of the query.

7.2.1. The FROMClause

The FROMclause derives a table from one or more other tables given in a comma-separated table
reference list.

FROMtable_reference [, table_reference [, ...

A table reference may be a table name (possibly schema-qualified), or a derived table such as a
subquery, a table join, or complex combinations of these. If more than one table reference is listed in
theFROM:lause they are cross-joined (see below) to form the intermediate virtual table that may then
be subject to transformations by tHEREGROUP BYandHAVING clauses and is finally the result

of the overall table expression.

When a table reference names a table that is the supertable of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its subtable successors, unless the key word

ONLYprecedes the table name. However, the reference produces only the columns that appear in the
named table --- any columns added in subtables are ignored.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types
Cross join
T1 CROSS JOINT2

For each combination of rows fromil andT2, the derived table will contain a row consisting of
all columns inT1 followed by all columns inr2. If the tables have N and M rows respectively,
the joined table will have N * M rows.

FROMT1 CROSS JOINT2 is equivalent toFROMT1, T2. It is also equivalent t-ROMT1
INNER JOIN T2 ON TRUHESsee below).

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The wordsINNER andOUTERare optional in all formsINNER is the defaultLEFT, RIGHT, and
FULL imply an outer join.

Thejoin conditionis specified in thedNor USING clause, or implicitly by the wordNATURAL
The join condition determines which rows from the two source tables are considered to “match”,
as explained in detail below.

The ONclause is the most general kind of join condition: it takes a Boolean value expression of
the same kind as is used inveHERElause. A pair of rows fronT1 and T2 match if theON
expression evaluates to true for them.

USINGis a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of@IN USING has one column for each of the equated

57

Chapter 7. Queries

pairs of input columns, followed by all of the other columns from each table. TUBISIG (a,

b, ¢) isequivalentt®N (tl.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) with the
exception that ifoNis used there will be two columres b, andc in the result, whereas with
USINGthere will be only one of each.

Finally, NATURALis a shorthand form afSING. it forms aUSINGlist consisting of exactly those
column names that appear in both input tables. As WBING, these columns appear only once
in the output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.
Thus, the joined table unconditionally has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join
condition with any row in T1, a joined row is added with null values in columns of T1. This
is the converse of a left join: the result table will unconditionally have a row for each row
in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join
condition with any row in T2, a joined row is added with null values in columns of T2.

Also, for each row of T2 that does not satisfy the join condition with any row in T1, a

joined row with null values in the columns of T1 is added.

Joins of all types can be chained together or nested: either or bdthafidT2 may be joined tables.
Parentheses may be used aroo@tN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have talles

num | name

58

then we get the following results for the various joins:

=> SELECT * FROM t1 CROSS JOIN t2;
num | name | num | value
| xxx
| yyy
| zzz
| xxx
| yyy
| zzz
| xxx

| yyy
| zzz

WWNNNPRP PP
O 0O O oo YL YO
T WErFEOwER O we

3
(9 rows)

=> SELECT * FROM t1 INNER JOIN t2 ON tl.num = t2.num;
num | name | num | value

----- B TR Y
1] a | 1] xxx
3¢ I 31 vyy

(2 rows)

=> SELECT * FROM t1 INNER JOIN t2 USING (num);
num | name | value

_____ B B —
1] a | xxx
3lc | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL INNER JOIN t2;
num | name | value

_____ B B —
1] a | xxx
31c | yyy

(2 rows)

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num;
num | name | num | value

w NP
O T o

(3 rows)

=> SELECT * FROM t1 LEFT JOIN t2 USING (num);
num | name | value

_____ R S ——
1] a | xxx
21b I
3lc | yyy

(3 rows)

=> SELECT * FROM t1 RIGHT JOIN t2 ON tl.num = t2.num;
num | name | num | value
----- B TR Y

1] a | 1] xxx

Chapter 7. Queries

59

Chapter 7. Queries

3]c | 31wy
| | 5| zzz
(3 rows)

=> SELECT * FROM t1 FULL JOIN t2 ON tl.num = t2.num;
num | name | num | value

1| a | 1| xxx
2|b I I
3]c | 31y
| | 5| zzz
(4 rows)

The join condition specified witbNcan also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num AND t2.value = 'xxx’;
num | name | num | value

----- R S
1| a | 1| xxx
2|b I I
3lc I |

(3 rows)

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to
the derived table in further processing. This is calledhde alias

To create a table alias, write
FROMtable_reference AS alias
or
FROMtable_reference alias

The ASkey word is noisealias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;

The alias becomes the new name of the table reference for the current query -- it is no longer possible
to refer to the table by the original name. Thus

SELECT * FROM my_table AS m WHERE my_table.a > 5;

is not valid SQL syntax. What will actually happen (this is a PostgreSQL extension to the standard)
is that an implicit table reference is added to BROMclause, so the query is processed as if it were
written as

60

Chapter 7. Queries
SELECT * FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

which will result in a cross join, which is usually not what you want.

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a
table to itself, e.g.,

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...

Additionally, an alias is required if the table reference is a subquerySseton 7.2.1.8

Parentheses are used to resolve ambiguities. The following statement will assign thetaliii®
result of the join, unlike the previous example:

SELECT * FROM (my_table AS a CROSS JOIN my table) AS b ...

Another form of table aliasing also gives temporary names to the columns of the table:

FROMtable_reference [AS] alias (columnl [, column2 [, ..]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output af@IN clause, using any of these forms, the alias hides the
original names within th@OIN . For example,

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...
is valid SQL, but
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS ¢

is not valid: the table alias is not visible outside the alias

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parenthesesistiieg assigned a table
alias name. (Se$Bection 7.2.1.2 For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent #ROM tablel AS alias_name . More interesting cases, which can'’t
be reduced to a plain join, arise when the subquery involves grouping or aggregation.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar
types) or composite data types (table rows). They are used like a table, view, or subqueisROEhe
clause of a query. Columns returned by table functions may be includggl CT, JOIN, or WHERE
clauses in the same manner as a table, view, or subguery column.

If a table function returns a base data type, the single result column is named like the function. If the
function returns a composite type, the result columns get the same names as the individual attributes
of the type.

61

Chapter 7. Queries

A table function may be aliased in ti&®OMclause, but it also may be left unaliased. If a function is
used in theeROMclause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS °’
SELECT * FROM foo WHERE fooid = $1;
" LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM foo
WHERE foosubid IN (select foosubid from getfoo(foo.fooid) z
where z.fooid = foo.fooid);

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);
SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudotype
record . When such a function is used in a query, the expected row structure must be specified in the
query itself, so that the system can know how to parse and plan the query. Consider this example:

SELECT *
FROM dblink('dbname=mydb’, 'select proname, prosrc from pg_proc’)
AS tl(proname name, prosrc text)
WHERE proname LIKE ’bytea%’;

The dblink function executes a remote query (Sstrib/dblink). It is declared to return
record since it might be used for any kind of query. The actual column set must be specified in
the calling query so that the parser knows, for example, wisditould expand to.

7.2.2. The WHERE lause

The syntax of thavHERElause is
WHEREsearch_condition

wheresearch_condition is any value expression as definedSaction 4.2hat returns a value
of typeboolean .

After the processing of theROMclause is done, each row of the derived virtual table is checked
against the search condition. If the result of the condition is true, the row is kept in the output table,
otherwise (that is, if the resultis false or null) it is discarded. The search condition typically references
at least some column in the table generated irFftR@Mclause; this is not required, but otherwise the
WHERElause will be fairly useless.

Note: Before the implementation of the JOIN syntax, it was necessary to put the join condition of
an inner join in the WHERElause. For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

62

Chapter 7. Queries

and

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even

FROM a NATURAL JOIN b WHERE b.val> 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FROMclause is
probably not as portable to other SQL database management systems. For outer joins there is no
choice in any case: they must be done in the FROMclause. An ONUSING clause of an outer join is
not equivalent to a WHEREondition, because it determines the addition of rows (for unmatched
input rows) as well as the removal of rows from the final result.

Here are some examplesWwHERElauses:

SELECT ... FROM fdt WHERE c¢1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE cl1 IN (SELECT c1 FROM t2)

SELECT ... FROM fdt WHERE cl1 IN (SELECT ¢3 FROM t2 WHERE c2 = fdt.cl1 + 10)
SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT ¢3 FROM t2 WHERE c2 = fdt.cl + 10) AND
SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in theROMlause. Rows that do not meet the search condition oftHERE

clause are eliminated frofdt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice aligi hisweferenced

in the subqueries. Qualifyingl asfdt.cl is only necessary i1 is also the name of a column in the
derived input table of the subquery. But qualifying the column name adds clarity even when it is not
needed. This example shows how the column naming scope of an outer query extends into its inner
queries.

7.2.3. The GROUP B¥wnd HAVING Clauses

After passing thevHEREilter, the derived input table may be subject to grouping, usingstReUP
BY clause, and elimination of group rows using th&VINGclause.

SELECT select_list
FROM ...
[WHERE ..]
GROUP BYgrouping_column_reference [, grouping_column_reference]e..

The GROUP BYlause is used to group together those rows in a table that share the same values in
all the columns listed. The order in which the columns are listed does not matter. The purpose is to
reduce each group of rows sharing common values into one group row that is representative of all
rows in the group. This is done to eliminate redundancy in the output and/or compute aggregates that
apply to these groups. For instance:

=> SELECT * FROM testl;

x|y
[R

63

Chapter 7. Queries

=> SELECT x FROM testl GROUP BY x;

(3 rows)

In the second query, we could not have writteBLECT * FROM testl GROUP BY x because
there is no single value for the colunynthat could be associated with each group. The grouped-
by columns can be referenced in the select list since they have a known constant value per group.

In general, if a table is grouped, columns that are not used in the grouping cannot be referenced except
in aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

X | sum
[S

a | 4
b|] 5
c | 2
(3 rows)

Heresum is an aggregate function that computes a single value over the entire group. More informa-
tion about the available aggregate functions can be fouseation 9.15

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the DISTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales on all
products).

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columnsoduct_id , p.name, andp.price must be in theGROUP B¥lause

since they are referenced in the query select list. (Depending on how exactly the products table is
set up, name and price may be fully dependent on the product ID, so the additional groupings could
theoretically be unnecessary, but this is not implemented yet.) The calunits does not have to

be in theGROUP Blist since itis only used in an aggregate expresssam(...)), which represents

the sales of a product. For each product, the query returns a summary row about all sales of the
product.

In strict SQL,GROUP B¥an only group by columns of the source table but PostgreSQL extends this
to also allownGROUP BYo group by columns in the select list. Grouping by value expressions instead
of simple column names is also allowed.

64

Chapter 7. Queries

If a table has been grouped usinGBOUP BY¥lause, but then only certain groups are of interest, the
HAVINGclause can be used, much likeV@dERElause, to eliminate groups from a grouped table. The
syntax is:

SELECT select_list FROM ... [WHERE ..] GROUP BY ... HAVING boolean_expression

Expressions in thBAVINGclause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;

X | sum
PR

al 4
b| 5
(2 rows)

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < ’c

X | sum
PR S,

al 4
b| 5
(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

In the example above, tt@HEREIlause is selecting rows by a column that is not grouped (the expres-
sion is only true for sales during the last four weeks), whileHA® INGclause restricts the output to
groups with total gross sales over 5000. Note that the aggregate expressions do not necessarily need
to be the same in all parts of the query.

7.3. Select Lists

As shown in the previous section, the table expression irsHiEECTcommand constructs an inter-
mediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table
is finally passed on to processing by telect list The select list determines whidolumnsof the
intermediate table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is which emits all columns that the table expression produces.
Otherwise, a select list is a comma-separated list of value expressions (as defieetion 4.2. For
instance, it could be a list of column names:

SELECT a, b, ¢ FROM ...

65

Chapter 7. Queries

The columns names, b, andc are either the actual names of the columns of tables referenced in the
FROMlause, or the aliases given to them as explainékiction 7.2.1.2The name space available in
the select list is the same as in WeIERElause, unless grouping is used, in which case it is the same
as in theHAVINGclause.

If more than one table has a column of the same name, the table name must also be given, as in

SELECT tbll.a, tbl2.a, tbll.o FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular
table:

SELECT tbhll.*, thl2.a FROM ...

(See alscsection 7.2.9

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row’s values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of #ROMlause; they could be constant arithmetic expressions

as well, for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for further processing. The “further processing” in
this case is an optional sort specification and the client application (e.g., column headers for display).
For example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column name is specified usiag, the system assigns a default name. For simple column
references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

Note: The naming of output columns here is different from that done in the FROMclause (see
Section 7.2.1.2). This pipeline will in fact allow you to rename the same column twice, but the
name chosen in the select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table may optionally be subject to the elimination
of duplicates. Th®ISTINCT key word is written directly after th6ELECTto enable this:

SELECT DISTINCT select_list

(Instead oDISTINCT the wordALL can be used to select the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

66

Chapter 7. Queries
SELECT DISTINCT ON (expression [, expression)| select_list

Hereexpression is an arbitrary value expression that is evaluated for all rows. A set of rows for
which all the expressions are equal are considered duplicates, and only the first row of the set is kept
in the output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough
columns to guarantee a unique ordering of the rows arriving abI®EINCT filter. (DISTINCT ON
processing occurs aft@RDER Borting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style
because of the potentially indeterminate nature of its results. With judicious \GR@HP B¥Wnd
subqueries ifROMhe construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and differ-
ence. The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

queryl andquery2 are queries that can use any of the features discussed up to this point. Set
operations can also be nested and chained, for example

queryl UNION query2 UNION query3

which really says

(queryl UNION query2) UNION query3

UNIONeffectively appends the result gliery2 to the result ofjueryl (although there is no guar-
antee that this is the order in which the rows are actually returned). Furthermore, it eliminates all
duplicate rows, in the sense DfSTINCT, unlessUNION ALLis used.

INTERSECT returns all rows that are both in the resultaqpferyl and in the result ofjuery2 .
Duplicate rows are eliminated unle$§rERSECT ALLis used.

EXCEPTreturns all rows that are in the result gfieryl but not in the result ofjuery2 . (This
is sometimes called thdifferencebetween two queries.) Again, duplicates are eliminated unless
EXCEPT ALLis used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be
“union compatible”, which means that they both return the same number of columns, and that the
corresponding columns have compatible data types, as descriBedtion 10.5

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally
be sorted. If sorting is not chosen, the rows will be returned in random order. The actual order in that
case will depend on the scan and join plan types and the order on disk, but it must not be relied on. A
particular output ordering can only be guaranteed if the sort step is explicitly chosen.

TheORDER BYlause specifies the sort order:

67

Chapter 7. Queries

SELECT select_list
FROMtable_expression
ORDER BYcolumnl [ASC | DESC] [, column2 [ASC | DESC] ..]

columnl , etc., refer to select list columns. These can be either the output name of a column (see
Section 7.3.2or the number of a column. Some examples:

SELECT a, b FROM tablel ORDER BY ga;
SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum;
SELECT a, sum(b) FROM tablel GROUP BY a ORDER BY 1;

As an extension to the SQL standard, PostgreSQL also allows ordering by arbitrary expressions:
SELECT a, b FROM tablel ORDER BY a + b;

References to column names in #ROMlause that are renamed in the select list are also allowed:
SELECT a AS b FROM tablel ORDER BY a;

But these extensions do not work in queries involvisiglON INTERSECT, or EXCEPT and are not
portable to other SQL databases.

Each column specification may be followed by an optioh&C or DESCto set the sort direction to
ascending or descendingSCorder is the default. Ascending order puts smaller values first, where
“smaller” is defined in terms of the operator. Similarly, descending order is determined withtthe
operator?!

If more than one sort column is specified, the later entries are used to sort rows that are equal under
the order imposed by the earlier sort columns.

7.6. LIMIT and OFFSET

LIMIT andOFFSETallow you to retrieve just a portion of the rows that are generated by the rest of
the query:

SELECT select_list
FROMtable_expression
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query
itself yields less rowsLIMIT ALL is the same as omitting théMIT clause.

OFFSETsays to skip that many rows before beginning to return r@=ESET 0is the same as
omitting theOFFSETclause. If bottOFFSETandLIMIT appear, the®@FFSETrows are skipped before
starting to count theIMIT rows that are returned.

When usingLIMIT , it is important to use a®WRDER BYlause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query’s rows. You may be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is
unknown, unless you specifi@RDER BY

1. Actually, PostgreSQL uses thiefault B-tree operator clager the column’s data type to determine the sort ordering for
ASCandDESC Conventionally, data types will be set up so that thand> operators correspond to this sort ordering, but a
user-defined data type’s designer could choose to do something different.

68

Chapter 7. Queries

The query optimizer takedMIT into account when generating a query plan, so you are very likely

to get different plans (yielding different row orders) depending on what you givelkoim and
OFFSET Thus, using differentIMIT /OFFSETvalues to select different subsets of a query resillt

give inconsistent resultsnless you enforce a predictable result ordering W#DER BYThis is not

a bug; it is an inherent consequence of the fact that SQL does not promise to deliver the results of a
query in any particular order unle©RDER BYs used to constrain the order.

69

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users may add new types to Post-
greSQL using th€REATE TYPEommand.

Table 8-1shows all built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition,
some internally used or deprecated types are available, but they are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit fixed-length bit string

bit varying(n) \varbit(n) \variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box in the plane

bytea binary data

character varying(n) \varchar(n) \variable-length character string

character(n) char(n) fixed-length character string

cidr IPv4 or IPv6 network address

circle circle in the plane

date calendar date (year, month, day)

double precision float8 double precision floating-point
number

inet IPv4 or IPv6 host address

integer int ,int4 signed four-byte integer

interval(p) time span

line infinite line in the plane (not fully
implemented)

Iseg line segment in the plane

macaddr MAC address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric with selectable
precision

path open and closed geometric path
in the plane

point geometric point in the plane

polygon closed geometric path in the
plane

real float4 single precision floating-point
number

smallint int2 signed two-byte integer

70

Chapter 8. Data Types

Name Aliases Description

serial serial4 autoincrementing four-byte
integer

text \variable-length character string

time [(p)] [without time of day

time zone]

time [(p)] with time timetz time of day, including time zong

zone

timestamp [(p)] timestamp date and time

without time zone

timestamp [(
time zone]

p) 1 [with

timestamptz

date and time, including time
zone

Compatibility: The following types (or spellings thereof) are specified by SQL: bit , bit varying

boolean , char , character varying
, humeric , decimal

interval
or without time zone).

, real , smallint

, Character

, varchar

, date , double precision

, integer

, time (with or without time zone), timestamp (with

137

Each data type has an external representation determined by its input and output functions. Many of
the built-in types have obvious external formats. However, several types are either unique to Post-
greSQL, such as open and closed paths, or have several possibilities for formats, such as the date and
time types. Some of the input and output functions are not invertible. That is, the result of an output
function may lose accuracy when compared to the original input.

Some of the operators and functions (e.g., addition and multiplication) do not perform run-time error-
checking in the interests of improving execution speed. On some systems, for example, the numeric
operators for some data types may silently cause underflow or overflow.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point num-
bers, and fixed-precision decimal@ble 8-2lists the available types.

Table 8-2. Numeric Types

Name Storage Size Description Range
smallint 2 bytes small-range integer |-32768 to +32767
integer 4 bytes usual choice for integel-2147483648 to
+2147483647
bigint 8 bytes large-range integer 9223372036854 7758()8
to
922337203685477580[7
decimal \variable user-specified precisiomo limit
exact
numeric \variable user-specified precisioTno limit
exact

71

Chapter 8. Data Types

Name Storage Size Description Range
real 4 bytes \variable-precision, 6 decimal digits
inexact precision
double precision 3 bytes \variable-precision, 15 decimal digits
inexact precision
serial 4 bytes autoincrementing integ@rto 2147483647
bigserial 8 bytes large autoincrementingl to
integer 922337203685477580[7

The syntax of constants for the numeric types is describ&eation 4.1.2The numeric types have a
full set of corresponding arithmetic operators and functions. Reféhtgpter or more information.
The following sections describe the types in detail.

8.1.1. Integer Types

The typesmallint ,integer , andbigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The typeinteger is the usual choice, as it offers the best balance between range, storage size, and
performance. Themallint type is generally only used if disk space is at a premium. Hitiet
type should only be used if theteger range is not sufficient, because the latter is definitely faster.

Thebigint type may not function correctly on all platforms, since it relies on compiler support for
eight-byte integers. On a machine without such suppiaiht acts the same asteger (but still

takes up eight bytes of storage). However, we are not aware of any reasonable platform where this is
actually the case.

SQL only specifies the integer typaseger (orint) andsmallint . The typebigint , and the
type nameint2 ,int4 , andint8 are extensions, which are shared with various other SQL database
systems.

Note: If you have a column of type smallint or bigint with an index, you may encounter prob-
lems getting the system to use that index. For instance, a clause of the form

.... WHERE smallint_column = 42

will not use an index, because the system assigns type integer to the constant 42, and Post-
greSQL currently cannot use an index when two different data types are involved. A workaround
is to single-quote the constant, thus:

.... WHERE smallint_column = ’42’

This will cause the system to delay type resolution and will assign the right type to the constant.

8.1.2. Arbitrary Precision Numbers

The typenumeric can store numbers with up to 1000 digits of precision and perform calculations
exactly. It is especially recommended for storing monetary amounts and other quantities where ex-
actness is required. However, themeric type is very slow compared to the floating-point types
described in the next section.

72

Chapter 8. Data Types

In what follows we use these terms: Thealeof a numeric is the count of decimal digits in the
fractional part, to the right of the decimal point. Theecisionof a numeric is the total count of
significant digits in the whole number, that is, the number of digits to both sides of the decimal point.
So the number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a
scale of zero.

Both the precision and the scale of the numeric type can be configured. To declare a column of type
numeric use the syntax

NUMERICfrecision , scale)

The precision must be positive, the scale zero or positive. Alternatively,
NUMERICfrecision)

selects a scale of 0. Specifying

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale
can be stored, up to the implementation limit on precision. A column of this kind will not coerce
input values to any particular scale, whereasieric columns with a declared scale will coerce input
values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision.
We find this a bit useless. If you're concerned about portability, always specify the precision and scale
explicitly.)

If the precision or scale of a value is greater than the declared precision or scale of a column, the
system will attempt to round the value. If the value cannot be rounded so as to satisfy the declared
limits, an error is raised.

The typesdecimal andnumeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data typessal anddouble precision are inexact, variable-precision numeric types. In prac-
tice, these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arith-
metic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and printing back out a value may show slight discrepancies. Man-
aging these errors and how they propagate through calculations is the subject of an entire branch of
mathematics and computer science and will not be discussed further here, except for the following
points:

- If you require exact storage and calculations (such as for monetary amounts), usenthie
type instead.

- If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

« Comparing two floating-point values for equality may or may not work as expected.

73

Chapter 8. Data Types

On most platforms, theeal type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. Thelouble precision type typically has a range of around 1E-307 to 1E+308 with

a precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding
may take place if the precision of an input number is too high. Numbers too close to zero that are not
representable as distinct from zero will cause an underflow error.

PostgreSQL also supports the SQL-standard notafiosts andfloat(p) for specifying inexact
numeric types. Herep specifies the minimum acceptable precision in binary digits. PostgreSQL
acceptgloat(l) tofloat(24) as selecting theeal type, whilefloat(25) tofloat(53) select
double precision . Values ofp outside the allowed range draw an erftmat with no precision
specified is taken to meaiouble precision

Note: Prior to PostgreSQL 7.4, the precision in float(p) was taken to mean so many decimal
digits. This has been corrected to match the SQL standard, which specifies that the precision is
measured in binary digits. The assumption that real and double precision have exactly 24 and
53 bits in the mantissa respectively is correct for IEEE-standard floating point implementations.
On non-IEEE platforms it may be off a little, but for simplicity the same ranges of p are used on
all platforms.

8.1.4. Serial Types

The data typeserial andbigserial are not true types, but merely a notational convenience for
setting up unique identifier columns (similar to theTO_INCREMENpProperty supported by some
other databases). In the current implementation, specifying

CREATE TABLEtablename (
colname SERIAL

)i
is equivalent to specifying:

CREATE SEQUENCtablename _colname _seq;
CREATE TABLEtablename (
colname integer DEFAULT nextval(’ tablename _colname _seq’) NOT NULL

);

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator.MOT NULLconstraint is applied to ensure that a null value cannot be explicitly
inserted, either. In most cases you would also want to attagkiQUEor PRIMARY KEYconstraint

to prevent duplicate values from being inserted by accident, but this is not automatic.

Note: Prior to PostgreSQL 7.3, serial implied UNIQUE This is no longer automatic. If you wish
a serial column to be in a unique constraint or a primary key, it must now be specified, same as
with any other data type.

To insert the next value of the sequence intogbgal column, specify that theerial column
should be assigned its default value. This can be done either by excluding the column from the list of
columns in theNSERT statement, or through the use of hEFAULTkey word.

The type nameserial andserial4 are equivalent: both creaisteger columns. The type
namesbigserial andserial8 work just the same way, except that they crea@amt column.

74

Chapter 8. Data Types

bigserial should be used if you anticipate the use of more tham2ntifiers over the lifetime of
the table.

The sequence created forsarial column is automatically dropped when the owning column is
dropped, and cannot be dropped otherwise. (This was not true in PostgreSQL releases before 7.3.
Note that this automatic drop linkage will not occur for a sequence created by reloading a dump from

a pre-7.3 database; the dump file does not contain the information needed to establish the dependency
link.) Furthermore, this dependency between sequence and column is made only $eridhe

column itself; if any other columns reference the sequence (perhaps by manually calliegttiae

function), they will be broken if the sequence is removed. Usirsgraal column’s sequence in

such a fashion is considered bad form; if you wish to feed several columns from the same sequence
generator, create the sequence as an independent object.

8.2. Monetary Types

Note: The money type is deprecated. Use numeric or decimal instead, in combination with the
to_char function.

The money type stores a currency amount with a fixed fractional precisionTabke 8-3 Input is
accepted in a variety of formats, including integer and floating-point literals, as well as “typical”
currency formatting, such &&1,000.00' . Output is generally in the latter form but depends on the
locale.

Table 8-3. Monetary Types

Name Storage Size Description Range

money 4 bytes currency amount -21474836.48 to
+21474836.47

8.3. Character Types

Table 8-4. Character Types

Name Description

character varying(n), varchar(n) variable-length with limit
character(n), char(n) fixed-length, blank padded
text variable unlimited length

Table 8-4shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character typebaracter varying(n) andcharacter(n), wheren

is a positive integer. Both of these types can store strings apctwaracters in length. An attempt to

store a longer string into a column of these types will result in an error, unless the excess characters are
all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared
length, values of typeharacter will be space-padded; values of typearacter varying will

simply store the shorter string.

75

Chapter 8. Data Types

If one explicitly casts a value tcharacter varying(n) or character(n), then an over-length
value will be truncated tm characters without raising an error. (This too is required by the SQL
standard.)

Note: Prior to PostgreSQL 7.2, strings that were too long were always truncated without raising
an error, in either explicit or implicit casting contexts.

The notationsvarchar(n) and char(n) are aliases forcharacter varying(n) and
character(n), respectivelycharacter without length specifier is equivalent tharacter(1) ;

if character varying is used without length specifier, the type accepts strings of any size. The
latter is a PostgreSQL extension.

In addition, PostgreSQL provides thext type, which stores strings of any length. Although the
typetext is notin the SQL standard, several other SQL database management systems have it as
well.

The storage requirement for data of these types is 4 bytes plus the actual string, and in case of
character plus the padding. Long strings are compressed by the system automatically, so the phys-
ical requirement on disk may be less. Long values are also stored in background tables so they do not
interfere with rapid access to the shorter column values. In any case, the longest possible character
string that can be stored is about 1 GB. (The maximum value that will be allowedifothe data

type declaration is less than that. It wouldn’t be very useful to change this because with multibyte
character encodings the number of characters and bytes can be quite different anyway. If you desire
to store long strings with no specific upper limit, us@ or character varying without a length
specifier, rather than making up an arbitrary length limit.)

Tip: There are no performance differences between these three types, apart from the increased
storage size when using the blank-padded type.

Refer toSection 4.1.2.%or information about the syntax of string literals, andXoapter Jor infor-
mation about available operators and functions.

Example 8-1. Using the character types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES ('ok’);

SELECT a, char_length(a) FROM testl; -- ad
a | char_length
______ S R —
ok | 4

CREATE TABLE test2 (b varchar(b));
INSERT INTO test2 VALUES ('ok’);
INSERT INTO test2 VALUES ('good);
INSERT INTO test2 VALUES (too long’);
ERROR: value too long for type character varying(5)
INSERT INTO test2 VALUES ('too long’:varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;
b | char_length

ok | 2
good | 5
too | | 5

76

Chapter 8. Data Types

O Thechar_length function is discussed iBection 9.4

There are two other fixed-length character types in PostgreSQL, shotabie 8-5 Thename type
existsonly for storage of identifiers in the internal system catalogs and is not intended for use by
the general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator)
but should be referenced using the constéaMEDATALENThe length is set at compile time (and

is therefore adjustable for special uses); the default maximum length may change in a future release.
The type'char" (note the quotes) is different froomar(1) in that it only uses one byte of storage.

It is internally used in the system catalogs as a poor-man’s enumeration type.

Table 8-5. Special Character Types

Name Storage Size Description
"char" 1 byte single-character internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

Thebytea data type allows storage of binary strings; $able 8-6

Table 8-6. Binary Data Types

Name Storage Size Description

bytea 4 bytes plus the actual binary

string

\variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from characters
strings by two characteristics: First, binary strings specifically allow storing octets of value zero and
other “non-printable” octets (defined as octets outside the range 32 to 126). Second, operations on
binary strings process the actual bytes, whereas the encoding and processing of character strings
depends on locale settings.

When enteringhytea values, octets of certain valuesustbe escaped (but all octet valuesy be
escaped) when used as part of a string literal in an SQL statement. In general, to escape an octet, itis
converted into the three-digit octal number equivalent of its decimal octet value, and preceded by two
backslasheslable 8-7contains the characters which must be escaped, and gives the alternate escape
sequences where applicable.

Table 8-7.bytea Literal Escaped Octets

Decimal Octet Description Escaped Input [Example Output
Value Representation Representation
0 zero octet "\\000’ SELECT \00O
'\\000’::bytea;
39 single quote '\ or’\047’ SELECT
'\"::bytea;

77

Chapter 8. Data Types

Decimal Octet Description Escaped Input [Example Output
\Value Representation Representation
92 backslash RS or SELECT \
"\\134" "\W'::bytea;
0 to 31 and 127 to[‘non-printable” [\\ xxx (octal |SELECT 001
255 octets value) "\001'::bytea;

The requirement to escape “non-printable” octets actually varies depending on locale settings. In some
instances you can get away with leaving them unescaped. Note that the result in each of the examples
in Table 8-7was exactly one octet in length, even though the output representation of the zero octet
and backslash are more than one character.

The reason that you have to write so many backslashes, as sh@ahl&8-7 is that an input string

written as a string literal must pass through two parse phases in the PostgreSQL server. The first
backslash of each pair is interpreted as an escape character by the string-literal parser and is therefore
consumed, leaving the second backslash of the pair. The remaining backslash is then recognized by
the bytea input function as starting either a three digit octal value or escaping another backslash.
For example, a string literal passed to the servek@&l’ becomes001 after passing through

the string-literal parser. THe01 is then sent to theytea input function, where it is converted to a

single octet with a decimal value of 1. Note that the apostrophe character is not treated specially by
bytea , so it follows the normal rules for string literals. (See aBsxtion 4.1.2.)

Bytea octets are also escaped in the output. In general, each “non-printable” octet is converted into

its equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are rep-

resented by their standard representation in the client character set. The octet with decimal value 92
(backslash) has a special alternative output representation. DetailsTalglér8-8

Table 8-8.bytea Output Escaped Octets

Decimal Octet Description Escaped Output [Example Output Result
Value Representation
92 backslash \\ SELECT \

'\\134"::bytea;

0to 31 and 127 to['non-printable” \ xxx (octal value) |SELECT \001
255 octets "\001'::bytea;
32t0 126 “printable” octets [client character seSELECT ~

representation [\\176’::bytea;

Depending on the front end to PostgreSQL you use, you may have additional work to do in terms
of escaping and unescapihgtea strings. For example, you may also have to escape line feeds and
carriage returns if your interface automatically translates these.

The SQL standard defines a different binary string type, caledBor BINARY LARGE OBJECT
The input format is different comparedtiigtea , but the provided functions and operators are mostly
the same.

78

Chapter 8. Data Types

8.5. Date/Time Types
PostgreSQL supports the full set of SQL date and time types, showabie 8-9

Table 8-9. Date/Time Types

Name Storage Size |Description Low Value High Value Resolution
timestamp [8 bytes both date and 4713 BC 5874897 AD |1 microsecond
(p) 11 time 14 digits
without time

zone]

timestamp [8 bytes both date and 4713 BC 5874897 AD |1 microsecond
(p) 1 with time, with time 14 digits

time zone zone

interval [12 bytes time intervals |[-178000000 (178000000 [1 microsecond
(p)] years years

date 4 bytes dates only 4713 BC 32767 AD 1 day

time [(p)] B bytes times ofday |00:00:00.00 [23:59:59.99 [1 microsecond
[without only

time zone |

time [(p) 1 [12 bytes times of day |00:00:00.00+1223:59:59.99-12/1 microsecond
with time only, with time

zone zone

Note: Prior to PostgreSQL 7.3, writing just timestamp was equivalent to timestamp with time
zone . This was changed for SQL compliance.

time , timestamp , andinterval accept an optional precision valpewhich specifies the number
of fractional digits retained in the seconds field. By default, there is no explicit bound on precision.
The allowed range gf is from 0 to 6 for theimestamp andinterval types.

Note: When timestamp values are stored as double precision floating-point numbers (currently
the default), the effective limit of precision may be less than 6. timestamp values are stored as
seconds before or after midnight 2000-01-01. Microsecond precision is achieved for dates within
a few years of 2000-01-01, but the precision degrades for dates further away. When timestamp
values are stored as eight-byte integers (a compile-time option), microsecond precision is avail-
able over the full range of values. However eight-byte integer timestamps have a more limited
range of dates than shown above: from 4713 BC up to 294276 AD.

For thetime types, the allowed range gfis from 0 to 6 when eight-byte integer storage is used, or
from 0 to 10 when floating-point storage is used.

The typetime with time zone is defined by the SQL standard, but the definition exhibits
properties which lead to questionable usefulness. In most cases, a combinatiae oftime |,
timestamp without time zone , and timestamp with time zone should provide a
complete range of date/time functionality required by any application.

The typesabstime andreltime are lower precision types which are used internally. You are dis-
couraged from using these types in new applications and are encouraged to move any old ones over
when appropriate. Any or all of these internal types might disappear in a future release.

79

Chapter 8. Data Types

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including 1ISO 8601,
SQL-compatible, traditional POSTGRES, and others. For some formats, ordering of month, day, and
year in date input is ambiguous and there is support for specifying the expected ordering of these
fields. Set thedatestyle ~ parameter tavDYto select month-day-year interpretati@iyto select
day-month-year interpretation, ¥MDto select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard require&pSee
pendix Bfor the exact parsing rules of date/time input and for the recognized text fields including
months, days of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer toSection 4.1.2.4or more information. SQL requires the following syntax

type [(p)]’ value'’

wherep in the optional precision specification is an integer corresponding to the number of fractional
digits in the seconds field. Precision can be specifiediftg , timestamp , andinterval types.

The allowed values are mentioned above. If no precision is specified in a constant specification, it
defaults to the precision of the literal value.

8.5.1.1. Dates
Table 8-10shows some possible inputs for tthete type.

Table 8-10. Date Input

Example Description

January 8, 1999 unambiguous in angatestyle input mode

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

1/8/1999 January 8 ilmMDYmode; August 1 irbMYmode

1/18/1999 January 18 iMDYmode; rejected in other modes

01/02/03 January 2, 2003 iMDYmode; February 1, 2003|in
DMYmode; February 3, 2001 vMDmode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 irYMDmode, else error

08-Jan-99 January 8, except error iviDmode

Jan-08-99 January 8, except error YMDmode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 lyear and day of year

J2451187 Julian day

January 8, 99 BC year 99 before the Common Era

80

Chapter 8. Data Types

8.5.1.2. Times

The time-of-day types aténe [(p)] without time zone andtime [(p)] with time
zone . Writing justtime is equivalent taime without time zone

Valid input for these types consists of a time of day followed by an optional time zone Té®ée
8-11andTable 8-12) If a time zone is specified in the input fome without time zone ,itis
silently ignored.

Table 8-11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:.05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12

04:05:06.789-8

ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

04:05:06 PST time zone specified by name
Table 8-12. Time Zone Input

Example Description

PST Pacific Standard Time

-8:00 ISO-8601 offset for PST
-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC
z Short form ofzulu

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of a concatenation of a date and a time, followed by an
optionalADor BC, followed by an optional time zone. Thus

1999-01-08 04:05:06
and

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the wide-spread format

January 8 04:05:06 1999 PST

is supported.

81

Chapter 8. Data Types

For timestamp [without time zone] , any explicit time zone specified in the input is silently
ignored. That is, the resulting date/time value is derived from the explicit date/time fields in the input
value, and is not adjusted for time zone.

Fortimestamp with time zone , the internally stored value is always in UTC (Universal Coordi-
nated Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit
time zone specified is converted to UTC using the appropriate offset for that time zone. If no time
zone is stated in the input string, then it is assumed to be in the time zone indicated by the system’s
timezone parameter, and is converted to UTC using the offset forithezone zone.

When atimestamp with time zone value is output, it is always converted from UTC to the
currenttimezone zone, and displayed as local time in that zone. To see the time in another time
zone, either changénezone or use theAT TIME ZONEconstruct (se&ection 9.8.3

Conversions betweenimestamp without time zone and timestamp with time zone
normally assume that thémestamp without time zone value should be taken or given as
timezone local time. A different zone reference can be specified for the conversion ASINGME
ZONE

8.5.1.4. Intervals

interval values can be written with the following syntax:
[@] quantity unit [quantity unit ..] [direction]

Where:quantity is a number (possibly signed)nit is second , minute , hour , day, week,
month, year , decade, century , millennium , or abbreviations or plurals of these units;
direction can beago or empty. The at sign@) is optional noise. The amounts of different units
are implicitly added up with appropriate sigh accounting.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example;1 12:59:10’ is read the same &b day 12 hours 59 min 10 sec’

The optional precisiop should be between 0 and 6, and defaults to the precision of the input literal.

8.5.1.5. Special Values

The following SQL-compatible functions can be used as date or time values for the
corresponding data typeCURRENT_DATECURRENT_TIME CURRENT_TIMESTAMAR.OCALTIME
LOCALTIMESTAMP The latter four accept an optional precision specification. (See Sdsion
9.8.4)

PostgreSQL also supports several special date/time input values for convenience, as sraivie in

8-13 The valuesnfinity and-infinity are specially represented inside the system and will be
displayed the same way; but the others are simply notational shorthands that will be converted to
ordinary date/time values when read. All of these values are treated as normal constants and need to
be written in single quotes.

Table 8-13. Special Date/Time Inputs

Input String Valid Types Description

epoch date , timestamp 1970-01-01 00:(
infinity timestamp later than all oth
-infinity timestamp earlier than all o

82

Chapter 8. Data Types

Input String \Valid Types Description

now date , time , timestamp current transacti
today date , timestamp midnight today
tomorrow date , timestamp midnight tomorr
yesterday date , timestamp midnight yesterc
allballs time 00:00:00.00 UT

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),

traditional POSTGRES, and German, using the comn&#il datestyle

. The default is the ISO

format. (The SQL standard requires the use of the ISO 8601 format. The name of the “SQL” output
format is a historical accidentTable 8-14shows examples of each output style. The output of the
date andtime types is of course only the date or time part in accordance with the given examples.

Table 8-14. Date/Time Output Styles

T

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST
POSTGRES original style Wed Dec 17 07:37:16 1997 PS
German regional style 17.12.1997 07:37:16.00 PST

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been spec-
ified, otherwise month appears before day. (Seetion 8.5.%or how this setting also affects inter-
pretation of input valuesJable 8-15shows an example.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day /month /year 17/12/1997 15:37:16.00 CET
SQL, MDY month /day /year 12/17/1997 07:37:16.00 PST
Postgres, DMY day /month /year Wed 17 Dec 07:37:16 1997 PS

T

interval output looks like the input format, except that units ldemtury or wek are converted to
years and days and thado is converted to an appropriate sign. In ISO mode the output looks like

[quantity unit [..

The date/time styles can be selected by the user usingSHIe datestyle
datestyle parameter in thepostgresgl.conf

111 days] [hours : minutes :sekunden]

environment variable on the server or client. The formatting funatiobhar (seeSection 9.7 is
also available as a more flexible way to format the date/time output.

83

command, the
configuration file, or thePGDATESTYLE

Chapter 8. Data Types

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be
prone to arbitrary changes. PostgreSQL uses your operating system’s underlying features to provide
output time-zone support, and these systems usually contain information for only the time period
1902 through 2038 (corresponding to the full range of conventional Unix system timejtamp

with time zone andtime with time zone will use time zone information only within that year
range, and assume that times outside that range are in UTC. But since time zone support is derived
from the underlying operating system time-zone capabilities, it can handle daylight-saving time and
other special behavior.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

- Although thedate type does not have an associated time zoneijritee type can. Time zones in
the real world can have no meaning unless associated with a date as well as a time since the offset
may vary through the year with daylight-saving time boundaries.

- The default time zone is specified as a constant numeric offset from UTC. It is not possible to adapt
to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time
when using time zones. We recommemat using the typeime with time zone (though it is
supported by PostgreSQL for legacy applications and for compatibility with other SQL implementa-
tions). PostgreSQL assumes your local time zone for any type containing only date or time.

All dates and times are stored internally in UTC. Times are converted to local time on the database
server before being sent to the client, hence by default are in the server time zone.

There are several ways to select the time zone used by the server:

- TheTz environment variable on the server host is used by the server as the default time zone, if no
other is specified.

« Thetimezone configuration parameter can be set in thegidetgresgl.conf

- The PGTzenvironment variable, if set at the client, is used by libpg applications to s&&Ia
TIME ZONEcommand to the server upon connection.

« The SQL comman8ET TIME ZONEsets the time zone for the session.

Note: If an invalid time zone is specified, the time zone becomes UTC (on most systems anyway).

Refer toAppendix Bfor a list of available time zones.

8.5.4. Internals

PostgreSQL uses Julian dates for all date/time calculations. They have the nice property of correctly
predicting/calculating any date more recent than 4713 BC to far into the future, using the assumption
that the length of the year is 365.2425 days.

84

Chapter 8. Data Types

Date conventions before the 19th century make for interesting reading, but are not consistent enough
to warrant coding into a date/time handler.

8.6. Boolean Type

PostgreSQL provides the standard SQL typelean . boolean can have one of only two states:
“true” or “false”. A third state, “unknown”, is represented by the SQL null value.

Valid literal values for the “true” state are:

TRUE
v
‘true’
'
ves’
L

For the “false” state, the following values can be used:

FALSE
)f!
‘false’
"

'no’
0

Using the key word¥RUEandFALSEis preferred (and SQL-compliant).
Example 8-2. Using theboolean type
CREATE TABLE testl (a boolean, b text);

INSERT INTO testl VALUES (TRUE, ’'sic est);

INSERT INTO testl VALUES (FALSE, 'non est);
SELECT * FROM testl,

a | b
R S —

t | sic est

f | non est

SELECT * FROM testl WHERE a;
a | b
JE S —

t | sic est

Example 8-Zhows thaboolean values are output using the letterandf .

Tip: Values of the boolean
AS integer)
boolval

type cannot be cast directly to other types (e.g., CAST (boolval

does not work). This can be accomplished using the CASEexpression: CASE WHEN

THEN ‘value if true’ ELSE 'value if false’ END . See also Section 9.12.

boolean uses 1 byte of storage.

85

Chapter 8. Data Types

8.7. Geometric Types

Geometric data types represent two-dimensional spatial objedite 8-16hows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other

types.

Table 8-16. Geometric Types

Name Storage Size Representation Description

point 16 bytes Point on the plane (x,y)

line 32 bytes Infinite line (not fully |((x1,y1),(x2,y2))
implemented)

Iseg 32 bytes Finite line segment |((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to|((x1,y1),...)
polygon)

path 16+16n bytes Open path [(x1,y1),...]

polygon 40+16n bytes Polygon (similar to ((x1,y1),...)
closed path)

circle 24 bytes Circle <(x,y),r> (center and

radius)

A rich set of functions and operators is available to perform various geometric operations such as
scaling, translation, rotation, and determining intersections. They are explaiSedtion 9.9

8.7.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values pbiype
are specified using the following syntax:

wherex andy are the respective coordinates as floating-point numbers.

8.7.2. Line Segments

Line segmentsifeg) are represented by pairs of points. Values of tigeg are specified using the
following syntax:

(C xx, y1),(x2,vy2))
(xt,yl),(x2, y2)
x1, yl X2 , y2

where(x1, y1) and(x2, y2) are the end points of the line segment.

86

Chapter 8. Data Types

8.7.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Valueshoktype
specified using the following syntax:

((Cxx,y1),(x2,vy2))
(xt, y1),(x2,y2)
x1, y1 X2, y2

where(x1, y1) and(x2, y2) are the opposite corners of the box.

Boxes are output using the first syntax. The corners are reordered on input to store the upper right
corner, then the lower left corner. Other corners of the box can be entered, but the lower left and upper
right corners are determined from the input and stored corners.

8.7.4. Paths

Paths are represented by connected sets of points. Paths ogerba/here the first and last points

in the set are not connected, acldsed where the first and last point are connected. The functions
popen(p) andpclose(p) are supplied to force a path to be open or closed, and the functions
isopen(p) andisclosed(p) are supplied to test for either type in an expression.

Values of typepath are specified using the following syntax:

((x1, y1), .., xn , yn))
[C x1, yl), ... (xn ., yn)]
(xx, y1), .., (Xn , yn)
(x1, y1 , e Xn , yn)
x1 , vyl s e Xn , yn

where the points are the end points of the line segments comprising the path. Square bijagkets (
indicate an open path, while parenthegg9 {ndicate a closed path.

Paths are output using the first syntax.

8.7.5. Polygons

Polygons are represented by sets of points. Polygons should probably be considered equivalent to
closed paths, but are stored differently and have their own set of support routines.

Values of typepolygon are specified using the following syntax:

(C x1, y1), ... (xn ., yn))
(xx, y1), .., (Xn , yn)
(x1, y1 , e Xn , yn)

x1 , vyl y e Xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

87

Chapter 8. Data Types

8.7.6. Circles

Circles are represented by a center point and a radius. Values dfitylee are specified using the
following syntax:

<(xX,vy), r >
(Cx,vy), r)
(x,y),r
X,y , I

where(x, y) is the center and is the radius of the circle.

Circles are output using the first syntax.

8.8. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, shdahlén8-17 It is
preferable to use these types over plain text types, because these types offer input error checking and
several specialized operators and functions.

Table 8-17. Network Address Types

Name Storage Size Description

cidr 12 or 24 bytes IPv4 or IPv6 networks

inet 12 or 24 bytes IPv4 and IPv6 hosts and
networks

macaddr 6 bytes MAC addresses

When sortingnet orcidr data types, IPv4 addresses will always sort before IPv6 addresses, includ-
ing IPv4 addresses encapsulated or mapped into IPv6 addresses, such as ::10.2.3.4 or ::ffff::10.4.3.2.

8.8.1. inet

Theinet type holds an IPv4 or IPv6 host address, and optionally the identity of the subnetitisin, all

in one field. The subnet identity is represented by stating how many bits of the host address represent
the network address (the “netmask”). If the netmask is 32 and the address is IPv4, then the value does
not indicate a subnet, only a single host. In IPv6, the address length is 128 bits, so 128 bits will specify
a unique host address. Note that if you want to accept networks only, you should e thigype

rather tharinet .

The input format for this type iaddress/y =~ whereaddress is an IPv4 or IPv6 address agdis
the number of bits in the netmask. If the part is left off, then the netmask is 32 for IPv4 and 128
for IPv6, and the value represents just a single host. On displayy thgortion is suppressed if the
netmask specifies a single host.

8.8.2. cidr

Thecidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networksldess/ly where
address is the network represented as an IPv4 or IPv6 addressy asdhe number of bits in the
netmask. Ify is omitted, it is calculated using assumptions from the older classful network numbering

88

Chapter 8. Data Types

system, except that it will be at least large enough to include all of the octets written in the input. It is
an error to specify a network address that has bits set to the right of the specified netmask.

Table 8-18shows some examples.

Table 8-18.cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64
2001:4f8:3:ba:2e0:81ff.fe22:d1200 P& f8:3:ba:2e0:81ff.fe22:d120APAf8:3:ba:2e0:81ff:fe22:d1f1
::ffff:1.2.3.0/120 -:ffff:1.2.3.0/120 offff:1.2.3/120
::ffff:1.2.3.0/128 -offff:1.2.3.0/128 :offff:1.2.3.0/128

8.8.3. inet vs. cidr

The essential difference betweieat andcidr data types is thabet accepts values with nonzero
bits to the right of the netmask, whereddr does not.

Tip: If you do not like the output format for inet or cidr values, try the functions host , text , and
abbrev .

8.8.4. macaddr

Themacaddr type stores MAC addresses, i.e., Ethernet card hardware addresses (although MAC ad-
dresses are used for other purposes as well). Input is accepted in various customary formats, including

'08002b:010203’
'08002b-010203’
'0800.2b01.0203’
'08-00-2b-01-02-03'
'08:00:2h:01:02:03’

89

Chapter 8. Data Types

which would all specify the same address. Upper and lower case is accepted for the thigitsgh
f. Output is always in the last of the shown forms.

The directorycontrib/mac in the PostgreSQL source distribution contains tools that can be used to
map MAC addresses to hardware manufacturer names.

8.9. Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two
SQL bit typesbit(n) andbit varying(n) , wheren is a positive integer.

bit type data must match the lengthexactly; it is an error to attempt to store shorter or longer bit
strings.bit varying data is of variable length up to the maximum lengtHonger strings will be
rejected. Writinghit without a length is equivalent tot(1) , whilebit varying without alength
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit(n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value
to bit varying(n), it will be truncated on the right if it is more than n bits.

Note: Prior to PostgreSQL 7.2, bit data was always silently truncated or zero-padded on the
right, with or without an explicit cast. This was changed to comply with the SQL standard.

Refer toSection 4.1.2.2or information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; €bapter 9

Example 8-3. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B'101’, B’00’);

INSERT INTO test VALUES (B’'10’, B'101’);

ERROR: bit string length 2 does not match type bit(3)
INSERT INTO test VALUES (B’10:bit(3), B'101");
SELECT * FROM test;

a | b
_____ o
101 | 00
100 | 101
8.10. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Ar-
rays of any built-in type or user-defined type can be created.

90

Chapter 8. Data Types

8.10.1. Declaration of Array Types

To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (

name text,
pay_by_quarter integer[],
schedule text[][]

);

As shown, an array data type is named by appending square brggkets the data type name of
the array elements. The above command will create a table nsathetihp with a column of type
text (name), a one-dimensional array of tyfseger (pay_by_quarter), which represents the
employee’s salary by quarter, and a two-dimensional arragxof (schedule), which represents
the employee’s weekly schedule.

The syntax foICREATE TABLRllows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]
);
However, the current implementation does not enforce the array size limits --- the behavior is the same
as for arrays of unspecified length.

Actually, the current implementation does not enforce the declared number of dimensions either.
Arrays of a particular element type are all considered to be of the same type, regardless of size or
number of dimensions. So, declaring number of dimensions or sizEREATE TABLHS simply
documentation, it does not affect runtime behavior.

An alternative, SQL99-standard syntax may be used for one-dimensional aagyisy quarter
could have been defined as:

pay_by_quarter integer ARRAY[4],

This syntax requires an integer constant to denote the array size. As before, however, PostgreSQL
does not enforce the size restriction.

8.10.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and
separate them by commas. (If you know C, this is not unlike the C syntax for initializing structures.)
You may put double quotes around any element value, and must do so if it contains commas or curly
braces. (More details appear below.) Thus, the general format of an array constant is the following:

{ wvall delim val2 delim o ¥

wheredelim is the delimiter character for the type, as recorded ipgtdype entry. (For all built-in
types, this is the comma character.) Eachval is either a constant of the array element type, or a
subarray. An example of an array constant is

'{{1,2,3},{4,5,6},{7,8,9}}

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

91

Chapter 8. Data Types

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.4The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show som®&SERT statements.

INSERT INTO sal_emp
VALUES (BIll’,
'{10000, 10000, 10000, 10000},
{{"'meeting", "lunch"}, {}});

INSERT INTO sal_emp
VALUES ('Carol’,
{20000, 25000, 25000, 25000},
{"talk", "consult"}, {"meeting"}});

A limitation of the present array implementation is that individual elements of an array cannot be

SQL null values. The entire array can be set to null, but you can’t have an array with some elements
null and some not.

This can lead to surprising results. For example, the result of the previous two inserts looks like this:

SELECT * FROM sal_emp;
name | pay_by_quarter [schedule

+
1

Bill | {10000,10000,10000,10000} | {{meeting}{"}}
Carol | {20000,25000,25000,25000} | {{talk},{meeting}}
(2 rows)

Because th@2][2] element okchedule is missing in each of thiNSERT statements, thg][2]
element is discarded.

Note: Fixing this is on the to-do list.

The ARRAYexpression syntax may also be used:

INSERT INTO sal_emp
VALUES (Bill’,
ARRAY[10000, 10000, 10000, 10000],
ARRAY[['meeting’, ’lunch’], [","1D;

INSERT INTO sal_emp
VALUES ('Carol’,
ARRAY[20000, 25000, 25000, 25000],
ARRAY(['talk’, 'consult’], ['meeting’, "]);
SELECT * FROM sal_emp;
name | pay_by_quarter | schedule
+ +
Bill | {10000,10000,10000,10000} | {{meeting,lunch}{","}}
Carol | {20000,25000,25000,25000} | {{talk,consult},{meeting,"}}
(2 rows)

Note that with this syntax, multidimensional arrays must have matching extents for each dimension.

A mismatch causes an error report, rather than silently discarding values as in the previous case. For
example:

92

Chapter 8. Data Types

INSERT INTO sal_emp
VALUES ('Carol’,
ARRAY[20000, 25000, 25000, 25000],
ARRAY[['talk’, 'consult’], ['meeting’]]);
ERROR: multidimensional arrays must have array expressions with matching dimensions

Also notice that the array elements are ordinary SQL constants or expressions; for instance, string
literals are single quoted, instead of double quoted as they would be in an array literalRRAg
expression syntax is discussed in more deta8aation 4.2.10

8.10.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array
at a time. This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_quarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses the one-
based numbering convention for arrays, that is, an arrayedéments starts withrray[1] and ends
with array[n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted
by writing lower-bound : upper-bound for one or more array dimensions. For example, this query
retrieves the first item on Bill's schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = 'Bill’;

schedule

{{meeting},{""}}
(1 row)

We could also have written
SELECT schedule[1:2][1] FROM sal_emp WHERE name = 'Bill’;

with the same result. An array subscripting operation is always taken to represent an array slice if
any of the subscripts are written in the fofower : upper . A lower bound of 1 is assumed for any
subscript where only one value is specified, as in this example:

93

Chapter 8. Data Types

SELECT schedule[1:2][2] FROM sal_emp WHERE name = 'Bill’;
schedule

{{meeting,lunch},{"",""}}
(1 row)

The current dimensions of any array value can be retrieved witarthg dims function:

SELECT array_dims(schedule) FROM sal_emp WHERE name = ’'Carol’;

array_dims

2]
(1 row)

array_dims produces aext result, which is convenient for people to read but perhaps not so
convenient for programs. Dimensions can also be retrievedanitly_upper andarray_lower
which return the upper and lower bound of a specified array dimension, respectively.

SELECT array_upper(schedule, 1) FROM sal_emp WHERE name = 'Carol’;

array_upper

8.10.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by quarter = '{25000,25000,27000,27000}
WHERE name = 'Carol’;

or using theARRAYexpression syntax:

UPDATE sal_emp SET pay_by quarter = ARRAY[25000,25000,27000,27000]
WHERE name = 'Carol’;

An array may also be updated at a single element:

UPDATE sal_emp SET pay_by quarter[4] = 15000
WHERE name = 'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by quarter[1:2] = '{27000,27000}
WHERE name = 'Carol’;

A stored array value can be enlarged by assigning to an element adjacent to those already present,
or by assigning to a slice that is adjacent to or overlaps the data already present. For example, if
arraymyarray currently has 4 elements, it will have five elements after an update that assigns to

94

Chapter 8. Data Types

myarray[5] . Currently, enlargement in this fashion is only allowed for one-dimensional arrays, not
multidimensional arrays.

Array slice assignment allows creation of arrays that do not use one-based subscripts. For example
one might assign tomyarray[-2:7] to create an array with subscript values running from -2 to 7.

New array values can also be constructed by using the concatenation opgrator,

SELECT ARRAY[1,2] || ARRAYI[3,4];
?column?

1234
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
?column?

{{5.6},{1.2}.{3.4}}
1 row)

The concatenation operator allows a single element to be pushed on to the beginning or end of a
one-dimensional array. It also accepts tWalimensional arrays, or ai-dimensional and ah+1-
dimensional array.

When a single element is pushed on to the beginning of a one-dimensional array, the result is an
array with a lower bound subscript equal to the right-hand operand’s lower bound subscript, minus
one. When a single element is pushed on to the end of a one-dimensional array, the result is an array
retaining the lower bound of the left-hand operand. For example:

SELECT array_dims(1 || ARRAY[2,3]);
array_dims

SELECT array_dims(ARRAY[1,2] || 3);
array_dims

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand’s outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

SELECT array_dims(ARRAY[[1,2],[3,4]] || ARRAYI[5,6],[7,8],[9.,0]]);
array_dims

[1:5][1:2]

95

Chapter 8. Data Types

1 row)

When anN-dimensional array is pushed on to the beginning or end &f-elrdimensional array, the
result is analogous to the element-array case above. Ratimensional sub-array is essentially an
element of theN+1-dimensional array’s outer dimension. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY([[3,4],[5.6]]);
array_dims

[0:2][1:2]
(2 row)

An array can also be constructed by using the functiamay prepend , array_append ,

or array_cat . The first two only support one-dimensional arrays, buahy cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over
direct use of these functions. In fact, the functions are primarily for use in implementing the
concatenation operator. However, they may be directly useful in the creation of user-defined
aggregates. Some examples:

SELECT array_prepend(1, ARRAY[2,3]);
array_prepend

SELECT array_append(ARRAY[1,2], 3);
array_append

SELECT array_cat(ARRAY[L1,2], ARRAYI[3,4]);
array_cat

1234
(1 row)

SELECT array_cat(ARRAY([[1,2],[3,4]], ARRAY/[5,6]);
array_cat

{{1.2},{3,4}.{5,6}}
1 row)

SELECT array_cat(ARRAYI[5,6], ARRAYI[1,2],[3,4]]);
array_cat

{{5.6}.{1,2}.{3.4}}

96

Chapter 8. Data Types

8.10.5. Searching in Arrays

To search for a value in an array, you must check each value of the array. This can be done by hand,
if you know the size of the array. For example:

SELECT * FROM sal_ emp WHERE pay_by quarter[1] = 10000 OR
pay_by_quarter[2] = 10000 OR
pay_by_quarter[3] 10000 OR
pay_by_quarter[4] 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
uncertain. An alternative method is describe>ction 9.17The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);

In addition, you could find rows where the array had all values equal to 10000 with:

SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Tip: Arrays are not sets; searching for specific array elements may be a sign of database misde-
sign. Consider using a separate table with a row for each item that would be an array element.
This will be easier to search, and is likely to scale up better to large numbers of elements.

8.10.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/O conversion rules for the array’s element type, plus decoration that indicates the array structure.
The decoration consists of curly bracgésand}) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually a comntmi can be something else:

it is determined by theypdelim setting for the array’s element type. (Among the standard data
types provided in the PostgreSQL distribution, tyjae uses a semicolon | but all the others use
comma.) In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level of
curly braces, and delimiters must be written between adjacent curly-braced entities of the same level.
You may write whitespace before a left brace, after a right brace, or before any individual item string.
Whitespace after an item is not ignored, however: after skipping leading whitespace, everything up to
the next right brace or delimiter is taken as the item value.

As shown previously, when writing an array value you may write double quotes around any individual
array element. Yomustdo so if the element value would otherwise confuse the array-value parser. For
example, elements containing curly braces, commas (or whatever the delimiter character is), double
guotes, backslashes, or leading white space must be double-quoted. To put a double quote or backslash
in a quoted array element value, precede it with a backslash. Alternatively, you can use backslash-
escaping to protect all data characters that would otherwise be taken as array syntax or ignorable
white space.

The array output routine will put double quotes around element values if they are empty strings

or contain curly braces, delimiter characters, double quotes, backslashes, or white space. Double
quotes and backslashes embedded in element values will be backslash-escaped. For numeric data
types it is safe to assume that double quotes will never appear, but for textual data types one should be
prepared to cope with either presence or absence of quotes. (This is a change in behavior from pre-7.2
PostgreSQL releases.)

97

Chapter 8. Data Types

Note: Remember that what you write in an SQL command will first be interpreted as a string
literal, and then as an array. This doubles the number of backslashes you need. For example, to
insert a text array value containing a backslash and a double quote, you'd need to write

INSERT ... VALUES ({"W\W\","\"});

The string-literal processor removes one level of backslashes, so that what arrives at the array-
value parser looks like {"\","\""} . In turn, the strings fed to the text data type’s input routine
become\ and" respectively. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored array element.)

Tip: The ARRAYconstructor syntax is often easier to work with than the array-literal syntax when
writing array values in SQL commands. In ARRAY individual element values are written the same
way they would be written when not members of an array.

8.11. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
Also, an OID system column is added to user-created tables (WM@$OUT OIDSs specified at

table creation time). Typeid represents an object identifier. There are also several alias types for
oid : regproc , regprocedure , regoper , regoperator , regclass , andregtype . Table 8-19
shows an overview.

Theoid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large
enough to provide database-wide uniqueness in large databases, or even in large individual tables. So,
using a user-created table’s OID column as a primary key is discouraged. OIDs are best used only for
references to system tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output rou-
tines. These routines are able to accept and display symbolic names for system objects, rather than
the raw numeric value that typsid would use. The alias types allow simplified lookup of OID
values for objects: for example, one may writytable’::regclass to get the OID of table

mytable , rather tharSELECT oid FROM pg_class WHERE relname = 'mytable’ . (In reality,

a much more complicateBELECTwould be needed to deal with selecting the right OID when there

are multiple tables namedytable in different schemas.)

Table 8-19. Object Identifier Types

Name References Description \Value Example
oid any numeric object identifie564182
regproc pg_proc function name sum
regprocedure pg_proc function with argumentisum(int4)

types
regoper pg_operator operator name +

98

Chapter 8. Data Types

Name References Description \Value Example

regoperator pg_operator operator with argument(integer,integer)
types or -(NONE,integer)

regclass pg_class relation name pg_type

regtype pg_type data type name integer

All of the OID alias types accept schema-qualified names, and will display schema-qualified names
on output if the object would not be found in the current search path without being qualified. The
regproc andregoper alias types will only accept input names that are unique (not overloaded),
so they are of limited use; for most usegprocedure or regoperator iS more appropriate. For
regoperator , unary operators are identified by writingpNEor the unused operand.

Another identifier type used by the systenxii$, or transaction (abbreviated xact) identifier. This is
the data type of the system columusin andxmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the systemdisl , or command identifier. This is the data type of the
system columnsmin andcmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the systemtis , or tuple identifier (row identifier). This is the data
type of the system columetid . A tuple ID is a pair (block number, tuple index within block) that
identifies the physical location of the row within its table.

(The system columns are further explaine@gection 5.2

8.12. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-typesA pseudo-type cannot be used as a column data type, but it can be used to declare a
function’s argument or result type. Each of the available pseudo-types is useful in situations where a
function’s behavior does not correspond to simply taking or returning a value of a specific SQL data
type.Table 8-2dists the existing pseudo-types.

Table 8-20. Pseudo-Types

Name Description

any Indicates that a function accepts any input data
type whatever.

anyarray Indicates that a function accepts any array data
type (se€Section 33.2.b

anyelement Indicates that a function accepts any data type
(seeSection 33.2.p

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

language_handler /A procedural language call handler is declared to
returnlanguage_handler

record Identifies a function returning an unspecified row
type.

trigger A trigger function is declared to retutrigger.

99

Chapter 8. Data Types

Name Description

void Indicates that a function returns no value.

opaque I/An obsolete type name that formerly served all
the above purposes.

Functions coded in C (whether built-in or dynamically loaded) may be declared to accept or return
any of these pseudo data types. It is up to the function author to ensure that the function will behave
safely when a pseudo-type is used as an argument type.

Functions coded in procedural languages may use pseudo-types only as allowed by their implemen-
tation languages. At present the procedural languages all forbid use of a pseudo-type as argument
type, and allow onlywoid andrecord as a result type (plusigger when the function is used as a
trigger). Some also support polymorphic functions using the tgpgsray andanyelement .

Theinternal pseudo-type is used to declare functions that are meant only to be called internally
by the database system, and not by direct invocation in a SQL query. If a function has at least one
internal -type argument then it cannot be called from SQL. To preserve the type safety of this
restriction it is important to follow this coding rule: do not create any function that is declared to
returninternal unless it has at least ofgernal argument.

100

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can
also define their own functions and operators, as describ@aiinV. The psql commandsf and
\do can be used to show the list of all actually available functions and operators, respectively.

If you are concerned about portability then take note that most of the functions and operators de-
scribed in this chapter, with the exception of the most trivial arithmetic and comparison operators and
some explicitly marked functions, are not specified by the SQL standard. Some of the extended func-
tionality is present in other SQL database management systems, and in many cases this functionality
is compatible and consistent between the various implementations.

9.1. Logical Operators

The usual logical operators are available:

AND
OR
NOT

SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the
following truth tables:

a b a AND b a OR b
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operatoraNDandORare commutative, that is, you can switch the left and right operand without
affecting the result. But se8ection 4.2.1%or more information about the order of evaluation of
subexpressions.

9.2. Comparison Operators

The usual comparison operators are available, showalihe 9-1

Table 9-1. Comparison Operators

101

Chapter 9. Functions and Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<> o0rl= not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement !=
and <> operators that do different things.

Comparison operators are available for all data types where this makes sense. All comparison oper-
ators are binary operators that return values of typgean ; expressions lika < 2 < 3 are not
valid (because there is nooperator to compare a Boolean value widh

In addition to the comparison operators, the speRfIWEENONSstruct is available.
a BETWEENx ANDYy
is equivalent to
a >= x ANDa <=y
Similarly,
a NOT BETWEEM ANDy
is equivalent to
a<x ORa >y

There is no difference between the two respective forms apart from the CPU cycles required to rewrite
the first one into the second one internally.

To check whether a value is or is not null, use the constructs

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, constructs

expression ISNULL
expression NOTNULL

Do notwrite expression = NULLbecause&lULLis not “equal to”’NULL (The null value represents
an unknown value, and it is not known whether two unknown values are equal.)

Some applications may (incorrectly) require thakpression = NULL returns true if
expression evaluates to the null value. To support these applications, the run-time option
transform_null_equals can be turned on (e.gSET transform_null_equals TO ON;).
PostgreSQL will then convert = NULL clauses tox IS NULL . This was the default behavior in
releases 6.5 through 7.1.

102

Chapter 9. Functions and Operators

Boolean values can also be tested using the constructs

expression IS TRUE
expression IS NOT TRUE
expression IS FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These are similar tt6 NULL in that they will always return true or false, never a null value, even
when the operand is null. A null input is treated as the logical value “unknown”.

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without common math-
ematical conventions for all possible permutations (e.g., date/time types) we describe the actual be-
havior in subsequent sections.

Table 9-2shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result

+ addition 2 + 3 5

- subtraction 2 -3 -1

* multiplication 2 * 3

/ division (integer divisiod / 2 2
truncates results)

% modulo (remainder) 5 % 4 1

N exponentiation 2.0 » 3.0 8

|/ square root |/ 25.0 5

[N/ cube root ||/ 27.0 3

! factorial 5 | 120

I factorial (prefix Il5 120
operator)

@ absolute value @ -5.0 5

& bitwise AND 91 & 15 11

| bitwise OR 32 | 3 35

bitwise XOR 17 # 5 20

~ bitwise NOT ~1 -2

<< bitwise shift left 1 << 4 16

>> bitwise shift right 8 >> 2 2

The bitwise operators are also available for the bit string tytesandbit varying , as shown in
Table 9-3 Bit string operands of,, | , and# must be of equal length. When bit shifting, the original
length of the string is preserved, as shown in the table.

Table 9-3. Bit String Bitwise Operators

103

Chapter 9. Functions and Operators

Example Result
B’10001' & B’01101 00001
B'10001’ | B'01101’ 11101
B'10001" # B’01101 11110
~ B’10001 01110
B’10001" << 3 01000
B’10001" >> 2 00100

Table 9-4shows the available mathematical functions. In the talpléndicatesdouble precision

Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions work-
ing with double precision data are mostly implemented on top of the host system’s C library;
accuracy and behavior in boundary cases may therefore vary depending on the host system.

Table 9-4. Mathematical Functions

Function Return Type Description Example Result

abs () (same ax) absolute value [abs(-17.4) 17.4

cbrt (dp) dp cube root cbrt(27.0) 3

ceil (dp or (same as input) |smallest integer nadeil(-42.8) -42

numeric) less than argument

degrees (dp) dp radians to degreesdegrees(0.5) 28.6478897565412

exp(dp or (same as input) |exponential exp(1.0) 2.71828182845905
numeric)
floor (dp or (same as input) |[largest integer notfloor(-42.8) -43
numeric) greater than
argument
In (dp or (same as input) |natural logarithm |In(2.0) 0.693147180559945
numeric)
log (dp or (same as input) |base 10 logarithm|log(100.0) 2
numeric)
log (b numeric , |numeric logarithm to basé |og(2.0, 64.0) 6.0000000000
X numeric)
mod(y, X) (same as argumemtemainder ofy /x |mod(9,4) 1
types)
pi () dp “7" constant pi() 3.14159265358979
pow(a dp, b dp) (dp a raised to the pow(9.0, 3.0) 729
power ofb
pow(a numeric , [numeric a raised to the pow(9.0, 3.0) 729
b numeric) power ofb
radians (dp) dp degrees to radiansradians(45.0) 0.785398163397444
random () dp random value random()

between 0.0 and 1.0

104

Chapter 9. Functions and Operators

Function Return Type Description Example Result

round (dp or (same as input) round to nearest [round(42.4) 42

numeric) integer

round (Vv numeric , [numeric round tos decimalround(42.4382, 42.44

s integer) places 2)

setseed (dp) int32 set seed for setseed(0.54823) (1177314959
subsequent
random() calls

sign (dp or (same as input) [sign of the sign(-8.4) -1

numeric) argument (-1, 0, +1)

sqrt (dp or (same as input) [square root sqrt(2.0) 1.4142135623731

numeric)

trunc (dp or (same as input) [truncate toward [trunc(42.8) 42

numeric) zero

trunc (Vv numeric , [numeric truncate tcs trunc(42.4382, 42.43

s integer) decimal places)

Finally, Table 9-5shows the available trigonometric functions. All trigonometric functions take argu-
ments and return values of tygeuble precision

Table 9-5. Trigonometric Functions

Function Description

acos (X) inverse cosine

asin (X) inverse sine

atan (X) inverse tangent
atan2 (X, Yy) inverse tangent of/ y
cos (X) cosine

cot (X) cotangent

sin (x) sine

tan (X) tangent

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of all the typesaracter , character varying , andtext . Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of potential
effects of the automatic padding when using theracter type. Generally, the functions described

here also work on data of hon-string types by converting that data to a string representation first. Some
functions also exist natively for the bit-string types.

SQL defines some string functions with a special syntax where certain key words rather than commas
are used to separate the arguments. Details afabie 9-6 These functions are also implemented
using the regular syntax for function invocation. (Jeble 9-7)

Table 9-6. SQL String Functions and Operators

105

Chapter 9. Functions and Operators

Function Return Type Description Example Result
string I text String 'Post’ || PostgreSQL
string concatenation 'greSQL’
bit_length (string [integer Number of bits in |pit_length(jose’) 32
string
char_length (stringint¢ger Number of char_length(jose’) |4
or characters in string
character_length string)
convert (string text Change encodinglconvert('PostgreSQLPostgreSQL’ in
using using specified |using Unicode (UTF-8)
conversion_name conversion hame. iso_8859_1 to_utf_#@ncoding

Conversions can he
defined byCREATE
CONVERSIONAIso
there are some
pre-defined
conversion names|
SeeTable 9-8for
available
conversion names|

lower (string) fext Convert string to lower(TOM’) tom
lower case
octet_length (strinimteger Number of bytes irpctet_length(’jose’) |4
string
overlay (string text Replace substringoverlay(Txxxxas’ [Thomas
placing string placing 'hom’
from integer from 2 for 4)
[for integer 1)
position (substringinteger Location of position('om’ 3
in string) specified substringn 'Thomas’)
substring (string ftext Extract substring substring('Thomas' hom
[from integer] from 2 for 3)
[for integer])
substring (string ftext Extract substring [substring('Thomas' |mas
from pattern) matching POSIX from '..$)
regular expression
substring (string ftext Extract substring substring(Thomas’ joma
from pattern matching SQL from
for escape) regular expression%#"o_a#"_’
for '#)
trim ([leading text Remove the trim(both "X’ Tom
| trailing | longest string from *XxTomxx’)
both] containing only the
[characters] characters (a
from string) space by default)
from the
start/end/both ends
of thestring

106

Chapter 9. Functions and Operators

Function Return Type Description Example Result
upper (string) fext Convert string to upper(tom’) TOM
upper case

Additional string manipulation functions are available and are listéthlsie 9-7 Some of them are
used internally to implement the SQL-standard string functions listddlite 9-6

Table 9-7. Other String Functions

Function Return Type Description Example Result
ascii (text) integer IASCII code of the fascii(’x’) 120
first character of the
argument
btrim (string text Remove the btrim('xyxtrimyyx’, [trim
text longest string 'Xy’)
characters consisting only of
text) characters in
characters

from the start and
end ofstring

chr (integer) text Character with thelchr(65) A
given ASCII code

convert (string text Convert string to |convert(text_in_unicode
text dest_encoding [text_in_unicode’, [represented in ISC
[src_encoding The original "UNICODE’, 8859-1 encoding
name, | encoding is 'LATIN1")

dest_encoding specified by

name) src_encoding

If
src_encoding
is omitted, database

encoding is

assumed.
decode (string bytea Decode binary datecode('MTIzAAE="{123\000\001
text , type from string 'base64’)
text) previously encoded

with encode .

Parameter type is
same as irncode .

encode (data text Encode binary datncode(MTIZAAE=
bytea , type to ASCll-only '123\\000\001",
text) representation. [base64’)

Supported types

are:base64 , hex,

escape .

107

Chapter 9. Functions and Operators

Function

Return Type

Description

Example

Result

initcap

(text)

text

Convert first letter
of each word
(whitespace-

separated) to uppe

case

initcap(’hi
thomas’)

=

Hi Thomas

length ('string)

integer

Number of
characters in string

length(’jose’)
J

Ipad (string
text ,
integer [,
text])

length

fill

text

Fill up the
string to length
length by
prepending the
characterdill (a
space by default).
thestring is
already longer thal
length thenitis
truncated (on the
right).

Ipad(’hi’, 5,
'Xy')

=

=

xyxhi

Itrim (string
text ,
characters
text)

text

Remove the
longest string
containing only
characters from
characters
from the start of th
string.

[trim('zzzytrim’,
lxyzl)

trim

md5(string
text)

text

Calculates the
MD5 hash of given
string, returning th
result in
hexadecimal.

md5('abc’)

900150983cd24fb0
06963f7d28e17f72

pg_client_encoding

ngne

Current client
encoding name

pg_client_encoding(

BQL_ASCII

quote_ident
text)

('string

text

Return the given
string suitably
quoted to be used
as an identifier in
an SQL statement
string. Quotes are
added only if
necessary (i.e., if
the string contains
non-identifier
characters or woul
be case-folded).
Embedded quotes
are properly

quote_ident('’Foo’)

doubled.

"Foo"

108

Chapter 9. Functions and Operators

Function Return Type Description Example Result
quote_literal (stripext Return the given quote_literal('O"Reilly’
text) string suitably 'OV'Reilly’)

quoted to be used
as a string literal in
an SQL statement
string. Embedded

quotes and

backslashes are

properly doubled.
repeat (text |, text Repeat text a repeat(’Pg’, PgPgPgPg
integer) number of times 4)
replace (string text Replace all replace(abXXefabXXef
text , from occurrences in [abcdefabcdef’,
text , to text) string of 'cd’, 'XX)

substringfrom
with substringto .

rpad (string text Fill up the rpad(’hi’, 5, hixyx
text , length string to length xy’)
integer [, fill length by
text 1) appending the
characterdill (a

space by default). If
thestring is
already longer thal
length thenitis

=

truncated.
rtrim (string text Remove the rtrim(trimxxxx’, trim
text, longest string 'X")
characters containing only
text) characters from

characters

from the end of the

string.
split_part (string ftext Splitstring on split_part(def
text , delimiter delimiter and [abc~-@~def~-@~ghil,
text , field return the given [~@~', 2)
integer) field (counting from

one)
strpos (string , fext Location of strpos(high’, 2
substring) specified substringig’)

(same as

position(substring
in string), but
note the reversed
argument order)

109

Chapter 9. Functions and Operators

Function Return Type Description Example Result
substr (string , fext Extract substring [substr(alphabet’, [ph
from [, (same as 3, 2)
count) substring(string

from from for

count))
to_ascii (text [, text Converttextto to_ascii(Karel’) Karel
encoding) ASCII from other

encoding
to_hex (number fext Convertnumber toto_hex(2147483647)rffffftf
integer or its equivalent
bigint) hexadecimal

representation

text Any character in [translate('12345’, [a23x5

translate ('string string that '14', ax’)
text , from matches a character
text , to text) in thefrom setis

replaced by the

corresponding

character in théo

set.
Notes:a. Theto_ascii function supports conversion frobATIN1 , LATIN2 , andWIN1250 only.

Table 9-8. Built-in Conversions

Conversion Name a Source Encoding Destination Encoding
ascii_to_mic SQL_ASCII MULE_INTERNAL
ascii_to_utf 8 SQL_ASCII UNICODE
big5_to_euc_tw BIG5 EUC_TW
big5_to_mic BIG5 MULE_INTERNAL
big5_to_utf 8 BIG5 UNICODE
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to utf 8 EUC_CN UNICODE
euc_jp_to_mic EUC_JP MULE_INTERNAL
euc_jp_to_sjis EUC_JP SJIS
euc_jp_to_utf 8 EUC_JP UNICODE
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf_8 EUC_KR UNICODE
euc_tw_to_big5 EUC_TW BIG5
euc_tw_to_mic EUC_TW MULE_INTERNAL
euc_tw_to_utf 8 EUC_TW UNICODE
gb18030_to_utf_8 GB18030 UNICODE
gbk_to_utf 8 GBK UNICODE
iso_8859_10_to_utf_8 LATING UNICODE
iso_8859 13 to_utf 8 LATIN7 UNICODE
iso_8859 14 to_utf 8 LATINS UNICODE

110

Chapter 9. Functions and Operators

Conversion Name a

Source Encoding

Destination Encoding

iso_8859 15 to_utf_8 LATIN9 UNICODE
iso_8859_16_to_utf_8 LATIN10 UNICODE
iso_8859 1 to_mic LATIN1 MULE_INTERNAL
iso_8859 1 to utf 8 LATIN1 UNICODE
iso_8859_2_to_mic LATIN2 MULE_INTERNAL
iso_8859_2_to_utf 8 LATIN2 UNICODE
iso_8859 2 to_windows_1250 [LATIN2 WIN1250
iso_8859_3_to_mic LATIN3 MULE_INTERNAL
iso_8859 3 to_utf 8 LATIN3 UNICODE
iso_8859 4 _to_mic LATINA MULE_INTERNAL
iso_8859 4 to_utf 8 LATINA UNICODE
iso_8859_5_to_koi8_r ISO_8859_5 KOI8

iso_8859 5 to_mic ISO_8859 5 MULE_INTERNAL
iso_8859_5_to_utf 8 ISO_8859_5 UNICODE
iso_8859 5 to_windows_1251 [ISO_8859 5 WIN

iso_8859 5 to windows_866 ISO 8859 5 ALT
iso_8859_6_to_utf 8 ISO_8859_6 UNICODE
iso_8859_7_to_utf 8 ISO_8859 7 UNICODE
iso_8859_8_to_utf_8 ISO_8859_8 UNICODE
iso_8859_9_to_utf 8 LATINS UNICODE
johab_to_utf 8 JOHAB UNICODE
koi8_r_to_iso_8859 5 KOI8 ISO_8859_5
koi8_r_to_mic KOI8 MULE_INTERNAL
koi8 r_to_utf 8 KOI8 UNICODE
koi8_r_to_windows_1251 KOI8 WIN
koi8_r_to_windows_866 KOI8 ALT

mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_big5 MULE_INTERNAL BIG5
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859 1 MULE_INTERNAL LATIN1
mic_to_iso_8859 2 MULE_INTERNAL LATIN2
mic_to_iso_8859 3 MULE_INTERNAL LATIN3
mic_to_iso_8859 4 MULE_INTERNAL LATIN4
mic_to_iso_8859_5 MULE_INTERNAL ISO_8859_5
mic_to_koi8_r MULE_INTERNAL KOI8

mic_to_sjis MULE_INTERNAL SJIS

111

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
mic_to_windows_1250 MULE_INTERNAL WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN
mic_to_windows_866 MULE_INTERNAL ALT
sjis_to_euc_jp SJIS EUC_JP
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utf 8 SJIS UNICODE
tcvn_to_utf 8 TCVN UNICODE
uhc_to_utf_8 UHC UNICODE
utf_8_to_ascii UNICODE SQL_ASCII
utf_8 to_big5 UNICODE BIG5

utf 8 to_euc_cn UNICODE EUC_CN
utf_8 to_euc_jp UNICODE EUC_JP
utf_8 to_euc_kr UNICODE EUC_KR
utf_8 to_euc_tw UNICODE EUC_TW
utf_8 to_gb18030 UNICODE GB18030
utf_8 to_gbk UNICODE GBK

utf 8 _to_iso_8859 1 UNICODE LATIN1
utf_8_to_iso_8859 10 UNICODE LATING

utf 8 to_iso_8859 13 UNICODE LATIN7
utf_8_to_iso_8859 14 UNICODE LATIN8
utf_8 to_iso_8859 15 UNICODE LATIN9

utf 8 to_iso_8859 16 UNICODE LATIN10

utf 8 to_iso_8859 2 UNICODE LATIN2
utf_8_to_iso_8859 3 UNICODE LATIN3
utf_8_to_iso_8859 4 UNICODE LATIN4
utf_8_to_iso_8859 5 UNICODE ISO_8859_5
utf_8_to_iso_8859_6 UNICODE ISO_8859_6
utf 8 to_iso_8859 7 UNICODE ISO_8859 7
utf 8 to_iso_8859 8 UNICODE ISO_8859 8
utf_8_to_iso_8859 9 UNICODE LATINS
utf_8_to_johab UNICODE JOHAB
utf_8 to_koi8_r UNICODE KOI8
utf_8_to_sjis UNICODE SJIS

utf_8 to_tcvn UNICODE TCVN

utf 8 to_uhc UNICODE UHC
utf_8_to_windows_1250 UNICODE WIN1250
utf_8_to_windows_1251 UNICODE WIN
utf_8_to_windows_1256 UNICODE WIN1256
utf_8 to_windows_866 UNICODE ALT

utf_8 to_windows_874 UNICODE WIN874
windows_1250 to iso 8859 2 |WIN1250 LATIN2

112

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
windows_1250_to_mic WIN1250 MULE_INTERNAL
windows_1250_to_utf_8 WIN1250 UNICODE
windows_1251 to iso 8859 5 [WIN ISO 8859 5
windows_1251 to koi8 r WIN KOI8
windows_1251_to_mic WIN MULE_INTERNAL
windows_1251_to_utf_8 WIN UNICODE
windows_1251_to_windows_866 \WIN ALT
windows_1256_to_utf_8 WIN1256 UNICODE
windows_866 to iso 8859 5 |ALT ISO 8859 5
windows_866_to_koi8 r ALT KOI8
windows_866_to_mic ALT MULE_INTERNAL
windows_866_to_utf_8 ALT UNICODE
windows_866_to_windows_1251 ALT WIN
windows_874_to_utf 8 WIN874 UNICODE

Notes:a. The conversion names follow a standard haming scheme: The official name of the source encoding

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating valueskytégpe

SQL defines some string functions with a special syntax where certain key words rather than commas
are used to separate the arguments. Details afalite 9-9 Some functions are also implemented
using the regular syntax for function invocation. (Sekle 9-10)

Table 9-9. SQL Binary String Functions and Operators

Function Return Type Description Example Result
string I bytea String "\WPost'::bytea \Post’gres\000
string concatenation I

'\047gres\\000’::bytea

Number of bytes irpctet_length(
binary string 'jo\\000se’::bytea)

octet_length (strinmteger

position (substringjinteger Location of position("\000om’::bigtea
in string) specified substringn

'Th\\000omas'::bytea)
substring (string |oytea Extract substring isubstring('Th\\000orm800iytea
[from integer] from 2 for 3)
[for integer 1)

113

Chapter 9. Functions and Operators

Function Return Type Description Example Result
trim ([both] bytea Remove the trim("\000'::bytea [Tom
bytes from longest string from

string) containing only theé\\000Tom\\000'::bytea)

bytes inbytes
from the start and
end ofstring

get_byte (string finteger Extract byte from get_byte('Th\\000omH39:bytea,
offset) string. 4)

set_byte (string [pytea Set byte in string. [set_byte(' Th\\000onjak\0be@as
offset 4, 64)

newvalue)

get_bit (string ,integer Extract bit from get_bit(Th\\00Oomag:::bytea,
offset) string. 45)

set_bit (string ,joytea Set bitin string. |set_bit(Th\\000omaFhiyeeamAs
offset , 45, 0)

newvalue)

Additional binary string manipulation functions are available and are list&aiate 9-10 Some of
them are used internally to implement the SQL-standard string functions lisTedbie 9-9

Table 9-10. Other Binary String Functions

Function Return Type Description Example Result
btrim (string bytea Remove the btrim("\\000trim\\0OO(trinytea,
bytea bytes longest string "\000'"::bytea)

bytea) consisting only of

bytes inbytes
from the start and
end ofstring

length (string) [integer Length of binary |length(’jo\\000se’::bysea)
string
decode (string bytea Decode binary decode(’123\\000458'23\000456
text , type string from 'escape’)
text) string
previously encoded
\with encode .

Parameter type is
same as irencode .

encode (string text Encode binary encode('123\\00045@'28\a68456
bytea , type string to 'escape’)
text) ASCII-only
representation.
Supported types
are:base64 , hex,
escape .

114

Chapter 9. Functions and Operators

9.6. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional
SQLLIKE operator, the more recent SQLSMILAR TO operator, and POSIX-style regular expres-
sions. Additionally, a pattern matching functicupstring , is available, using either SQL99-style

or POSIX-style regular expressions.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined
function in Perl or Tcl.

9.6.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

Everypattern defines a set of strings. TI&E expression returns true if tls#ring is contained
in the set of strings represented jpgttern . (As expected, th8lOT LIKE expression returns false
if LIKE returns true, and vice versa. An equivalent expressidiois (string LIKE pattern).)

If pattern does not contain percent signs or underscore, then the pattern only represents the string
itself; in that caseLIKE acts like the equals operator. An underscorgif pattern stands for
(matches) any single character; a percent sigmatches any string of zero or more characters.

Some examples:

‘abc’ LIKE ’'abc’ true
‘abc’ LIKE 'a%’ true
‘abc’ LIKE b’ true
'abc’ LIKE 'c¢’ false

LIKE pattern matches always cover the entire string. To match a pattern anywhere within a string, the
pattern must therefore start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective char-
acter inpattern must be preceded by the escape character. The default escape character is the
backslash but a different one may be selected by using$l@PEclause. To match the escape char-
acter itself, write two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant
that contains a backslash you must write two backslashes in an SQL statement. Thus, writing a pattern
that actually matches a literal backslash means writing four backslashes in the statement. You can
avoid this by selecting a different escape character B88APE then a backslash is not special to

LIKE anymore. (But it is still special to the string literal parser, so you still need two of them.)

It's also possible to select no escape character by wrEBGAPE " This effectively disables the
escape mechanism, which makes it impossible to turn off the special meaning of underscore and
percent signs in the pattern.

The key wordLIKE can be used instead biKE to make the match case insensitive according to the
active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator-~ is equivalent toLIKE , and ~~* corresponds tdLIKE . There are alsa~~ and
I~~* operators that represeNDT LIKE andNOT ILIKE , respectively. All of these operators are
PostgreSQL-specific.

115

Chapter 9. Functions and Operators

9.6.2. SIMILAR TO and SQL99 Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern = [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is much likeLIKE , except that it interprets the pattern using SQL99’s definition of a regular
expression. SQL99's regular expressions are a curious cross betweEemotation and common
regular expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is
unlike common regular expression practice, wherein the pattern may match any part of the string.
Also like LIKE , SIMILAR TO uses_and%as wildcard characters denoting any single character and
any string, respectively (these are comparableaod.* in POSIX regular expressions).

In addition to these facilities borrowed fromKE , SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

- | denotes alternation (either of two alternatives).

- * denotes repetition of the previous item zero or more times.

- + denotes repetition of the previous item one or more times.

- Parenthese§ may be used to group items into a single logical item.

- A bracket expressiop..] specifies a character class, just as in POSIX regular expressions.

Notice that bounded repetition @nd{...}) are not provided, though they exist in POSIX. Also, the
dot (.) is not a metacharacter.

As with LIKE , a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified \EBCAPE

Some examples:

‘abc’ SIMILAR TO ’abc’ true
‘abc’ SIMILAR TO & false
‘abc’ SIMILAR TO '%(b|d)%’ true
‘abc’ SIMILAR TO '(b|c)%’ false

The substring function with three parameterssubstring(string from pattern for
escape-character), provides extraction of a substring that matches a SQL99 regular expression
pattern. As withSIMILAR TO, the specified pattern must match to the entire data string, else the
function fails and returns null. To indicate the part of the pattern that should be returned on success,
the pattern must contain two occurrences of the escape character followed by a double)qidie (

text matching the portion of the pattern between these markers is returned.

Some examples:

substring('foobar’ from '%#"o_b#"%’ for '#) oob
substring('foobar’ from '#'o_b#"'%’ for '#') NULL

116

Chapter 9. Functions and Operators

9.6.3. POSIX Regular Expressions

Table 9-11lists the available operators for pattern matching using POSIX regular expressions.

Table 9-11. Regular Expression Match Operators

Operator Description Example

~ Matches regular expression, cagg@mas’ ~ '.*thomas.*
sensitive

~* Matches regular expression, cag@mas’ ~* ' *Thomas.*
insensitive

I~ Does not match regular ‘thomas’ !~ '.*Thomas.*
expression, case sensitive

1~* Does not match regular 'thomas’ !~* ’*vadim.*'
expression, case insensitive

POSIX regular expressions provide a more powerful means for pattern matching thakehand
SIMILAR TO operators. Many Unix tools such egrep , sed, orawk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a
regular sej. A string is said to match a regular expression if it is a member of the regular set described
by the regular expression. As withKE , pattern characters match string characters exactly unless
they are special characters in the regular expression language --- but regular expressions use different
special characters thanke does. UnlikeLIKE patterns, a regular expression is allowed to match
anywhere within a string, unless the regular expression is explicitly anchored to the beginning or end
of the string.

Some examples:

‘abc’ ~ ’abc’ true
‘abc’ ~ na’ true
‘abc’ ~ '(b|d) true
‘abc’ ~ "A(b|c) false

The substring function with two parametergubstring(string from pattern), provides
extraction of a substring that matches a POSIX regular expression pattern. It returns null if there is
no match, otherwise the portion of the text that matched the pattern. But if the pattern contains any
parentheses, the portion of the text that matched the first parenthesized subexpression (the one whose
left parenthesis comes first) is returned. You can always put parentheses around the whole expression
if you want to use parentheses within it without triggering this exception. Also see the non-capturing
parentheses described below.

Some examples:

substring('foobar’ from ’'0.b’) oob
substring('foobar’ from 'o(.)b’) o]

PostgreSQL'’s regular expressions are implemented using a package written by Henry Spencer. Much
of the description of regular expressions below is copied verbatim from his manual entry.

117

Chapter 9. Functions and Operators

9.6.3.1. Regular Expression Details

Regular expressions (REs), as defined in POSIX 1003.2, come in two fextesidedREs or EREs
(roughly those otgrep), andbasicREs or BREs (roughly those efl). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become
widely used anyway due to their availability in programming languages such as Perl and Tcl. REs
using these non-POSIX extensions are cafiddancedREs or AREs in this documentation. AREs

are almost an exact superset of ERESs, but BREs have several notational incompatibilities (as well as
being much more limited). We first describe the ARE and ERE forms, noting features that apply only
to AREs, and then describe how BREs differ.

Note: The form of regular expressions accepted by PostgreSQL can be chosen by setting the
regex_flavor run-time parameter (described in Section 16.4). The usual setting is advanced ,
but one might choose extended for maximum backwards compatibility with pre-7.4 releases of
PostgreSQL.

A regular expression is defined as one or mior@ches separated by. It matches anything that
matches one of the branches.

A branch is zero or morgquantified atom®r constraints concatenated. It matches a match for the
first, followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is aatompossibly followed by a singlguantifier. Without a quantifier, it matches

a match for the atom. With a quantifier, it can match some number of matches of the atatordn
can be any of the possibilities shownTable 9-12 The possible quantifiers and their meanings are
shown inTable 9-13

A constraintmatches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it may not be followed by a quantifier. The simple
constraints are shown ifable 9-14 some more constraints are described later.

Table 9-12. Regular Expression Atoms

Atom Description
(re) (wherere is any regular expression) matches|a
match forre , with the match noted for possible
reporting

(?: re) as above, but the match is not noted for reporting
(a “non-capturing” set of parentheses) (AREs
only)

matches any single character

[chars] abracket expressigmatching any one of the
chars (seeSection 9.6.3.20r more detail)

\ k (wherek is a non-alphanumeric character)
matches that character taken as an ordinary
character, e.d\ matches a backslash characte

\cC wherec is alphanumeric (possibly followed by,
other characters) is aascapeseeSection 9.6.3.3
(AREs only; in EREs and BREs, this matctes

=

118

Chapter 9. Functions and Operators

Atom Description

{ when followed by a character other than a digjt,
matches the left-brace charactemwhen followed
by a digit, it is the beginning of hound (see
below)

wherex is a single character with no other
significance, matches that character

An RE may not end with .

Note: Remember that the backslash (\) already has a special meaning in PostgreSQL string

literals. To write a pattern constant that contains a backslash, you must write two backslashes in
the statement.

Table 9-13. Regular Expression Quantifiers

Quantifier Matches

*

a sequence of 0 or more matches of the atom
a sequence of 1 or more matches of the atom
a sequence of 0 or 1 matches of the atom

+

?

{m a sequence of exactipmatches of the atom
{m} a sequence ghor more matches of the atom
{mn} a sequence ahthroughn (inclusive) matches of

the atommmay not exceed
non-greedy version of

*2

+? non-greedy version of

?? non-greedy version of
{m? non-greedy version dfn}
{m}? non-greedy version dfm}
{m n}? non-greedy version dfm n}

The forms usind ... } are known asounds. The numbersnandn within a bound are unsigned
decimal integers with permissible values from 0 to 255 inclusive.

Non-greedyquantifiers (available in AREs only) match the same possibilities as their correspond-

ing normal @reedy counterparts, but prefer the smallest number rather than the largest number of
matches. Se8ection 9.6.3.50r more detail.

Note: A quantifier cannot immediately follow another quantifier. A quantifier cannot begin an
expression or subexpression or follow ~ or | .

Table 9-14. Regular Expression Constraints

Constraint Description

N

matches at the beginning of the string

119

Chapter 9. Functions and Operators

Constraint Description
$ matches at the end of the string
(?=re) positive lookaheadhatches at any point where|a

substring matchinge begins (ARESs only)

(?! re) negative lookaheathatches at any point where
no substring matchinge begins (AREs only)

Lookahead constraints may not cont&iack referenceg¢seeSection 9.6.3.8 and all parentheses
within them are considered non-capturing.

9.6.3.2. Bracket Expressions

A bracket expressiois a list of characters enclosed(in. It normally matches any single character
from the list (but see below). If the list begins with it matches any single characteot from the
rest of the list. If two characters in the list are separated fthis is shorthand for the full range of
characters between those two (inclusive) in the collating sequencfg-e]g. in ASCII matches any
decimal digit. It is illegal for two ranges to share an endpoint,&ge . Ranges are very collating-
sequence-dependent, so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (following a possible To include a

literal - , make it the first or last character, or the second endpoint of a range. To use & literal

the first endpoint of a range, enclose it[in and.] to make it a collating element (see below).
With the exception of these characters, some combinations u¢seg next paragraphs), and escapes
(AREs only), all other special characters lose their special significance within a bracket expression.
In particular,\ is not special when following ERE or BRE rules, though it is special (as introducing
an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that col-
lates as if it were a single character, or a collating-sequence name for either) enclpseghith.]

stands for the sequence of characters of that collating element. The sequence is a single element of
the bracket expression’s list. A bracket expression containing a multiple-character collating element
can thus match more than one character, e.qg. if the collating sequence inathdesllating element,

then the RE[.ch.]]*c matches the first five charactersobthcc .

Note: PostgreSQL currently has no multi-character collating elements. This information describes
possible future behavior.

Within a bracket expression, a collating element encloséd iand=] is an equivalence class, stand-

ing for the sequences of characters of all collating elements equivalent to that one, including itself. (If
there are no other equivalent collating elements, the treatment is as if the enclosing delimitérs were
and.] .) For example, ib and” are the members of an equivalence class, fres]] , [="=]] ,
and[o”] are all synonymous. An equivalence class may not be an endpoint of a range.

Within a bracket expression, the name of a character class enclogedaimd:] stands for the list

of all characters belonging to that class. Standard character class nanasuafie:alpha , blank ,

cntrl , digit ,graph ,lower ,print ,punct ,space ,upper ,xdigit .These stand for the character
classes defined in ctype. A locale may provide others. A character class may not be used as an endpoint
of a range.

There are two special cases of bracket expressions: the bracket exprfissiatis and[: >:]]
are constraints, matching empty strings at the beginning and end of a word respectively. A word is
defined as a sequence of word characters that is neither preceded nor followed by word characters.

120

Chapter 9. Functions and Operators

A word character is aalnum character (as defined by ctype) or an underscore. This is an extension,
compatible with but not specified by POSIX 1003.2, and should be used with caution in software
intended to be portable to other systems. The constraint escapes described below are usually preferable
(they are no more standard, but are certainly easier to type).

9.6.3.3. Regular Expression Escapes

Escapesare special sequences beginning wittiollowed by an alphanumeric character. Escapes
come in several varieties: character entry, class shorthands, constraint escapes, and back references.
A\ followed by an alphanumeric character but not constituting a valid escape is illegal in ARESs. In
ERESs, there are no escapes: outside a bracket expressidoll@aved by an alphanumeric character

merely stands for that character as an ordinary character, and inside a bracket expreissam,

ordinary character. (The latter is the one actual incompatibility between EREs and ARES.)

Character-entry escapexist to make it easier to specify non-printing and otherwise inconvenient
characters in REs. They are showrTable 9-15

Class-shorthand escapesovide shorthands for certain commonly-used character classes. They are
shown inTable 9-16

A constraint escapés a constraint, matching the empty string if specific conditions are met, written
as an escape. They are showTable 9-17

A back referencé\ n) matches the same string matched by the previous parenthesized subexpression
specified by the number (seeTable 9-18. For example([bc])\1 matchesbb or cc but notbc

or cb. The subexpression must entirely precede the back reference in the RE. Subexpressions are
numbered in the order of their leading parentheses. Non-capturing parentheses do not define subex-
pressions.

Note: Keep in mind that an escape’s leading \ will need to be doubled when entering the pattern
as an SQL string constant.

Table 9-15. Regular Expression Character-Entry Escapes

Escape Description

\a alert (bell) character, asin C

\b backspace, asin C

\B synonym fon to help reduce the need for

backslash doubling

\c X (whereX is any character) the character whose
low-order 5 bits are the same as thos&pand
whose other bits are all zero

\e the character whose collating-sequence name is
ESG or failing that, the character with octal value
033

\f form feed, asin C

\n newline, asin C

\r carriage return, asin C

\t horizontal tab, as in C

121

Chapter 9. Functions and Operators

Escape Description

\u wxyz (wherewxyz is exactly four hexadecimal digits)
the Unicode character+wxyz in the local byte
ordering

\U stuvwxyz (wherestuvwxyz is exactly eight hexadecimal

digits) reserved for a somewhat-hypothetical
Unicode extension to 32 bits

\v vertical tab, asin C
\x hhh (wherehhh is any sequence of hexadecimal
digits) the character whose hexadecimal value is
0xhhh (a single character no matter how many
hexadecimal digits are used)
\0 the character whose valueds
\ Xy (wherexy is exactly two octal digits, and is not a
back referencethe character whose octal value is
0xy
\ Xyz (wherexyz is exactly three octal digits, and is
not aback referencethe character whose octal
\value isOxyz
Hexadecimal digits are-9, a-f , andA-F. Octal digits are®-7.
The character-entry escapes are always taken as ordinary characters. For ezampsg, in ASCII,
but\135 does not terminate a bracket expression.
Table 9-16. Regular Expression Class-Shorthand Escapes
Escape Description
\d [[:digit:]]
\s [[:space:]]
\w [[:alnum:]_] (note underscore is included)
\D [Mdigit:]]
\S [M:space:]]
\W [M:alnum:]_] (note underscore is included
Within bracket expressiong] , \s , and\w lose their outer brackets, akd, \S , and\w are illegal.
(So, for examplefa-c\d] is equivalent tda-c[:digit:]] . Also, [a-c\D] , which is equivalent
to [a-cM[:digit:]] ,isillegal.)
Table 9-17. Regular Expression Constraint Escapes
Escape Description
\A matches only at the beginning of the string (see
Section 9.6.3.%or how this differs fronm)
\m matches only at the beginning of a word
\M matches only at the end of a word
\y matches only at the beginning or end of a word

122

Chapter 9. Functions and Operators

Escape Description

\Y matches only at a point that is not the beginning
or end of a word

\Z matches only at the end of the string (&stion
9.6.3.5for how this differs froms)

A word is defined as in the specification [ff <:]] and[: >:]] above. Constraint escapes are
illegal within bracket expressions.

Table 9-18. Regular Expression Back References

Escape Description

\'m (wheremis a nonzero digit) a back reference tp
thenith subexpression

\ mnn (wheremis a nonzero digit, andn is some morg

digits, and the decimal valuannis not greater
than the number of closing capturing parentheses
seen so far) a back reference to then'th
subexpression

Note: There is an inherent historical ambiguity between octal character-entry escapes and back
references, which is resolved by heuristics, as hinted at above. A leading zero always indicates
an octal escape. A single non-zero digit, not followed by another digit, is always taken as a back
reference. A multi-digit sequence not starting with a zero is taken as a back reference if it comes
after a suitable subexpression (i.e. the number is in the legal range for a back reference), and
otherwise is taken as octal.

9.6.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syn-
tactic facilities available.

Normally the flavor of RE being used is determinedrbyex_flavor . However, this can be over-
ridden by adirector prefix. If an RE of any flavor begins withi*: |, the rest of the RE is taken as an
ARE. If an RE of any flavor begins witht*= |, the rest of the RE is taken to be a literal string, with
all characters considered ordinary characters.

An ARE may begin withembedded optionsa sequencé€? xyz) (wherexyz is one or more alpha-

betic characters) specifies options affecting the rest of the RE. These options override any previously
determined options (including both the RE flavor and case sensitivity). The available option letters
are shown ifrable 9-19

Table 9-19. ARE Embedded-Option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator type)
e rest of RE is an ERE

123

Chapter 9. Functions and Operators

Option Description
i case-insensitive matching (s8ection 9.6.3.p
(overrides operator type)

m historical synonym fon

n newline-sensitive matching (s&ection 9.6.3.b

p partial newline-sensitive matching (s8ection
9.6.3.5

q rest of RE is a literal (“quoted”) string, all
ordinary characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partial newline-sensitive (“weird”)
matching (se&ection 9.6.3.p

X expanded syntax (see below)

Embedded options take effect at theerminating the sequence. They are available only at the start
of an ARE, and may not be used later within it.

In addition to the usualtight) RE syntax, in which all characters are significant, there iexgranded
syntax, available by specifying the embeddemption. In the expanded syntax, white-space characters

in the RE are ignored, as are all characters betwegarad the following newline (or the end of the

RE). This permits paragraphing and commenting a complex RE. There are three exceptions to that
basic rule:

- awhite-space character#ipreceded by is retained
- white space o#t within a bracket expression is retained

« white space and comments are illegal within multi-character symbols, like the (AREr the
BRE\(

Expanded-syntax white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequ@wctit) (wherettt is any text not
containing g) is a comment, completely ignored. Again, this is not allowed between the characters of
multi-character symbols, like: . Such comments are more a historical artifact than a useful facility,
and their use is deprecated; use the expanded syntax instead.

Noneof these metasyntax extensions is available if an inittal director has specified that the user’s
input be treated as a literal string rather than as an RE.

9.6.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
its choice is determined by ifweferenceeither the longest substring, or the shortest.

Most atoms, and all constraints, have no preference. A parenthesized RE has the same preference
(possibly none) as the RE. A quantified atom with quantifigy or { n}? has the same preference
(possibly none) as the atom itself. A quantified atom with other normal quantifiers (incluating

with mequal ton) prefers longest match. A quantified atom with other non-greedy quantifiers (includ-

ing {m n}? with mequal ton) prefers shortest match. A branch has the same preference as the first

124

Chapter 9. Functions and Operators

guantified atom in it which has a preference. An RE consisting of two or more branches connected by
the| operator prefers longest match.

Subject to the constraints imposed by the rules for matching the whole RE, subexpressions also match
the longest or shortest possible substrings, based on their preferences, with subexpressions starting
earlier in the RE taking priority over ones starting later. Note that outer subexpressions thus take
priority over their component subexpressions.

The quantifier§1,1} and{1,1}? can be used to force longest and shortest preference, respectively,
on a subexpression or a whole RE.

Match lengths are measured in characters, not collating elements. An empty string is considered
longer than no match at all. For examplés* matches the three middle charactersabbbc ;
(week|wee)(night|knights) matches all ten characters afeeknights ; when (.*).* is
matched againgtbc the parenthesized subexpression matches all three characters; an@#en

is matched againdtic both the whole RE and the parenthesized subexpression match an empty
string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished
from the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character
outside a bracket expression, it is effectively transformed into a bracket expression containing both
cases, e.gx becomegxX] . When it appears inside a bracket expression, all case counterparts of it
are added to the bracket expression, g]g. becomegxX] and[*x] become$ xX]

If newline-sensitive matching is specified,and bracket expressions usifigwill never match the
newline character (so that matches will never cross newlines unless the RE explicitly arranges it) and
~and$ will match the empty string after and before a newline respectively, in addition to matching at
beginning and end of string respectively. But the ARE escepesd\Z continue to match beginning

or end of stringonly.

If partial newline-sensitive matching is specified, this affectand bracket expressions as with
newline-sensitive matching, but notand$.

If inverse partial newline-sensitive matching is specified, this affearsd$ as with newline-sensitive
matching, but not and bracket expressions. This isn’t very useful but is provided for symmetry.

9.6.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs in-
tended to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant
implementation can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is\tttdes not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREsthesyntax of directors likewise is outside

the POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them
up, and a few Perl extensions are not present. Incompatibilities of note intlyde , the lack of

special treatment for a trailing newline, the addition of complemented bracket expressions to the
things affected by newline-sensitive matching, the restrictions on parentheses and back references in
lookahead constraints, and the longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4
releases of PostgreSQL.:

125

Chapter 9. Functions and Operators

« In AREs,\ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

« In AREs,\ remains a special character within, so a literal within a bracket expression must
be written\\ .

While these differences are unlikely to create a problem for most applications, you can avoid them if
necessary by settinggex_flavor ~ to extended .

9.6.3.7. Basic Regular Expressions

BREs differ from EREs in several respedts+, and? are ordinary characters and there is no equiva-
lent for their functionality. The delimiters for bounds &eand\} , with { and} by themselves ordi-
nary characters. The parentheses for nested subexpressighsaad) , with (and) by themselves
ordinary characterg. is an ordinary character except at the beginning of the RE or the beginning of
a parenthesized subexpressins an ordinary character except at the end of the RE or the end of a
parenthesized subexpression, and an ordinary character if it appears at the beginning of the RE or
the beginning of a parenthesized subexpression (after a possible leadiigally, single-digit back
references are available, and and\ > are synonyms foff: <:]] and[: >:] respectively; no
other escapes are available.

9.7. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data type$able 9-20lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is a template that
defines the output or input format.

Table 9-20. Formatting Functions

Function Return Type Description Example

to_char (timestamp , [text convert time stamp to to_char(current_timestamp,

text) string 'HH12:MI:SS)

to_char (interval text convert interval to stringo_char(interval

text) '15h 2m 12s’,
'HH24:MI:SS")

to_char (int , text) fext convert integer to stringo_char(125,
'999")

to_char (double text convert real/double fto_char(125.8::real,

precision , text) precision to string '999D9')

to_char (numeric , text convert numeric to string_char(-125.8,

text) '999D99S")

to_date (text , text) |date convert string to date to_date('05 Dec 2000’
'DD Mon YYYY’)

to_timestamp (text , timestamp convert string to time fto_timestamp('05 Dec 2000’,

text) stamp ‘DD Mon YYYY’)

126

Chapter 9. Functions and Operators

Function Return Type Description Example
to_number (text , numeric convert string to numerto_number('12,454.8-’,
text) W’99G999D98’)

Warning:to_char (interval , text) is deprecated and should not be used in newly-written code. It
will be removed in the next version.

In an output template string (fes_char), there are certain patterns that are recognized and replaced
with appropriately-formatted data from the value to be formatted. Any text that is not a template
pattern is simply copied verbatim. Similarly, in an input template string (for anythingbcitar),
template patterns identify the parts of the input data string to be looked at and the values to be found
there.

Table 9-21shows the template patterns available for formatting date and time values.

Table 9-21. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

M minute (00-59)

SS second (00-59)

MS millisecond (000-999)

us microsecond (000000-999999)
SSSS seconds past midnight (0-86399)

IAMor A.M. or PMor P.M. meridian indicator (upper case)

amora.m. Or pmor p.m. meridian indicator (lower case)

chars)

127

Y,YYY year (4 and more digits) with comma

YYYY year (4 and more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

BCorB.C. orADorA.D. era indicator (upper case)

bc orb.c. orad ora.d. era indicator (lower case)

MONTH full upper-case month name (blank-padded to|9
chars)

Month full mixed-case month name (blank-padded to|9
chars)

month full lower-case month name (blank-padded to
chars)

MON abbreviated upper-case month name (3 chars

Mon abbreviated mixed-case month name (3 chars

mon abbreviated lower-case month name (3 chars)

MM month number (01-12)

DAY full upper-case day name (blank-padded to 9

Chapter 9. Functions and Operators

Pattern Description

Day full mixed-case day name (blank-padded to 9
chars)

day full lower-case day name (blank-padded to 9
chars)

DY abbreviated upper-case day name (3 chars)

Dy abbreviated mixed-case day name (3 chars)

dy abbreviated lower-case day name (3 chars)

DDD day of year (001-366)

DD day of month (01-31)

D day of week (1-7; Sunday is 1)

week of month (1-5) (The first week starts on the
first day of the month.)

Ww week number of year (1-53) (The first week starts
on the first day of the year.)

W ISO week number of year (The first Thursday of
the new year is in week 1.)

CC century (2 digits)

J Julian Day (days since January 1, 4712 BC)

Q quarter

RM month in Roman numerals (I-XII; I=January)
(upper case)

rm month in Roman numerals (i-xii; i=January)
(lower case)

TZ time-zone name (upper case)

tz time-zone name (lower case)

Certain modifiers may be applied to any template pattern to alter its behavior. For examiglsth
is theMonth pattern with theeMmmodifier. Table 9-22shows the modifier patterns for date/time for-
matting.

Table 9-22. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example

FMprefix fill mode (suppress padding [FMMonth
blanks and zeroes)

TH suffix upper-case ordinal number suffddTH

th suffix lower-case ordinal number sufibOth

FX prefix fixed format global option (see|FX Month DD Day
usage notes)

SP suffix spell mode (not yet DDSP
implemented)

Usage notes for the date/time formatting:

« FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output

128

Chapter 9. Functions and Operators

of a pattern be fixed-width.

+ to_timestamp and to_date skip multiple blank spaces in the input string if
the FX option is not used.FX must be specified as the first item in the template.
For example to_timestamp('2000 JUN’, 'YYYY MON) is correct, but
to_timestamp('2000 JUN’, 'EXYYYY MON’) returns an error, because timestamp
expects one space only.

- Ordinary text is allowed imo_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains pattern key words. For
example, in"Hello Year "YYYY’ , theYYYYwill be replaced by the year data, but the single
in Year will not be.

- If you want to have a double quote in the output you must precede it with a backslash, for exam-
ple’\"YYYY Month\" . (Two backslashes are necessary because the backslash already has a
special meaning in a string constant.)

« The YYYY conversion from string taimestamp or date has a restriction if you use a year
with more than 4 digits. You must use some non-digit character or template \aftey,
otherwise the year is always interpreted as 4 digits. For example (with the year 20000):
to_date('200001131’, 'YYYYMMDD’) will be interpreted as a 4-digit year; instead use
a non-digit separator after the vyear, like_date(’20000-1131’, 'YYYY-MMDD’) or
to_date(’20000Nov31’, 'YYYYMonDD’)

« Millisecond (M9 and microsecondJS) values in a conversion from string timestamp are used
as part of the seconds after the decimal point. For exampiinestamp(’'12:3’, 'SS:MS’)
is not 3 milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds. This means
for the formatSS:MS, the input valued2:3 , 12:30 , and12:300 specify the same number of
milliseconds. To get three milliseconds, one must1&se03 , which the conversion counts as 12
+0.003 = 12.003 seconds.

Here is a more complex example:to_timestamp(’15:12:02.020.001230’,
"HH:MI:SS.MS.US’) is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230
microseconds = 2.021230 seconds.

Table 9-23shows the template patterns available for formatting numeric values.

Table 9-23. Template Patterns for Numeric Formatting

Pattern Description

9 \value with the specified number of digits

0 \value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

M minus sign in specified position (if number0)
PL plus sign in specified position (if numbegr0)

129

Chapter 9. Functions and Operators

Pattern Description

SG plus/minus sign in specified position

RN roman numeral (input between 1 and 3999)
THorth ordinal number suffix

\Y shift specified number of digits (see notes)
EEEE scientific notation (not implemented yet)

Usage notes for the numeric formatting:

« A sign formatted usingG PL, or Ml is not anchored to the number; for exampte char(-12,
'S9999") produces -12' , butto_char(-12, 'MI19999") produces- 12° . The Oracle
implementation does not allow the usemifahead 0B, but rather requires thatprecedemi.

+ 9 results in a value with the same number of digits as theresrdf a digit is not available it
outputs a space.

. THdoes not convert values less than zero and does not convert fractional numbers.
« PL, SG andTHare PostgreSQL extensions.

« V effectively multiplies the input values by0” n, wheren is the number of digits followingy.
to_char does not support the use ¥fcombined with a decimal point. (E.c99.9v99 is not
allowed.)

Table 9-24shows some examples of the use oftiehar function.

Table 9-24.to_char Examples

Expression Result
to_char(current_timestamp, 'Tuesday , 06 05:39:18’
'Day, DD HH12:MI:SS’)

to_char(current_timestamp, 'Tuesday, 6 05:39:18’
'FMDay, FMDD HH12:MI:SS’)

to_char(-0.1, '99.99’) - =10

to_char(-0.1, 'FM9.99") -1

to_char(0.1, '0.9) - 0.1

to_char(12, '9990999.9") ' 0012.0¢
to_char(12, 'FM9990999.9’) '0012.

to_char(485, '999’) " 485’

to_char(-485, '999’) -485’

to_char(485, '9 9 9) 485

to_char(1485, '9,999’) ' 1,485

to_char(1485, '9G999’) " 1 485
to_char(148.5, '999.999’) ' 148.500°
to_char(148.5, 'FM999.999’) '148.5’

to_char(148.5, 'FM999.990") '148.500’
to_char(148.5, '999D999’) ' 148,500’

130

Chapter 9. Functions and Operators

Expression Result
to_char(3148.5, '9G999D999’) " 3 148,500’
to_char(-485, '999S’) '485-’

to_char(-485, '999MI’) '485-’

to_char(485, '999MI’) ‘485

to_char(485, 'FM999MI’) 485’

to_char(485, 'PL999") '+485’

to_char(485, 'SG999’) '+485’

to_char(-485, 'SG999’) -485’

to_char(-485, '9SG99’) '4-85'

to_char(-485, '999PR’) | <485>’
to_char(485, 'L999') 'DM 485
to_char(485, 'RN’) CDLXXXV’
to_char(485, 'FMRN’) "CDLXXXV’
to_char(5.2, 'FMRN’) v

to_char(482, '999th’) " 482nd’
to_char(485, ™Good number:"999’) 'Good number: 485’
to_char(485.8, 'Pre: 485 Post: .800’
""Pre:"999" Post:" .999’)

to_char(12, '99V999’) " 12000’
to_char(12.4, '99Vv999’) ' 12400’
to_char(12.45, '99V9’) ' 125’

9.8. Date/Time Functions and Operators

Table 9-26shows the available functions for date/time value processing, with details appearing in
the following subsectionstable 9-25illustrates the behaviors of the basic arithmetic operateys (

*, etc.). For formatting functions, refer ®ection 9.7 You should be familiar with the background
information on date/time data types frddection 8.5

All the functions and operators described below that take ortimestamp inputs actually come
in two variants: one that takéisme with time zone ortimestamp with time zone , and one
that takestime without time zone or timestamp without time zone . For brevity, these
variants are not shown separately.

Table 9-25. Date/Time Operators

Operator Example Result

+ date '2001-09-28" + date '2001-10-05
integer 7’

+ date '2001-09-28" + timestamp '2001-09-28
interval '1 hour’ 01:00

+ date '2001-09-28" + time timestamp '2001-09-28
'03:00° 03:00’

131

Chapter 9. Functions and Operators

Operator Example Result

+ time '03:00' + date timestamp '2001-09-28
'2001-09-28’ 03:00’

+ interval 'l day’ + interval '1 day 01:00°
interval '1 hour’

+ timestamp '2001-09-28 timestamp '2001-09-29
01:00' + interval '23 00:00’
hours’

+ time '01:00° + interval time '04:00°
'3 hours’

+ interval '3 hours’ + time '04:00
time '01:00’

- - interval '23 hours’ interval ’-23:00’'

- date '2001-10-01' - date integer '3’
'2001-09-28’

- date '2001-10-01" - date '2001-09-24
integer '7’

- date '2001-09-28" - timestamp '2001-09-27
interval '1 hour’ 23:00°

- time '05:00" - time interval '02:00’
'03:00’

- time '05:00" - interval time '03:00’
'2 hours’

- timestamp '2001-09-28 timestamp '2001-09-28
23:00' - interval '23 00:00
hours’

- interval '1 day’ - interval '23:00°
interval '1 hour’

- interval '2 hours’ - time '03:00’
time '05:00°

- timestamp '2001-09-29 interval '1 day 15:00'
03:00" - timestamp
'2001-09-27 12:00°

* double precision '3.5" * interval '03:30
interval '1 hour’

* interval '1 hour’ * interval '03:30’
double precision '3.5’

/ interval '1 hour’ / interval '00:40’
double precision '1.5’

Table 9-26. Date/Time Functions

Function Return Type Description Example Result

43 years 8
mons 3 days

age (timestamp) |interval

Subtract from todagge(timestamp
Tﬁ.957-06-13')

132

Chapter 9. Functions and Operators

time; seeSection
9.8.4

Function Return Type Description Example Result
age(timestamp , |interval Subtract argumentsge('2001-04-10’, 43 years 9
timestamp) timestamp mons 27 days
'1957-06-13")
current_date date Today's date; see
Section 9.8.4
current_time time with time Time of day; see
zone Section 9.8.4
current_timestamp timestamp with Date and time; see
time zone Section 9.8.4
date part (text , [double Get subfield date_part(hour’, |20
timestamp) precision (equivalent to timestamp
extract); see '2001-02-16
Section 9.8.1 20:38:40")
date_part (text , [double Get subfield date_part(month’, 3
interval) precision (equivalent to interval 2
extract); see years 3
Section 9.8.1 months’)
date_trunc (text , timestamp Truncate to date_trunc(’hour’, [2001-02-16
timestamp) specified precisiontimestamp 20:00:00
see als®ection [2001-02-16
9.8.2 20:38:40)
extract (field double Get subfield; see [extract(hour 20
from timestamp) |precision Section 9.8.1 from timestamp
'2001-02-16
20:38:40")
extract (field double Get subfield; see [extract(month 3
from interval) |precision Section 9.8.1 from interval
'2 years 3
months’)
isfinite (timestamgbgolean Test for finite time fisfinite(timestamp ftrue
stamp (not equal t¢r001-02-16
infinity) 21:28:30")
isfinite ~ (interval [Joolean Test for finite isfinite(interval true
interval '4 hours’)
localtime time Time of day; see
Section 9.8.4
localtimestamp timestamp Date and time; see
Section 9.8.4
now() timestamp with Current date and
time zone time (equivalent to
current_timestamp |);
seeSection 9.8.4
timeofday() text Current date and

In addition to these functions, the S@VERLAPSperator is supported:

133

Chapter 9. Functions and Operators

(startl , endl) OVERLAPS (start2 , end2)
(startl , lengthl) OVERLAPS (start2 , length2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when
they do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a
date, time, or time stamp followed by an interval.

SELECT (DATE ’'2001-02-16', DATE '2001-12-21') OVERLAPS
(DATE '2001-10-30', DATE '2002-10-30%;

Result: true

SELECT (DATE '2001-02-16’, INTERVAL '100 days’) OVERLAPS
(DATE '2001-10-30', DATE '2002-10-30");

Result: false

9.8.1. EXTRACT date_part

EXTRACT field FROMsource)

The extract function retrieves subfields from date/time values, such as year or $munce is
a value expression that evaluates to tyipeestamp or interval . (Expressions of typeate or
time will be cast totimestamp and can therefore be used as wdle)d is an identifier or string
that selects what field to extract from the source value.edact function returns values of type
double precision . The following are valid field names:

century

The year field divided by 100

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 20

Note that the result for the century field is simply the year field divided by 100, and not the
conventional definition which puts most years in the 1900’s in the twentieth century.

day
The day (of the month) field (1 - 31)
SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 16
decade
The year field divided by 10
SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 200
dow
The day of the week (0 - 6; Sunday is 0) (fonestamp values only)
SELECT EXTRACT(DOW FROM TIMESTAMP °'2001-02-16 20:38:40’);
Result: 5
doy

The day of the year (1 - 365/366) (fomestamp values only)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 47

134

Chapter 9. Functions and Operators

epoch

Fordate andtimestamp values, the number of seconds since 1970-01-01 00:00:00-00 (can be
negative); forinterval ~ values, the total number of seconds in the interval

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-08");
Result: 982384720

SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours’);
Result: 442800
hour
The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 20

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000. Note that this includes full
seconds.

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5");
Result: 28500000

millennium

The year field divided by 1000

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP ’'2001-02-16 20:38:40");
Result: 2

Note that the result for the millennium field is simply the year field divided by 1000, and not the
conventional definition which puts years in the 1900’s in the second millennium.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full
seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5);
Result: 28500

minute
The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40);
Result: 38

month

Fortimestamp values, the number of the month within the year (1 - 12) jdf@rval values
the number of months, modulo 12 (0 - 11)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months’);
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL 2 years 13 months’);
Result: 1

135

Chapter 9. Functions and Operators

quarter
The quarter of the year (1 - 4) that the day is in (forestamp values only)

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40%;
Result: 1

second
The seconds field, including fractional parts (0)59
SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 40
SELECT EXTRACT(SECOND FROM TIME '17:12:28.5’);
Result: 28.5
timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones
east of UTC, negative values to zones west of UTC.

timezone_hour

The hour component of the time zone offset
timezone_minute

The minute component of the time zone offset
week

The number of the week of the year that the day is in. By definition (ISO 8601), the first week of
a year contains January 4 of that year. (The 1SO-8601 week starts on Monday.) In other words,
the first Thursday of a year is in week 1 of that year. {fioestamp values only)

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40);
Result: 7

year

The year field

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2001

Theextract function is primarily intended for computational processing. For formatting date/time
values for display, seSection 9.7

Thedate_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract

date_part(’ field °, source)

Note that here théeld parameter needs to be a string value, not a name. The valid field names for
date_part are the same as fextract

SELECT date_part('day’, TIMESTAMP '2001-02-16 20:38:40);
Result: 16

SELECT date_part(hour’, INTERVAL 4 hours 3 minutes’);

60 if leap seconds are implemented by the operating system

136

Chapter 9. Functions and Operators

Result: 4

9.8.2. date_trunc

The functiondate_trunc is conceptually similar to theunc function for numbers.

date_trunc(’ field ', source)

source is a value expression of typinestamp orinterval . (Values of typedate andtime are
cast automatically, timestamp or interval respectively.¥ield selects to which precision to
truncate the input value. The return value is of tyipeestamp orinterval with all fields that are
less significant than the selected one set to zero (or one, for day and month).

Valid values forfield are:

microseconds
milliseconds
second
minute

hour

day

month

year

decade
century
millennium

Examples:

SELECT date_trunc(hour’, TIMESTAMP '2001-02-16 20:38:40’);
Result: 2001-02-16 20:00:00

SELECT date_trunc(year’, TIMESTAMP '2001-02-16 20:38:40’);
Result: 2001-01-01 00:00:00

9.8.3. AT TIME ZONE

TheAT TIME ZONEconstruct allows conversions of time stamps to different time zofatse 9-27
shows its variants.

Table 9-27.AT TIME ZONEVariants

Expression

Return Type

Description

timestamp without time zone
AT TIME ZONE zone

timestamp with time zone

Convert local time in given time
zone to UTC

timestamp with time zone
AT TIME ZONE zone

timestamp without time
zone

Convert UTC to local time in
given time zone

137

Chapter 9. Functions and Operators

Expression Return Type Description
time with time zone AT time with time zone Convert local time across time
TIME ZONE zone zones

In these expressions, the desired time zomge can be specified either as a text string (ERBT”)
or as an interval (e.gINTERVAL '-08:00").

Examples (supposing that the local time zone$38PDT):

SELECT TIMESTAMP ’'2001-02-16 20:38:40° AT TIME ZONE 'MST’,
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05" AT TIME ZONE 'MST;
Result: 2001-02-16 18:38:40

The first example takes a zone-less time stamp and interprets it as MST time (UTC-7) to produce a
UTC time stamp, which is then rotated to PST (UTC-8) for display. The second example takes a time
stamp specified in EST (UTC-5) and converts it to local time in MST (UTC-7).

The function timezone (zone, timestamp) is equivalent to the SQL-conforming construct
timestamp AT TIME ZONE zone.

9.8.4. Current Date/Time

The following functions are available to obtain the current date and/or time:

CURRENT_DATE

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME (precision)
CURRENT_TIMESTAMP frecision)
LOCALTIME

LOCALTIMESTAMP

LOCALTIME (precision)
LOCALTIMESTAMP (precision)

CURRENT_TIMEand CURRENT_TIMESTAMRIeliver values with time zonel OCALTIME and
LOCALTIMESTAMPRIeliver values without time zone.

CURRENT_TIME CURRENT_TIMESTAMPLOCALTIME and LOCALTIMESTAMPcan optionally be
given a precision parameter, which causes the result to be rounded to that many fractional digits in
the seconds field. Without a precision parameter, the result is given to the full available precision.

Note: Prior to PostgreSQL 7.2, the precision parameters were unimplemented, and the result was
always given in integer seconds.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

138

Chapter 9. Functions and Operators

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP(2);
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

The functionnow() is the traditional PostgreSQL equivalentt®ORRENT_TIMESTAMP

There is also the functiotimeofday() , which for historical reasons returngext string rather
than atimestamp value:

SELECT timeofday();
Result: Sat Feb 17 19:07:32.000126 2001 EST

It is important to know thaCURRENT_TIMESTAM&nd related functions return the start time of the
current transaction; their values do not change during the transaction. This is considered a feature:
the intent is to allow a single transaction to have a consistent notion of the “current” time, so that
multiple modifications within the same transaction bear the same time sterapfday() returns

the wall-clock time and does advance during transactions.

Note: Other database systems may advance these values more frequently.

All the date/time data types also accept the special literal vadueto specify the current date and
time. Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP ’'now’;

Note: You do not want to use the third form when specifying a DEFAULTclause while creating
a table. The system will convert now to a timestamp as soon as the constant is parsed, so that
when the default value is needed, the time of the table creation would be used! The first two forms
will not be evaluated until the default value is used, because they are function calls. Thus they will
give the desired behavior of defaulting to the time of row insertion.

9.9. Geometric Functions and Operators

The geometric typegsoint , box, Iseg , line , path , polygon , andcircle have alarge set of native
support functions and operators, showTable 9-28 Table 9-29 andTable 9-30

Table 9-28. Geometric Operators

139

Chapter 9. Functions and Operators

Operator Description Example
+ Translation box ’((0,0),(1,1))" +
point '(2.0,0)’
Translation box ’((0,0),(1,1))" -
point '(2.0,0)’
* Scaling/rotation box ’((0,0),(1,1)) *
point '(2.0,0)
/ Scaling/rotation box ’((0,0),(2,2)) /
point '(2.0,0)’
Point or box of intersection "((1,-1),(-1,1))
((1,1),(-1,-1))
Number of points in path or # ’((1,0),(0,1),(-1,0))’
polygon
@-@ Length or circumference @-@ path ’'((0,0),(1,0))
@@ Center @@ circle '((0,0),10)
#H# Closest point to first operand opoint ’'(0,0)’ ## Iseg
second operand '((2,0),(0,2)y
<> Distance between circle ’((0,0),1) <->
circle '((5,0),1)
&& Overlaps? box ’((0,0),(1,1)) &&
box '((0,0),(2,2))’
&< Overlaps or is left of? box ’((0,0),(1,1))" & <
box ’((0,0),(2,2))
&> Overlaps or is right of? box ’((0,0),(3,3)) & >
box '((0,0),(2,2)y
<< Is left of? circle ’((0,0),1) <<
circle '((5,0),1)
>> Is right of? circle ’((5,0),1) >>
circle '((0,0),1)
< Is below? circle '((0,0),1)’ <
circle ’((0,5),1)
>N Is above? circle ’((0,5),1) >"
circle '((0,0),1)
% Intersects? Iseg '((-1,0),(1,0))" ?#
box '((-2,-2),(2,2))
?- Is horizontal? ?- Iseg ’((-1,0),(1,0))’
?-)Are horizontally aligned? point '(1,0)' ?- point
'(0,0)
?| Is vertical? ?| Iseg ’'((-1,0),(1,0))
?| /Are vertically aligned? point '(0,1)’ ?| point
'(0,0)
?-| Is perpendicular? Iseg ’((0,0),(0,1))" ?-|
Iseg ’((0,0),(1,0))
?|| Are parallel? Iseg ’((-1,0),(1,0))
?|| Iseg
((-1,2),(1,2))

140

Chapter 9. Functions and Operators

Operator Description Example
~ Contains? circle ’((0,0),2) ~
point '(1,1)’
@ Contained in or on? point '(1,1)’ @ circle
'((0,0).2)
~= Same as? polygon ’'((0,0),(1,1))’
~= polygon
((1,1),0,0))
Table 9-29. Geometric Functions
Function Return Type Description Example
area (object) double precision area area(box
'((0,0),(1,1)))
box_intersect (box, |pox intersection box box_intersect(box
box) '((0,0),(1,1))",box
'((0.5,0.5),(2,2)))
center (object) point center center(box
'((0,0),(1,2)))
diameter (circle) double precision diameter of circle diameter(circle
'((0,0),2.0)")
height (box) double precision \vertical size of box height(box
'((0,0),(1,1)))
isclosed (path) boolean a closed path? isclosed(path
'((0,0),(1,1),(2,0)))
isopen (path) boolean an open path? isopen(path
'1(0,0),(1,1),(2,0)])
length (object) double precision length length(path
'((-1,0),(1,0)))
npoints (path) integer number of points npoints(path
1(0,0),(1,1),(2,0)])
npoints (polygon) integer number of points npoints(polygon
'((1,1),(0,0)))
pclose (path) path convert path to closed [popen(path
1(0,0),(1,1),(2,0)])
popen (path) path convert path to open |popen(path
'((0,0),(1,1),(2,0)))
radius (circle) double precision radius of circle radius(circle
'((0,0),2.0)")
width (box) double precision horizontal size of box width(box
'((0,0),(1,1)))

141

Chapter 9. Functions and Operators

Table 9-30. Geometric Type Conversion Functions

Function Return Type Description Example
box (circle) box circle to box box(circle
'((0,0),2.0)")
box (point , point) box points to box box(point ’(0,0)’,
point '(1,1))
box (polygon) box polygon to box box(polygon
'((0,0),(1,1).(2,0)))
circle (box) circle box to circle circle(box
'((0,0),(1,1)))
circle (point , double [ircle point and radius to circleircle(point
precision) '(0,0)", 2.0)
Iseg (box) Iseg box diagonal to line |lseg(box
segment '((-1,0),(1,0)))
Iseg (point , point) [seg points to line segment |lseg(point
'(-1,0)’, point
'(1,0))
path (polygon) point polygon to path path(polygon
'((0,0),(1,1),(2,0)))
point (circle) point center of circle point(circle
'((0,0),2.0))
point (Iseg , Iseg) point intersection point(Iseg
'((-1,0),(1,0))",
Iseg
'((-2,-2).(2,2)))
point (polygon) point center of polygon point(polygon
'((0,0),(1,1).(2,0)))
polygon (box) polygon box to 4-point polygon polygon(box
'((0,0),(1,1)))
polygon (circle) polygon circle to 12-point polygon(circle
polygon '((0,0),2.0)")
polygon (npts , polygon circle tonpts -point |polygon(12, circle
circle) polygon '((0,0),2.0)")
polygon (path) polygon path to polygon polygon(path
'((0,0),(1,1).(2,0)))

It is possible to access the two component numbers pdiet as though it were an array with

indices 0 and 1. For exampletip
coordinate an@PDATE t SET p[1] = ...
typebox orlseg may be treated as an array of tyaint

is apoint

values.

column therSELECT p[0] FROM t retrieves the X
changes the Y coordinate. In the same way, a value of

142

Chapter 9. Functions and Operators

9.10. Network Address Type Functions

Table 9-31shows the operators available for thidr andinet types. The operators<, <<=,
>>, and>>= test for subnet inclusion. They consider only the network parts of the two addresses,
ignoring any host part, and determine whether one network part is identical to or a subnet of the other.

Table 9-31.cidr andinet Operators

Operator Description Example

< is less than inet '192.168.1.5' <
inet '192.168.1.6’

<= is less than or equal inet '192.168.1.5’ <=
inet '192.168.1.5’

= equals inet '192.168.1.5" =
inet '192.168.1.5’

>= is greater or equal inet '192.168.1.5' >=
inet '192.168.1.5’

> is greater than inet '192.168.1.5' >
inet '192.168.1.4’

<> is not equal inet '192.168.1.5' <>
inet '192.168.1.4’

<< is contained within inet '192.168.1.5’ <<
inet '192.168.1/24’

<<= is contained within or equals |inet '192.168.1/24' <<=
inet '192.168.1/24’

>> contains inet'192.168.1/24 >>
inet '192.168.1.5’

>>= contains or equals inet '192.168.1/24’ >>=
inet '192.168.1/24’

Table 9-32shows the functions available for use with ttiedr andinet types. Thehost , text |,
andabbrev functions are primarily intended to offer alternative display formats. You can cast a text
value toinet using normal casting syntaixiet(expression) or colname :inet

Table 9-32.cidr andinet Functions

Function Return Type Description Example Result

broadcast (inet) [inet broadcast addressbroadcast('192.168.[1.822168.1.255/24
for network

host (inet) text extract IP addresshost('192.168.1.5/24192.168.1.5
as text

masklen (inet) integer extract netmask |masklen('192.168.1.3/24")
length

set_masklen (inet finet set netmask lengthset_masklen('192.1682 3681'1.5/16

integer) for inet value 16)

netmask (inet) inet construct netmasknetmask('192.168.1/38%255.255.0
for network

hostmask (inet) [inet construct host mastostmask('192.168.Z8@0/30")
for network

143

Chapter 9. Functions and Operators

Function Return Type Description Example Result

network (inet) cidr extract network partetwork('192.168.1.5/22:168.1.0/24
of address

text (inet) text extract IP addresstext(inet 192.168.1.5/32
and netmask lengt192.168.1.5’)
as text

abbrev (inet) text abbreviated displagibbrev(cidr 10.1/16
format as text a~F;0.1.0.0/16’)

Table 9-33 shows the functions available for use with theacaddr

type. The function

trunc (macaddr) returns a MAC address with the last 3 bytes set to zero. This can be used to

associate the remaining prefix with a manufacturer. The direatonyrib/mac

distribution contains some utilities to create and maintain such an association table.

Table 9-33.macaddr Functions

in the source

Function Return Type

Description

Example Result

trunc (macaddr) |macaddr

set last 3 bytes to
zero

trunc(macaddr
'12:34:56:78:90:ab’)

12:34:56:00:00:00

The macaddr type also supports the standard relational operators<E, etc.) for lexicographical

ordering.

9.11. Sequence-Manipulation Functions

This section describes PostgreSQL's functions for operatingegiuence object§equence objects
(also called sequence generators or just sequences) are special single-row tables creargAvith
SEQUENCEA sequence object is usually used to generate unique identifiers for rows of a table. The
sequence functions, listed fable 9-34 provide simple, multiuser-safe methods for obtaining suc-
cessive sequence values from sequence objects.

Table 9-34. Sequence Functions

Function Return Type Description

nextval (text) bigint Advance sequence and return
new value

currval (text) bigint Return value most recently
obtained withnextval

setval (text , bigint) bigint Set sequence’s current value

setval (text , bigint bigint Set sequence’s current value gnd

boolean) is_called flag

For largely historical reasons, the sequence to be operated on by a sequence-function call is specified
by a text-string argument. To achieve some compatibility with the handling of ordinary SQL names,
the sequence functions convert their argument to lower case unless the string is double-quoted. Thus

nextval('foo’)
nextval('FOO’)
nextval("Foo™)

operates on sequence
operates on sequence
operates on sequence

foo
foo
Foo

144

Chapter 9. Functions and Operators

The sequence name can be schema-qualified if necessary:

nextval(’'myschema.foo’) operates on myschema.foo
nextval(""myschema".foo’) same as above
nextval('foo’) searches search path for foo

Of course, the text argument can be the result of an expression, not only a simple literal, which is
occasionally useful.

The available sequence functions are:

nextval

Advance the sequence object to its next value and return that value. This is done atomically: even
if multiple sessions executeextval concurrently, each will safely receive a distinct sequence
value.

currval

Return the value most recently obtaineddgxtval for this sequence in the current session.

(An error is reported ihextval has never been called for this sequence in this session.) Notice
that because this is returning a session-local value, it gives a predictable answer even if other
sessions are executingxtval meanwhile.

setval

Reset the sequence object's counter value. The two-parameter form sets the sequence’s
last_value field to the specified value and setsikscalled field totrue , meaning that

the nextnextval will advance the sequence before returning a value. In the three-parameter
form,is_called may be set eitharue orfalse . Ifit's settofalse ,the nexmextval will

return exactly the specified value, and sequence advancement commences with the following
nextval . For example,

SELECT setval('foo’, 42); Next nextval will return 43
SELECT setval('foo’, 42, true); Same as above
SELECT setval('foo’, 42, false); Next nextval will return 42

The result returned bgetval s just the value of its second argument.

Important: To avoid blocking of concurrent transactions that obtain numbers from the same se-
guence, a nextval operation is never rolled back; that is, once a value has been fetched it is con-
sidered used, even if the transaction that did the nextval later aborts. This means that aborted
transactions may leave unused “holes” in the sequence of assigned values. setval operations
are never rolled back, either.

If a sequence object has been created with default parame¢ergal calls on it will return suc-
cessive values beginning with 1. Other behaviors can be obtained by using special parameters in the
CREATE SEQUENCEommand; see its command reference page for more information.

9.12. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

145

Chapter 9. Functions and Operators

Tip: If your needs go beyond the capabilities of these conditional expressions you might want to
consider writing a stored procedure in a more expressive programming language.

9.12.1. CASE

The SQLCASEexpression is a generic conditional expression, similar to if/else statements in other
languages:

CASE WHENondition THEN result
[WHEN ..]
[ELSE result]

END

CASEclauses can be used wherever an expression is ealidlition is an expression that returns a
boolean result. If the result is true then the value of theSEexpression is theesult that follows

the condition. If the result is false any subsequ&htENlauses are searched in the same manner. If
noWHENondition s true then the value of the case expression isg¢balt in theELSEclause.

If the ELSE clause is omitted and no condition matches, the result is null.

An example:

SELECT * FROM test;

a
1
2
3
SELECT a,
CASE WHEN a=1 THEN ’one’
WHEN a=2 THEN ’'two’
ELSE ’other’
END
FROM test;
a | case
PR
1| one
2 | two
3 | other

The data types of all theesult expressions must be convertible to a single output typeS8eton
10.5for more detail.

The following “simple” CASEexpression is a specialized variant of the general form above:

CASE expression
WHENvalue THEN result
[WHEN ..]
[ELSE result]

END

146

Chapter 9. Functions and Operators

Theexpression is computed and compared to all thelue specifications in th&HEN:lauses
until one is found that is equal. If no match is found, theult in theELSE clause (or a null value)
is returned. This is similar to th@vitch statementin C.

The example above can be written using the singA&Esyntax:

SELECT a,
CASE a WHEN 1 THEN ’one’
WHEN 2 THEN ’two’

ELSE ‘other’
END
FROM test;
a | case
PR S
1| one
2 | two
3 | other

A CASEexpression does not evaluate any subexpressions that are not needed to determine the result.
For example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x> 0 THEN y/x > 1.5 ELSE false END;

9.12.2. COALESCE

COALESCEvalue [, ...])

The COALESCHunction returns the first of its arguments that is not null. Null is returned only if
all arguments are null. This is often useful to substitute a default value for null values when data is
retrieved for display, for example:

SELECT COALESCE(description, short_description, '(none)’) ...

Like a CASEexpressionCOALESCHwill not evaluate arguments that are not needed to determine the
result; that is, arguments to the right of the first non-null argument are not evaluated.

9.12.3. NULLIF

NULLIF(valuel , value2)

TheNULLIF function returns a null value if and onlyvluel andvalue2 are equal. Otherwise it
returnsvaluel . This can be used to perform the inverse operation o€CtbeLESCExample given
above:

SELECT NULLIF(value, '(none)) ...

147

Chapter 9. Functions and Operators

9.13. Miscellaneous Functions

Table 9-35shows several functions that extract session and system information.

Table 9-35. Session Information Functions

Name Return Type Description

current_database() name name of current database

current_schema() name name of current schema

current_schemas(boolean) name(] names of schemas in search path
optionally including implicit
schemas

current_user name user name of current execution
context

session_user name session user name

user name equivalent tccurrent_user

version() text PostgreSQL version informatign

The session_user is the user that initiated a database connection; it is fixed for the duration of
that connection. Theurrent_user is the user identifier that is applicable for permission checking.
Normally, it is equal to the session user, but it changes during the execution of functions with the
attribute SECURITY DEFINER In Unix parlance, the session user is the “real user” and the current
user is the “effective user”.

Note: current_user , session_user , and user have special syntactic status in SQL: they must
be called without trailing parentheses.

current_schema returns the name of the schema that is at the front of the search path (or a null
value if the search path is empty). This is the schema that will be used for any tables or other named
objects that are created without specifying a target scheuon@nt_schemas(boolean) returns

an array of the names of all schemas presently in the search path. The Boolean option determines
whether or not implicitly included system schemas suchgasatalog are included in the search

path returned.

Note: The search path may be altered at run time. The command is:

SET search_path TO schema [, schema, ..]

version() returns a string describing the PostgreSQL server’s version.

Table 9-36shows the functions available to query and alter run-time configuration parameters.

Table 9-36. Configuration Settings Functions

Name Return Type Description

148

Chapter 9. Functions and Operators

Name Return Type Description

text current value of setting
current_setting ('setting_name|)
set_config(setting_name text set parameter and return new
new_value , is_local) value
The functioncurrent_setting yields the current value of the settisgtting_name . It corre-

sponds to the SQL commaisHOWAN example:

SELECT current_setting('datestyle’);

current_setting

set_config sets the parameteetting_name tonew_value . If is_local istrue ,the new
value will only apply to the current transaction. If you want the new value to apply for the current
session, ustalse instead. The function corresponds to the SQL comn&# An example:

SELECT set_config('log_statement_stats’, 'off’, false);

set_config

Table 9-37lists functions that allow the user to query object access privileges programmatically. See
Section 5.7for more information about privileges.

Table 9-37. Access Privilege Inquiry Functions

Name Return Type Description

has_table_privilege (user , |poolean does user have privilege for table
table , privilege)

has_table_privilege (table , [poolean does current user have privilege
privilege) for table

has_database_privilege (user jpoolean does user have privilege for
database , privilege) database

has_database_privilege (databhseelean does current user have privilege
privilege) for database

has_function_privilege (user poolean does user have privilege for
function , privilege) function

has_function_privilege (functibolean does current user have privilege
privilege) for function

has_language_privilege (user poolean does user have privilege for
language , privilege) language

149

Chapter 9. Functions and Operators

Name Return Type Description

has_language_privilege (langufagelean does current user have privilege
privilege) for language

has_schema_privilege ~ (user , [ooolean does user have privilege for

schema, privilege) schema

has_schema_privilege (' schemalpoolean does current user have privilege
privilege) for schema

has_table_privilege checks whether a user can access a table in a particular way. The user can

be specified by name or by I user.usesysid), or if the argument is omittecurrent_user

is assumed. The table can be specified by name or by OID. (Thus, there are actually six variants of
has_table_privilege , which can be distinguished by the number and types of their arguments.)
When specifying by name, the name can be schema-qualified if necessary. The desired access priv-
ilege type is specified by a text string, which must evaluate to one of the VAEIEFCT, INSERT,

UPDATE DELETE RULE REFERENCESor TRIGGER (Case of the string is not significant, however.)

An example is:

SELECT has_table_privilege('myschema.mytable’, ’select’);

has_database_privilege checks whether a user can access a database in a particular way. The
possibilities for its arguments are analogoubds table_privilege . The desired access privilege
type must evaluate tOREATE TEMPORARYor TEMP(which is equivalent t@EMPORARY

has_function_privilege checks whether a user can access a function in a particular way. The
possibilities for its arguments are analogoubds table_privilege . When specifying a function

by a text string rather than by OID, the allowed input is the same as foegbeocedure data type.

The desired access privilege type must currently evalusgEXECUTE

has_language_privilege checks whether a user can access a procedural language in a particular
way. The possibilities for its arguments are analogots$otable_privilege . The desired access
privilege type must currently evaluate WSAGE

has_schema_privilege checks whether a user can access a schema in a particular way. The pos-
sibilities for its arguments are analogoushtss_table_privilege . The desired access privilege
type must evaluate tOREATEOr USAGE

To evaluate whether a user holds a grant option on the privilege, apperiti GRANT OPTIOKD
the privilege key word; for example&/PDATE WITH GRANT OPTION’

Table 9-38shows functions that determine whether a certain objedisible in the current schema

search path. A table is said to be visible if its containing schema is in the search path and no table
of the same name appears earlier in the search path. This is equivalent to the statement that the table
can be referenced by name without explicit schema qualification. For example, to list the names of all
visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);

Table 9-38. Schema Visibility Inquiry Functions

Name Return Type Description

150

Chapter 9. Functions and Operators

Name Return Type Description

pg_table_is_visible (table_oidjpoglean is table visible in search path

pg_type_is_visible (type_oid [poolean is type (or domain) visible in
search path

pg_function_is_visible (functipootédn) is function visible in search path

pg_operator_is_visible (operabmoleian) is operator visible in search path

pg_opclass_is_visible (opclas®auitkan) is operator class visible in search
path

pg_conversion_is_visible (conveottam oid) is conversion visible in search
path

pg_table_is_visible performs the check for tables (or views, or any other kinggfclass

entry). pg_type_is_visible , pg_function_is_visible , pg_operator_is_visible ,

pg_opclass_is_visible , andpg_conversion_is_visible perform the same sort of visibility

check for types (and domains), functions, operators, operator classes and conversions, respectively.
For functions and operators, an object in the search path is visible if there is no object of the same
nameand argument data type(ggrlier in the path. For operator classes, both nhame and associated
index access method are considered.

All these functions require object OIDs to identify the object to be checked. If you want to test an
object by name, it is convenient to use the OID alias typegclass , regtype , regprocedure
or regoperator), for example

SELECT pg_type_is_visible(myschema.widget’::regtype);

Note that it would not make much sense to test an unqualified name in this way --- if the name can be
recognized at all, it must be visible.

Table 9-39lists functions that extract information from the system catalpgsget viewdef
pg_get_ruledef , pg_get_indexdef , pg_get_triggerdef , andpg_get_constraintdef re-
spectively reconstruct the creating command for a view, rule, index, trigger, or constraint. (Note that
this is a decompiled reconstruction, not the original text of the command.) Most of these come in
two variants, one of which can optionally “pretty-print” the result. The pretty-printed format is more
readable, but the default format is more likely to be interpreted the same way by future versions of
PostgreSQL; avoid using pretty-printed output for dump purposes. Pdaising for the pretty-print
parameter yields the same result as the variant that does not have the parametey afeallexpr
decompiles the internal form of an individual expression, such as the default value for a column. It
may be useful when examining the contents of system catalggget userbyid extracts a user’s
name given a user ID number.

Table 9-39. System Catalog Information Functions

Name Return Type Description

pg_get viewdef (view_name) ftext getCREATE VIEWcommand for
view (deprecatell

pg_get_viewdef (view_name , ftext getCREATE VIEWcommand for

pretty_bool) \view (deprecatedl

151

Chapter 9. Functions and Operators

Name Return Type Description

pg_get viewdef (view_oid) ftext getCREATE VIEWcommand for
view

pg_get viewdef (view_oid , ftext getCREATE VIEWcommand for

pretty_bool) view

pg_get_ruledef (rule_oid) fext getCREATE RULEommand for
rule

pg_get_ruledef (rule_oid , fext getCREATE RULEommand for

pretty bool) rule

pg_get_indexdef (index_oid) ftext getCREATE INDExcommand
for index

pg_get_indexdef (index_oid , ftext getCREATE INDExcommand

column_no , pretty bool) for index, or definition of just

one index column when
column_no is not zero
pg_get_triggerdef (trigger_ofdxt) getCREATE [CONSTRAINT]
TRIGGERcommand for trigger

pg_get_constraintdef (constraifexbid) get definition of a constraint
pg_get_constraintdef (constraifexbid , get definition of a constraint
pretty bool)

pg_get_expr (expr_text text decompile internal form of an
relation_oid) expression, assuming that any|

\Vars in it refer to the relation
indicated by the second

parameter
pg_get _expr (expr_text text decompile internal form of an
relation_oid , expression, assuming that any|
pretty_bool) \Vars in it refer to the relation
indicated by the second
parameter
pg_get_userbyid (userid) name get user name with given 1D

The function shown ifTable 9-40extract comments previously stored with tt@MMENZommand.
A null value is returned if no comment could be found matching the specified parameters.

Table 9-40. Comment Information Functions

Name Return Type Description

obj_description (object_oid jext get comment for a database

catalog_name) object

obj_description (object_oid Jtext get comment for a database
object fleprecatejl

col_description (table_oid , ftext get comment for a table column

column_number)

The two-parameter form ofobj_description returns the comment for a database
object specified by its OID and the name of the containing system catalog. For example,
obj_description(123456,'pg_class’) would retrieve the comment for a table with OID

152

Chapter 9. Functions and Operators

123456. The one-parameter form afj_description requires only the object OID. It is how
deprecated since there is no guarantee that OIDs are unique across different system catalogs;
therefore, the wrong comment could be returned.

col_description returns the comment for a table column, which is specified by the OID of its
table and its column numbetbj_description cannot be used for table columns since columns do
not have OIDs of their own.

9.14. Array Functions and Operators

Table 9-41shows the operators available toray types.

Table 9-41.array Operators

Operator Description Example Result
= equal IARRAY[1.1,2.1,3.1]::int[] t
= ARRAY[1,2,3]
<> not equal ARRAY[1,2,3] <>
IARRAY([1,2,4]
< less than ARRAY[1,2,3] < t
IARRAY([1,2,4]
> greater than IARRAY[1,4,3] > t
IARRAY[1,2,4]
<= less than or equal ARRAY[1,2,3] <= t
IARRAYI[1,2,3]
>= greater than or equal |ARRAY[1,4,3] >= t
IARRAYI[1,4,3]
Il array-to-array IARRAY[1,2,3] || {1,2,3,4,5,6}
concatenation IARRAY[4,5,6]
I array-to-array IARRAY[1,2,3] || {{1,2,3},{4,5,6},{7,8,9}}
concatenation IARRAY([4,5,6],[7,8,9]]
Il element-to-array 3 || ARRAY[4,5,6] {3,4,5,6}
concatenation
Il array-to-element ARRAY[4,5,6] || 7 {4,5,6,7}
concatenation

SeeSection 8.1Gor more details about array operator behavior.

Table 9-42shows the functions available for use with array types. S&aion 8.1Gor more discus-
sion and examples for the use of these functions.

Table 9-42.array Functions

Function

Return Type

Description

Example

Result

array_cat
(anyarray ,
anyarray)

anyarray

concatenate two
arrays, returning
NULL for NULL
inputs

IARRAY[4,5])

array_cat(ARRAY[1/2.3,3,4,5}

153

Chapter 9. Functions and Operators

Function Return Type Description Example Result
array_append anyarray append an elemeptray_append(ARRAY[2,2},
(anyarray totheendofan [3)
anyelement) array, returning
NULL for NULL
inputs
array_prepend anyarray append an elemenirray_prepend(1, (1,2,3}
(anyelement to the beginning ofARRAY([2,3])
anyarray) an array, returning
NULL for NULL
inputs
array_dims text returns a text array_dims(array[[1,R132][1:3]
(anyarray) representation of [4,5,6]])
array dimension
lower and upper
bounds, generating
an ERROR for
NULL inputs
array_lower integer returns lower array_lower(array_pfepend(0,
(anyarray bound of the IARRAY[1,2,3]),
integer) requested array [1)
dimension,
returningNULL for
NULL inputs
array_upper integer returns upper array_upper(ARRAY41,2,3,4],
(anyarray bound of the 1)
integer) requested array
dimension,
returningNULL for
NULL inputs
array_to_string text concatenates arrggrray_to_string(arrafgt/~2~"~3
(anyarray , text) elementsusing 2, 3], ~*~)
provided delimiter,
returningNULL for
NULL inputs
string_to_array text(] splits string into [string_to_array({xx,yy,zz}
(text , text) array elements [xx~"~yy~"~zz’,
using provided [~"~)
delimiter, returning
NULL for NULL
inputs

9.15. Aggregate Functions

Aggregate functionsompute a single result value from a set of input valid@hle 9-43shows the
built-in aggregate functions. The special syntax considerations for aggregate functions are explained
in Section 4.2.7ConsultSection 2.7or additional introductory information.

154

Chapter 9. Functions and Operators

Table 9-43. Aggregate Functions

Function Argument Type Return Type Description

avg(expression) smallint ,integer , |numeric for any integethe average (arithmetic
bigint , real ,double type argumentjouble |mean) of all input values
precision , numeric , |precision for a
or interval floating-point argument,
otherwise the same as
the argument data type

count(*) bigint number of input values

count(expression) jany bigint number of input values
for which the value of
expression is not

null
max(expression) any numeric, string, or same as argument typemaximum value of
date/time type expression across all
input values
min(expression) any numeric, string, or [same as argument typeminimum value of
date/time type expression across all
input values
smallint ,integer , |double precision sample standard
stddev(expression) |pigint ,real ,double [for floating-point deviation of the input
precision , or arguments, otherwise values
numeric numeric
sum(expression) smallint ,integer , |bigint for smallint sum ofexpression

bigint ,real ,double |orinteger arguments,across all input values
precision , numeric , |numeric for bigint
or interval argumentsdouble
precision for

floating-point argument
otherwise the same as
the argument data type

»

smallint ,integer , |double precision sample variance of the

variance (expression pigint ,real ,double ffor floating-point input values (square of
precision , or arguments, otherwise the sample standard
numeric numeric deviation)

It should be noted that except fasunt , these functions return a null value when no rows are selected.
In particular,sum of no rows returns null, not zero as one might expect. The functalesce may
be used to substitute zero for null when necessary.

Note: Users accustomed to working with other SQL database management systems may be
surprised by the performance characteristics of certain aggregate functions in PostgreSQL when
the aggregate is applied to the entire table (in other words, no WHEREclause is specified). In
particular, a query like

SELECT min(col) FROM sometable;

will be executed by PostgreSQL using a sequential scan of the entire table. Other database sys-
tems may optimize queries of this form to use an index on the column, if one is available. Similarly,
the aggregate functions max() and count() always require a sequential scan if applied to the en-
tire table in PostgreSQL.

155

Chapter 9. Functions and Operators

PostgreSQL cannot easily implement this optimization because it also allows for user-defined ag-
gregate queries. Since min() , max() , and count() are defined using a generic API for aggregate
functions, there is no provision for special-casing the execution of these functions under certain
circumstances.

Fortunately, there is a simple workaround for min() and max() . The query shown below is equiv-
alent to the query above, except that it can take advantage of a B-tree index if there is one present
on the column in question.

SELECT col FROM sometable ORDER BY col ASC LIMIT 1;

A similar query (obtained by substituting DESCfor ASCin the query above) can be used in the
place of max()).

Unfortunately, there is no similarly trivial query that can be used to improve the performance of
count() when applied to the entire table.

9.16. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the
expression forms documented in this section return Boolean (true/false) results.

9.16.1. EXISTS

EXISTS (subquery)

The argument 0EXISTS is an arbitrarySELECTstatement, osubquery The subquery is evaluated
to determine whether it returns any rows. If it returns at least one row, the reEXt9fS is “true”;
if the subquery returns no rows, the resulexfiSTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during
any one evaluation of the subquery.

The subquery will generally only be executed far enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has any side effects (such
as calling sequence functions); whether the side effects occur or not may be difficult to predict.

Since the result depends only on whether any rows are returned, and not on the contents of those
rows, the output list of the subquery is normally uninteresting. A common coding convention is to
write all EXISTS tests in the formrEXISTS(SELECT 1 WHERE ...) . There are exceptions to this

rule however, such as subqueries thatIN§&ERSECT.

This simple example is like an inner join @nl2 , but it produces at most one output row for each
tabl row, even if there are multiple matchimap2 rows:

SELECT coll FROM tabl
WHERE EXISTS(SELECT 1 FROM tab2 WHERE col2 = tabl.col2);

9.16.2. IN

expression IN (subquery)

156

Chapter 9. Functions and Operators

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The nésust‘tfue” if

any equal subquery row is found. The result is “false” if no equal row is found (including the special
case where the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at
least one right-hand row yields null, the result of tNeconstruct will be null, not false. This is in
accordance with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.
(expression [, expression) IN(subquery)

The right-hand side of this form dN is a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result. The resit isf“true” if any equal
subquery row is found. The result is “false” if no equal row is found (including the special case where
the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the row results are either unequal or null, with at least one null,
then the result ofN is null.

9.16.3. NOT IN
expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-
hand expression is evaluated and compared to each row of the subquery result. The K3TltINf

is “true” if only unequal subquery rows are found (including the special case where the subquery
returns no rows). The result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand row yields null, the result of the®©T IN construct will be null, not true. This is in
accordance with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.
(‘expression [, expression ...]) NOT IN (subquery)

The right-hand side of this form ofOT INis a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result. The resNDDfIN is “true” if only

unequal subqguery rows are found (including the special case where the subquery returns no rows).
The result is “false” if any equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the row results are either unequal or null, with at least one null,
then the result oNOT INis null.

157

Chapter 9. Functions and Operators

9.16.4. ANYSOME

expression operator ANY (subquery)
expression operator SOME 6ubquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using ttepghador

which must yield a Boolean result. The resuliofYis “true” if any true result is obtained. The result

is “false” if no true result is found (including the special case where the subquery returns no rows).

SOMEHS a synonym foANY. IN is equivalent to= ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of theANY construct will be null, not false. This is in accordance with SQL's normal rules
for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

(expression [, expression ..]) operator ~ ANY (subquery)
(expression [, expression)| operator SOME 6ubquery)

The right-hand side of this form iNYis a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result, using the gpezator . Presently,

only = and <> operators are allowed in row-wigeNY constructs. The result @NYis “true” if any

equal or unequal row is found, respectively. The result is “false” if no such row is found (including
the special case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If there is at least one null row result, then the resaitxafannot be

false; it will be true or null.

9.16.5. ALL
expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using ttepgiator

which must yield a Boolean result. The resultAfL is “true” if all rows yield true (including the
special case where the subquery returns no rows). The result is “false” if any false result is found.

NOT INis equivalent to<> ALL.

Note that if there are no failures but at least one right-hand row yields null for the operator’s result,
the result of theALL construct will be null, not true. This is in accordance with SQL's normal rules
for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

(expression [, expression) operator ALL (subquery)

The right-hand side of this form ofLL is a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated
and compared row-wise to each row of the subquery result, using the gpezator . Presently,

only = and <> operators are allowed in row-wiseLL queries. The result oALL is “true” if all

158

Chapter 9. Functions and Operators

subquery rows are equal or unequal, respectively (including the special case where the subquery
returns no rows). The result is “false” if any row is found to be unequal or equal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If there is at least one null row result, then the resillt afannot be

true; it will be false or null.

9.16.6. Row-wise Comparison
(‘expression [, expression) operator ('subquery)

The left-hand side is a list of scalar expressions. The right-hand side is a parenthesized subquery,
which must return exactly as many columns as there are expressions on the left-hand side. Further-
more, the subquery cannot return more than one row. (If it returns zero rows, the result is taken to
be null.) The left-hand side is evaluated and compared row-wise to the single subquery result row.
Presently, only= and <> operators are allowed in row-wise comparisons. The result is “true” if the
two rows are equal or unequal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of the row
comparison is unknown (null).

9.17. Row and Array Comparisons

This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are PostgreSQL extensions; the rest
are SQL-compliant. All of the expression forms documented in this section return Boolean (true/false)

results.
9.17.1. IN
expression IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression’s result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = valuel
OR
expression = value2
OR

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of ittheconstruct will be null, not false. This is in
accordance with SQL's normal rules for Boolean combinations of null values.

159

Chapter 9. Functions and Operators

9.17.2. NOT IN
expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression’s result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> valuel
AND
expression <> value2
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of’@T IN construct will be null, not true as one
might naively expect. This is in accordance with SQL's normal rules for Boolean combinations of null
values.

Tip: x NOT IN y is equivalentto NOT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with NOT IN than when working with IN. It's best to
express your condition positively if possible.

9.17.3. ANYSOMHarray)

expression operator ANY (array expression)
expression operator SOME f@rray expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using thepgiiagor , which

must yield a Boolean result. The resultaflYis “true” if any true result is obtained. The result is
“false” if no true result is found (including the special case where the array has zero elements).

SOMES a synonym foANY.

9.17.4. ALL (array)
expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using trepgirstor , which

must yield a Boolean result. The resultAfL is “true” if all comparisons yield true (including the
special case where the array has zero elements). The result is “false” if any false result is found.

9.17.5. Row-wise Comparison

(‘expression [, expression) operator (expression [[expression)

160

Chapter 9. Functions and Operators

Each side is a list of scalar expressions; the two lists must be of the same length. Each side is eval-
uated and they are compared row-wise. Presently, o@igd <> operators are allowed in row-wise
comparisons. The result is “true” if the two rows are equal or unequal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions.
Two rows are considered equal if all their corresponding members are non-null and equal; the rows
are unequal if any corresponding members are non-null and unequal; otherwise the result of the row
comparison is unknown (null).

161

Chapter 10. Type Conversion

SQL statements can, intentionally or not, require mixing of different data types in the same expression.
PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user will not need to understand the details of the type conversion mechanism. How-
ever, the implicit conversions done by PostgreSQL can affect the results of a query. When necessary,
these results can be tailored by a user or programmer egjplirit type conversion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the
relevant sections i€hapter 8andChapter Yor more information on specific data types and allowed
functions and operators.

10.1. Overview

SQL is a strongly typed language. That is, every data item has an associated data type which deter-
mines its behavior and allowed usage. PostgreSQL has an extensible type system that is much more
general and flexible than other SQL implementations. Hence, most type conversion behavior in Post-
greSQL should be governed by general rules rather thasdblyocheuristics, to allow mixed-type
expressions to be meaningful even with user-defined types.

The PostgreSQL scanner/parser decodes lexical elements into only five fundamental categories: inte-
gers, floating-point numbers, strings, names, and key words. Constants of most non-numeric types are
first classified as strings. The SQL language definition allows specifying type names with strings, and

this mechanism can be used in PostgreSQL to start the parser down the correct path. For example, the

query
SELECT text 'Origin’ AS "label", point '(0,0)’ AS "value";

label | value
________ R

Origin | (0,0)
(1 row)

has two literal constants, of typext andpoint . If a type is not specified for a string literal, then

the placeholder typenknown is assigned initially, to be resolved in later stages as described below.
There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well
as binary (two-argument) operators.

Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Function calls can
have one or more arguments. Since PostgreSQL permits function overloading, the function name
alone does not uniquely identify the function to be called; the parser must select the right function
based on the data types of the supplied arguments.

Value Storage

SQL INSERT andUPDATEstatements place the results of expressions into a table. The expres-
sions in the statement must be matched up with, and perhaps converted to, the types of the target
columns.

162

Chapter 10. Type Conversion

UNION CASE andARRAYconstructs

Since all query results from a unioniz&ELECT statement must appear in a single set of
columns, the types of the results of e&#L ECTclause must be matched up and converted to a
uniform set. Similarly, the branch expressions o€ASE construct must be converted to a
common type so that theASEexpression as a whole has a known output type. The same holds
for ARRAYconstructs.

The system catalogs store information about which conversions, calgg between data types are
valid, and how to perform those conversions. Additional casts can be added by the user with the
CREATE CASTommand. (This is usually done in conjunction with defining new data types. The set
of casts between the built-in types has been carefully crafted and is best not altered.)

An additional heuristic is provided in the parser to allow better guesses at proper behavior for SQL
standard types. There are several bdgjpe categoriesdefined: boolean , numeric , string

bitstring , datetime , timespan , geometric , network , and user-defined. Each category, with

the exception of user-defined, has one or npegerred typesvhich are preferentially selected when
there is ambiguity. In the user-defined category, each type is its own preferred type. Ambiguous
expressions (those with multiple candidate parsing solutions) can therefore often be resolved when
there are multiple possible built-in types, but they will raise an error when there are multiple choices
for user-defined types.

All type conversion rules are designed with several principles in mind:

- Implicit conversions should never have surprising or unpredictable outcomes.

« User-defined types, of which the parser hasarpriori knowledge, should be “higher” in the type
hierarchy. In mixed-type expressions, native types shall always be converted to a user-defined type
(of course, only if conversion is necessary).

- User-defined types are not related. Currently, PostgreSQL does not have information available to
it on relationships between types, other than hardcoded heuristics for built-in types and implicit
relationships based on available functions and casts.

- There should be no extra overhead from the parser or executor if a query does not need implicit type
conversion. That is, if a query is well formulated and the types already match up, then the query
should proceed without spending extra time in the parser and without introducing unnecessary
implicit conversion calls into the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines a new function with the correct argument types, the parser should use this new function and
will no longer do the implicit conversion using the old function.

10.2. Operators

The specific operator to be used in an operator invocation is determined by following the procedure
below. Note that this procedure is indirectly affected by the precedence of the involved operators. See
Section 4.1.6or more information.

163

Chapter 10. Type Conversion
Operator Type Resolution

1. Select the operators to be considered fromgipeoperator ~ system catalog. If an unqualified
operator name was used (the usual case), the operators considered are those of the right name
and argument count that are visible in the current search pattSésgimn 5.8.R If a qualified
operator name was given, only operators in the specified schema are considered.

a. |If the search path finds multiple operators of identical argument types, only the one
appearing earliest in the path is considered. But operators of different argument types
are considered on an equal footing regardless of search path position.

2. Check for an operator accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of operators considered), use it.

a. If one argument of a binary operator invocation is of tintnown type, then assume it
is the same type as the other argument for this check. Other cases inuotkingvn
will never find a match at this step.

3. Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be con-
verted (using an implicit conversion) to mateiknown literals are assumed to be con-
vertible to anything for this purpose. If only one candidate remains, use it; else continue
to the next step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candi-
dates if none have any exact matches. If only one candidate remains, use it; else continue
to the next step.

c. Runthrough all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments arenknown, check the type categories accepted at those ar-
gument positions by the remaining candidates. At each position, selestritite
category if any candidate accepts that category. (This bias towards string is appropriate
since an unknown-type literal does look like a string.) Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Now discard candidates that
do not accept the selected type category. Furthermore, if any candidate accepts a pre-
ferred type at a given argument position, discard candidates that accept non-preferred
types for that argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate re-
mains, then fail.

Some examples follow.

Example 10-1. Exponentiation Operator Type Resolution

There is only one exponentiation operator defined in the catalog, and it takes arguments of type
double precision . The scanner assigns an initial typeraéger to both arguments of this query
expression:

SELECT 2 * 3 AS "exp";

164

Chapter 10. Type Conversion

(1 row)
So the parser does a type conversion on both operands and the query is equivalent to
SELECT CAST(2 AS double precision) » CAST(3 AS double precision) AS "exp";

Example 10-2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types as well as for working with complex exten-
sion types. Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:
SELECT text 'abc’ || 'def AS "text and unknown";

text and unknown

abcdef
(1 row)

In this case the parser looks to see if there is an operator takihgfor both arguments. Since there
is, it assumes that the second argument should be interpreted as aixtype

Here is a concatenation on unspecified types:
SELECT ’abc’ || 'def AS "unspecified";

unspecified

In this case there is no initial hint for which type to use, since no types are specified in the query.
So, the parser looks for all candidate operators and finds that there are candidates accepting both
string-category and bit-string-category inputs. Since string category is preferred when available, that
category is selected, and then the preferred type for striagss,, is used as the specific type to
resolve the unknown literals to.

Example 10-3. Absolute-Value and Factorial Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix op@raltaf which implement
absolute-value operations for various numeric data types. One of these entries is fiwatyge,

which is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when
faced with a non-numeric input:

SELECT @ '-4.5° AS "abs";
abs

4.5

(1 row)
Here the system has performed an implicit conversion ftexn to float8 before applying the
chosen operator. We can verify thiaat8 and not some other type was used:

SELECT @ '-4.5e500" AS "abs";

165

Chapter 10. Type Conversion

ERROR: "-4.5e500" is out of range for type double precision

On the other hand, the postfix operato(factorial) is defined only for integer data types, not for
float8 . So, if we try a similar case with, we get:

SELECT '20’ ! AS "factorial";

ERROR: operator is not unique: "unknown" !

HINT: Could not choose a best candidate operator. You may need to add explicit

type casts.
This happens because the system can’t decide which of the several possjigeators should be
preferred. We can help it out with an explicit cast:

SELECT CAST('20' AS int8) ! AS “factorial;

factorial

2432902008176640000
1 row)

10.3. Functions

The specific function to be used in a function invocation is determined according to the following
steps.

Function Type Resolution

1. Selectthe functions to be considered fromgheproc system catalog. If an unqualified function
name was used, the functions considered are those of the right name and argument count that are
visible in the current search path (sgection 5.8.3 If a qualified function name was given, only
functions in the specified schema are considered.

a. If the search path finds multiple functions of identical argument types, only the one
appearing earliest in the path is considered. But functions of different argument types
are considered on an equal footing regardless of search path position.

2. Check for a function accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of functions considered), use it. (Cases invahkngwn will never
find a match at this step.)

3. If no exact match is found, see whether the function call appears to be a trivial type conversion
request. This happens if the function call has just one argument and the function name is the same
as the (internal) name of some data type. Furthermore, the function argument must be either an
unknown-type literal or a type that is binary-compatible with the named data type. When these
conditions are met, the function argument is converted to the named data type without any actual
function call.

4. Look for the best match.
a. Discard candidate functions for which the input types do not match and cannot be con-
verted (using an implicit conversion) to matcinknown literals are assumed to be con-

vertible to anything for this purpose. If only one candidate remains, use it; else continue
to the next step.

166

Chapter 10. Type Conversion

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candi-
dates if none have any exact matches. If only one candidate remains, use it; else continue
to the next step.

c. Runthrough all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments arenknown, check the type categories accepted at those ar-
gument positions by the remaining candidates. At each position, selestritite
category if any candidate accepts that category. (This bias towards string is appropriate
since an unknown-type literal does look like a string.) Otherwise, if all the remaining
candidates accept the same type category, select that category; otherwise fail because
the correct choice cannot be deduced without more clues. Now discard candidates that
do not accept the selected type category. Furthermore, if any candidate accepts a pre-
ferred type at a given argument position, discard candidates that accept non-preferred
types for that argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate re-
mains, then fail.

Note that the “best match” rules are identical for operator and function type resolution. Some exam-
ples follow.

Example 10-4. Rounding Function Argument Type Resolution

There is only oneound function with two arguments. (The firstismeric , the second igiteger)

So the following query automatically converts the first argument of iyeger to numeric :
SELECT round(4, 4);

(1 row)
That query is actually transformed by the parser to
SELECT round(CAST (4 AS numeric), 4);

Since numeric constants with decimal points are initially assigned thentyperic , the following
guery will require no type conversion and may therefore be slightly more efficient:

SELECT round(4.0, 4);

Example 10-5. Substring Function Type Resolution

There are severaubstr functions, one of which takes type&sxt andinteger . If called with a
string constant of unspecified type, the system chooses the candidate function that accepts an argu-
ment of the preferred categosyring (namely of typeext).

SELECT substr('1234’, 3);

167

Chapter 10. Type Conversion

34
(2 row)

If the string is declared to be of typarchar , as might be the case if it comes from a table, then the
parser will try to convert it to becontext :

SELECT substr(varchar '1234’, 3);

substr

34
(1 row)

This is transformed by the parser to effectively become
SELECT substr(CAST (varchar '1234" AS text), 3);

Note: The parser learns from the pg_cast catalog that text and varchar are binary-compatible,
meaning that one can be passed to a function that accepts the other without doing any physical
conversion. Therefore, no explicit type conversion call is really inserted in this case.

And, if the function is called with an argument of tyjpeeger , the parser will try to convert that to
text :

SELECT substr(1234, 3);

(1 row)
This actually executes as

SELECT substr(CAST (1234 AS text), 3);
This automatic transformation can succeed because there is an implicitly invocable cast from
integer totext .

10.4. Value Storage

Values to be inserted into a table are converted to the destination column’s data type according to the
following steps.

Value Storage Type Conversion

1. Check for an exact match with the target.

2. Otherwise, try to convert the expression to the target type. This will succeed if there is a registered
cast between the two types. If the expression is an unknown-type literal, the contents of the literal
string will be fed to the input conversion routine for the target type.

3. If the target is a fixed-length type (e.ghar or varchar declared with a length) then try to
find a sizing function for the target type. A sizing function is a function of the same name as the
type, taking two arguments of which the first is that type and the second is ofitgger , and
returning the same type. If one is found, it is applied, passing the column’s declared length as the
second parameter.

168

Chapter 10. Type Conversion
Example 10-6.character ~ Storage Type Conversion

For a target column declared@saracter(20) the following statement ensures that the stored value
is sized correctly:

CREATE TABLE wv (v character(20));
INSERT INTO vv SELECT ’abc’ || ’def;
SELECT v, length(v) FROM wv;

\Y | length

abcdef | 20
(1 row)

What has really happened here is that the two unknown literals are resolvext toby default,
allowing the|| operator to be resolved &t concatenation. Then thext result of the operator is
converted tdopchar (“blank-padded char”, the internal name of taracter data type) to match

the target column type. (Since the typest andbpchar are binary-compatible, this conversion
does not insert any real function call.) Finally, the sizing functipohar(bpchar, integer) is

found in the system catalog and applied to the operator’s result and the stored column length. This
type-specific function performs the required length check and addition of padding spaces.

10.5. UNION CASE and ARRAYConstructs

SQL UNION constructs must match up possibly dissimilar types to become a single result set. The
resolution algorithm is applied separately to each output column of a union queriNTEBRSECT

and EXCEPTconstructs resolve dissimilar types in the same wayrON The CASEand ARRAY
constructs use the identical algorithm to match up their component expressions and select a result
data type.

UNION CASE and ARRAYType Resolution

1. [Ifallinputs are of typainknown , resolve as typext (the preferred type of the string category).
Otherwise, ignore thanknown inputs while choosing the result type.

2. Ifthe non-unknown inputs are not all of the same type category, fail.

3. Choose the first non-unknown input type which is a preferred type in that category or allows all
the non-unknown inputs to be implicitly converted to it.

4. Convert all inputs to the selected type.

Some examples follow.

Example 10-7. Type Resolution with Underspecified Types in a Union

SELECT text 'a’ AS "text" UNION SELECT 'b’;

(2 rows)
Here, the unknown-type literdd” will be resolved as typext .

169

Chapter 10. Type Conversion

Example 10-8. Type Resolution in a Simple Union

SELECT 1.2 AS "numeric" UNION SELECT 1;

numeric

1.2
(2 rows)
The literal1.2 is of typenumeric , and theinteger valuel can be cast implicitly tmumeric , so
that type is used.

Example 10-9. Type Resolution in a Transposed Union

SELECT 1 AS 'real” UNION SELECT CAST(2.2" AS REAL);

(2 rows)
Here, since typeeal cannot be implicitly cast tinteger , butinteger can be implicitly cast to
real , the union result type is resolved @al .

170

Chapter 11. Indexes

Indexes are a common way to enhance database performance. An index allows the database server to
find and retrieve specific rows much faster than it could do without an index. But indexes also add
overhead to the database system as a whole, so they should be used sensibly.

11.1. Introduction
Suppose we have a table similar to this:

CREATE TABLE testl (
id integer,
content varchar

)i
and the application requires a lot of queries of the form

SELECT content FROM testl WHERE id = constant

With no advance preparation, the system would have to scan the estire table, row by row, to

find all matching entries. If there are a lot of rowstéistl and only a few rows (perhaps only zero

or one) that would be returned by such a query, then this is clearly an inefficient method. But if the
system has been instructed to maintain an index ordtheolumn, then it can use a more efficient
method for locating matching rows. For instance, it might only have to walk a few levels deep into a
search tree.

A similar approach is used in most books of non-fiction: terms and concepts that are frequently looked
up by readers are collected in an alphabetic index at the end of the book. The interested reader can
scan the index relatively quickly and flip to the appropriate page(s), rather than having to read the
entire book to find the material of interest. Just as it is the task of the author to anticipate the items
that the readers are most likely to look up, it is the task of the database programmer to foresee which
indexes would be of advantage.

The following command would be used to create the index omdtheolumn, as discussed:
CREATE INDEX testl_id_index ON testl (id);

The nameestl_id_index can be chosen freely, but you should pick something that enables you
to remember later what the index was for.

To remove an index, use tHEROP INDEXcommand. Indexes can be added to and removed from
tables at any time.

Once the index is created, no further intervention is required: the system will update the index when
the table is modified, and it will use the index in queries when it thinks this would be more efficient
than a sequential table scan. But you may have to rurAti¥e YZEcommand regularly to update
statistics to allow the query planner to make educated decisionsCBagter 13for information

about how to find out whether an index is used and when and why the planner may ohtisese

an index.

Indexes can also benetiPDATEandDELETEcommands with search conditions. Indexes can more-
over be used in join queries. Thus, an index defined on a column that is part of a join condition can
significantly speed up queries with joins.

171

Chapter 11. Indexes

When an index is created, the system has to keep it synchronized with the table. This adds overhead to
data manipulation operations. Therefore indexes that are non-essential or do not get used at all should
be removed. Note that a query or data manipulation command can use at most one index per table.

11.2. Index Types

PostgreSQL provides several index types: B-tree, R-tree, GiST, and Hash. Each index type uses a dif-
ferent algorithm that is best suited to different types of queries. By defaullREATE INDEXcom-

mand will create a B-tree index, which fits the most common situations. B-trees can handle equality
and range queries on data that can be sorted into some ordering. In particular, the PostgreSQL query
planner will consider using a B-tree index whenever an indexed column is involved in a comparison
using one of these operators; <=, =, >=, >

The optimizer can also use a B-tree index for queries involving the pattern matching opeitéiors
ILIKE , ~, and~*, if the pattern is anchored to the beginning of the string, €of.LIKE *foo%’

or col ~ oo’ , but notcol LIKE '%bar . However, if your server does not use the C locale
you will need to create the index with a special operator classS8etion 11.6elow.

R-tree indexes are suited for queries on spatial data. To create an R-tree index, use a command of the
form

CREATE INDEXname ON table USING RTREE ¢olumn);

The PostgreSQL query planner will consider using an R-tree index whenever an indexed column is
involved in a comparison using one of these operators: &<, &>, >>, @ ~=, && (Refer toSection
9.9about the meaning of these operators.)

Hash indexes can only handle simple equality comparisons. The query planner will consider using
a hash index whenever an indexed column is involved in a comparison usingdperator. The
following command is used to create a hash index:

CREATE INDEXname ON table USING HASH ¢olumn);

Note: Testing has shown PostgreSQL’s hash indexes to perform no better than B-tree indexes,
and the index size and build time for hash indexes is much worse. For these reasons, hash index
use is presently discouraged.

The B-tree index method is an implementation of Lehman-Yao high-concurrency B-trees. The R-tree
index method implements standard R-trees using Guttman’s quadratic split algorithm. The hash index
method is an implementation of Litwin’s linear hashing. We mention the algorithms used solely to
indicate that all of these index methods are fully dynamic and do not have to be optimized periodically
(as is the case with, for example, static hash methods).

11.3. Multicolumn Indexes
An index can be defined on more than one column. For example, if you have a table of this form:
CREATE TABLE test2 (

major int,
minor int,

172

Chapter 11. Indexes

name varchar

);
(say, you keep youdev directory in a database...) and you frequently make queries like

SELECT name FROM test2 WHERE major =constant AND minor = constant

then it may be appropriate to define an index on the columajsr andminor together, e.g.,

CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree and GiST implementations support multicolumn indexes. Up to 32
columns may be specified. (This limit can be altered when building PostgreSQL; see the file
pg_config_manual.h)

The query planner can use a multicolumn index for queries that involve the leftmost column in the
index definition plus any number of columns listed to the right of it, without a gap. For example, an
indexon(a, b, ¢) can be usedin queries involving allafb, andc, or in queries involving both

andb, or in queries involving only, but not in other combinations. (In a query involviagndc the

planner could choose to use the indexdophile treatingc like an ordinary unindexed column.) Of
course, each column must be used with operators appropriate to the index type; clauses that involve
other operators will not be considered.

Multicolumn indexes can only be used if the clauses involving the indexed columns are joined with
AND For instance,

SELECT name FROM test2 WHERE major =constant OR minor = constant ;
cannot make use of the indest2_mm_idx defined above to look up both columns. (It can be used
to look up only themajor column, however.)

Multicolumn indexes should be used sparingly. Most of the time, an index on a single column is
sufficient and saves space and time. Indexes with more than three columns are unlikely to be helpful
unless the usage of the table is extremely stylized.

11.4. Unique Indexes

Indexes may also be used to enforce uniqueness of a column’s value, or the uniqueness of the com-
bined values of more than one column.

CREATE UNIQUE INDEXhame ON table (column [, ..]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values will not be allowed.
Null values are not considered equal. A multicolumn unique index will only reject cases where all of
the indexed columns are equal in two rows.

PostgreSQL automatically creates a unique index when a unique constraint or a primary key is de-
fined for a table. The index covers the columns that make up the primary key or unique columns (a
multicolumn index, if appropriate), and is the mechanism that enforces the constraint.

Note: The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD
CONSTRAINT The use of indexes to enforce unique constraints could be considered an
implementation detail that should not be accessed directly. One should, however, be aware that

173

Chapter 11. Indexes

there’s no need to manually create indexes on unigue columns; doing so would just duplicate the
automatically-created index.

11.5. Indexes on Expressions

An index column need not be just a column of the underlying table, but can be a function or scalar
expression computed from one or more columns of the table. This feature is useful to obtain fast
access to tables based on the results of computations.

For example, a common way to do case-insensitive comparisons is to usedhefunction:

SELECT * FROM testl WHERE lower(coll) = ’value’;

This query can use an index, if one has been defined on the resultloftitecoll) operation:

CREATE INDEX testl_lower_coll_idx ON testl (lower(coll));

If we were to declare this inde3NIQUE, it would prevent creation of rows whosell values differ
only in case, as well as rows whosall values are actually identical. Thus, indexes on expressions
can be used to enforce constraints that are not definable as simple unique constraints.

As another example, if one often does queries like this:
SELECT * FROM people WHERE (first_name || ' ' || last_name) = 'John Smith’;
then it might be worth creating an index like this:

CREATE INDEX people_names ON people ((first_name || * ' || last_name));

The syntax of theCREATE INDEXcommand normally requires writing parentheses around index
expressions, as shown in the second example. The parentheses may be omitted when the expression
is just a function call, as in the first example.

Index expressions are relatively expensive to maintain, since the derived expression(s) must be com-
puted for each row upon insertion or whenever it is updated. Therefore they should be used only when
gueries that can use the index are very frequent.

11.6. Operator Classes
An index definition may specify aoperator clasgor each column of an index.

CREATE INDEXname ON table (column opclass [, ...]);

The operator class identifies the operators to be used by the index for that column. For example, a B-
tree index on the typmt4 would use thent4_ops class; this operator class includes comparison
functions for values of typ@t4 . In practice the default operator class for the column’s data type is
usually sufficient. The main point of having operator classes is that for some data types, there could
be more than one meaningful index behavior. For example, we might want to sort a complex-number
data type either by absolute value or by real part. We could do this by defining two operator classes
for the data type and then selecting the proper class when making an index.

174

Chapter 11. Indexes

There are also some built-in operator classes besides the default ones:

« The operator classesxt_pattern_ops , varchar_pattern_ops , bpchar_pattern_ops ,
andname_pattern_ops support B-tree indexes on the typest , varchar , char , andname,
respectively. The difference from the ordinary operator classes is that the values are compared
strictly character by character rather than according to the locale-specific collation rules. This
makes these operator classes suitable for use by queries involving pattern matching expressions
(LIKE or POSIX regular expressions) if the server does not use the standard “C” locale. As an
example, you might indexaarchar column like this:

CREATE INDEX test_index ON test_table (col varchar_pattern_ops);

If you do use the C locale, you may instead create an index with the default operator class, and
it will still be useful for pattern-matching queries. Also note that you should create an index with
the default operator class if you want queries involving ordinary comparisons to use an index. Such
queries cannot use tlxex _pattern_ops operator classes. It is allowed to create multiple indexes

on the same column with different operator classes.

The following query shows all defined operator classes:

SELECT am.amname AS index_method,
opc.opcname AS opclass_name
FROM pg_am am, pg_opclass opc
WHERE opc.opcamid = am.oid
ORDER BY index_method, opclass_name;

It can be extended to show all the operators included in each class:

SELECT am.amname AS index_method,
opc.opcname AS opclass_nhame,
opr.oprname AS opclass_operator
FROM pg_am am, pg_opclass opc, pg_amop amop, pg_operator opr
WHERE opc.opcamid = am.oid AND
amop.amopclaid = opc.oid AND
amop.amopopr = opr.oid
ORDER BY index_method, opclass_name, opclass_operator;

11.7. Partial Indexes

A partial indexis an index built over a subset of a table; the subset is defined by a conditional expres-
sion (called thepredicateof the partial index). The index contains entries for only those table rows
that satisfy the predicate.

A major motivation for partial indexes is to avoid indexing common values. Since a query searching
for a common value (one that accounts for more than a few percent of all the table rows) will not use
the index anyway, there is no point in keeping those rows in the index at all. This reduces the size of
the index, which will speed up queries that do use the index. It will also speed up many table update
operations because the index does not need to be updated in allEEem®mple 11-hows a possible
application of this idea.

175

Chapter 11. Indexes

Example 11-1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP
address range of your organization but some are from elsewhere (say, employees on dial-up connec-
tions). If your searches by IP are primarily for outside accesses, you probably do not need to index
the IP range that corresponds to your organization’s subnet.

Assume a table like this:

CREATE TABLE access_log (
url varchar,
client_ip inet,

);
To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet '192.168.100.0' AND client_ip < inet '192.168.100.255%;

A typical query that can use this index would be:

SELECT * FROM access_log WHERE url = ’'/findex.html’ AND client_ip = inet '212.78.10.32’;

A query that cannot use this index is:
SELECT * FROM access_log WHERE client_ip = inet '192.168.100.23’;

Observe that this kind of partial index requires that the common values be predetermined. If the
distribution of values is inherent (due to the nature of the application) and static (not changing over
time), this is not difficult, but if the common values are merely due to the coincidental data load this
can require a lot of maintenance work.

Another possibility is to exclude values from the index that the typical query workload is not interested

in; this is shown irExample 11-2This results in the same advantages as listed above, but it prevents

the “uninteresting” values from being accessed via that index at all, even if an index scan might be
profitable in that case. Obviously, setting up partial indexes for this kind of scenario will require a lot

of care and experimentation.

Example 11-2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a
small fraction of the total table and yet those are the most-accessed rows, you can improve perfor-
mance by creating an index on just the unbilled rows. The command to create the index would look
like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
WHERE billed is not true;

A possible query to use this index would be

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not insedee nr at all, e.g.,
SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on #imeount column would be, since the system has to scan
the entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the
unbilled orders could be a win.

Note that this query cannot use this index:

SELECT * FROM orders WHERE order_nr = 3501;
The order 3501 may be among the billed or among the unbilled orders.

176

Chapter 11. Indexes

Example 11-Zalso illustrates that the indexed column and the column used in the predicate do not
need to match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns
of the table being indexed are involved. However, keep in mind that the predicate must match the
conditions used in the queries that are supposed to benefit from the index. To be precise, a partial
index can be used in a query only if the system can recognize thagtiEREondition of the query
mathematically implies the predicate of the index. PostgreSQL does not have a sophisticated theorem
prover that can recognize mathematically equivalent expressions that are written in different forms.
(Not only is such a general theorem prover extremely difficult to create, it would probably be too slow
to be of any real use.) The system can recognize simple inequality implications, for example “x

1" implies “x < 27; otherwise the predicate condition must exactly match part of the quatySRE
condition or the index will not be recognized to be usable.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea
here is to create a unique index over a subset of a table Fasimple 11-3This enforces uniqueness
among the rows that satisfy the index predicate, without constraining those that do not.

Example 11-3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one
“successful” entry for a given subject and target combination, but there might be any number of
“unsuccessful” entries. Here is one way to do it:

CREATE TABLE tests (
subject text,
target text,
success boolean,

);

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
WHERE success;
This is a particularly efficient way of doing it when there are few successful tests and many unsuc-
cessful ones.

Finally, a partial index can also be used to override the system’s query plan choices. It may occur that
data sets with peculiar distributions will cause the system to use an index when it really should not.
In that case the index can be set up so that it is not available for the offending query. Normally, Post-
greSQL makes reasonable choices about index usage (e.g., it avoids them when retrieving common
values, so the earlier example really only saves index size, it is not required to avoid index usage), and
grossly incorrect plan choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query
planner knows, in particular you know when an index might be profitable. Forming this knowledge
requires experience and understanding of how indexes in PostgreSQL work. In most cases, the advan-
tage of a partial index over a regular index will not be much.

More information about partial indexes can be foundre case for partial indexePRartial indexing
in POSTGRES: research projeeindGeneralized Partial Indexes

177

Chapter 11. Indexes

11.8. Examining Index Usage

Although indexes in PostgreSQL do not need maintenance and tuning, it is still important to check
which indexes are actually used by the real-life query workload. Examining index usage for an in-
dividual query is done with thEXPLAIN command; its application for this purpose is illustrated in
Section 13.11t is also possible to gather overall statistics about index usage in a running server, as
described irSection 23.2

It is difficult to formulate a general procedure for determining which indexes to set up. There are a
number of typical cases that have been shown in the examples throughout the previous sections. A
good deal of experimentation will be necessary in most cases. The rest of this section gives some tips
for that.

« Always runANALY ZHEfirst. This command collects statistics about the distribution of the values in
the table. This information is required to guess the number of rows returned by a query, which is
needed by the planner to assign realistic costs to each possible query plan. In absence of any real
statistics, some default values are assumed, which are almost certain to be inaccurate. Examining
an application’s index usage without having ANKALYZEis therefore a lost cause.

- Use real data for experimentation. Using test data for setting up indexes will tell you what indexes
you need for the test data, but that is all.

It is especially fatal to use proportionally reduced data sets. While selecting 1000 out of 100000
rows could be a candidate for an index, selecting 1 out of 100 rows will hardly be, because the
100 rows will probably fit within a single disk page, and there is no plan that can beat sequentially
fetching 1 disk page.

Also be careful when making up test data, which is often unavoidable when the application is not
in production use yet. Values that are very similar, completely random, or inserted in sorted order
will skew the statistics away from the distribution that real data would have.

« When indexes are not used, it can be useful for testing to force their use. There are run-time pa-
rameters that can turn off various plan types (describeskiction 16.3L For instance, turning off
sequential scan®fable_segscan) and nested-loop joingfable_nestloop), which are the
most basic plans, will force the system to use a different plan. If the system still chooses a sequen-
tial scan or nested-loop join then there is probably a more fundamental problem for why the index
is not used, for example, the query condition does not match the index. (What kind of query can
use what kind of index is explained in the previous sections.)

- If forcing index usage does use the index, then there are two possibilities: Either the system is
right and using the index is indeed not appropriate, or the cost estimates of the query plans are not
reflecting reality. So you should time your query with and without indexesEXRLAIN ANALYZE
command can be useful here.

- Ifit turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost is
computed from the per-row costs of each plan node times the selectivity estimate of the plan node.
The costs of the plan nodes can be tuned with run-time parameters (describection 16.%4
An inaccurate selectivity estimate is due to insufficient statistics. It may be possible to help this by
tuning the statistics-gathering parameters (Se€ER TABLE

If you do not succeed in adjusting the costs to be more appropriate, then you may have to resort to
forcing index usage explicitly. You may also want to contact the PostgreSQL developers to examine
the issue.

178

Chapter 12. Concurrency Control

This chapter describes the behavior of the PostgreSQL database system when two or more sessions
try to access the same data at the same time. The goals in that situation are to allow efficient access for
all sessions while maintaining strict data integrity. Every developer of database applications should
be familiar with the topics covered in this chapter.

12.1. Introduction

Unlike traditional database systems which use locks for concurrency control, PostgreSQL maintains
data consistency by using a multiversion model (Multiversion Concurrency Control, MVCC). This
means that while querying a database each transaction sees a snapshot oflatthase version

as it was some time ago, regardless of the current state of the underlying data. This protects the
transaction from viewing inconsistent data that could be caused by (other) concurrent transaction
updates on the same data rows, providiagisaction isolatiorfor each database session.

The main advantage to using the MVCC model of concurrency control rather than locking is that in
MVCC locks acquired for querying (reading) data do not conflict with locks acquired for writing data,
and so reading never blocks writing and writing never blocks reading.

Table- and row-level locking facilities are also available in PostgreSQL for applications that cannot
adapt easily to MVCC behavior. However, proper use of MVCC will generally provide better perfor-
mance than locks.

12.2. Transaction Isolation

The SQL standard defines four levels of transaction isolation in terms of three phenomena that must
be prevented between concurrent transactions. These undesirable phenomena are:

dirty read
A transaction reads data written by a concurrent uncommitted transaction.
nonrepeatable read

Atransaction re-reads data it has previously read and finds that data has been modified by another
transaction (that committed since the initial read).

phantom read

A transaction re-executes a query returning a set of rows that satisfy a search condition and
finds that the set of rows satisfying the condition has changed due to another recently-committed
transaction.

The four transaction isolation levels and the corresponding behaviors are descrlladteii2-1

Table 12-1. SQL Transaction Isolation Levels

Isolation Level Dirty Read Nonrepeatable Read | Phantom Read

Read uncommitted Possible Possible Possible

179

Chapter 12. Concurrency Control

Isolation Level Dirty Read Nonrepeatable Read |Phantom Read
Read committed Not possible Possible Possible
Repeatable read Not possible Not possible Possible
Serializable Not possible Not possible Not possible

PostgreSQL offers the Read Committed and Serializable isolation levels.

12.2.1. Read Committed Isolation Level

Read Committes the default isolation level in PostgreSQL. When a transaction runs on this isolation
level, aSELECTquery sees only data committed before the query began; it never sees either uncom-
mitted data or changes committed during query execution by concurrent transactions. (However, the
SELECTdoes see the effects of previous updates executed within its own transaction, even though they
are not yet committed.) In effect SELECTquery sees a snapshot of the database as of the instant that
that query begins to run. Notice that two succesSiZeECTcommands can see different data, even
though they are within a single transaction, if other transactions commit changes during execution of
the firstSELECT.

UPDATE DELETE andSELECT FOR UPDATEommands behave the sameSH ECTin terms of
searching for target rows: they will only find target rows that were committed as of the command
start time. However, such a target row may have already been updated (or deleted or marked for
update) by another concurrent transaction by the time it is found. In this case, the would-be updater
will wait for the first updating transaction to commit or roll back (if it is still in progress). If the first
updater rolls back, then its effects are negated and the second updater can proceed with updating the
originally found row. If the first updater commits, the second updater will ignore the row if the first
updater deleted it, otherwise it will attempt to apply its operation to the updated version of the row.
The search condition of the command ((WelERElause) is re-evaluated to see if the updated version

of the row still matches the search condition. If so, the second updater proceeds with its operation,
starting from the updated version of the row.

Because of the above rule, it is possible for an updating command to see an inconsistent snapshot: it
can see the effects of concurrent updating commands that affected the same rows it is trying to update,
but it does not see effects of those commands on other rows in the database. This behavior makes Read
Committed mode unsuitable for commands that involve complex search conditions. However, it is just
right for simpler cases. For example, consider updating bank balances with transactions like

BEGIN;

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 7534;
COMMIT;

If two such transactions concurrently try to change the balance of account 12345, we clearly want the
second transaction to start from the updated version of the account’s row. Because each command is
affecting only a predetermined row, letting it see the updated version of the row does not create any
troublesome inconsistency.

Since in Read Committed mode each new command starts with a new snapshot that includes all

transactions committed up to that instant, subsequent commands in the same transaction will see the
effects of the committed concurrent transaction in any case. The point at issue here is whether or not

within asinglecommand we see an absolutely consistent view of the database.

The partial transaction isolation provided by Read Committed mode is adequate for many applica-
tions, and this mode is fast and simple to use. However, for applications that do complex queries and

180

Chapter 12. Concurrency Control

updates, it may be necessary to guarantee a more rigorously consistent view of the database than the
Read Committed mode provides.

12.2.2. Serializable Isolation Level

The levelSerializableprovides the strictest transaction isolation. This level emulates serial transac-
tion execution, as if transactions had been executed one after another, serially, rather than concurrently.
However, applications using this level must be prepared to retry transactions due to serialization fail-
ures.

When a transaction is on the serializable levedFaAECTquery sees only data committed before the
transaction began; it never sees either uncommitted data or changes committed during transaction
execution by concurrent transactions. (However 3BeECTdoes see the effects of previous updates
executed within its own transaction, even though they are not yet committed.) This is different from
Read Committed in that th@ELECTsees a shapshot as of the start of the transaction, not as of the
start of the current query within the transaction. Thus, succesgivECTcommands within a single
transaction always see the same data.

UPDATE DELETE andSELECT FOR UPDATEommands behave the sameSH& ECTin terms of
searching for target rows: they will only find target rows that were committed as of the transaction start
time. However, such a target row may have already been updated (or deleted or marked for update)
by another concurrent transaction by the time it is found. In this case, the serializable transaction will
wait for the first updating transaction to commit or roll back (if it is still in progress). If the first updater
rolls back, then its effects are negated and the serializable transaction can proceed with updating the
originally found row. But if the first updater commits (and actually updated or deleted the row, not
just selected it for update) then the serializable transaction will be rolled back with the message

ERROR: could not serialize access due to concurrent update

because a serializable transaction cannot modify rows changed by other transactions after the serial-
izable transaction began.

When the application receives this error message, it should abort the current transaction and then
retry the whole transaction from the beginning. The second time through, the transaction sees the
previously-committed change as part of its initial view of the database, so there is no logical conflict
in using the new version of the row as the starting point for the new transaction’s update.

Note that only updating transactions may need to be retried; read-only transactions will never have
serialization conflicts.

The Serializable mode provides a rigorous guarantee that each transaction sees a wholly consistent
view of the database. However, the application has to be prepared to retry transactions when concur-
rent updates make it impossible to sustain the illusion of serial execution. Since the cost of redoing
complex transactions may be significant, this mode is recommended only when updating transactions
contain logic sufficiently complex that they may give wrong answers in Read Committed mode. Most
commonly, Serializable mode is necessary when a transaction executes several successive commands
that must see identical views of the database.

12.3. Explicit Locking

PostgreSQL provides various lock modes to control concurrent access to data in tables. These modes
can be used for application-controlled locking in situations where MVCC does not give the desired
behavior. Also, most PostgreSQL commands automatically acquire locks of appropriate modes to

181

Chapter 12. Concurrency Control

ensure that referenced tables are not dropped or modified in incompatible ways while the command
executes. (For examplaLTER TABLEcannot be executed concurrently with other operations on the
same table.)

To examine a list of the currently outstanding locks in a database server, ysg theks system
view (Section 43.3R For more information on monitoring the status of the lock manager subsystem,
refer toChapter 23

12.3.1. Table-Level Locks

The list below shows the available lock modes and the contexts in which they are used automatically
by PostgreSQL. Remember that all of these lock modes are table-level locks, even if the name con-
tains the word “row”; the names of the lock modes are historical. To some extent the names reflect the
typical usage of each lock mode --- but the semantics are all the same. The only real difference be-
tween one lock mode and another is the set of lock modes with which each conflicts. Two transactions
cannot hold locks of conflicting modes on the same table at the same time. (However, a transaction
never conflicts with itself. For example, it may acquf@CESS EXCLUSIVBock and later acquire
ACCESS SHARIbck on the same table.) Non-conflicting lock modes may be held concurrently by
many transactions. Notice in particular that some lock modes are self-conflicting (for example, an
ACCESS EXCLUSIVHock cannot be held by more than one transaction at a time) while others are
not self-conflicting (for example, akCCESS SHARBck can be held by multiple transactions). Once
acquired, a lock is held till end of transaction.

Table-level lock modes
ACCESS SHARE
Conflicts with theACCESS EXCLUSIVEock mode only.

The commandSELECTandANALYZEacquire a lock of this mode on referenced tables. In gen-
eral, any query that only reads a table and does not modify it will acquire this lock mode.

ROW SHARE
Conflicts with theEXCLUSIVEandACCESS EXCLUSIVEock modes.

The SELECT FOR UPDATEommand acquires a lock of this mode on the target table(s) (in
addition toACCESS SHARIbcks on any other tables that are referenced but not seleciBd
UPDATE.

ROW EXCLUSIVE

Conflicts with theSHARE SHARE ROW EXCLUSIVEXCLUSIVE and ACCESS EXCLUSIVE
lock modes.

The command&JPDATE DELETE andINSERT acquire this lock mode on the target table (in
addition toACCESS SHARIBcks on any other referenced tables). In general, this lock mode will
be acquired by any command that modifies the data in a table.

SHARE UPDATE EXCLUSIVE

Conflicts with the SHARE UPDATE EXCLUSIVE SHARE SHARE ROW EXCLUSIVE
EXCLUSIVE, and ACCESS EXCLUSIVElock modes. This mode protects a table against
concurrent schema changes afkCUUNuUNS.

Acquired byVACUUMwithout FULL).

182

Chapter 12. Concurrency Control

SHARE

Conflicts with theROW EXCLUSIVESHARE UPDATE EXCLUSIVESHARE ROW EXCLUSIVE
EXCLUSIVE andACCESS EXCLUSIVEock modes. This mode protects a table against concur-
rent data changes.

Acquired byCREATE INDEX
SHARE ROW EXCLUSIVE

Conflicts with the ROW EXCLUSIVE SHARE UPDATE EXCLUSIVESHARE SHARE ROW
EXCLUSIVE EXCLUSIVE, andACCESS EXCLUSIVEock modes.

This lock mode is not automatically acquired by any PostgreSQL command.
EXCLUSIVE

Conflicts with theROW SHARROW EXCLUSIVESHARE UPDATE EXCLUSIYBHARESHARE
ROW EXCLUSIVEEXCLUSIVE, andACCESS EXCLUSIVHBock modes. This mode allows only
concurrentACCESS SHARIbcks, i.e., only reads from the table can proceed in parallel with a
transaction holding this lock mode.

This lock mode is not automatically acquired by any PostgreSQL command.
ACCESS EXCLUSIVE

Conflicts with locks of all modesACCESS SHAREROW SHAREROW EXCLUSIVESHARE
UPDATE EXCLUSIVE SHARE SHARE ROW EXCLUSIVE EXCLUSIVE and ACCESS
EXCLUSIVE). This mode guarantees that the holder is the only transaction accessing the table in
any way.

Acquired by theALTER TABLE DROP TABLEREINDEX CLUSTER andVACUUM FULlcom-
mands. This is also the default lock mode f@CK TABLEstatements that do not specify a
mode explicitly.

Tip: Only an ACCESS EXCLUSIVBock blocks a SELECT(without FOR UPDATEStatement.

12.3.2. Row-Level Locks

In addition to table-level locks, there are row-level locks. A row-level lock on a specific row is auto-
matically acquired when the row is updated (or deleted or marked for update). The lock is held until
the transaction commits or rolls back. Row-level locks do not affect data querying; theyvalibck

ers to the same rownly. To acquire a row-level lock on a row without actually modifying the row,
select the row WItlTSELECT FOR UPDAT®Rote that once a particular row-level lock is acquired, the
transaction may update the row multiple times without fear of conflicts.

PostgreSQL doesn’t remember any information about modified rows in memory, so it has no limit
to the number of rows locked at one time. However, locking a row may cause a disk write; thus, for
example, SELECT FOR UPDAT®ill modify selected rows to mark them and so will result in disk
writes.

In addition to table and row locks, page-level share/exclusive locks are used to control read/write
access to table pages in the shared buffer pool. These locks are released immediately after a row is
fetched or updated. Application developers normally need not be concerned with page-level locks,
but we mention them for completeness.

183

Chapter 12. Concurrency Control

12.3.3. Deadlocks

The use of explicit locking can increase the likelihoodlefdlockswherein two (or more) transac-

tions each hold locks that the other wants. For example, if transaction 1 acquires an exclusive lock
on table A and then tries to acquire an exclusive lock on table B, while transaction 2 has already
exclusive-locked table B and now wants an exclusive lock on table A, then neither one can proceed.
PostgreSQL automatically detects deadlock situations and resolves them by aborting one of the trans-
actions involved, allowing the other(s) to complete. (Exactly which transaction will be aborted is
difficult to predict and should not be relied on.)

Note that deadlocks can also occur as the result of row-level locks (and thus, they can occur even
if explicit locking is not used). Consider the case in which there are two concurrent transactions
modifying a table. The first transaction executes:

UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 11111,

This acquires a row-level lock on the row with the specified account number. Then, the second trans-
action executes:

UPDATE accounts SET balance balance + 100.00 WHERE acctnum = 22222;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 11111;

The firstUPDATEstatement successfully acquires a row-level lock on the specified row, so it succeeds
in updating that row. However, the secou@DATEStatement finds that the row it is attempting to
update has already been locked, so it waits for the transaction that acquired the lock to complete.
Transaction two is now waiting on transaction one to complete before it continues execution. Now,
transaction one executes:

UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222;

Transaction one attempts to acquire a row-level lock on the specified row, but it cannot: transaction
two already holds such a lock. So it waits for transaction two to complete. Thus, transaction one is
blocked on transaction two, and transaction two is blocked on transaction one: a deadlock condition.
PostgreSQL will detect this situation and abort one of the transactions.

The best defense against deadlocks is generally to avoid them by being certain that all applications
using a database acquire locks on multiple objects in a consistent order. That was the reason for the
previous deadlock example: if both transactions had updated the rows in the same order, no deadlock
would have occurred. One should also ensure that the first lock acquired on an object in a transaction
is the highest mode that will be needed for that object. If it is not feasible to verify this in advance,
then deadlocks may be handled on-the-fly by retrying transactions that are aborted due to deadlock.

So long as no deadlock situation is detected, a transaction seeking either a table-level or row-level lock
will wait indefinitely for conflicting locks to be released. This means it is a bad idea for applications
to hold transactions open for long periods of time (e.g., while waiting for user input).

12.4. Data Consistency Checks at the Application Level

Because readers in PostgreSQL do not lock data, regardless of transaction isolation level, data read
by one transaction can be overwritten by another concurrent transaction. In other words, if a row
is returned bySELECTIit doesn’t mean that the row is still current at the instant it is returned (i.e.,
sometime after the current query began). The row might have been modified or deleted by an already-
committed transaction that committed after this one started. Even if the row is still valid “now”, it
could be changed or deleted before the current transaction does a commit or rollback.

184

Chapter 12. Concurrency Control

Another way to think about it is that each transaction sees a snapshot of the database contents, and
concurrently executing transactions may very well see different snapshots. So the whole concept of
“now” is somewhat suspect anyway. This is not normally a big problem if the client applications are
isolated from each other, but if the clients can communicate via channels outside the database then
serious confusion may ensue.

To ensure the current validity of a row and protect it against concurrent updates one n&ELESE

FOR UPDATEr an appropriaté OCK TABLEstatement. §ELECT FOR UPDATIBCcKs just the re-

turned rows against concurrent updates, whde€K TABLHocks the whole table.) This should be

taken into account when porting applications to PostgreSQL from other environments. (Before ver-
sion 6.5 PostgreSQL used read locks, and so this above consideration is also relevant when upgrading
from PostgreSQL versions prior to 6.5.)

Global validity checks require extra thought under MVCC. For example, a banking application might
wish to check that the sum of all credits in one table equals the sum of debits in another table, when
both tables are being actively updated. Comparing the results of two SUCCBEERET sum(...)

commands will not work reliably under Read Committed mode, since the second query will likely
include the results of transactions not counted by the first. Doing the two sums in a single serializable
transaction will give an accurate picture of the effects of transactions that committed before the seri-
alizable transaction started --- but one might legitimately wonder whether the answer is still relevant
by the time it is delivered. If the serializable transaction itself applied some changes before trying to
make the consistency check, the usefulness of the check becomes even more debatable, since now it
includes some but not all post-transaction-start changes. In such cases a careful person might wish to
lock all tables needed for the check, in order to get an indisputable picture of current reslHpRE

mode (or higher) lock guarantees that there are no uncommitted changes in the locked table, other
than those of the current transaction.

Note also that if one is relying on explicit locks to prevent concurrent changes, one should use Read
Committed mode, or in Serializable mode be careful to obtain the lock(s) before performing queries.
An explicit lock obtained in a serializable transaction guarantees that no other transactions modifying
the table are still running, but if the snapshot seen by the transaction predates obtaining the lock, it may
predate some now-committed changes in the table. A serializable transaction’s snapshot is actually
frozen at the start of its first query or data-modification comma&ELECT, INSERT, UPDATE or
DELETB), so it's possible to obtain explicit locks before the snapshot is frozen.

12.5. Locking and Indexes

Though PostgreSQL provides nonblocking read/write access to table data, nonblocking read/write ac-
cess is not currently offered for every index access method implemented in PostgreSQL. The various
index types are handled as follows:

B-tree indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released
immediately after each index row is fetched or inserted. B-tree indexes provide the highest con-
currency without deadlock conditions.

GiST and R-tree indexes

Share/exclusive index-level locks are used for read/write access. Locks are released after the
command is done.

Hash indexes

Share/exclusive page-level locks are used for read/write access. Locks are released after the page

185

Chapter 12. Concurrency Control

is processed. Page-level locks provide better concurrency than index-level ones but are liable to
deadlocks.

In short, B-tree indexes offer the best performance for concurrent applications; since they also have
more features than hash indexes, they are the recommended index type for concurrent applications
that need to index scalar data. When dealing with non-scalar data, B-trees obviously cannot be used,;
in that situation, application developers should be aware of the relatively poor concurrent performance

of GiST and R-tree indexes.

186

Chapter 13. Performance Tips

Query performance can be affected by many things. Some of these can be manipulated by the user,
while others are fundamental to the underlying design of the system. This chapter provides some hints
about understanding and tuning PostgreSQL performance.

13.1. Using EXPLAIN

PostgreSQL devises guery planfor each query it is given. Choosing the right plan to match the
query structure and the properties of the data is absolutely critical for good performance. You can use
the EXPLAIN command to see what query plan the system creates for any query. Plan-reading is an
art that deserves an extensive tutorial, which this is not; but here is some basic information.

The numbers that are currently quotedEXPLAIN are:

- Estimated start-up cost (Time expended before output scan can start, e.g., time to do the sorting in
a sort node.)

- Estimated total cost (If all rows were to be retrieved, which they may not be: a query withia
clause will stop short of paying the total cost, for example.)

- Estimated number of rows output by this plan node (Again, only if executed to completion)

- Estimated average width (in bytes) of rows output by this plan node

The costs are measured in units of disk page fetches. (CPU effort estimates are converted into disk-
page units using some fairly arbitrary fudge factors. If you want to experiment with these factors, see
the list of run-time configuration parameters3ection 16.4.3

It's important to note that the cost of an upper-level node includes the cost of all its child nodes. It's
also important to realize that the cost only reflects things that the planner/optimizer cares about. In
particular, the cost does not consider the time spent transmitting result rows to the frontend, which
could be a pretty dominant factor in the true elapsed time; but the planner ignores it because it cannot
change it by altering the plan. (Every correct plan will output the same row set, we trust.)

Rows output is a little tricky because it ot the number of rows processed/scanned by the query,
it is usually less, reflecting the estimated selectivity of sWiyERElause conditions that are being
applied at this node. Ideally the top-level rows estimate will approximate the number of rows actually
returned, updated, or deleted by the query.

Here are some examples (using the regression test databasevatavamM ANALYZENd 7.3 devel-
opment sources):

EXPLAIN SELECT * FROM tenkl,;

QUERY PLAN

Seq Scan on tenkl (cost=0.00..333.00 rows=10000 width=148)

This is about as straightforward as it gets. If you do

SELECT * FROM pg_class WHERE relname = ’tenkl’;

187

Chapter 13. Performance Tips

you will find out thattenkl has 233 disk pages and 10000 rows. So the cost is estimated at 233
page reads, defined as costing 1.0 apiece, plus 10@p0_*tuple_cost which is currently 0.01
(try SHOW cpu_tuple_cost).

Now let's modify the query to add WHEREondition:

EXPLAIN SELECT * FROM tenkl WHERE uniquel < 1000;

QUERY PLAN

Seq Scan on tenkl (cost=0.00..358.00 rows=1033 width=148)
Filter: (uniquel < 1000)

The estimate of output rows has gone down because oftiEeRElause. However, the scan will still
have to visit all 10000 rows, so the cost hasn't decreased; in fact it has gone up a bit to reflect the extra
CPU time spent checking theHEREOoNdition.

The actual number of rows this query would select is 1000, but the estimate is only approximate. If
you try to duplicate this experiment, you will probably get a slightly different estimate; moreover,
it will change after eacANALYZEcommand, because the statistics produced XL YZEare taken

from a randomized sample of the table.

Modify the query to restrict the condition even more:

EXPLAIN SELECT * FROM tenkl WHERE uniquel < 50;

QUERY PLAN

Index Scan using tenkl_uniquel on tenkl (cost=0.00..179.33 rows=49 width=148)
Index Cond: (uniquel < 50)

and you will see that if we make th#HEREondition selective enough, the planner will eventually
decide that an index scan is cheaper than a sequential scan. This plan will only have to visit 50 rows
because of the index, so it wins despite the fact that each individual fetch is more expensive than
reading a whole disk page sequentially.

Add another condition to th&/HERElause:

EXPLAIN SELECT * FROM tenkl WHERE uniquel < 50 AND stringul = 'xxX’;

QUERY PLAN

Index Scan using tenkl_uniquel on tenkl (cost=0.00..179.45 rows=1 width=148)
Index Cond: (uniquel < 50)
Filter: (stringul = ’'xxx’::name)

The added conditiostringul = ’xxx’ reduces the output-rows estimate, but not the cost because
we still have to visit the same set of rows. Notice that ¢hingul clause cannot be applied as
an index condition (since this index is only on tinéquel column). Instead it is applied as a filter

on the rows retrieved by the index. Thus the cost has actually gone up a little bit to reflect this extra
checking.

Let’s try joining two tables, using the columns we have been discussing:
EXPLAIN SELECT * FROM tenkl tl1, tenk2 t2 WHERE tl.uniquel < 50 AND tl.unique2 = t2.uniqL

QUERY PLAN

Nested Loop (cost=0.00..327.02 rows=49 width=296)

188

Chapter 13. Performance Tips

-> Index Scan using tenkl_uniquel on tenkl tl1
(cost=0.00..179.33 rows=49 width=148)
Index Cond: (uniquel < 50)
-> Index Scan using tenk2_unique2 on tenk2 t2
(cost=0.00..3.01 rows=1 width=148)
Index Cond: ("outer".unique2 = t2.unique2)

In this nested-loop join, the outer scan is the same index scan we had in the example before last, and
so its cost and row count are the same because we are applyngiRElauseuniquel < 50 at

that node. Thél.unique2 = t2.unique2 clause is not relevant yet, so it doesn't affect row count

of the outer scan. For the inner scan, tihgjue2 value of the current outer-scan row is plugged into

the inner index scan to produce an index condition fikenique2 = constant . So we get the

same inner-scan plan and costs that we'd get from,BSégLAIN SELECT * FROM tenk2 WHERE
unique2 = 42 . The costs of the loop node are then set on the basis of the cost of the outer scan, plus
one repetition of the inner scan for each outer row (49 * 3.01, here), plus a little CPU time for join
processing.

In this example the join’s output row count is the same as the product of the two scans’ row counts,
but that’s not true in general, because in general you can\WalgRElauses that mention both tables
and so can only be applied at the join point, not to either input scan. For example, if weVaHE&E

... AND tl.hundred < t2.hundred , that would decrease the output row count of the join node,
but not change either input scan.

One way to look at variant plans is to force the planner to disregard whatever strategy it thought was
the winner, using the enable/disable flags for each plan type. (This is a crude tool, but useful. See also
Section 13.3

SET enable_nestloop = off;
EXPLAIN SELECT * FROM tenkl tl1, tenk2 t2 WHERE tl.uniquel < 50 AND tl.unique2 = t2.uniqt

QUERY PLAN

Hash Join (cost=179.45..563.06 rows=49 width=296)
Hash Cond: ("outer".unique2 = "inner".unique2)
-> Seq Scan on tenk2 t2 (cost=0.00..333.00 rows=10000 width=148)
-> Hash (cost=179.33..179.33 rows=49 width=148)
-> Index Scan using tenkl_uniquel on tenkl tl1
(cost=0.00..179.33 rows=49 width=148)
Index Cond: (uniquel < 50)

This plan proposes to extract the 50 interesting rome€l using ye same olde index scan, stash
them into an in-memory hash table, and then do a sequential seankaf, probing into the hash

table for possible matches df.unique2 = t2.unique2 at eachtenk2 row. The cost to read

tenkl and set up the hash table is entirely start-up cost for the hash join, since we won't get any rows
out until we can start readingnk2 . The total time estimate for the join also includes a hefty charge
for the CPU time to probe the hash table 10000 times. Note, however, that wetatearging 10000

times 179.33; the hash table setup is only done once in this plan type.

It is possible to check on the accuracy of the planner’s estimated costs byExsthgIN ANALYZE

This command actually executes the query, and then displays the true run time accumulated within
each plan node along with the same estimated costs that agX&inAIN shows. For example, we
might get a result like this:

EXPLAIN ANALYZE SELECT * FROM tenkl tl1, tenk2 t2 WHERE tl.uniquel < 50 AND tl.unique2

189

Chapter 13. Performance Tips

QUERY PLAN

Nested Loop (cost=0.00..327.02 rows=49 width=296)
(actual time=1.181..29.822 rows=50 loops=1)
-> Index Scan using tenkl_uniquel on tenkl tl1
(cost=0.00..179.33 rows=49 width=148)
(actual time=0.630..8.917 rows=50 loops=1)
Index Cond: (uniquel < 50)
-> Index Scan using tenk2_unique2 on tenk2 t2
(cost=0.00..3.01 rows=1 width=148)
(actual time=0.295..0.324 rows=1 loops=50)
Index Cond: ("outer".unique2 = t2.unique2)
Total runtime: 31.604 ms

Note that the “actual time” values are in milliseconds of real time, whereas the “cost” estimates are
expressed in arbitrary units of disk fetches; so they are unlikely to match up. The thing to pay attention
to is the ratios.

In some query plans, it is possible for a subplan node to be executed more than once. For example,
the inner index scan is executed once per outer row in the above nested-loop plan. In such cases, the
“loops” value reports the total number of executions of the node, and the actual time and rows values
shown are averages per-execution. This is done to make the numbers comparable with the way that
the cost estimates are shown. Multiply by the “loops” value to get the total time actually spent in the
node.

TheTotal runtime shown byEXPLAIN ANALYZEincludes executor start-up and shut-down time,

as well as time spent processing the result rows. It does not include parsing, rewriting, or planning
time. For aSELECTquery, the total run time will normally be just a little larger than the total time
reported for the top-level plan node. RNSERT, UPDATE andDELETEcommands, the total run time

may be considerably larger, because it includes the time spent processing the result rows. In these
commands, the time for the top plan node essentially is the time spent computing the new rows and/or
locating the old ones, but it doesn't include the time spent making the changes.

It is worth noting thaEXPLAIN results should not be extrapolated to situations other than the one you
are actually testing; for example, results on a toy-sized table can’t be assumed to apply to large tables.
The planner’s cost estimates are not linear and so it may well choose a different plan for a larger or
smaller table. An extreme example is that on a table that only occupies one disk page, you'll nearly
always get a sequential scan plan whether indexes are available or not. The planner realizes that it's
going to take one disk page read to process the table in any case, so there’s no value in expending
additional page reads to look at an index.

13.2. Statistics Used by the Planner

As we saw in the previous section, the query planner needs to estimate the number of rows retrieved
by a query in order to make good choices of query plans. This section provides a quick look at the
statistics that the system uses for these estimates.

One component of the statistics is the total number of entries in each table and index, as well as
the number of disk blocks occupied by each table and index. This information is kept in the table
pg_class inthe columngeltuples andrelpages . We can look at it with queries similar to this

one:

SELECT relname, relkind, reltuples, relpages FROM pg_class WHERE relname LIKE 'tenk1%’;

relname | relkind | reltuples | relpages

190

Chapter 13. Performance Tips

+ + +
tenkl | r | 10000 | 233
tenkl_hundred | i [10000 | 30
tenkl_uniquel | i | 10000 | 30
tenkl_unique2 | i | 10000 | 30

(4 rows)

Here we can see th&nkl contains 10000 rows, as do its indexes, but the indexes are (unsurpris-
ingly) much smaller than the table.

For efficiency reasonsgltuples andrelpages are not updated on-the-fly, and so they usually con-

tain only approximate values (which is good enough for the planner’s purposes). They are initialized
with dummy values (presently 1000 and 10 respectively) when a table is created. They are updated by
certain commands, presenthtACUUMANALYZE andCREATE INDEXA stand-alonéANALYZE that

is one not part of#/ACUUNMgenerates an approximatgtuples value since it does not read every

row of the table.

Most queries retrieve only a fraction of the rows in a table, due to havingRElauses that restrict the
rows to be examined. The planner thus needs to make an estimateseféhgvityof WHERElauses,

that is, the fraction of rows that match each condition inWh¢ERElause. The information used for
this task is stored in thpg_statistic system catalog. Entries jiy_statistic are updated by
ANALYZEandVACUUM ANALYzZe&bmmands and are always approximate even when freshly updated.

Rather than look gig_statistic directly, it's better to look at its viewg_stats when examining

the statistics manuallpg_stats is designed to be more easily readable. Furthernporestats s
readable by all, whereasgy_statistic is only readable by a superuser. (This prevents unprivileged
users from learning something about the contents of other people’s tables from the statistics. The
pg_stats view is restricted to show only rows about tables that the current user can read.) For
example, we might do:

SELECT attname, n_distinct, most_common_vals FROM pg_stats WHERE tablename = 'road’;

atthame | n_distinct |

+ +
name | -0.467008 | {"I- 580 Ramp","l- 880
thepath | 20 | {"[(-122.089,37.71),(-122.0886,37.711)]"}

(2 rows)

pg_stats is described in detail iSection 43.35

The amount of information stored jry_statistic , in particular the maximum number of entries in
themost_common_vals andhistogram_bounds arrays for each column, can be set on a column-
by-column basis using theLTER TABLE SET STATISTICScommand, or globally by setting the
default_statistics_target runtime parameter. The default limit is presently 10 entries. Rais-
ing the limit may allow more accurate planner estimates to be made, particularly for columns with
irregular data distributions, at the price of consuming more spagg_istatistic and slightly

more time to compute the estimates. Conversely, a lower limit may be appropriate for columns with
simple data distributions.

13.3. Controlling the Planner with Explicit ~ JOIN Clauses

It is possible to control the query planner to some extent by using the exjaitit syntax. To see
why this matters, we first need some background.

191

Chapter 13. Performance Tips

In a simple join query, such as
SELECT * FROM a, b, ¢ WHERE a.id = b.id AND b.ref = c.id;

the planner is free to join the given tables in any order. For example, it could generate a query plan
that joins A to B, using th&vHEREoONditiona.id = b.id , and then joins C to this joined table,
using the othewHEREoNdition. Or it could join B to C and then join A to that result. Or it could join

A to C and then join them with B, but that would be inefficient, since the full Cartesian product of
A and C would have to be formed, there being no applicable condition iwttERElause to allow
optimization of the join. (All joins in the PostgreSQL executor happen between two input tables, so
it's necessary to build up the result in one or another of these fashions.) The important point is that
these different join possibilities give semantically equivalent results but may have hugely different
execution costs. Therefore, the planner will explore all of them to try to find the most efficient query
plan.

When a query only involves two or three tables, there aren’t many join orders to worry about. But the
number of possible join orders grows exponentially as the number of tables expands. Beyond ten or
so input tables it's no longer practical to do an exhaustive search of all the possibilities, and even for
six or seven tables planning may take an annoyingly long time. When there are too many input tables,
the PostgreSQL planner will switch from exhaustive searchgereeticprobabilistic search through a
limited number of possibilities. (The switch-over threshold is set byyty_threshold run-time
parameter.) The genetic search takes less time, but it won't necessarily find the best possible plan.

When the query involves outer joins, the planner has much less freedom than it does for plain (inner)
joins. For example, consider

SELECT * FROM a LEFT JOIN (b JOIN ¢ ON (b.ref = c.id)) ON (a.id = b.id);

Although this query’s restrictions are superficially similar to the previous example, the semantics are
different because a row must be emitted for each row of A that has no matching row in the join of B
and C. Therefore the planner has no choice of join order here: it must join B to C and then join A to
that result. Accordingly, this query takes less time to plan than the previous query.

Explicit inner join syntaxINNER JOIN, CROSS JOIN or unadornedOIN) is semantically the same
as listing the input relations IRROMso it does not need to constrain the join order. But it is possible
to instruct the PostgreSQL query planner to treat explicit ifi@@N s as constraining the join order
anyway. For example, these three queries are logically equivalent:

SELECT * FROM a, b, ¢ WHERE a.d = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN ¢ WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a JOIN (b JOIN ¢ ON (b.ref = c.id)) ON (a.id = b.id);

But if we tell the planner to honor th#IN order, the second and third take less time to plan than the
first. This effect is not worth worrying about for only three tables, but it can be a lifesaver with many
tables.

To force the planner to follow th@OIN order for inner joins, set thigin_collapse_limit run-
time parameter to 1. (Other possible values are discussed below.)

You do not need to constrain the join order completely in order to cut search time, because it's OK to
useJOIN operators within items of a plaifROMist. For example, consider

SELECT * FROM a CROSS JOIN b, ¢, d, e WHERE ..,

With join_collapse_limit = 1, this forces the planner to join A to B before joining them to other
tables, but doesn’t constrain its choices otherwise. In this example, the number of possible join orders
is reduced by a factor of 5.

192

Chapter 13. Performance Tips

Constraining the planner’s search in this way is a useful technique both for reducing planning time
and for directing the planner to a good query plan. If the planner chooses a bad join order by default,
you can force it to choose a better order W#N syntax --- assuming that you know of a better order,
that is. Experimentation is recommended.

A closely related issue that affects planning time is collapsing of subqueries into their parent query.
For example, consider

SELECT *
FROM X, vy,

(SELECT * FROM a, b, ¢ WHERE something) AS ss
WHERE somethingelse;

This situation might arise from use of a view that contains a join; the viSEISECTrule will be
inserted in place of the view reference, yielding a query much like the above. Normally, the planner
will try to collapse the subquery into the parent, yielding

SELECT * FROM x, y, a, b, ¢ WHERE something AND somethingelse;

This usually results in a better plan than planning the subquery separately. (For example, the outer
WHEREoNditions might be such that joining X to A first eliminates many rows of A, thus avoiding
the need to form the full logical output of the subquery.) But at the same time, we have increased the
planning time; here, we have a five-way join problem replacing two separate three-way join problems.
Because of the exponential growth of the number of possibilities, this makes a big difference. The
planner tries to avoid getting stuck in huge join search problems by not collapsing a subquery if
more thanfrom_collapse_limit FROM items would result in the parent query. You can trade off
planning time against quality of plan by adjusting this run-time parameter up or down.

from_collapse_limit andjoin_collapse_limit are similarly named because they do almost
the same thing: one controls when the planner will “flatten out” subselects, and the other controls
when it will flatten out explicit inner joins. Typically you would either $&ih_collapse_limit

equal to from_collapse_limit (so that explicit joins and subselects act similarly) or set
join_collapse_limit to 1 (if you want to control join order with explicit joins). But you might

set them differently if you are trying to fine-tune the trade off between planning time and run time.

13.4. Populating a Database

One may need to do a large number of table insertions when first populating a database. Here are
some tips and techniques for making that as efficient as possible.

13.4.1. Disable Autocommit

Turn off autocommit and just do one commit at the end. (In plain SQL, this means i&Edigy at

the start andcOMMITat the end. Some client libraries may do this behind your back, in which case
you need to make sure the library does it when you want it done.) If you allow each insertion to be
committed separately, PostgreSQL is doing a lot of work for each row added. An additional benefit of
doing all insertions in one transaction is that if the insertion of one row were to fail then the insertion
of all rows inserted up to that point would be rolled back, so you won't be stuck with partially loaded
data.

193

Chapter 13. Performance Tips

13.4.2. Use COPY FROM

UseCOPY FROM STDIkb load all the rows in one command, instead of using a seri¢§SERT
commands. This reduces parsing, planning, etc. overhead a great deal. If you do this then it is not
necessary to turn off autocommit, since it is only one command anyway.

13.4.3. Remove Indexes

If you are loading a freshly created table, the fastest way is to create the table, bulk load the table’s
data usingCOPY then create any indexes needed for the table. Creating an index on pre-existing data
is quicker than updating it incrementally as each row is loaded.

If you are augmenting an existing table, you can drop the index, load the table, then recreate the index.
Of course, the database performance for other users may be adversely affected during the time that
the index is missing. One should also think twice before dropping unique indexes, since the error
checking afforded by the unique constraint will be lost while the index is missing.

13.4.4. Increase sort_mem

Temporarily increasing theort_mem configuration variable when restoring large amounts of data
can lead to improved performance. This is because when a B-tree index is created from scratch, the
existing content of the table needs to be sorted. Allowing the merge sort to use more buffer pages
means that fewer merge passes will be required.

13.4.5. Run ANALYZEAfterwards

It's a good idea to ruANALYZEor VACUUM ANALYZanytime you've added or updated a lot of data,
including just after initially populating a table. This ensures that the planner has up-to-date statistics
about the table. With no statistics or obsolete statistics, the planner may make poor choices of query
plans, leading to bad performance on queries that use your table.

194

l1l. Server Administration

This part covers topics that are of interest to a PostgreSQL database administrator. This includes
installation of the software, set up and configuration of the server, management of users and databases,
and maintenance tasks. Anyone who runs a PostgreSQL server, either for personal use, but especially
in production, should be familiar with the topics covered in this part.

The information in this part is arranged approximately in the order in which a new user should read
it. But the chapters are self-contained and can be read individually as desired. The information in this
part is presented in a narrative fashion in topical units. Readers looking for a complete description of
a particular command should look inRart VI.

The first few chapters are written so that they can be understood without prerequisite knowledge, so
that new users who need to set up their own server can begin their exploration with this part. The rest
of this part which is about tuning and management presupposes that the reader is familiar with the
general use of the PostgreSQL database system. Readers are encouraged tedadlaatPart 11

for additional information.

Chapter 14. Installation Instructions

This chapter describes the installation of PostgreSQL from the source code distribution.

14.1. Short Version

Jconfigure

gmake

su

gmake install

adduser postgres

mkdir /usr/local/pgsql/data

chown postgres /usr/local/pgsql/data

su - postgres

Jusr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
lusr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data >logfile 2 >&1 &
/usr/local/pgsqgl/bin/createdb test
/usr/local/pgsql/bin/psgl test

The long version is the rest of this chapter.

14.2. Requirements

In general, a modern Unix-compatible platform should be able to run PostgreSQL. The platforms
that had received specific testing at the time of release are list8ddtion 14.7elow. In thedoc
subdirectory of the distribution there are several platform-specific FAQ documents you might wish to
consult if you are having trouble.

The following software packages are required for building PostgreSQL.:

- GNU make is required; other make programs wibt work. GNU make is often installed under
the namaymake; this document will always refer to it by that name. (On some systems GNU make
is the default tool with the nameake.) To test for GNU make enter

gmake --version
It is recommended to use version 3.76.1 or later.

+ You need an ISO/ANSI C compiler. Recent versions of GCC are recommendable, but PostgreSQL
is known to build with a wide variety of compilers from different vendors.

« gzip is needed to unpack the distribution in the first place.

- The GNU Readline library (for comfortable line editing and command history retrieval) will be
used by default. If you don’'t want to use it then you must specify-tivehout-readline
option forconfigure . (On NetBSD, thdibedit library is Readline-compatible and is used if
libreadline is not found.)

+ To build on Windows NT or Windows 2000 you need the Cygwin and cygipc packages. See the
file doc/FAQ_MSWIN for details.

The following packages are optional. They are not required in the default configuration, but they are
needed when certain build options are enabled, as explained below.

197

Chapter 14. Installation Instructions

- To build the server programming language PL/Perl you need a full Perl installation, including the
libperl library and the header files. Since PL/Perl will be a shared librarylitlperl library
must be a shared library also on most platforms. This appears to be the default in recent Perl
versions, but it was not in earlier versions, and in general it is the choice of whomever installed Perl
at your site.

If you don’t have the shared library but you need one, a message like this will appear during the
build to point out this fact:

*** Cannot build PL/Perl because libperl is not a shared library.
*** You might have to rebuild your Perl installation. Refer to
*** the documentation for details.

(If you don't follow the on-screen output you will merely notice that the PL/Perl library object,
plperl.so or similar, will not be installed.) If you see this, you will have to rebuild and install
Perl manually to be able to build PL/Perl. During the configuration process for Perl, request a
shared library.

- To build the PL/Python server programming language, you need a Python installation, including
the header files. Since PL/Python will be a shared library|ithsgthon library must be a shared
library also on most platforms. This is not the case in a default Python installation.

If after building and installing you have a file callptbython.so (possibly a different extension),
then everything went well. Otherwise you should have seen a notice like this flying by:

*** Cannot build PL/Python because libpython is not a shared library.
*** You might have to rebuild your Python installation. Refer to
*** the documentation for details.

That means you have to rebuild (part of) your Python installation to supply this shared library.

The catch is that the Python distribution or the Python maintainers do not provide any direct way
to do this. The closest thing we can offer you is the information in Python FAQ.3@0some
operating systems you don't really have to build a shared library, but then you will have to convince
the PostgreSQL build system of this. Consult kitkefile in the src/pl/plpython directory

for details.

- If you want to build Tcl or Tk components (clients and the PL/Tcl language) you of course need a
Tcl installation.

« To build the JDBC driver, you need Ant 1.5 or higher and a JDK. Ant is a special tool for building
Java-based packages. It can be downloaded from the Ant wéb site

If you have several Java compilers installed, it depends on the Ant configuration which one gets
used. Precompiled Ant distributions are typically set up to read afitec in the current user’s
home directory for configuration. For example, to use a different JDK than the default, this may
work:

JAVA HOME-=/usr/local/sun-jdk1.3
JAVACMD=3$JAVA_HOME/bin/java

Note: Do not try to build the driver by calling ant or even javac directly. This will not work. Run
gmake normally as described below.

1. http://www.python.org/doc/FAQ.html#3.30
2. http://jakarta.apache.org/ant/index.html

198

Chapter 14. Installation Instructions

- To enable Native Language Support (NLS), that is, the ability to display a program’s messages in
a language other than English, you need an implementation of the Gettext APIl. Some operating
systems have this built-in (e.g., Linux, NetBSD, Solaris), for other systems you can download an
add-on package from here: http://developer.postgresql.org/~petere/bsd-gettext/. If you are using
the Gettext implementation in the GNU C library then you will additionally need the GNU Gettext
package for some utility programs. For any of the other implementations you will not need it.

- Kerberos, OpenSSL, or PAM, if you want to support authentication using these services.

If you are building from a CVS tree instead of using a released source package, or if you want to do
development, you also need the following packages:

- Flexand Bison are needed to build a CVS checkout or if you changed the actual scanner and parser
definition files. If you need them, be sure to get Flex 2.5.4 or later and Bison 1.875 or later. Other
yacc programs can sometimes be used, but doing so requires extra effort and is not recommended.
Other lex programs will definitely not work.

If you need to get a GNU package, you can find it at your local GNU mirror site (see
http://www.gnu.org/order/ftp.html for a list) or at ftp://ftp.gnu.org/gnu/.

Also check that you have sufficient disk space. You will need about 65 MB for the source tree during
compilation and about 15 MB for the installation directory. An empty database cluster takes about 25
MB, databases take about five times the amount of space that a flat text file with the same data would
take. If you are going to run the regression tests you will temporarily need up to an extra 90 MB. Use
thedf command to check for disk space.

14.3. Getting The Source

The PostgreSQL 7.4.2 sources can be obtained by anonymous FTP from
ftp://ftp.postgresql.org/pub/source/v7.4.2/postgresql-7.4.2.tar.gz. Use a mirror if possible. After you
have obtained the file, unpack it:

gunzip postgresql-7.4.2.tar.gz
tar xf postgresql-7.4.2.tar

This will create a directoryostgresql-7.4.2 under the current directory with the PostgreSQL
sources. Change into that directory for the rest of the installation procedure.

14.4. If You Are Upgrading

The internal data storage format changes with new releases of PostgreSQL. Therefore, if you are
upgrading an existing installation that does not have a version number “7.4.x”, you must back up and
restore your data as shown here. These instructions assume that your existing installation is under the
Jusr/local/pgsql directory, and that the data area is/isr/local/pgsgl/data . Substitute

your paths appropriately.

199

Chapter 14. Installation Instructions

1. Make sure that your database is not updated during or after the backup. This does not affect
the integrity of the backup, but the changed data would of course not be included. If necessary,
edit the permissions in the fileisr/local/pgsgl/data/pg_hba.conf (or equivalent) to
disallow access from everyone except you.

2. To back up your database installation, type:
pg_dumpall > outputfile

If you need to preserve OIDs (such as when using them as foreign keys), then useofiteon
when runningpg_dumpall

pg_dumpall does not save large objects. Ch&gction 22.1.4f you need to do this.

To make the backup, you can use fgedumpall command from the version you are currently
running. For best results, however, try to useghedumpall command from PostgreSQL 7.4.2,
since this version contains bug fixes and improvements over older versions. While this advice
might seem idiosyncratic since you haven't installed the new version yet, it is advisable to follow
it if you plan to install the new version in parallel with the old version. In that case you can com-
plete the installation normally and transfer the data later. This will also decrease the downtime.

3. Ifyou are installing the new version at the same location as the old one then shut down the old
server, at the latest before you install the new files:

kill -INT ‘cat /usr/local/pgsql/data/postmaster.pid | sed 1q'

Versions prior to 7.0 do not have thi@stmaster.pid file. If you are using such a version
you must find out the process ID of the server yourself, for example by tyysingx | grep
postmaster , and supply it to th&ill command.

On systems that have PostgreSQL started at boot time, there is probably a start-up file that will
accomplish the same thing. For example, on a Red Hat Linux system one might find that

[etc/rc.d/init.d/postgresql stop
works. Another possibility ipg_ctl stop

4. If you are installing in the same place as the old version then it is also a good idea to move the
old installation out of the way, in case you have trouble and need to revert to it. Use a command
like this:

mv /usr/local/pgsql /usr/local/pgsql.old

After you have installed PostgreSQL 7.4.2, create a new database directory and start the new server.
Remember that you must execute these commands while logged in to the special database user account
(which you already have if you are upgrading).

/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
/usr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data

Finally, restore your data with
/usr/local/pgsql/bin/psgl -d templatel -f outputfile

using thenewpsq|l.

These topics are discussed at lengt®attion 22.3which you are encouraged to read in any case.

200

Chapter 14. Installation Instructions

14.5. Installation Procedure

1. Configuration

The first step of the installation procedure is to configure the source tree for your system and
choose the options you would like. This is done by runningctivdigure script. For a default
installation simply enter

Jconfigure

This script will run a number of tests to guess values for various system dependent variables and
detect some quirks of your operating system, and finally will create several files in the build tree
to record what it found. (You can also rgnnfigure in a directory outside the source tree if

you want to keep the build directory separate.)

The default configuration will build the server and utilities, as well as all client applications and
interfaces that require only a C compiler. All files will be installed untder/local/pgsql
by default.

You can customize the build and installation process by supplying one or more of the following
command line options teonfigure
--prefix= PREFIX

Install all files under the directorfPREFIX instead of/usr/local/pgsq| . The actual
files will be installed into various subdirectories; no files will ever be installed directly into
the PREFIX directory.

If you have special needs, you can also customize the individual subdirectories with the
following options.

--exec-prefix= EXEC-PREFIX

You can install architecture-dependent files under a different ptleKEC-PREFIX, than
whatPREFIX was set to. This can be useful to share architecture-independent files between
hosts. If you omit this, theBXEC-PREFIX is set equal t¢?REFIX and both architecture-
dependent and independent files will be installed under the same tree, which is probably
what you want.

--bindir=" DIRECTORY

Specifies the directory for executable programs. The defagkiC-PREFIX/bin , which
normally meangusr/local/pgsgl/bin

--datadir=" DIRECTORY

Sets the directory for read-only data files used by the installed programs. The default is
PREFIX/share . Note that this has nothing to do with where your database files will be
placed.

--sysconfdir= DIRECTORY
The directory for various configuration fileBREFIX/etc by default.
--libdir= DIRECTORY

The location to install libraries and dynamically loadable modules. The default is
EXEC-PREFIX/lib

--includedir= DIRECTORY
The directory for installing C and C++ header files. The defaubR&FIX/include

201

Chapter 14. Installation Instructions

--docdir= DIRECTORY

Documentation files, except “man” pages, will be installed into this directory. The default is
PREFIX/doc .

--mandir= DIRECTORY

The man pages that come with PostgreSQL will be installed under this directory, in their
respectivananx subdirectories. The default BREFIX/man.

Note: Care has been taken to make it possible to install PostgreSQL into shared installa-
tion locations (such as /usr/local/include) without interfering with the namespace of the
rest of the system. First, the string “/postgresql " is automatically appended to datadir

sysconfdir , and docdir , unless the fully expanded directory name already contains the
string “postgres " or “pgsql ". For example, if you choose /ust/local as prefix, the documen-
tation will be installed in /usr/local/doc/postgresql , but if the prefix is /opt/postgres ,
then it will be in /opt/postgres/doc . The public C header files of the client interfaces are
installed into includedir ~ and are namespace-clean. The internal header files and the server
header files are installed into private directories under includedir . See the documentation
of each interface for information about how to get at the its header files. Finally, a private sub-
directory will also be created, if appropriate, under libdir ~ for dynamically loadable modules.

--with-includes= DIRECTORIES

DIRECTORIES s a colon-separated list of directories that will be added to the list the
compiler searches for header files. If you have optional packages (such as GNU Readline)
installed in a non-standard location, you have to use this option and probably also the corre-
sponding--with-libraries option.

Example:--with-includes=/opt/gnu/include:/usr/sup/include
--with-libraries= DIRECTORIES

DIRECTORIES:is a colon-separated list of directories to search for libraries. You will prob-
ably have to use this option (and the corresponédiwgh-includes option) if you have
packages installed in non-standard locations.

Example:--with-libraries=/opt/gnu/lib:/usr/sup/lib
--enable-nls[= LANGUAGES

Enables Native Language Support (NLS), that is, the ability to display a program’s mes-
sages in a language other than EnglisANGUAGES$ a space separated list of codes of
the languages that you want supported, for exampl@able-nis="de fr . (The in-
tersection between your list and the set of actually provided translations will be computed
automatically.) If you do not specify a list, then all available translations are installed.

To use this option, you will need an implementation of the Gettext API; see above.
--with-pgport= NUMBER

SetNUMBERSs the default port number for server and clients. The default is 5432. The port
can always be changed later on, but if you specify it here then both server and clients will
have the same default compiled in, which can be very convenient. Usually the only good
reason to select a non-default value is if you intend to run multiple PostgreSQL servers on
the same machine.

202

Chapter 14. Installation Instructions

--with-perl

Build the PL/Perl server-side language.
--with-python

Build the PL/Python server-side language.
--with-tcl

Build components that require Tcl/Tk, which are libpgtcl, pgtclsh, pgtksh, and PL/Tcl. But
see below aboutwithout-tk

--without-tk
If you specify--with-tcl and this option, then the program that requires Tk (pgtksh) will
be excluded.

--with-tclconfig= DIRECTORY

--with-tkconfig= DIRECTORY

Tcl/Tk installs the filesiclConfig.sh andtkConfig.sh , which contain configuration
information needed to build modules interfacing to Tcl or Tk. These files are normally found
automatically at their well-known locations, but if you want to use a different version of Tcl
or Tk you can specify the directory in which to find them.

--with-java
Build the JDBC driver and associated Java packages.

--with-krb4[= ~ DIRECTORY
--with-krb5[= DIRECTORY

Build with support for Kerberos authentication. You can use either Kerberos version 4 or
5, but not both. TheDIRECTORYargument specifies the root directory of the Kerberos
installation;/usr/athena is assumed as default. If the relevant header files and libraries
are not under a common parent directory, then you must usevthie-includes and
--with-libraries options in addition to this option. If, on the other hand, the required
files are in a location that is searched by default (éugr/lib), then you can leave off

the argument.

configure will check for the required header files and libraries to make sure that your
Kerberos installation is sufficient before proceeding.

--with-krb-srvnam= NAME

The name of the Kerberos service principaistgres is the default. There’s probably no
reason to change this.

--with-openssl[= DIRECTORY

Build with support for SSL (encrypted) connections. This requires the OpenSSL package
to be installed. ThOIRECTORYargument specifies the root directory of the OpenSSL
installation; the default i&isr/local/ssl

configure will check for the required header files and libraries to make sure that your
OpenSSL installation is sufficient before proceeding.

--with-pam
Build with PAM (Pluggable Authentication Modules) support.
--without-readline

Prevents the use of the Readline library. This disables command-line editing and history in
psql, so it is not recommended.

203

Chapter 14. Installation Instructions

--with-rendezvous
Build with Rendezvous support.
--disable-spinlocks

Allow the builds to succeed even if PostgreSQL has no CPU spinlock support for the plat-
form. The lack of spinlock support will result in poor performance; therefore, this option
should only be used if the build aborts and informs you that the platform lacks spinlock
support.

--enable-thread-safety

Make the client libraries thread-safe. This allows concurrent threads in libpgq and ECPG
programs to safely control their private connection handles.

--without-zlib

Prevents the use of the Zlib library. This disables compression support in pg_dump. This
option is only intended for those rare systems where this library is not available.

--enable-debug

Compiles all programs and libraries with debugging symbols. This means that you can run
the programs through a debugger to analyze problems. This enlarges the size of the installed
executables considerably, and on non-GCC compilers it usually also disables compiler opti-
mization, causing slowdowns. However, having the symbols available is extremely helpful
for dealing with any problems that may arise. Currently, this option is recommended for
production installations only if you use GCC. But you should always have it on if you are
doing development work or running a beta version.

--enable-cassert

Enablesassertionchecks in the server, which test for many “can’t happen” conditions. This

is invaluable for code development purposes, but the tests slow things down a little. Also,
having the tests turned on won't necessarily enhance the stability of your server! The asser-
tion checks are not categorized for severity, and so what might be a relatively harmless bug
will still lead to server restarts if it triggers an assertion failure. Currently, this option is not
recommended for production use, but you should have it on for development work or when
running a beta version.

--enable-depend

Enables automatic dependency tracking. With this option, the makefiles are set up so that
all affected object files will be rebuilt when any header file is changed. This is useful if you
are doing development work, but is just wasted overhead if you intend only to compile once
and install. At present, this option will work only if you use GCC.

If you prefer a C compiler different from the omenfigure picks then you can set the envi-
ronment variableCto the program of your choice. By defauttinfigure will pick gcc unless

this is inappropriate for the platform. Similarly, you can override the default compiler flags with
the CFLAGSvariable.

You can specify environment variables on tlwafigure command line, for example:
Jconfigure CC=/opt/bin/gcc CFLAGS="-O2 -pipe’

2. Build

204

Chapter 14. Installation Instructions

To start the build, type
gmake

(Remember to use GNU make.) The build may take anywhere from 5 minutes to half an hour
depending on your hardware. The last line displayed should be

All of PostgreSQL is successfully made. Ready to install.

Regression Tests

If you want to test the newly built server before you install it, you can run the regression tests at
this point. The regression tests are a test suite to verify that PostgreSQL runs on your machine in
the way the developers expected it to. Type

gmake check

(This won’t work as root; do it as an unprivileged us€t)apter 2&ontains detailed information
about interpreting the test results. You can repeat this test at any later time by issuing the same
command.

Installing The Files

Note: If you are upgrading an existing system and are going to install the new files over the
old ones, then you should have backed up your data and shut down the old server by now,
as explained in Section 14.4 above.

To install PostgreSQL enter

gmake install

This will install files into the directories that were specifiedstep 1 Make sure that you have
appropriate permissions to write into that area. Normally you need to do this step as root. Alterna-
tively, you could create the target directories in advance and arrange for appropriate permissions
to be granted.

You can usegmake install-strip instead ofgmake install to strip the executable files

and libraries as they are installed. This will save some space. If you built with debugging support,
stripping will effectively remove the debugging support, so it should only be done if debugging
is no longer neededhstall-strip tries to do a reasonable job saving space, but it does not
have perfect knowledge of how to strip every unneeded byte from an executable file, so if you
want to save all the disk space you possibly can, you will have to do manual work.

The standard installation provides only the header files needed for client application development.
If you plan to do any server-side program development (such as custom functions or data types
written in C), then you may want to install the entire PostgreSQL include tree into your target
include directory. To do that, enter

gmake install-all-headers

This adds a megabyte or two to the installation footprint, and is only useful if you don't plan to
keep the whole source tree around for reference. (If you do, you can just use the source’s include
directory when building server-side software.)

Client-only installation: If you want to install only the client applications and interface libraries,
then you can use these commands:

gmake -C src/bin install
gmake -C src/include install

205

Chapter 14. Installation Instructions

gmake -C srcfinterfaces install
gmake -C doc install

Uninstallation: To undo the installation use the commamdake uninstall . However, this will
not remove any created directories.

Cleaning: After the installation you can make room by removing the built files from the source tree
with the commandymake clean . This will preserve the files made by thenfigure program, so

that you can rebuild everything withmake later on. To reset the source tree to the state in which
it was distributed, usgmake distclean . If you are going to build for several platforms from the
same source tree you must do this and re-configure for each build.

If you perform a build and then discover that yaonfigure options were wrong, or if you change
anything thatonfigure investigates (for example, software upgrades), then it's a good idea to do
gmake distclean before reconfiguring and rebuilding. Without this, your changes in configuration
choices may not propagate everywhere they need to.

14.6. Post-Installation Setup

14.6.1. Shared Libraries

On some systems that have shared libraries (which most systems do) you need to tell your system
how to find the newly installed shared libraries. The systems on which thistisecessary in-

clude BSD/OS, FreeBSD, HP-UX, IRIX, Linux, NetBSD, OpenBSD, Tru64 UNIX (formerly Digital
UNIX), and Solaris.

The method to set the shared library search path varies between platforms, but the most widely usable
method is to set the environment varialhle LIBRARY_PATHIlike so: In Bourne shellssh, ksh,
bash, zsh)

LD_LIBRARY_PATH=/usr/local/pgsql/lib
export LD_LIBRARY_PATH

or incsh ortcsh

setenv LD_LIBRARY_PATH /usr/local/pgsql/lib

Replace/usr/local/pgsql/lib with whatever you set-libdir to in step 1 You should

put these commands into a shell start-up file sucheasprofile or ~/.bash_profile

Some good information about the caveats associated with this method can be found at
http://lwww.visi.com/~barr/ldpath.html.

On some systems it might be preferable to set the environment variabRUN_PATHeforebuild-
ing.
On Cygwin, put the library directory in tHeATHor move thedll files into thebin directory.

If in doubt, refer to the manual pages of your system (perlthps orrld). If you later on get a
message like

psql: error in loading shared libraries
libpg.s0.2.1: cannot open shared object file: No such file or directory

then this step was necessary. Simply take care of it then.

If you are on BSD/OS, Linux, or SunOS 4 and you have root access you can run

206

Chapter 14. Installation Instructions

/sbin/ldconfig /usr/local/pgsql/lib

(or equivalent directory) after installation to enable the run-time linker to find the shared libraries
faster. Refer to the manual pageldféonfig for more information. On FreeBSD, NetBSD, and
OpenBSD the command is

/sbin/ldconfig -m /usr/local/pgsql/lib

instead. Other systems are not known to have an equivalent command.

14.6.2. Environment Variables

If you installed into/usr/local/pgsql or some other location that is not searched for programs by
default, you should adflisr/local/pgsql/bin (or whatever you setbindir to in step J into

your PATH Strictly speaking, this is not necessary, but it will make the use of PostgreSQL much more
convenient.

To do this, add the following to your shell start-up file, such -dsash_profile (or
letc/profile , if you want it to affect every user):

PATH=/usr/local/pgsql/bin:$PATH
export PATH

If you are usingesh ortcsh , then use this command:

set path = (/usr/local/pgsql/bin $path)

To enable your system to find the man documentation, you need to add lines like the following to a
shell start-up file unless you installed into a location that is searched by default.

MANPATH=/usr/local/pgsgl/man:$MANPATH
export MANPATH

The environment variableBGHOSTand PGPORTspecify to client applications the host and port of

the database server, overriding the compiled-in defaults. If you are going to run client applications
remotely then it is convenient if every user that plans to use the databaseGsedsST This is not
required, however: the settings can be communicated via command line options to most client pro-
grams.

14.7. Supported Platforms

PostgreSQL has been verified by the developer community to work on the platforms listed below. A
supported platform generally means that PostgreSQL builds and installs according to these instruc-
tions and that the regression tests pass.

Note: If you are having problems with the installation on a supported platform, please write to
<pgsql-bugs@postgresql.org > or <pgsgl-ports@postgresqgl.org >, not to the people listed
here.

207

Chapter 14. Installation Instructions

OS Processor \Version Reported Remarks

AIX RS6000 7.4 2003-10-25, see also
Hans-Jlrgen doc/FAQ_AIX
Schonig

(<hs@cybertec.at | >)

BSD/OS x86 7.4 2003-10-24, Bruce4.3
Momijian
(<pgman@candle.pha.pa.us >)

FreeBSD Alpha 7.4 2003-10-25, Peter4.8
Eisentraut
(<peter_e@gmx.net >)

FreeBSD X86 7.4 2003-10-24, Peter4.9
Eisentraut
(<peter_e@gmx.net >)

HP-UX PA-RISC 7.4 2003-10-31, 10.2@cc andcc; see
Tom Lane also

(<tgl@sss.pgh.pa.ugdoc/FAQ_HPUX
2003-11-04, 11.00,
Peter Eisentraut
(<peter_e@gmx.net >)

IRIX MIPS 7.4 2003-11-12, Robef.5.20,cc only
E. Bruccoleri
(<bruc@stone.congenomics.com >)

Linux Alpha 7.4 2003-10-25, Noel 2.4
Kéthe
(<noel@debian.org| >)

Linux arm41 7.4 2003-10-25, Noél 2.4
Kéthe
(<noel@debian.org| >)

Linux [tanium 7.4 2003-10-25, Noel 2.4
Kothe
(<noel@debian.org| >)

Linux m68k 7.4 2003-10-25, Noel 2.4
Kothe
(<noel@debian.org | >)

Linux MIPS 7.4 2003-10-25, Noel 2.4
Kothe
(<noel@debian.org | >)

208

Chapter 14. Installation Instructions

0S Processor \Version Reported Remarks
Linux Opteron 7.4 2003-11-01, Jani 2.6
Averbach

(<jaa@cc.jyu.fi >)

Linux PPC 7.4 2003-10-25, Noel
Kothe
(<noel@debian.org | >)

Linux S/390 7.4 2003-10-25, Noel 2.4
Kothe
(<noel@debian.org | >)

Linux Sparc 7.4 2003-10-24, Peter|2.4, 32-bit
Eisentraut
(<peter_e@gmx.net >)

Linux X86 7.4 2003-10-24, Peter2.4
Eisentraut
(<peter_e@gmx.net >)

Mac OS X PPC 7.4 2003-10-24, 10.2.8
Adam Witney
(<awitney@sghms.ac.uk >),
10.3, Marko
Karppinen

(<marko@karppinen.fi ~ >)

NetBSD arm32 7.4 2003-11-12, Patrigk.6ZE/acorn32
Welche
(<prlwl@newn.camiac.uk >)

NetBSD Sparc 7.4.1 2003-11-26, Peter(1.6.1, 32-bit
Eisentraut
(<peter_e@gmx.net >)

NetBSD x86 7.4 2003-10-24, Peter1.6
Eisentraut
(<peter_e@gmx.net >)

OpenBSD Sparc 7.4 2003-11-01, Peter3.4
Eisentraut
(<peter_e@gmx.net >)

OpenBSD X86 7.4 2003-10-24, Peter(3.2
Eisentraut
(<peter_e@gmx.net >)

209

Chapter 14. Installation Instructions

0S

Processor

\Version

Reported

Remarks

Solaris

Sparc

7.4

2003-10-26,

2.8; see also

Christopher Browrjgoc/FAQ_Solaris
(<cbbrowne@libertyrms.info >)

Solaris

X86

7.4

2003-10-26, Kurt
Roeckx
(<Q@ping.be >)

2.6; see also
doc/FAQ_Solaris

Tru64 UNIX

Alpha

7.4

2003-10-25, 5.1b,
Peter Eisentraut

(<peter_e@gmx.netf >);

2003-10-29, 4.0g,
)Alessio Bragadini

(<alessio@albourng.com >)

UnixWare

X86

7.4

2003-11-03, Larry
Rosenman
(<ler@lerctr.org

7.1.3; join test may
fail, see also
dep/FAQ_SCO

'Windows with
Cygwin

X86

7.4

2003-10-24, Peter
Eisentraut

see
doc/FAQ_MSWIN

(<peter_e@gmx.net >)

'Windows

X86

7.4

2003-10-27, Dave
Page

native is client-sid
only, seeChapter

(<dpage@vale-housiry.co.uk >)

Unsupported Platforms: The following platforms are either known not to work, or they used to work

in a previous release and we did not receive explicit confirmation of a successful test with version 7.4
at the time this list was compiled. We include these here to let you know that these platfoutds

be supported if given some attention.

0oS Processor \Version Reported Remarks

BeOS x86 7.2 2001-11-29, Cyril needs updates to
\Velter semaphore code
(<cyril.velter@libertysurf.fr >

Linux PlayStation 2 7.4 2003-11-02, Peter| needs new

Eisentraut config.guess
(<peter_e@gmx.net--dijable-spinlocks ,
#undef
HAS_TEST_AND_SET

disable

tas_dummy()
2003-10-25, Noél needs

Kothe --disable-spinlocks ,
(<noel@debian.org |oth&rwise OK

Linux PA-RISC 7.4

210

Chapter 14. Installation Instructions

0S

Processor

\Version

Reported

Remarks

NetBSD

Alpha

7.2

2001-

(<tom@minnesota.g

11-20, Thomas Thai

1.5W

om >)

NetBSD

MIPS

7.2.1

2002-06-13,
Warwick Hunter
(<whunter@agile.tv

153

>)

NetBSD

PPC

7.2

2001-11-28, Bill
Studenmund

(<wrstuden@netbsd.

NetBSD

IVAX

7.1

Helbekkmo
(<tih@kpnQwest.no

2001-03-30, Tom I1.

>)

QNX 4 RTOS

X86

7.2

2001-12-10, Berng
Tegge
(<tegge@repas-aeg

heeds updates to
semaphore code;
ke alsp
doc/FAQ_QNX4

QNX RTOS v6

X86

7.2

2001-11-20, Igor
Kovalenko

(<Igor.Kovalenko @fat@faa.cdn >

patches available
archives, but too

SCO OpenServer

X86

7.3.1

2002-12-11,
Shibashish Satpat
(<shib@postmark.n

5.0.4,gcc ; see alsq
kiyc/FAQ_SCO
pt -~ >)

D

SunOS 4

Sparc

7.2

2001-12-04, Tatsu
Ishii
(<t-ishii@sra.co.jp

>)

211

Chapter 15. Installation on Windows

Although PostgreSQL is written for Unix-like operating systems, the C client library (libpg) and
the interactive terminal (psql) can be compiled natively under Windows. The makefiles included in
the source distribution are written for Microsoft Visual C++ and will probably not work with other
systems. It should be possible to compile the libraries manually in other cases.

Tip: If you are using Windows 98 or newer you can build and use all of PostgreSQL “the Unix
way” if you install the Cygwin toolkit first. In that case see Chapter 14.

To build everything that you can on Windows, change intostlee directory and type the command

nmake /f win32.mak

This assumes that you have Visual C++ in your path.

The following files will be built:

interfaces\libpg\Release\libpg.dll

The dynamically linkable frontend library
interfaces\libpg\Release\libpgdil.lib

Import library to link your programs ttbpg.dil
interfaces\libpg\Release\libpg.lib

Static library version of the frontend library
bin\psql\Release\psql.exe

The PostgreSQL interactive terminal

The only file that really needs to be installed is tigq.dll library. This file should in most
cases be placed in thieINNT\SYSTEM32directory (or inWINDOWS\SYSTE®N a Windows 95/98/ME
system). If this file is installed using a setup program, it should be installed with version checking
using theVERSIONINFOresource included in the file, to ensure that a newer version of the library is
not overwritten.

If you plan to do development using libpg on this machine, you will have to addrthieclude

andsrcinterfaces\libpg subdirectories of the source tree to the include path in your compilers
settings.
To use the library, you must add thiepqdil.lib file to your project. (In Visual C++, just right-

click on the project and choose to add it.)

psql is compiled as a “console application”. As the Windows console windows use a different en-
coding than the rest of the system, you must take special care when using 8-bit characters at the psql
prompt. When psql detects a problematic console code page, it will warn you at startup. To change
the console code page, two things are neccessary:

« Set the code page by enteriognd.exe /c chcp 1252 . (1252 is a code page that is appropri-
ate for German; replace it with your value.) If you are using Cygwin, you can put this command in
[etc/profile

212

Chapter 15. Installation on Windows

. Set the console font to “Lucida Console”, because the raster font does not work with the ANSI
code page.

213

Chapter 16. Server Run-time Environment

This chapter discusses how to set up and run the database server and the interactions with the operating
system.

16.1. The PostgreSQL User Account

As with any other server daemon that is connected to outside world, it is advisable to run PostgreSQL
under a separate user account. This user account should only own the data that is managed by the
server, and should not be shared with other daemons. (For example, using thebosggr is a bad

idea.) Itis not advisable to install executables owned by this user because compromised systems could
then modify their own binaries.

To add a Unix user account to your system, look for a commaseeadd or adduser . The user
name postgres is often used but is by no means required.

16.2. Creating a Database Cluster

Before you can do anything, you must initialize a database storage area on disk. We calhthisese

cluster. (SQL uses the term catalog cluster instead.) A database cluster is a collection of databases
is accessible by a single instance of a running database server. After initialization, a database cluster
will contain a database namesinplatel . As the name suggests, this will be used as a template for
subsequently created databases; it should not be used for actual workhg@ser 18or information

about creating databases.)

In file system terms, a database cluster will be a single directory under which all data will be stored.
We call this thedata directoryor data area It is completely up to you where you choose to
store your data. There is no default, although locations suclusaocal/pgsgl/data or
Ivarllib/pgsgl/data are popular. To initialize a database cluster, use the comrimitdd

which is installed with PostgreSQL. The desired file system location of your database system is
indicated by theD option, for example

$ initdb -D /usr/local/pgsql/data

Note that you must execute this command while logged into the PostgreSQL user account, which is
described in the previous section.

Tip: As an alternative to the -D option, you can set the environment variable PGDATA

initdb will attempt to create the directory you specify if it does not already exist. It is likely that

it will not have the permission to do so (if you followed our advice and created an unprivileged
account). In that case you should create the directory yourself (as root) and change the owner to be
the PostgreSQL user. Here is how this might be done:

root# mkdir /usr/local/pgsql/data

root# chown postgres /usr/local/pgsqgl/data
root# su postgres

postgres$ initdb -D /ust/local/pgsql/data

214

Chapter 16. Server Run-time Environment

initdb will refuse to run if the data directory looks like it it has already been initialized.

Because the data directory contains all the data stored in the database, it is essential that it be se-
cured from unauthorized accesstdb therefore revokes access permissions from everyone but the
PostgreSQL user.

However, while the directory contents are secure, the default client authentication setup allows any
local user to connect to the database and even become the database superuser. If you do not trust other
local users, we recommend you usiedb 's -W or --pwprompt option to assign a password to the
database superuser. Afteitdb , modify thepg_hba.conf file to usemd5or password instead of

trust authenticatiorbeforeyou start the server for the first time. (Other approaches include using
ident authentication or file system permissions to restrict connectionsC8apter 19or more
information.)

initdb also initializes the default locale for the database cluster. Normally, it will just take the locale
settings in the environment and apply them to the initialized database. It is possible to specify a
different locale for the database; more information about that can be fousection 20.1The sort

order used within a particular database cluster is seébibjp and cannot be changed later, short

of dumping all data, rerunninigitdb , and reloading the data. So it's important to make this choice
correctly the first time.

16.3. Starting the Database Server

Before anyone can access the database, you must start the database server. The database server pro-
gram is calledhostmaster . Thepostmaster must know where to find the data it is supposed to
use. This is done with th® option. Thus, the simplest way to start the server is:

$ postmaster -D /usr/local/pgsql/data

which will leave the server running in the foreground. This must be done while logged into the Post-
greSQL user account. Withou, the server will try to use the data directory in the environment
variablePGDATAIf neither of these succeed, it will fail.

To start thepostmaster in the background, use the usual shell syntax:
$ postmaster -D /usr/local/pgsql/data >logfile 2 >&1 &

Itis an important to store the server’s stdout and stderr output somewhere, as shown above. It will help
for auditing purposes and to diagnose problems. &asion 21.3or a more thorough discussion of
log file handling.)

The postmaster also takes a number of other command line options. For more information, see
the reference page arkection 16.4velow. In particular, in order for the server to accept TCP/IP
connections (rather than just Unix-domain socket ones), you must specify thaion.

This shell syntax can get tedious quickly. Therefore the shell script wragpeti is provided to
simplify some tasks. For example:

pg_ctl start -I logfile
will start the server in the background and put the output into the named log fileDTbption has
the same meaning here as in thwstmaster . pg_ctl is also capable of stopping the server.

Normally, you will want to start the database server when the computer boots. Autostart
scripts are operating system-specific. There are a few distributed with PostgreSQL in the
contrib/start-scripts directory. This may require root privileges.

215

Chapter 16. Server Run-time Environment

Different systems have different conventions for starting up daemons at boot time. Many systems have
a file /etc/rc.local or /etc/rc.d/rc.local . Others usec.d directories. Whatever you do,

the server must be run by the PostgreSQL user acanahhot by rooor any other user. Therefore

you probably should form your commands usgng-c '..." postgres . For example:

su -c 'pg_ctl start -D /usr/local/pgsql/data -I serverlog’ postgres

Here are a few more operating system specific suggestions. (Always replace these with the proper
installation directory and the user name.)

- For FreeBSD, look at the fileontrib/start-scripts/freebsd in the PostgreSQL source
distribution.

« On OpenBSD, add the following lines to the fikc/rc.local

if [-x /usr/local/pgsql/bin/pg_ctl -a -x /usr/local/pgsqgl/bin/postmaster]; then
su - -c 'lusr/local/pgsql/bin/pg_ctl start -I /var/postgresqgl/llog -s’ postgres
echo -n ’ postgresql’
fi
« On Linux systems either add
lusr/local/pgsql/bin/pg_ctl start -I logfile -D /usr/local/pgsql/data

to /etc/rc.d/rc.local or look at the filecontrib/start-scripts/linux in the Post-
greSQL source distribution.

« On NetBSD, either use the FreeBSD or Linux start scripts, depending on preference.
« On Solaris, create a file calleekc/init.d/postgresq| that contains the following line:
su - postgres -c "/ust/local/pgsqgl/bin/pg_ctl start -l logfile -D /usr/local/pgsgl/data”

Then, create a symbolic link to it iletc/rc3.d asS99postgresql

While thepostmaster is running, its PID is stored in the fijgstmaster.pid in the data directory.
This is used to prevent multipl@ostmaster processes running in the same data directory and can
also be used for shutting down thestmaster process.

16.3.1. Server Start-up Failures

There are several common reasons the server might fail to start. Check the server’s log file, or start it
by hand (without redirecting standard output or standard error) and see what error messages appear.
Below we explain some of the most common error messages in more detail.

LOG: could not bind IPv4 socket: Address already in use
HINT: Is another postmaster already running on port 5432? If not, wait a few seconds and retry.
FATAL: could not create TCP/IP listen socket

This usually means just what it suggests: you tried to start anptismaster on the same port
where one is already running. However, if the kernel error message igdunéss already

in use or some variant of that, there may be a different problem. For example, trying to start a
postmaster on a reserved port number may draw something like:

$ postmaster -i -p 666
LOG: could not bind IPv4 socket: Permission denied

216

Chapter 16. Server Run-time Environment

HINT: Is another postmaster already running on port 6667 If not, wait a few seconds and retry.
FATAL: could not create TCP/IP listen socket

A message like

FATAL: could not create shared memory segment: Invalid argument
DETAIL: Failed system call was shmget(key=5440001, size=4011376640, 03600).

probably means your kernel’s limit on the size of shared memory is smaller than the work area
PostgreSQL is trying to create (4011376640 bytes in this example). Or it could mean that you do
not have System-V-style shared memory support configured into your kernel at all. As a temporary
workaround, you can try starting the server with a smaller-than-normal number of beffeswifch).

You will eventually want to reconfigure your kernel to increase the allowed shared memory size. You
may also see this message when trying to start multiple servers on the same machine, if their total
space requested exceeds the kernel limit.

An error like

FATAL: could not create semaphores: No space left on device
DETAIL: Failed system call was semget(5440126, 17, 03600).

doesnot mean you've run out of disk space. It means your kernel’s limit on the number of System

V semaphores is smaller than the number PostgreSQL wants to create. As above, you may be able to
work around the problem by starting the server with a reduced number of allowed connegtions (
switch), but you'll eventually want to increase the kernel limit.

If you get an “illegal system call” error, it is likely that shared memory or semaphores are not sup-
ported in your kernel at all. In that case your only option is to reconfigure the kernel to enable these
features.

Details about configuring System V IPC facilities are giveisaction 16.5.1

16.3.2. Client Connection Problems

Although the error conditions possible on the client side are quite varied and application-dependent,
a few of them might be directly related to how the server was started up. Conditions other than those
shown below should be documented with the respective client application.

psql: could not connect to server: Connection refused
Is the server running on host "server.joe.com" and accepting
TCP/IP connections on port 54327

This is the generic “I couldn’t find a server to talk to” failure. It looks like the above when TCP/IP
communication is attempted. A common mistake is to forget to configure the server to allow TCP/IP
connections.

Alternatively, you'll get this when attempting Unix-domain socket communication to a local server:

psql: could not connect to server: No such file or directory
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

217

Chapter 16. Server Run-time Environment

The last line is useful in verifying that the client is trying to connect to the right place. If there
is in fact no server running there, the kernel error message will typically be eftrerection
refused or No such file or directory , as illustrated. (It is important to realize that
Connection refused in this context doesiot mean that the server got your connection request
and rejected it. That case will produce a different message, as sho8ection 19.3 Other error
messages such &snnection timed out may indicate more fundamental problems, like lack of
network connectivity.

16.4. Run-time Configuration

There are a lot of configuration parameters that affect the behavior of the database system. In this
subsection, we describe how to set configuration parameters; the following subsections discuss each
parameter in detail.

All parameter names are case-insensitive. Every parameter takes a value of one of the four types:
boolean, integer, floating point, and string. Boolean value®©ar©FF, TRUE FALSE, YES NQ 1, 0
(case-insensitive) or any non-ambiguous prefix of these.

One way to set these parameters is to edit thedisegresql.conf in the data directory. (A default
file is installed there.) An example of what this file might look like is:

This is a comment
log_connections = yes
syslog = 2

search_path = ’$user, public’

One parameter is specified per line. The equal signh between name and value is optional. Whitespace
is insignificant and blank lines are ignored. Hash matisntroduce comments anywhere. Parameter
values that are not simple identifiers or numbers should be single-quoted.

The configuration file is reread whenever fstmaster process receives a SIGHUP signal (which

is most easily sent by meansgf_ctl reload). Thepostmaster also propagates this signal to

all currently running server processes so that existing sessions also get the new value. Alternatively,
you can send the signal to a single server process directly.

A second way to set these configuration parameters is to give them as a command line option to the
postmaster , such as:

postmaster -c log_connections=yes -c syslog=2

Command-line options override any conflicting settingsdstgresql.conf

Occasionally it is also useful to give a command line option to one particular session only. The envi-
ronment variabl@GOPTIONSan be used for this purpose on the client side:

env PGOPTIONS="-c geqo=off psql

(This works for any libpg-based client application, not just psqgl.) Note that this won’t work for pa-
rameters that are fixed when the server is started, such as the port number.

Furthermore, it is possible to assign a set of option settings to a user or a database. Whenever a session
is started, the default settings for the user and database involved are loaded. The comirmards
DATABASEandALTER USERrespectively, are used to configure these settings. Per-database settings
override anything received from tipestmaster command-line or the configuration file, and in turn

are overridden by per-user settings; both are overridden by per-session options.

218

Chapter 16. Server Run-time Environment

Some parameters can be changed in individual SQL sessions wiiiEfheommand, for example:
SET ENABLE_SEQSCAN TO OFF;

If SETis allowed, it overrides all other sources of values for the parameter. Superusers are allowed to
SET more values than ordinary users.

The SHOWcommand allows inspection of the current values of all parameters.

The virtual tablepg_settings (described inSection 43.3% also allows displaying and updating
session run-time parameters. It is equivalenskwand SET, but can be more convenient to use
because it can be joined with other tables, or selected from using any desired selection condition.

16.4.1. Connections and Authentication

16.4.1.1. Connection Settings

tcpip_socket (boolean)
If this is true, then the server will accept TCP/IP connections. Otherwise only local Unix domain
socket connections are accepted. It is off by default. This option can only be set at server start.
max_connections (integer)

Determines the maximum number of concurrent connections to the database server. The default
is typically 100, but may be less if your kernel settings will not support it (as determined during
initdb). This parameter can only be set at server start.

Increasing this parameter may cause PostgreSQL to request more System V shared memory or
semaphores than your operating system’s default configuration allowsSeatien 16.5.Tor
information on how to adjust these parameters, if necessary.

superuser_reserved_connections (integer)

Determines the number of “connection slots” that are reserved for connections by PostgreSQL
superusers. At mostnax_connections ~ connections can ever be active simultaneously.
Whenever the number of active concurrent connections is at d@astconnections minus
superuser_reserved_connections , hew connections will be accepted only for superusers.

The default value is 2. The value must be less than the valu@wfconnections . This pa-
rameter can only be set at server start.
port (integer)
The TCP port the server listens on; 5432 by default. This option can only be set at server start.
unix_socket_directory (string)

Specifies the directory of the Unix-domain socket on which the server is to listen for connections
from client applications. The default is normaltynp , but can be changed at build time.

unix_socket_group (string)

Sets the group owner of the Unix domain socket. (The owning user of the socket is always the
user that starts the server.) In combination with the optigiR_socket_permissions this

can be used as an additional access control mechanism for this socket type. By default this is the
empty string, which uses the default group for the current user. This option can only be set at
server start.

219

Chapter 16. Server Run-time Environment

unix_socket_permissions (integer)

Sets the access permissions of the Unix domain socket. Unix domain sockets use the usual Unix
file system permission set. The option value is expected to be an numeric mode specification in
the form accepted by thehmod andumask system calls. (To use the customary octal format the
number must start with @ (zero).)

The default permissions ag¥77, meaning anyone can connect. Reasonable alternatives are
0770 (only user and group, see also undeix_socket group) and0700 (only user). (Note

that actually for a Unix domain socket, only write permission matters and there is no point in
setting or revoking read or execute permissions.)

This access control mechanism is independent of the one describédjter 19
This option can only be set at server start.
virtual_host (string)

Specifies the host name or IP address on which the server is to listen for connections from client
applications. The default is to listen on all configured addresses (including localhost).

rendezvous_name (string)

Specifies the Rendezvous broadcast name. By default, the computer name is used, specified as .

16.4.1.2. Security and Authentication

authentication_timeout (integer)

Maximum time to complete client authentication, in seconds. If a would-be client has not com-
pleted the authentication protocol in this much time, the server breaks the connection. This pre-
vents hung clients from occupying a connection indefinitely. This option can only be set at server
start or in thepostgresql.conf file. The default is 60.

ssl (boolean)
Enables SSL connections. Please rBadtion 16.before using this. The default is off.
password_encryption (boolean)

When a password is specified GREATE USERor ALTER USERwithout writing either
ENCRYPTEDr UNENCRYPTEDhis option determines whether the password is to be encrypted.
The default is on (encrypt the password).

krb_server_keyfile (string)

Sets the location of the Kerberos server key file. Seetion 19.2.3or details.
db_user_namespace (boolean)

This allows per-database user names. It is off by default.

If this is on, you should create users @&ername@dbname. Whenusername is passed by a
connecting client@and the database name is appended to the user name and that database-
specific user name is looked up by the server. Note that when you create users with names
containing@within the SQL environment, you will need to quote the user name.

With this option enabled, you can still create ordinary global users. Simply ap@eviten
specifying the user name in the client. T@wvill be stripped off before the user name is looked
up by the server.

220

Chapter 16. Server Run-time Environment

Note: This feature is intended as a temporary measure until a complete solution is found. At
that time, this option will be removed.

16.4.2. Resource Consumption

16.4.2.1. Memory

shared_buffers (integer)

Sets the number of shared memory buffers used by the database server. The default is typically
1000, but may be less if your kernel settings will not support it (as determined during initdb).
Each buffer is 8192 bytes, unless a different valuBibEKSzZwas chosen when building the
server. This setting must be at least 16, as well as at least twice the vahag aonnections
however, settings significantly higher than the minimum are usually needed for good perfor-
mance. Values of a few thousand are recommended for production installations. This option can
only be set at server start.

Increasing this parameter may cause PostgreSQL to request more System V shared memory than
your operating system’s default configuration allows. Seetion 16.5.for information on how
to adjust these parameters, if necessary.

sort_mem (integer)

Specifies the amount of memory to be used by internal sort operations and hash tables before
switching to temporary disk files. The value is specified in kilobytes, and defaults to 1024 kilo-
bytes (1 MB). Note that for a complex query, several sort or hash operations might be running in
parallel; each one will be allowed to use as much memory as this value specifies before it starts
to put data into temporary files. Also, several running sessions could be doing sort operations
simultaneously. So the total memory used could be many times the vadug afiem . Sort op-
erations are used BYRDER BYmerge joins, an€REATE INDEXHash tables are used in hash
joins, hash-based aggregation, and hash-based procesdimgsabqueries. BecauseREATE

INDEX is used when restoring a database, increasingmem before doing a large restore
operation can improve performance.

vacuum_mem(integer)

Specifies the maximum amount of memory to be used MaCUUMto keep track of
to-be-reclaimed rows. The value is specified in kilobytes, and defaults to 8192 kB. Larger
settings may improve the speed of vacuuming large tables that have many deleted rows.

16.4.2.2. Free Space Map

max_fsm_pages (integer)

Sets the maximum number of disk pages for which free space will be tracked in the shared
free-space map. Six bytes of shared memory are consumed for each page slot. This setting must
be more than 16 fmax_fsm_relations . The default is 20000. This option can only be set at
server start.

221

Chapter 16. Server Run-time Environment

max_fsm_relations (integer)
Sets the maximum number of relations (tables and indexes) for which free space will be tracked
in the shared free-space map. Roughly fifty bytes of shared memory are consumed for each slot.
The default is 1000. This option can only be set at server start.

16.4.2.3. Kernel Resource Usage

max_files_per_process (integer)

Sets the maximum number of simultaneously open files allowed to each server subprocess. The
default is 1000. If the kernel is enforcing a safe per-process limit, you don’t need to worry about
this setting. But on some platforms (notably, most BSD systems), the kernel will allow individual
processes to open many more files than the system can really support when a large number of
processes all try to open that many files. If you find yourself seeing “Too many open files”
failures, try reducing this setting. This option can only be set at server start.

preload_libraries (string)

This variable specifies one or more shared libraries that are to be preloaded at server start. A
parameterless initialization function can optionally be called for each library. To specify that,
add a colon and the name of the initialization function after the library name. For example
'$libdir/mylib:mylib_init’ would causenylib to be preloaded anaylib_init to be
executed. If more than one library is to be loaded, separate their names with commas.

If mylib or mylib_init are not found, the server will fail to start.

PostgreSQL procedural language libraries may be preloaded in this way, typically by using the
syntax $libdir/pIXXX:pIXXX_init’ wherexXXis pgsql , perl ,tcl , orpython .

By preloading a shared library (and initializing it if applicable), the library startup time is avoided
when the library is first used. However, the time to start each new server process may increase,
even if that process never uses the library.

16.4.3. Write Ahead Log
See als@&ection 25.3or details on WAL tuning.

16.4.3.1. Settings

fsync (boolean)

If this option is on, the PostgreSQL server will use fiync() system call in several places
to make sure that updates are physically written to disk. This insures that a database cluster will
recover to a consistent state after an operating system or hardware crash. (Crashes of the database

server itself areot related to this.)
However, usingsync() results in a performance penalty: when a transaction is committed,
PostgreSQL must wait for the operating system to flush the write-ahead log to disk fsjfiren

is disabled, the operating system is allowed to do its best in buffering, ordering, and delaying
writes. This can result in significantly improved performance. However, if the system crashes,

222

Chapter 16. Server Run-time Environment

the results of the last few committed transactions may be lost in part or whole. In the worst case,
unrecoverable data corruption may occur.

Due to the risks involved, there is no universally correct settindgsforc . Some administrators
always disablésync , while others only turn it off for bulk loads, where there is a clear restart
point if something goes wrong, whereas some administrators alwaysfégave enabled. The
default is to enablésync , for maximum reliability. If you trust your operating system, your
hardware, and your utility company (or your battery backup), you can consider distsghng.

This option can only be set at server start or inihstgresgl.conf file.
wal_sync_method (string)

Method used for forcing WAL updates out to disk. Possible valuedsgre (call fsync()

at each commit)fdatasync (call fdatasync() at each commit)ppen_sync (write WAL

files withopen() optionO_SYNG, andopen_datasync (write WAL files with open() option
O_DSYNUZ Not all of these choices are available on all platforms. This option can only be set at
server start or in thpostgresgl.conf file.

wal_buffers (integer)

Number of disk-page buffers in shared memory for WAL logging. The default is 8. This option
can only be set at server start.

16.4.3.2. Checkpoints

checkpoint_segments (integer)

Maximum distance between automatic WAL checkpoints, in log file segments (each segment is
normally 16 megabytes). The default is three. This option can only be set at server start or in the
postgresgl.conf file.

checkpoint_timeout (integer)

Maximum time between automatic WAL checkpoints, in seconds. The default is 300 seconds.
This option can only be set at server start or ingihstgresgl.conf file.

checkpoint_warning (integer)

Write a message to the server logs if checkpoints caused by the filling of checkpoint segment
files happens more frequently than this number of seconds. The default is 30 seconds. Zero turns
off the warning.

commit_delay (integer)

Time delay between writing a commit record to the WAL buffer and flushing the buffer out to
disk, in microseconds. A nonzero delay allows multiple transactions to be committed with only
onefsync() system call, if system load is high enough additional transactions may become
ready to commit within the given interval. But the delay is just wasted if no other transactions
become ready to commit. Therefore, the delay is only performed if atdeastit_siblings

other transactions are active at the instant that a server process has written its commit record.
The default is zero (no delay).

commit_siblings (integer)

Minimum number of concurrent open transactions to require before performing the
commit_delay delay. A larger value makes it more probable that at least one other transaction
will become ready to commit during the delay interval. The default is five.

223

Chapter 16. Server Run-time Environment

16.4.4. Query Planning

16.4.4.1. Planner Method Configuration

Note: These configuration parameters provide a crude method for influencing the query plans
chosen by the query optimizer. If the default plan chosen by the optimizer for a particular query is
not optimal, a temporary solution may be found by using one of these configuration parameters
to force the optimizer to choose a better plan. Other ways to improve the quality of the plans
chosen by the optimizer include configuring the Planner Cost Constants, running ANALYZEmore
frequently, and increasing the amount of statistics collected for a particular column using ALTER
TABLE SET STATISTICS.

enable_hashagg (boolean)
Enables or disables the query planner’s use of hashed aggregation plan types. The default is on.
This is used for debugging the query planner.

enable_hashjoin (boolean)
Enables or disables the query planner’s use of hash-join plan types. The default is on. This is
used for debugging the query planner.

enable_indexscan (boolean)
Enables or disables the query planner’s use of index-scan plan types. The default is on. This is
used for debugging the query planner.

enable_mergejoin (boolean)
Enables or disables the query planner’s use of merge-join plan types. The default is on. This is
used for debugging the query planner.

enable_nestloop (boolean)
Enables or disables the query planner’s use of nested-loop join plans. It's not possible to suppress
nested-loop joins entirely, but turning this variable off discourages the planner from using one if
there are other methods available. The defaultis on. This is used for debugging the query planner.

enable_seqgscan (boolean)

Enables or disables the query planner’s use of sequential scan plan types. It's not possible to
suppress sequential scans entirely, but turning this variable off discourages the planner from
using one if there are other methods available. The default is on. This is used for debugging the
query planner.

enable_sort (boolean)

Enables or disables the query planner’s use of explicit sort steps. It's not possible to suppress

explicit sorts entirely, but turning this variable off discourages the planner from using one if there

are other methods available. The default is on. This is used for debugging the query planner.
enable_tidscan (boolean)

Enables or disables the query planner’'s use of TID scan plan types. The default is on. This is
used for debugging the query planner.

224

Chapter 16. Server Run-time Environment

16.4.4.2. Planner Cost Constants

Note: Unfortunately, there is no well-defined method for determining ideal values for the family of
“cost” variables that appear below. You are encouraged to experiment and share your findings.

effective_cache_size (floating point)

Sets the planner’s assumption about the effective size of the disk cache (that is, the portion of the
kernel’'s disk cache that will be used for PostgreSQL data files). This is measured in disk pages,
which are normally 8192 bytes each. The default is 1000.

random_page_cost (floating point)

Sets the query planner’s estimate of the cost of a nonsequentially fetched disk page. This is
measured as a multiple of the cost of a sequential page fetch. A higher value makes it more
likely a sequential scan will be used, a lower value makes it more likely an index scan will be
used. The default is four.

cpu_tuple_cost (floating point)

Sets the query planner’s estimate of the cost of processing each row during a query. This is
measured as a fraction of the cost of a sequential page fetch. The default is 0.01.

cpu_index_tuple_cost (floating point)

Sets the query planner’s estimate of the cost of processing each index row during an index scan.
This is measured as a fraction of the cost of a sequential page fetch. The default is 0.001.

cpu_operator_cost (floating point)

Sets the planner’s estimate of the cost of processing each operatowHERElause. This is
measured as a fraction of the cost of a sequential page fetch. The default is 0.0025.

16.4.4.3. Genetic Query Optimizer

geqo (boolean)

Enables or disables genetic query optimization, which is an algorithm that attempts to do query
planning without exhaustive searching. This is on by default. See also the variougeber
settings.

geqo_threshold (integer)

Use genetic query optimization to plan queries with at least this nr&gMitems involved.

(Note that an outeJOIN construct counts as only oR®OMtem.) The defaultis 11. For simpler
queries it is usually best to use the deterministic, exhaustive planner, but for queries with many
tables the deterministic planner takes too long.

225

Chapter 16. Server Run-time Environment

geqo_effort (integer)
geqo_generations (integer)
geqo_pool_size (integer)
geqo_selection_bias (floating point)

Various tuning parameters for the genetic query optimization algorithm: The pool size is the
number of individuals in one population. Valid values are between 128 and 1024. If it is set to
0 (the default) a pool size of 22(QS+1), where QS is the numbeRafMtems in the query, is
taken. The effort is used to calculate a default for generations. Valid values are between 1 and
80, 40 being the default. Generations specifies the number of iterations in the algorithm. The
number must be a positive integer. If O is specified th#ort * Log2(PoolSize) is used.

The run time of the algorithm is roughly proportional to the sum of pool size and generations.
The selection bias is the selective pressure within the population. Values can be from 1.50 to
2.00; the latter is the default.

16.4.4.4. Other Planner Options

default_statistics_target (integer)

Sets the default statistics target for table columns that have not had a column-specific target set
via ALTER TABLE SET STATISTICS Larger values increase the time needed t&\NaLYZE
but may improve the quality of the planner’s estimates. The default is 10.

from_collapse_limit (integer)

The planner will merge sub-queries into upper queries if the resulting FROM list would have no
more than this many items. Smaller values reduce planning time but may yield inferior query
plans. The default is 8. It is usually wise to keep this less teapo_threshold

join_collapse_limit (integer)

The planner will flatten explicit innedOIN constructs into lists oFROMitems whenever

a list of no more than this many items would result. Usually this is set the same as
from_collapse_limit . Setting it to 1 prevents any flattening of inngdINs, allowing
explicit JOIN syntax to be used to control the join order. Intermediate values might be useful to
trade off planning time against quality of plan.

16.4.5. Error Reporting and Logging

16.4.5.1. Syslog

syslog (integer)

PostgreSQL allows the use of syslog for logging. If this option is set to 1, messages go both to
syslog and the standard output. A setting of 2 sends output only to syslog. (Some messages will
still go to the standard output/error.) The default is 0, which means syslog is off. This option
must be set at server start.

226

Chapter 16. Server Run-time Environment

syslog_facility (string)

This option determines the syslog “facility” to be used when logging via syslog is enabled. You
may choose frolnOCALQ LOCALY, LOCALZ, LOCAL3 LOCAL4 LOCALS LOCALG LOCALT, the
default iISLOCALQ See also the documentation of your system’s syslog.

syslog_ident (string)

If logging to syslog is enabled, this option determines the program name used to identify Post-
greSQL messages in syslog log messages. The defpoltiges

16.4.5.2. When To Log

client_min_messages (string)

Controls which message levels are sent to the client. Valid value€ss868G5DEBUG4DEBUG3
DEBUG2DEBUG1LOG NOTICE WARNINGandERROREach level includes all the levels that
follow it. The later the level, the fewer messages are sent. The defatTECE Note that OG
has a different rank here thanloy_min_messages

log_min_messages (string)

Controls which message levels are written to the server log. Valid valuesE®eG5DEBUG4
DEBUG3 DEBUG2 DEBUG] INFO, NOTICE, WARNING ERROR LOG FATAL, and PANIC.

Each level includes all the levels that follow it. The later the level, the fewer messages are
sent to the log. The default iISOTICE Note thatLOG has a different rank here than in
client_min_messages . Only superusers can increase this option.

log_error_verbosity (string)

Controls the amount of detail written in the server log for each message that is logged. Valid
values arfERSE DEFAULT andVERBOSEeach adding more fields to displayed messages.

log_min_error_statement (string)

Controls whether or not the SQL statement that causes an error condition will also be recorded in
the server log. All SQL statements that cause an error of the specified level, or a higher level, are
logged. The default iPANIC (effectively turning this feature off for normal use). Valid values
areDEBUG5DEBUG4DEBUG3DEBUG2DEBUGLINFO, NOTICE, WARNINGERRORFATAL, and

PANIC. For example, if you set this ®RRORhen all SQL statements causing errors, fatal errors,

or panics will be logged. Enabling this option can be helpful in tracking down the source of any
errors that appear in the server log. Only superusers can increase this option.

log_min_duration_statement (integer)

Sets a minimum statement execution time (in milliseconds) for statement to be logged. All SQL
statements that run in the time specified or longer will be logged with their duration. Setting
this to zero will print all queries and their durations. Minus-one (the default) disables this. For
example, if you set it t@50 then all SQL statements that run 250ms or longer will be logged.
Enabling this option can be useful in tracking down unoptimized queries in your applications.
Only superusers can increase this or set it to minus-one if this option is set by the administrator.

silent_mode (boolean)

Runs the server silently. If this option is set, the server will automatically run in background and
any controlling terminals are disassociated. Thus, no messages are written to standard output or
standard error (same effect@stmaster ’s -S option). Unless syslog logging is enabled, using

this option is discouraged since it makes it impossible to see error messages.

227

Chapter 16. Server Run-time Environment

Here is a list of the various message severity levels used in these settings:

DEBUGI1-5]

Provides information for use by developers.
INFO

Provides information implicitly requested by the user, e.g., dWiRGQUUM VERBOSE
NOTICE

Provides information that may be helpful to users, e.g., truncation of long identifiers and the
creation of indexes as part of primary keys.

WARNING

Provides warnings to the user, e @QQMMIToutside a transaction block.
ERROR

Reports an error that caused the current transaction to abort.
LOG

Reports information of interest to administrators, e.g., checkpoint activity.
FATAL

Reports an error that caused the current session to abort.
PANIC

Reports an error that caused all sessions to abort.

16.4.5.3. What To Log

debug_print_parse (boolean)

debug_print_rewritten (boolean)
debug_print_plan (boolean)
debug_pretty_print (boolean)

These options enable various debugging output to be sent to the client or server log. For each
executed query, they print the resulting parse tree, the query rewriter output, or the execution
plan.debug_pretty_print indents these displays to produce a more readable but much longer
output format.client_min_messages or log_min_messages must beDEBUGIor lower to

send output to the client or server logs. These options are off by default.

log_connections (boolean)

This outputs a line to the server logs detailing each successful connection. This is off by de-
fault, although it is probably very useful. This option can only be set at server start or in the
postgresgl.conf configuration file.

log_duration (boolean)

Causes the duration of every completed statement to be logged. To use this option, enable
log_statement andlog_pid so you can link the statement to the duration using the process
ID. The default is off. Only superusers can turn off this option if it is enabled by the administrator.

228

Chapter 16. Server Run-time Environment

log_pid (boolean)

Prefixes each message in the server log file with the process ID of the server process. This is
useful to sort out which messages pertain to which connection. The default is off. This parameter
does not affect messages logged via syslog, which always contain the process ID.

log_statement (boolean)

Causes each SQL statement to be logged. The default is off. Only superusers can turn off this
option if it is enabled by the administrator.

log_timestamp (boolean)
Prefixes each server log message with a time stamp. The default is off.
log_hostname (boolean)

By default, connection logs only show the IP address of the connecting host. If you want it to
show the host name you can turn this on, but depending on your host name resolution setup it
might impose a non-negligible performance penalty. This option can only be set at server start.

log_source_port (boolean)

Shows the outgoing port number of the connecting host in the connection log messages. You
could trace back the port number to find out what user initiated the connection. Other than that,
it's pretty useless and therefore off by default. This option can only be set at server start.

16.4.6. Runtime Statistics

16.4.6.1. Statistics Monitoring

log_statement_stats (boolean)
log_parser_stats (boolean)
log_planner_stats (boolean)
log_executor_stats (boolean)

For each query, write performance statistics of the respective module to the server log. This is a
crude profiling instrument. All of these options are disabled by default. Only superusers can turn
off any of these options if they have been enabled by the administrator.

16.4.6.2. Query and Index Statistics Collector

stats_start_collector (boolean)

Controls whether the server should start the statistics-collection subprocess. This is on by default,
but may be turned off if you know you have no interest in collecting statistics. This option can
only be set at server start.

stats_command_string (boolean)

Enables the collection of statistics on the currently executing command of each session, along
with the time at which that command began execution. This option is off by default. Note that
even when enabled, this information is not visible to all users, only to superusers and the user

229

Chapter 16. Server Run-time Environment

owning the session being reported on; so it should not represent a security risk. This data can be

accessed via theg_stat_activity system view; refer t&€hapter 23or more information.
stats_block_level (boolean)
stats_row_level (boolean)

These enable the collection of block-level and row-level statistics on database activity,
respectively. These options are off by default. This data can be accessed pip sk and
pg_statio family of system views; refer t€hapter 23or more information.

stats_reset_on_server_start (boolean)

If on, collected statistics are zeroed out whenever the server is restarted. If off, statistics are
accumulated across server restarts. The default is on. This option can only be set at server start.

16.4.7. Client Connection Defaults

16.4.7.1. Statement Behavior

search_path (string)

This variable specifies the order in which schemas are searched when an object (table, data
type, function, etc.) is referenced by a simple name with no schema component. When there are
objects of identical names in different schemas, the one found first in the search path is used. An
object that is not in any of the schemas in the search path can only be referenced by specifying
its containing schema with a qualified (dotted) name.

The value fosearch_path has to be a comma-separated list of schema names. If one of the list
items is the special valuguser , then the schema having the name returne8b$SION_USER
is substituted, if there is such a schema. (If $oker is ignored.)

The system catalog schenmmy_catalog , is always searched, whether it is mentioned in the
path or not. If it is mentioned in the path then it will be searched in the specified order. If
pg_catalog is not in the path then it will be searchedforesearching any of the path items.

It should also be noted that the temporary-table schemaemp_ nnn, is implicitly searched
before any of these.

When objects are created without specifying a particular target schema, they will be placed in
the first schema listed in the search path. An error is reported if the search path is empty.

The default value for this parameter'$ser, public’ (where the second part will be ig-
nored if there is no schema namguablic). This supports shared use of a database (where no
users have private schemas, and all share upentit), private per-user schemas, and combi-
nations of these. Other effects can be obtained by altering the default search path setting, either
globally or per-user.

The current effective value of the search path can be examined via the SQL function

current_schemas() . This is not quite the same as examining the valugeafch_path
since current_schemas() shows how the requests appearing dearch_path were
resolved.

For more information on schema handling, Seetion 5.8

230

Chapter 16. Server Run-time Environment

check_function_bodies (boolean)

This parameter is normally true. When set false, it disables validation of the function body string
in CREATE FUNCTIONDiIsabling validation is occasionally useful to avoid problems such as
forward references when restoring function definitions from a dump.

default_transaction_isolation (string)

Each SQL transaction has an isolation level, which can be either “read committed” or “serializ-
able”. This parameter controls the default isolation level of each new transaction. The default is
“read committed”.

ConsultChapter 122andSET TRANSACTIONfor more information.
default_transaction_read_only (boolean)

A read-only SQL transaction cannot alter non-temporary tables. This parameter controls the
default read-only status of each new transaction. The default is false (read/write).

ConsultSET TRANSACTIONfor more information.
statement_timeout (integer)

Aborts any statement that takes over the specified number of milliseconds. A value of zero turns
off the timer, which is the default value.

16.4.7.2. Locale and Formatting

datestyle (string)

Sets the display format for date and time values, as well as the rules for interpreting ambiguous
date input values. For historical reasons, this variable contains two independent components: the
output format specification0, Postgres , SQL or German) and the date field order spec-
ification (DMY MDY or YMD. These can be set separately or together. The keywénds and
European are synonyms fobMY the keywordsJS NonEuro , andNonEuropean are synonyms

for MDY SeeSection 8.5or more information. The default iSO, MDY.

timezone (string)

Sets the time zone for displaying and interpreting time stamps. The default is to use whatever the
system environment specifies as the time zone S&etion 8.5or more information.

australian_timezones (boolean)

If set to true,ACST, CST, EST, andSAT are interpreted as Australian time zones rather than as
North/South American time zones and Saturday. The default is false.

extra_float_digits (integer)

This parameter adjusts the number of digits displayed for floating-point values, including
float4 , float8 , and geometric data types. The parameter value is added to the standard
number of digits ELT_DIG or DBL_DIG as appropriate). The value can be set as high as 2, to
include partially-significant digits; this is especially useful for dumping float data that needs to
be restored exactly. Or it can be set negative to suppress unwanted digits.

client_encoding (string)

Sets the client-side encoding (character set). The default is to use the database encoding.

231

Chapter 16. Server Run-time Environment

Ic_messages (string)

Sets the language in which messages are displayed. Acceptable values are system-dependent; see

Section 20.Xor more information. If this variable is set to the empty string (which is the default)
then the value is inherited from the execution environment of the server in a system-dependent
way.

On some systems, this locale category does not exist. Setting this variable will still work, but
there will be no effect. Also, there is a chance that no translated messages for the desired language
exist. In that case you will continue to see the English messages.

Ic_monetary (string)

Sets the locale to use for formatting monetary amounts, for example with_thear family

of functions. Acceptable values are system-dependeneaeton 20.Tor more information. If

this variable is set to the empty string (which is the default) then the value is inherited from the
execution environment of the server in a system-dependent way.

Ic_numeric (string)

Sets the locale to use for formatting numbers, for example withothebar() family of func-

tions. Acceptable values are system-dependentSsetion 20.Xfor more information. If this
variable is set to the empty string (which is the default) then the value is inherited from the
execution environment of the server in a system-dependent way.

Ic_time (string)

Sets the locale to use for formatting date and time values. (Currently, this setting does nothing,
but it may in the future.) Acceptable values are system-dependen§esgmn 20.1for more
information. If this variable is set to the empty string (which is the default) then the value is
inherited from the execution environment of the server in a system-dependent way.

16.4.7.3. Other Defaults

explain_pretty_print (boolean)

Determines whetheEXPLAIN VERBOSHISes the indented or non-indented format for display-
ing detailed query-tree dumps. The default is on.

dynamic_library_path (string)

If a dynamically loadable module needs to be opened and the specified name does not have a
directory component (i.e. the name does not contain a slash), the system will search this path
for the specified file. (The name that is used is the name specified CREATE FUNCTIOM
LOADcommand.)

The value fordynamic_library_path has to be a colon-separated list of absolute directory
names. If a directory name starts with the special valisgir , the compiled-in PostgreSQL
package library directory is substituted. This where the modules provided by the PostgreSQL
distribution are installed. (Useg_config --pkglibdir to print the name of this directory.)

For example:

dynamic_library_path = ’/usr/local/lib/postgresgl:/home/my_project/lib:$libdir’

The default value for this parameter'&ibdir’ . If the value is set to an empty string, the
automatic path search is turned off.

232

Chapter 16. Server Run-time Environment

This parameter can be changed at run time by superusers, but a setting done that way will only
persist until the end of the client connection, so this method should be reserved for development
purposes. The recommended way to set this parameter is postgesql.conf configura-

tion file.

max_expr_depth (integer)

Sets the maximum expression nesting depth of the parser. The default value of 10000 is high
enough for any normal query, but you can raise it if needed. (But if you raise it too high, you run
the risk of server crashes due to stack overflow.)

16.4.8. Lock Management

deadlock_timeout (integer)

This is the amount of time, in milliseconds, to wait on a lock before checking to see if there

is a deadlock condition. The check for deadlock is relatively slow, so the server doesn't run it
every time it waits for a lock. We (optimistically?) assume that deadlocks are not common in
production applications and just wait on the lock for a while before starting the check for a
deadlock. Increasing this value reduces the amount of time wasted in needless deadlock checks,
but slows down reporting of real deadlock errors. The default is 1000 (i.e., one second), which
is probably about the smallest value you would want in practice. On a heavily loaded server you
might want to raise it. Ideally the setting should exceed your typical transaction time, so as to
improve the odds that a lock will be released before the waiter decides to check for deadlock.

max_locks_per_transaction (integer)

The shared lock table is sized on the assumption that at mepstiocks_per_transaction

* max_connections distinct objects will need to be locked at any one time. The default, 64,
has historically proven sufficient, but you might need to raise this value if you have clients that
touch many different tables in a single transaction. This option can only be set at server start.

16.4.9. Version and Platform Compatibility

16.4.9.1. Previous PostgreSQL Versions

add_missing_from (boolean)

Whentrue , tables that are referenced by a query will be automatically added ERbetlause

if not already present. The default ime for compatibility with previous releases of Post-
greSQL. However, this behavior is not SQL-standard, and many people dislike it because it can
mask mistakes. Set false for the SQL-standard behavior of rejecting references to tables that
are not listed ifFROM

regex_flavor (string)

The regular expression “flavor” can be setattvanced , extended , or basic . The default is
advanced . Theextended setting may be useful for exact backwards compatibility with pre-7.4
releases of PostgreSQL.

233

Chapter 16. Server Run-time Environment

sql_inheritance (boolean)

This controls the inheritance semantics, in particular whether subtables are included by various
commands by default. They were not included in versions prior to 7.1. If you need the old
behavior you can set this variable to off, but in the long run you are encouraged to change your
applications to use theNLYkey word to exclude subtables. Sgection 5.50r more information

about inheritance.

16.4.9.2. Platform and Client Compatibility

transform_null_equals (boolean)

When turned on, expressions of the fogsrpr = NULL(or NULL = expr) are treated asxpr

IS NULL, that is, they return true éxpr evaluates to the null value, and false otherwise. The
correct behavior obxpr = NULL is to always return null (unknown). Therefore this option
defaults to off.

However, filtered forms in Microsoft Access generate queries that appear éxprse= NULL

to test for null values, so if you use that interface to access the database you might want to
turn this option on. Since expressions of the fasxpr = NULL always return the null value
(using the correct interpretation) they are not very useful and do not appear often in normal
applications, so this option does little harm in practice. But new users are frequently confused
about the semantics of expressions involving null values, so this option is not on by default.

Note that this option only affects the literaloperator, not other comparison operators or other
expressions that are computationally equivalent to some expression involving the equals operator
(such asN). Thus, this option is not a general fix for bad programming.

Refer toSection 9.%or related information.

16.4.10. Developer Options

The following options are intended for work on the PostgreSQL source, and in some cases to assist
with recovery of severely damaged databases. There should be no reason to use them in a production
database setup. As such, they have been excluded from the gastgtesqgl.conf file. Note that

many of these options require special source compilation flags to work at all.

debug_assertions (boolean)

Turns on various assertion checks. This is a debugging aid. If you are experiencing strange
problems or crashes you might want to turn this on, as it might expose programming mistakes. To
use this option, the mactdSE_ASSERT_CHECKIN@wust be defined when PostgreSQL is built
(accomplished by theonfigure option--enable-cassert). Note thaDEBUG_ASSERTIONS
defaults to on if PostgreSQL has been built with assertions enabled.

pre_auth_delay (integer)

If nonzero, a delay of this many seconds occurs just after a new server process is forked, before
it conducts the authentication process. This is intended to give an opportunity to attach to the
server process with a debugger to trace down misbehavior in authentication.

234

Chapter 16. Server Run-time Environment

trace_notify (boolean)

Generates a great amount of debugging output for I8TEN and NOTIFY commands.
client_min_messages orlog_min_messages must beDEBUG Ior lower to send this output
to the client or server log, respectively.

trace_locks (boolean)
trace_Ilwlocks (boolean)

trace_userlocks (boolean)
trace_lock_oidmin (boolean)
trace_lock_table (boolean)
debug_deadlocks (boolean)
log_btree_build_stats (boolean)

Various other code tracing and debugging options.
wal_debug (integer)

If nonzero, turn on WAL-related debugging output.
zero_damaged_pages (boolean)

Detection of a damaged page header normally causes PostgreSQL to report an error, aborting the
current transaction. Settirgro_damaged_pages to true causes the system to instead report a
warning, zero out the damaged page, and continue processing. This behigvi@stroy data

namely all the rows on the damaged page. But it allows you to get past the error and retrieve
rows from any undamaged pages that may be present in the table. So it is useful for recovering
data if corruption has occurred due to hardware or software error. You should generally not set
this true until you have given up hope of recovering data from the damaged page(s) of a table.
The default setting is off, and it can only be changed by a superuser.

16.4.11. Short Options

For convenience there are also single letter command-line option switches available for some param-
eters. They are describedTable 16-1

Table 16-1. Short option key

Short option Equivalent

-B X shared_buffers = X

-d X log_min_messages = DEBUG x
-F fsync = off

-h x \virtual_host = X

-i tcpip_socket = on

-k x unix_socket_directory = X
-l ssl = on

-N x max_connections = X

-p X port = X

235

Chapter 16. Server Run-time Environment

Short option Equivalent

fi ,-th ,-fm,-fn ,-fs ,-ft a enable_indexscan=off ,
enable_hashjoin=off ,
enable_mergejoin=off ,
enable_nestloop=off ,

enable_segscan=off , enable_tidscan=off
-S a log_statement_stats = on
-S Xa sort_ mem = Xx
-tpa , -tpl ,-te a log_parser_stats=on ,

log_planner_stats=on ,
log_executor_stats=on

Notes:a. For historical reasons, these options must be passed to the individual server process\padineaster

16.5. Managing Kernel Resources

A large PostgreSQL installation can quickly exhaust various operating system resource limits. (On
some systems, the factory defaults are so low that you don’t even need a really “large” installation.)
If you have encountered this kind of problem, keep reading.

16.5.1. Shared Memory and Semaphores

Shared memory and semaphores are collectively referred to as “System V IPC” (together with mes-
sage queues, which are not relevant for PostgreSQL). Almost all modern operating systems provide
these features, but not all of them have them turned on or sufficiently sized by default, especially sys-
tems with BSD heritage. (For the QNX and BeOS ports, PostgreSQL provides its own replacement
implementation of these facilities.)

The complete lack of these facilities is usually manifested by an lllegal system call error upon server
start. In that case there’s nothing left to do but to reconfigure your kernel. PostgreSQL won’t work
without them.

When PostgreSQL exceeds one of the various hard IPC limits, the server will refuse to start and
should leave an instructive error message describing the problem encountered and what to do about
it. (See alsdsection 16.3.Q The relevant kernel parameters are named consistently across different
systemsTable 16-2Zyives an overview. The methods to set them, however, vary. Suggestions for some
platforms are given below. Be warned that it is often necessary to reboot your machine, and possibly
even recompile the kernel, to change these settings.

Table 16-2. System V IPC parameters

Name Description Reasonable values
SHMMAX Maximum size of shared 250 kB + 8.2 kB *
memory segment (bytes) shared_buffers +14.2 kB *
max_connections up to
infinity
SHMMIN Minimum size of shared mematy
segment (bytes) T

236

Chapter 16. Server Run-time Environment

Name Description Reasonable values
SHMALL Total amount of shared memorjf bytes, same aSHMMAXf
available (bytes or pages) pages,
ceill(SHMMAX/PAGE_SIZE)

SHMSEG Maximum number of shared |only 1 segment is needed, but the
memory segments per processdefault is much higher
SHMMNI Maximum number of shared |like SHMSE®Ius room for other
memory segments system-widapplications
SEMMNI Maximum number of semaphoje least
identifiers (i.e., sets) ceil(max_connections /
16)
SEMMNS Maximum number of ceil(max_connections /
semaphores system-wide 16) * 17 plus room for other
applications
SEMMSL Maximum number of at least 17
semaphores per set
SEMMAP Number of entries in semaphorgee text
map
SEMVMX Maximum value of semaphore jat least 1000 (The default is often
32767, don’t change unless asked
to.)

The most important shared memory paramete&HMMAXthe maximum size, in bytes, of a shared
memory segment. If you get an error message fsamget like Invalid argument, it is possible that

this limit has been exceeded. The size of the required shared memory segment varies both with the
number of requested buffer®(option) and the number of allowed connectioms ¢ption), although

the former is the most significant. (You can, as a temporary solution, lower these settings to eliminate
the failure.) As a rough approximation, you can estimate the required segment size by multiplying the
number of buffers and the block size (8 kB by default) plus ample overhead (at least half a megabyte).
Any error message you might get will contain the size of the failed allocation request.

Less likely to cause problems is the minimum size for shared memory segrsems1(y, which

should be at most approximately 256 kB for PostgreSQL (it is usually just 1). The maximum number
of segments system-wid8KIMMN) or per-processJHMSEEshould not cause a problem unless your
system has them set to zero. Some systems also have a limit on the total amount of shared memory in
the system; see the platform-specific instructions below.

PostgreSQL uses one semaphore per allowed conneetiaypfion), in sets of 16. Each such set will

also contain a 17th semaphore which contains a “magic number”, to detect collision with semaphore
sets used by other applications. The maximum number of semaphores in the system &E8atis

which consequently must be at least as highmag_connections plus one extra for each 16 al-

lowed connections (see the formulaTiable 16-2. The parametesEMMNIdetermines the limit on

the number of semaphore sets that can exist on the system at one time. Hence this parameter must be
at leasteil(max_connections / 16) . Lowering the number of allowed connections is a tempo-

rary workaround for failures, which are usually confusingly worded No space left on device, from the
functionsemget .

In some cases it might also be necessary to increeséMARo be at least on the order SEMMNS

This parameter defines the size of the semaphore resource map, in which each contiguous block of
available semaphores needs an entry. When a semaphore set is freed it is either added to an existing
entry that is adjacent to the freed block or it is registered under a new map entry. If the map is full, the
freed semaphores get lost (until reboot). Fragmentation of the semaphore space could over time lead

237

Chapter 16. Server Run-time Environment

to fewer available semaphores than there should be.

The SEMMSIparameter, which determines how many semaphores can be in a set, must be at least 17
for PostgreSQL.

Various other settings related to “semaphore undo”, suSEMMNENdSEMUMEare not of concern
for PostgreSQL.

BSD/OS

Shared Memory. By default, only 4 MB of shared memory is supported. Keep in mind that
shared memory is not pageable; it is locked in RAM. To increase the amount of shared memory
supported by your system, add the following to your kernel configuration figMALLvalue of

1024 represents 4 MB of shared memory. The following increases the maximum shared memory
area to 32 MB:

options "SHMALL=8192"
options "SHMMAX=\(SHMALL*PAGE_SIZE\)"

For those running 4.3 or later, you will probably need to increc&RNEL_VIRTUAL_MBabove
the default248. Once all changes have been made, recompile the kernel, and reboot.

For those running 4.0 and earlier releasesppsaech to find thesysptsize value in the current
kernel. This is computed dynamically at boot time.

$ bpatch -r sysptsize

0x9 = 9
Next, addSYSPTSIZE as a hard-coded value in the kernel configuration file. Increase the value
you found usingbpatch . Add 1 for every additional 4 MB of shared memory you desire.

options "SYSPTSIZE=16"
sysptsize cannot be changed bysctl

Semaphores. You may need to increase the number of semaphores. By default, PostgreSQL
allocates 34 semaphores, which is over half the default system total of 60. Set the values you
want in your kernel configuration file, e.g.:

options "SEMMNI=40"
options "SEMMNS=240"

FreeBSD
NetBSD
OpenBSD

The optionsSYSVSHMINASYSVSEMeed to be enabled when the kernel is compiled. (They are
by default.) The maximum size of shared memory is determined by the optidAXPGEN
pages). The following shows an example of how to set the various parameters:

options SYSVSHM

options SHMMAXPGS=4096
options SHMSEG=256
options SYSVSEM

options SEMMNI=256
options SEMMNS=512
options SEMMNU=256
options SEMMAP=256

(On NetBSD and OpenBSD the key word is actualbyion singular.)

238

Chapter 16. Server Run-time Environment

You might also want to configure your kernel to lock shared memory into RAM and prevent it
from being paged out to swap. Use #yactl settingkern.ipc.shm_use_phys

HP-UX

The default settings tend to suffice for normal installations. On HP-UX 10, the factory default
for SEMMN$ 128, which might be too low for larger database sites.

IPC parameters can be set in the System Administration Manager (SAM) Uteteel
Configuration— Configurable Parameters. Hit Create A New Kernel when you're done.

Linux

The default shared memory limit (bo8HMMAXNdSHMALL is 32 MB in 2.2 kernels, but it can
be changed in thproc file system (without reboot). For example, to allow 128 MB:

$ echo 134217728 >/proc/sys/kernel/shmall
$ echo 134217728 >/proc/sys/kernel/shmmax

You could put these commands into a script run at boot-time.

Alternatively, you can ussysctl , if available, to control these parameters. Look for a file called
/etc/sysctl.conf and add lines like the following to it:

kernel.shmall = 134217728
kernel.shmmax = 134217728

This file is usually processed at boot time, bygctl can also be called explicitly later.

Other parameters are sufficiently sized for any application. If you want to see

for yourself look in /usr/src/linux/include/asm- Xxx /shmpara m.h and
Jusr/src/linux/include/linux/sem.h
MacOS X

In OS X 10.2 and earlier, edit the filBystem/Library/Startupltems/SystemTuning/SystemTuning
and change the values in the following commands:

sysctl -w kern.sysv.shmmax
sysctl -w kern.sysv.shmmin
sysctl -w kern.sysv.shmmni
sysctl -w kern.sysv.shmseg
sysctl -w kern.sysv.shmall

In OS X 10.3, these commands have been moveéetdsc and must be edited there.
SCO OpenServer

In the default configuration, only 512 kB of shared memory per segment is allowed, which
is about enough forB 24 -N 12 . To increase the setting, first change to the directory
Jetc/conf/cf.d . To display the current value @HMMAXUN

Jconfigure -y SHMMAX
To set a new value faBHMMAXUN
Jconfigure SHMMAX= value

wherevalue is the new value you want to use (in bytes). After settBgMMAXrebuild the
kernel:

Jlink_unix

and reboot.

239

Chapter 16. Server Run-time Environment

Solaris

At least in version 2.6, the default maximum size of a shared memory segments is too low for
PostgreSQL. The relevant settings can be changfddisystem , for example:

set shmsys:shminfo_shmmax=0x2000000
set shmsys:shminfo_shmmin=1

set shmsys:shminfo_shmmni=256

set shmsys:shminfo_shmseg=256

set semsys:seminfo_semmap=256
set semsys:seminfo_semmni=512
set semsys:seminfo_semmns=512
set semsys:seminfo_semms|=32

You need to reboot for the changes to take effect.

See also http://www.sunworld.com/swol-09-1997/swol-09-insidesolaris.html for information on
shared memory under Solaris.

UnixWare

On UnixWare 7, the maximum size for shared memory segments is 512 kB in the default con-
figuration. This is enough for abouB 24 -N 12 . To display the current value GHMMAX
run

/etc/conf/bin/idtune -g SHMMAX

which displays the current, default, minimum, and maximum values. To set a new value for
SHMMAXUN

/etc/conf/bin/idtune SHMMAX value

wherevalue is the new value you want to use (in bytes). After settBgMMAXrebuild the
kernel:

/etc/conf/bin/idbuild -B

and reboot.

16.5.2. Resource Limits

Unix-like operating systems enforce various kinds of resource limits that might interfere with the
operation of your PostgreSQL server. Of particular importance are limits on the number of processes
per user, the number of open files per process, and the amount of memory available to each process.
Each of these have a “hard” and a “soft” limit. The soft limit is what actually counts but it can be
changed by the user up to the hard limit. The hard limit can only be changed by the root user. The
system callsetrlimit is responsible for setting these parameters. The shell’'s built-in command
ulimit ~ (Bourne shells) olimit ~ (csh) is used to control the resource limits from the command line.

On BSD-derived systems the filetc/login.conf controls the various resource limits set during

login. See the operating system documentation for details. The relevant parametets@re ,

openfiles , anddatasize . For example:

default:\
.datasize-cur=256M:\

‘maxproc-cur=256:\
:openfiles-cur=256:\

240

Chapter 16. Server Run-time Environment

(-cur is the soft limit. Appendmax to set the hard limit.)

Kernels can also have system-wide limits on some resources.

« On Linux/proc/sysf/fs/file-max determines the maximum number of open files that the ker-
nel will support. It can be changed by writing a different number into the file or by adding an as-
signment inetc/sysctl.conf . The maximum limit of files per process is fixed at the time the
kernel is compiled; sefsr/src/linux/Documentation/proc.txt for more information.

The PostgreSQL server uses one process per connection so you should provide for at least as many
processes as allowed connections, in addition to what you need for the rest of your system. This is
usually not a problem but if you run several servers on one machine things might get tight.

The factory default limit on open files is often set to “socially friendly” values that allow many users

to coexist on a machine without using an inappropriate fraction of the system resources. If you run
many servers on a machine this is perhaps what you want, but on dedicated servers you may want to
raise this limit.

On the other side of the coin, some systems allow individual processes to open large numbers of
files; if more than a few processes do so then the system-wide limit can easily be exceeded. If you
find this happening, and you do not want to alter the system-wide limit, you can set PostgreSQL'’s

max_files_per_process configuration parameter to limit the consumption of open files.

16.5.3. Linux Memory Overcommit

In Linux 2.4 and later, the default virtual memory behavior is not optimal for PostgreSQL. Because of
the way that the kernel implements memory overcommit, the kernel may terminate the PostgreSQL
server (thepostmaster process) if the memory demands of another process cause the system to run
out of virtual memory.

If this happens, you will see a kernel message that looks like this (consult your system documentation
and configuration on where to look for such a message):

Out of Memory: Killed process 12345 (postmaster).

This indicates that thpostmaster process has been terminated due to memory pressure. Although
existing database connections will continue to function normally, no new connections will be ac-
cepted. To recover, PostgreSQL will need to be restarted.

One way to avoid this problem is to run PostgreSQL on a machine where you can be sure that other
processes will not run the machine out of memory.

On Linux 2.6 and later, a better solution is to modify the kernel’s behavior so that it will not “over-
commit” memory. This is done by selecting strict overcommit mode via sysctl:

sysctl -w vm.overcommit_memory=2

or placing an equivalent entry iretc/sysctl.conf . You may also wish to modify the
related setting vm.overcommit_ratio . For details see the kernel documentation file
Documentation/vm/overcommit-accounting

Some vendors’ Linux 2.4 kernels are reported to have early versions of the 2.6 overcommit sysctl.
However, settingm.overcommit_memory to 2 on a kernel that does not have the relevant code will
make things worse not better. It is recommended that you inspect the actual kernel source code (see the
functionvm_enough_memory in the filemm/mmap.c) to verify what is supported in your copy before

241

Chapter 16. Server Run-time Environment

you try this in a 2.4 installation. The presence of thercommit-accounting documentation file
shouldnot be taken as evidence that the feature is there. If in any doubt, consult a kernel expert or
your kernel vendor.

16.6. Shutting Down the Server

There are several ways to shut down the database server. You control the type of shutdown by sending
different signals to thpostmaster process.

SIGTERM

After receiving SIGTERM, the server disallows new connections, but lets existing sessions end
their work normally. It shuts down only after all of the sessions terminate normally. This is the
Smart Shutdown

SIGINT

The server disallows new connections and sends all existing server processes SIGTERM, which
will cause them to abort their current transactions and exit promptly. It then waits for the server
processes to exit and finally shuts down. This isRast Shutdown

SIGQUIT

This is thelmmediate Shutdowmvhich will cause theostmaster process to send a SIGQUIT

to all child processes and exit immediately (without properly shutting itself down). The child
processes likewise exit immediately upon receiving SIGQUIT. This will lead to recovery (by
replaying the WAL log) upon next start-up. This is recommended only in emergencies.

Important: Itis best not to use SIGKILL to shut down the server. This will prevent the server from
releasing shared memory and semaphores, which may then have to be done by manually.

The PID of thepostmaster process can be found using tipe program, or from the file
postmaster.pid in the data directory. So for example, to do a fast shutdown:

$ kill -INT ‘head -1 /usr/local/pgsgl/data/postmaster.pid*

The progranpg_ctl is a shell script that provides a more convenient interface for shutting down the
server.

16.7. Secure TCP/IP Connections with SSL

PostgreSQL has native support for using SSL connections to encrypt client/server communications
for increased security. This requires that OpenSSL is installed on both client and server systems and
that support in PostgreSQL is enabled at build time Geapter 14

With SSL support compiled in, the PostgreSQL server can be started with SSL enabled by setting the
parametessl to on inpostgresgl.conf . When starting in SSL mode, the server will look for the
filesserver.key andserver.crt in the data directory, which should contain the server private key

242

Chapter 16. Server Run-time Environment

and certificate, respectively. These files must be set up correctly before an SSL-enabled server can
start. If the private key is protected with a passphrase, the server will prompt for the passphrase and
will not start until it has been entered.

The server will listen for both standard and SSL connections on the same TCP port, and will negotiate
with any connecting client on whether to use SSL. Sbapter 19bout how to force the server to
require use of SSL for certain connections.

For details on how to create your server private key and certificate, refer to the OpenSSL documenta-
tion. A simple self-signed certificate can be used to get started for testing, but a certificate signed by
a certificate authority (CA) (either one of the global CAs or a local one) should be used in production
so the client can verify the server’s identity. To create a quick self-signed certificate, use the following
OpenSSL command:

openss| req -new -text -out server.req

Fill out the information thabpenssl asks for. Make sure that you enter the local host name as
“Common Name”; the challenge password can be left blank. The program will generate a key that is
passphrase protected; it will not accept a passphrase that is less than four characters long. To remove
the passphrase (as you must if you want automatic start-up of the server), run the commands

openssl rsa -in privkey.pem -out server.key
rm privkey.pem

Enter the old passphrase to unlock the existing key. Now do

openssl req -x509 -in server.req -text -key server.key -out server.crt
chmod og-rwx server.key

to turn the certificate into a self-signed certificate and to copy the key and certificate to where the
server will look for them.

16.8. Secure TCP/IP Connections with SSH Tunnels

One can use SSH to encrypt the network connection between clients and a PostgreSQL server. Done
properly, this provides an adequately secure network connection.

First make sure that an SSH server is running properly on the same machine as the PostgreSQL
server and that you can log in usiagh as some user. Then you can establish a secure tunnel with a
command like this from the client machine:

ssh -L 3333:foo.com:5432 joe@foo.com

The first number in theL argument, 3333, is the port number of your end of the tunnel; it can be
chosen freely. The second number, 5432, is the remote end of the tunnel: the port number your server
is using. The name or the address in between the port numbers is the host with the database server
you are going to connect to. In order to connect to the database server using this tunnel, you connect
to port 3333 on the local machine:

psql -h localhost -p 3333 templatel

To the database server it will then look as though you are reallyjos@foo.com and it will use
whatever authentication procedure was set up for this user. In order for the tunnel setup to succeed
you must be allowed to connect Wah asjoe@foo.com , just as if you had attempted to ussh to

set up a terminal session.

243

Chapter 16. Server Run-time Environment

Tip: Several other applications exist that can provide secure tunnels using a procedure similar in
concept to the one just described.

244

Chapter 17. Database Users and Privileges

Every database cluster contains a set of database users. Those users are separate from the users man-
aged by the operating system on which the server runs. Users own database objects (for example,
tables) and can assign privileges on those objects to other users to control who has access to which
object.

This chapter describes how to create and manage users and introduces the privilege system. More
information about the various types of database objects and the effects of privileges can be found in
Chapter 5

17.1. Database Users

Database users are conceptually completely separate from operating system users. In practice it might
be convenient to maintain a correspondence, but this is not required. Database user names are global
across a database cluster installation (and not per individual database). To create a us@RB&THe
USERSQL command:

CREATE USERame;

name follows the rules for SQL identifiers: either unadorned without special characters, or double-
guoted. To remove an existing user, use the analop@P USERommand:

DROP USERame;

For convenience, the prograragateuser anddropuser are provided as wrappers around these
SQL commands that can be called from the shell command line:

createuser name
dropuser name

In order to bootstrap the database system, a freshly initialized system always contains one predefined
user. This user will have the fixed ID 1, and by default (unless altered when ruinitihg) it will

have the same name as the operating system user that initialized the database cluster. Customarily, this
user will be namegbostgres . In order to create more users you first have to connect as this initial
user.

Exactly one user identity is active for a connection to the database server. The user name to use for
a particular database connection is indicated by the client that is initiating the connection request in
an application-specific fashion. For example, phgl program uses thé&J command line option to
indicate the user to connect as. Many applications assume the name of the current operating system
user by default (includingreateuser andpsqgl). Therefore it is convenient to maintain a naming
correspondence between the two user sets.

The set of database users a given client connection may connect as is determined by the client authen-
tication setup, as explained @hapter 19(Thus, a client is not necessarily limited to connect as the

user with the same name as its operating system user, in the same way a person is not constrained in
its login name by her real name.) Since the user identity determines the set of privileges available to a
connected client, it is important to carefully configure this when setting up a multiuser environment.

245

Chapter 17. Database Users and Privileges

17.2. User Attributes

A database user may have a number of attributes that define its privileges and interact with the client
authentication system.

superuser

A database superuser bypasses all permission checks. Also, only a superuser can create new
users. To create a database superuselCREATE USERname CREATEUSER

database creation

A user must be explicitly given permission to create databases (except for superusers, since those
bypass all permission checks). To create such a useCREBATE USERame CREATEDB

password

A password is only significant if the client authentication method requires the user to sup-
ply a password when connecting to the database.pBssword , md5 andcrypt authenti-

cation methods make use of passwords. Database passwords are separate from operating sys-
tem passwords. Specify a password upon user creationGREATE USERhame PASSWORD

' string

A user’s attributes can be modified after creation WitlTER USER See the reference pages for
CREATE USERNJALTER USERor details.

A user can also set personal defaults for many of the run-time configuration settings described in
Section 16.4For example, if for some reason you want to disable index scans (hint: not a good idea)
anytime you connect, you can use

ALTER USER myname SET enable_indexscan TO off;

This will save the setting (but not set it immediately) and in subsequent connections it will appear
as thougtBSET enable_indexscan TO off; had been called right before the session started. You
can still alter this setting during the session; it will only be the default. To undo any such setting, use
ALTER USERusername RESET varname ;.

17.3. Groups

As in Unix, groups are a way of logically grouping users to ease management of privileges: privileges
can be granted to, or revoked from, a group as a whole. To create a group, use

CREATE GROURame;
To add users to or remove users from a group, use

ALTER GROURame ADD USERunamel, ...
ALTER GROURmame DROP USERunamel, ... ;

17.4. Privileges

When a database object is created, it is assigned an owner. The owner is the user that executed the
creation statement. To change the owner of a table, index, sequence, or view, ASEERe TABLE

246

Chapter 17. Database Users and Privileges

command. By default, only an owner (or a superuser) can do anything with the object. In order to
allow other users to use privilegesmust be granted.

There are several different privilegeSELECT, INSERT, UPDATE DELETE RULE REFERENCES
TRIGGER CREATETEMPORAREXECUTEUSAGEandALL PRIVILEGES. For more information on
the different types of privileges support by PostgreSQL, se&RANTreference page. The right to
modify or destroy an object is always the privilege of the owner only. To assign privilegesRikeT
command is used. So,jife is an existing user, anatcounts is an existing table, the privilege to
update the table can be granted with

GRANT UPDATE ON accounts TO joe;

The user executing this command must be the owner of the table. To grant a privilege to a group, use
GRANT SELECT ON accounts TO GROUP staff;

The special “user” nameUBLIC can be used to grant a privilege to every user on the system. Writing

ALL in place of a specific privilege specifies that all privileges will be granted.

To revoke a privilege, use the fittingly namr&VOKEommand:
REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the table owner (i.e., the right tdO&DP GRANTREVOKEetc) are always
implicit in being the owner, and cannot be granted or revoked. But the table owner can choose to
revoke his own ordinary privileges, for example to make a table read-only for himself as well as
others.

17.5. Functions and Triggers

Functions and triggers allow users to insert code into the backend server that other users may execute
without knowing it. Hence, both mechanisms permit users to “Trojan horse” others with relative
impunity. The only real protection is tight control over who can define functions.

Functions written in any language except SQL run inside the backend server process with the operat-
ing systems permissions of the database server daemon process. It is possible to change the server’s
internal data structures from inside of trusted functions. Hence, among many other things, such func-
tions can circumvent any system access controls. This is an inherent problem with user-defined C
functions.

247

Chapter 18. Managing Databases

Every instance of a running PostgreSQL server manages one or more databases. Databases are there-
fore the topmost hierarchical level for organizing SQL objects (“database objects”). This chapter
describes the properties of databases, and how to create, manage, and destroy them.

18.1. Overview

A database is a named collection of SQL objects (“database objects”). Generally, every database
object (tables, functions, etc.) belongs to one and only one database. (But there are a few system
catalogs, for exampleg_database , that belong to a whole cluster and are accessible from each
database within the cluster.) More accurately, a database is a collection of schemas and the schemas
contain the tables, functions, etc. So the full hierarchy is: server, database, schema, table (or something
else instead of a table).

An application that connects to the database server specifies in its connection request the name of the
database it wants to connect to. It is not possible to access more than one database per connection. (But
an application is not restricted in the number of connections it opens to the same or other databases.)
It is possible, however, to access more than one schema from the same connection. Schemas are a
purely logical structure and who can access what is managed by the privilege system. Databases are
physically separated and access control is managed at the connection level. If one PostgreSQL server
instance is to house projects or users that should be separate and for the most part unaware of each
other, it is therefore recommendable to put them into separate databases. If the projects or users are
interrelated and should be able to use each other’s resources they should be put in the same databases
but possibly into separate schemas. More information about managing schem@esdtiam 5.8

Note: SQL calls databases “catalogs”, but there is no difference in practice.

18.2. Creating a Database

In order to create a databases, the PostgreSQL server must be up and runnBer{eeel6.B

Databases are created with the SQL comn2aRHATE DATABASE

CREATE DATABASHame;

wherename follows the usual rules for SQL identifiers. The current user automatically becomes the
owner of the new database. It is the privilege of the owner of a database to remove it later on (which
also removes all the objects in it, even if they have a different owner).

The creation of databases is a restricted operationS8eton 17.%or how to grant permission.

Since you need to be connected to the database server in order to exeCOREXKEE DATABASE
command, the question remains how firet database at any given site can be created. The first
database is always created by thidb command when the data storage area is initialized. (See
Section 16.2 This database is calle@mplatel . So to create the first “real” database you can
connect taemplatel

The nameaemplatel is no accident: When a new database is created, the template database is essen-
tially cloned. This means that any changes you makenplatel are propagated to all subsequently

248

Chapter 18. Managing Databases

created databases. This implies that you should not use the template database for real work, but when
used judiciously this feature can be convenient. More details app&acition 18.3

As an extra convenience, there is also a program that you can execute from the shell to create new
databasegyreatedb

createdb dbname

createdb does no magic. It connects to tteeplatel database and issues HREATE DATABASE
command, exactly as described above. The reference pageeatadb contains the invocation
details. Note thatreatedb without any arguments will create a database with the current user name,
which may or may not be what you want.

Note: Chapter 19 contains information about how to restrict who can connect to a given database.

Sometimes you want to create a database for someone else. That user should become the owner of the
new database, so he can configure and manage it himself. To achieve that, use one of the following
commands:

CREATE DATABASHEbname OWNERusername ;

from the SQL environment, or

createdb -O username dbname

You must be a superuser to be allowed to create a database for someone else.

18.3. Template Databases

CREATE DATABAS&ctually works by copying an existing database. By default, it copies the standard
system database namethplatel . Thus that database is the “template” from which new databases

are made. If you add objects templatel , these objects will be copied into subsequently cre-

ated user databases. This behavior allows site-local modifications to the standard set of objects in
databases. For example, if you install the procedural language PL/pgS@hjlatel , it will au-
tomatically be available in user databases without any extra action being taken when those databases
are made.

There is a second standard system database n@mpldte0 . This database contains the same data

as the initial contents aémplatel , that is, only the standard objects predefined by your version of
PostgreSQLtemplate0 should never be changed afteitdb . By instructingCREATE DATABASE

to copytemplate0 instead oftemplatel , you can create a “virgin” user database that contains
none of the site-local additions tamplatel . This is particularly handy when restoringp@ dump

dump: the dump script should be restored in a virgin database to ensure that one recreates the correct
contents of the dumped database, without any conflicts with additions that may now be present in
templatel

To create a database by copyiegplate0 , use

CREATE DATABASHbname TEMPLATE template0;

from the SQL environment, or

createdb -T templateO dbname

249

Chapter 18. Managing Databases

from the shell.

It is possible to create additional template databases, and indeed one might copy any database in a
cluster by specifying its name as the templateGREATE DATABASHt is important to understand,
however, that this is not (yet) intended as a general-purpo8@Y DATABASHacility. In particular,

it is essential that the source database be idle (no data-altering transactions in progress) for the du-
ration of the copying operatiolCREATE DATABASWiIll check that no session (other than itself) is
connected to the source database at the start of the operation, but this does not guarantee that changes
cannot be made while the copy proceeds, which would result in an inconsistent copied database.
Therefore, we recommend that databases used as templates be treated as read-only.

Two useful flags exist inpg_database for each database: the colummtistemplate

and datallowconn . datistemplate may be set to indicate that a database is intended as a
template forCREATE DATABASH(this flag is set, the database may be cloned by any user with
CREATEDBrivileges; if it is not set, only superusers and the owner of the database may clone it. If
datallowconn is false, then no new connections to that database will be allowed (but existing
sessions are not killed simply by setting the flag false). {Ehwlate0 database is normally marked
datallowconn = false to prevent modification of it. Botlemplate0 andtemplatel should
always be marked witHatistemplate = true

After preparing a template database, or making any changes to one, it is a good idea to perform
VACUUM FREEZ& VACUUM FULL FREEZE that database. If this is done when there are no other
open transactions in the same database, then it is guaranteed that all rows in the database are “frozen”
and will not be subject to transaction ID wraparound problems. This is particularly important for a
database that will hawgatallowconn set to false, since it will be impossible to do routine mainte-
nanceVACUUNN such a database. S8ection 21.1.3or more information.

Note: templatel and template0 do not have any special status beyond the fact that the name
templatel is the default source database name for CREATE DATABAS&Nd the default database-
to-connect-to for various programs such as createdb . For example, one could drop templatel
and recreate it from template0 without any ill effects. This course of action might be advisable if
one has carelessly added a bunch of junk in template1l

18.4. Database Configuration

Recall fromSection 16.4hat the PostgreSQL server provides a large number of run-time configura-
tion variables. You can set database-specific default values for many of these settings.

For example, if for some reason you want to disable the GEQO optimizer for a given database, you'd
ordinarily have to either disable it for all databases or make sure that every connecting client is careful
to iSSUESET geqo TO off, . To make this setting the default you can execute the command

ALTER DATABASE mydb SET geqo TO off;

This will save the setting (but not set it immediately) and in subsequent connections it will appear as
thoughSET geqo TO off; had been called right before the session started. Note that users can still
alter this setting during the session; it will only be the default. To undo any such settingl TER
DATABASEdbname RESET varname ; .

250

Chapter 18. Managing Databases

18.5. Alternative Locations

It is possible to create a database in a location other than the default location for the installation. But
remember that all database access occurs through the database server, so any location specified must
be accessible by the server.

Alternative database locations are referenced by an environment variable which gives the absolute
path to the intended storage location. This environment variable must be present in the server’s en-
vironment, so it must have been defined before the server was started. (Thus, the set of available
alternative locations is under the site administrator’s control; ordinary users can’t change it.) Any
valid environment variable name may be used to reference an alternative location, although using
variable names with a prefix fGDATAS recommended to avoid confusion and conflict with other
variables.

To create the variable in the environment of the server process you must first shut down the server,
define the variable, initialize the data area, and finally restart the server. (Se&eatsmn 16.6and
Section 16.3 To set an environment variable, type

PGDATA2=/home/postgres/data
export PGDATA2

in Bourne shells, or
setenv PGDATA2 /home/postgres/data

in csh ortcsh . You have to make sure that this environment variable is always defined in the server
environment, otherwise you won't be able to access that database. Therefore you probably want to set
it in some sort of shell start-up file or server start-up script.

To create a data storage area WGDATA2 ensure that the containing directory (here,
/home/postgres) already exists and is writable by the user account that runs the server (see
Section 16.L Then from the command line, type

initlocation PGDATA2
(notinitlocation $PGDATA2). Then you can restart the server.
To create a database within the new location, use the command

CREATE DATABASHame WITH LOCATION location

wherelocation is the environment variable you usétGDATA2N this example. Thereatedb
command has the optied for this purpose.

Databases created in alternative locations can be accessed and dropped like any other database.

Note: It can also be possible to specify absolute paths directly to the CREATE DATABASE
command without defining environment variables. This is disallowed by default because it is a
security risk. To allow it, you must compile PostgreSQL with the C preprocessor macro
ALLOW_ABSOLUTE_DBPATH8fined. One way to do this is to run the compilation step like this:

gmake CPPFLAGS=-DALLOW_ABSOLUTE_DBPATHS all

251

Chapter 18. Managing Databases
18.6. Destroying a Database
Databases are destroyed with the commaR®OP DATABASE

DROP DATABASHame;

Only the owner of the database (i.e., the user that created it) or a superuser, can drop a database.
Dropping a database removes all objects that were contained within the database. The destruction of
a database cannot be undone.

You cannot execute tBROP DATABASEommand while connected to the victim database. You can,
however, be connected to any other database, includingripatel databaseemplatel would
be the only option for dropping the last user database of a given cluster.

For convenience, there is also a shell program to drop databases:
dropdb dbname

(Unlike createdb , it is not the default action to drop the database with the current user name.)

252

Chapter 19. Client Authentication

When a client application connects to the database server, it specifies which PostgreSQL user name
it wants to connect as, much the same way one logs into a Unix computer as a particular user. Within
the SQL environment the active database user name determines access privileges to database objects
-- seeChapter 17for more information. Therefore, it is essential to restrict which database users can
connect.

Authenticationis the process by which the database server establishes the identity of the client, and
by extension determines whether the client application (or the user who runs the client application) is
permitted to connect with the user name that was requested.

PostgreSQL offers a number of different client authentication methods. The method used to authenti-
cate a particular client connection can be selected on the basis of (client) host address, database, and
user.

PostgreSQL user names are logically separate from user names of the operating system in which the
server runs. If all the users of a particular server also have accounts on the server’s machine, it makes
sense to assign database user names that match their operating system user names. However, a server
that accepts remote connections may have many database users who have no local operating system
account, and in such cases there need be no connection between database user names and OS user
names.

19.1. The pg_hba.conf file

Client authentication is controlled by the fileg_hba.conf in the data directory, e.g.,
/usr/local/pgsql/data/pg_hba.conf . (HBA stands for host-based authentication.) A default
pg_hba.conf file is installed when the data directory is initialized ibigdb

The general format of theg_hba.conf file is a set of records, one per line. Blank lines are ignored,

as is any text after th# comment character. A record is made up of a number of fields which are
separated by spaces and/or tabs. Fields can contain white space if the field value is quoted. Records
cannot be continued across lines.

Each record specifies a connection type, a client IP address range (if relevant for the connection type),
a database name, a user name, and the authentication method to be used for connections matching
these parameters. The first record with a matching connection type, client address, requested database,
and user name is used to perform authentication. There is no “fall-through” or “backup”: if one record

is chosen and the authentication fails, subsequent records are not considered. If no record matches,
access is denied.

A record may have one of the seven formats

local database user authentication-method [authentication-option]

host database user IP-address IP-mask authentication-method [authentication-o
hostssl database user IP-address IP-mask authentication-method [authentication-o
hostnossl database user IP-address IP-mask authentication-method [authentication-o
host database user IP-address / IP-masklen authentication-method [authenticatior
hostssl database user IP-address / IP-masklen authentication-method [authenticatior
hostnossl| database user IP-address / IP-masklen authentication-method [authenticatior

The meaning of the fields is as follows:

253

Chapter 19. Client Authentication

local

This record matches connection attempts using Unix-domain sockets. Without a record of this
type, Unix-domain socket connections are disallowed.

host

This record matches connection attempts using TCP/IP networks. Note that TCP/IP connections
are disabled unless the server is started withitheption or thetcpip_socket configuration
parameter is enabled.

hostssl

This record matches connection attempts using SSL over TGiB&P.records will match either
SSL or non-SSL connection attempts, bastssl records require SSL connections.

To make use of this option the server must be built with SSL support enabled. Furthermore,
SSL must be enabled by enabling #& configuration parameter (s&ection 16.4or more
information).

hostnossl

This record is similar tdostssl but with the opposite logic: it matches only regular connection
attempts not using SSL.

database

Specifies which databases this record matches. The \wiluespecifies that it matches all
databases. The valsameuser specifies that the record matches if the requested database has
the same name as the requested user. The galuegroup specifies that the requested user

must a member of the group with the same name as the requested database. Otherwise, this is
the name of a specific PostgreSQL database. Multiple database names can be supplied by
separating them with commas. A file containing database names can be specified by preceding
the file name with@ The file must be in the same directoryms hba.conf

user

Specifies which PostgreSQL users this record matches. The alalugpecifies that it matches

all users. Otherwise, this is the name of a specific PostgreSQL user. Multiple user names can be
supplied by separating them with commas. Group names can be specified by preceding the group
name with+. A file containing user names can be specified by preceding the file namewith

The file must be in the same directoryms hba.conf

IP-address
IP-mask

These two fields contain IP address and mask values in standard dotted decimal notation. (IP
addresses can only be specified numerically, not as domain or host names.) Taken together they
specify the client machine IP addresses that this record matches. The precise logic is that

(‘actual-IP-address xor |P-address-field) and IP-mask-field
must be zero for the record to match.

An IP address given in IPv4 format will match IPv6 connections that have the corresponding
address, for exampl#27.0.0.1 will match the IPv6 addressfff:127.0.0.1 . An entry

given in IPv6 format will match only IPv6 connections, even if the represented address is in the
IPv4-in-IPv6 range. Note that entries in IPv6 format will be rejected if the system’s C library
does not have support for IPv6 addresses.

These fields only apply thost , hostssl , andhostnossl records.

254

Chapter 19. Client Authentication

IP-masklen

This field may be used as an alternative tolfhenask notation. It is an integer specifying the
number of high-order bits to set in the mask. The number must be between 0 and 32 (in the case
of an IPv4 address) or 128 (in the case of an IPv6 address) inclusive. 0 will match any address,
while 32 (or 128, respectively) will match only the exact host specified. The same matching logic
is used as for a dotted notatitih-mask .

There must be no white space between tReaddress and the/ or the/ and the
IP-masklen , or the file will not be parsed correctly.

This field only applies tost , hostssl , andhostnossl records.
authentication-method
Specifies the authentication method to use when connecting via this record. The possible choices
are summarized here; details areSiection 19.2
trust

The connection is allowed unconditionally. This method allows anyone that can connect to
the PostgreSQL database server to login as any PostgreSQL user they like, without the need
for a password. SeBection 19.2.Tor detalils.

reject

The connection is rejected unconditionally. This is useful for “filtering out” certain hosts
from a group.

md5

Requires the client to supply an MD5 encrypted password for authentication. This is the
only method that allows encrypted passwords to be storgayishadow . SeeSection
19.2.2for details.

crypt

Like the md5 method but uses olderypt() encryption, which is needed for pre-7.2
clients.md5is preferred for 7.2 and later clients. S&ection 19.2.2or details.

password

Same asnd5, but the password is sent in clear text over the network. This should not be
used on untrusted networks. S&ection 19.2.2or details.

krb4

Kerberos V4 is used to authenticate the user. This is only available for TCP/IP connections.
SeeSection 19.2.3or details.

krb5

Kerberos V5 is used to authenticate the user. This is only available for TCP/IP connections.
SeeSection 19.2.3or details.

ident

Obtain the operating system user name of the client (for TCP/IP connections by contacting
the ident server on the client, for local connections by getting it from the operating system)
and check if the user is allowed to connect as the requested database user by consulting the
map specified after thdent key word.

If you use the magameuser , the user names are required to be identical. If not, the map
name is looked up in the filgg_ident.conf in the same directory ggj_hba.conf . The

255

Chapter 19. Client Authentication

connection is accepted if that file contains an entry for this map name with the operating-
system user name and the requested PostgreSQL user name.

For local connections, this only works on machines that support Unix-domain socket cre-
dentials (currently Linux, FreeBSD, NetBSD, OpenBSD, and BSD/OS).

SeeSection 19.2.4elow for details.
pam

Authenticate using the Pluggable Authentication Modules (PAM) service provided by the
operating system. Seection 19.2.5or details.

authentication-option

The meaning of this optional field depends on the chosen authentication method and is described
in the next section.

Since thepg_hba.conf records are examined sequentially for each connection attempt, the order of
the records is significant. Typically, earlier records will have tight connection match parameters and
weaker authentication methods, while later records will have looser match parameters and stronger
authentication methods. For example, one might wish tause authentication for local TCP/IP
connections but require a password for remote TCP/IP connections. In this case a record specify-
ing trust authentication for connections from 127.0.0.1 would appear before a record specifying
password authentication for a wider range of allowed client IP addresses.

Important: Do not prevent the superuser from accessing the templatel database. Various utility
commands need access to templatel

Thepg_hba.conf file is read on start-up and when the main server progessnfaster) receives
a SIGHUP signal. If you edit the file on an active system, you will need to signalditenaster
(usingpg_ctl reload orkill -HUP) to make it re-read the file.

An example of gpg_hba.conf file is shown inExample 19-1See the next section for details on the
different authentication methods.

Example 19-1. An examplepg_hba.conf file

Allow any user on the local system to connect to any database under

any user name using Unix-domain sockets (the default for local

connections).

#

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
local all all trust

The same using local loopback TCP/IP connections.

#
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host all all 127.0.0.1 255.255.255.255 trust

The same as the last line but using a CIDR mask

256

Chapter 19. Client Authentication

#
TYPE DATABASE USER IP-ADDRESS/CIDR-mask METHOD
host all all 127.0.0.1/32 trust

Allow any user from any host with IP address 192.168.93.x to connect
to database "templatel" as the same user name that ident reports for
the connection (typically the Unix user name).

#
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host templatel all 192.168.93.0 255.255.255.0 ident sameuser

The same as the last line but using a CIDR mask

#
TYPE DATABASE USER IP-ADDRESS/CIDR-mask METHOD
host templatel all 192.168.93.0/24 ident sameuser

Allow a user from host 192.168.12.10 to connect to database

"templatel" if the user's password is correctly supplied.

#

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host templatel all 192.168.12.10 255.255.255.255 md5

In the absence of preceding "host" lines, these two lines will

reject all connection from 192.168.54.1 (since that entry will be
matched first), but allow Kerberos V connections from anywhere else
on the Internet. The zero mask means that no bits of the host IP
address are considered so it matches any host.

HOH R R B R

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host all all 192.168.54.1 255.255.255.255 reject
host all all 0.0.0.0 0.0.0.0 krb5

Allow users from 192.168.x.x hosts to connect to any database, if

they pass the ident check. If, for example, ident says the user is

"bryanh" and he requests to connect as PostgreSQL user "guestl", the
connection is allowed if there is an entry in pg_ident.conf for map

"omicron" that says "bryanh" is allowed to connect as "guestl".

#

#

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host all all 192.168.0.0 255.255.0.0 ident omicron
If these are the only three lines for local connections, they will
allow local users to connect only to their own databases (databases
with the same name as their user name) except for administrators and
members of group "support" who may connect to all databases. The file
$PGDATA/admins contains a list of user names. Passwords are required in
all cases.
#
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
local sameuser all md5
local all @admins md5
local all +support md5

The last two lines above can be combined into a single line:
local all @admins,+support md5

The database column can also use lists and file names, but not groups:

257

Chapter 19. Client Authentication

local dbl,db2,@demodbs all md>5

19.2. Authentication methods

The following describes the authentication methods in more detail.

19.2.1. Trust authentication

Whentrust authentication is specified, PostgreSQL assumes that anyone who can connect to the
server is authorized to access the database as whatever database user he specifies (including the
database superuser). This method should only be used when there is adequate operating system-level
protection on connections to the server.

trust authentication is appropriate and very convenient for local connections on a single-user work-
station. It is usuallynot appropriate by itself on a multiuser machine. However, you may be able to
usetrust even on a multiuser machine, if you restrict access to the server’'s Unix-domain socket
file using file-system permissions. To do this, set thix_socket_permissions (and possibly
unix_socket_group) configuration parameters as describe&attion 16.4.10r you could set the
unix_socket_directory configuration parameter to place the socket file in a suitably restricted
directory.

Setting file-system permissions only helps for Unix-socket connections. Local TCP/IP connections are
not restricted by it; therefore, if you want to use file-system permissions for local security, remove the
host ... 127.0.0.1 ... line from pg_hba.conf , or change it to a nomust authentication
method.

trust authentication is only suitable for TCP/IP connections if you trust every user on every machine
that is allowed to connect to the server by tie hba.conf lines that specifyrust . It is seldom
reasonable to ugeust for any TCP/IP connections other than those from localhost (127.0.0.1).

19.2.2. Password authentication

The password-based authentication methodsrai& crypt , andpassword . These methods oper-

ate similarly except for the way that the password is sent across the connection. If you are at all
concerned about password “sniffing” attacks theds is preferred, withcrypt a second choice if

you must support pre-7.2 clients. Plaisssword should especially be avoided for connections over

the open Internet (unless you use SSL, SSH, or other communications security wrappers around the
connection).

PostgreSQL database passwords are separate from operating system user passwords. The password
for each database user is stored in pigeshadow system catalog table. Passwords can be man-

aged with the SQL comman@REATE USERNJALTER USERe.g.,CREATE USER foo WITH
PASSWORD ’secret’; . By default, that is, if no password has been set up, the stored password is

null and password authentication will always fail for that user.

To restrict the set of users that are allowed to connect to certain databases, list the usausen the
column ofpg_hba.conf , as explained in the previous section.

19.2.3. Kerberos authentication

Kerberos is an industry-standard secure authentication system suitable for distributed computing over
a public network. A description of the Kerberos system is far beyond the scope of this document; in

258

Chapter 19. Client Authentication

all generality it can be quite complex (yet powerful). The Kerberos FéQMIT Project Athenacan
be a good starting point for exploration. Several sources for Kerberos distributions exist.

While PostgreSQL supports both Kerberos 4 and Kerberos 5, only Kerberos 5 is recommended. Ker-
beros 4 is considered insecure and no longer recommended for general use.

In order to use Kerberos, support for it must be enabled at build timeC8apter 14for more
information. Both Kerberos 4 and 5 are supported, but only one version can be supported in any one
build.

PostgreSQL operates like a normal Kerberos service. The name of the service principal is
servicename / hostname @ealm , whereservicename s postgres (unless a different service
name was selected at configure time withonfigure --with-krb-srvnam=whatever).
hostname is the fully qualified host name of the server machine. The service principal’s realm is
the preferred realm of the server machine.

Client principals must have their PostgreSQL user name as their first component, for example
pgusername/otherstuff@realm . At present the realm of the client is not checked by
PostgreSQL; so if you have cross-realm authentication enabled, then any principal in any realm that
can communicate with yours will be accepted.

Make sure that your server key file is readable (and preferably only readable) by the PostgreSQL
server account. (See alsBection 16.L The location of the key file is specified with the
krb_server_keyfile run-time configuration parameter. (See afection 16.4 The default is
/etc/srvtab if you are using Kerberos 4 arriLE:/usr/local/pgsql/etc/krb5.keytab (or
whichever directory was specified sysconfdir at build time) with Kerberos 5.

To generate the keytab file, use for example (with version 5)

kadmin% ank -randkey postgres/server.my.domain.org
kadmin% ktadd -k krb5.keytab postgres/server.my.domain.org

Read the Kerberos documentation for details.

When connecting to the database make sure you have a ticket for a principal matching the requested
database user name. An example: For database userfire@meboth principalfred@EXAMPLE.COM
andfred/users.example.com@EXAMPLE.COM can be used to authenticate to the database server.

If you use mod_auth_kerb from http://modauthkerb.sf.net and mod_perl on your Apache web server,
you can usé\uthType KerberosV5SaveCredentials with a mod_perl script. This gives secure
database access over the web, no extra passwords required.

19.2.4. Ident-based authentication

The ident authentication method works by inspecting the client’s operating system user name and
determining the allowed database user names by using a map file that lists the permitted corresponding
user name pairs. The determination of the client’'s user name is the security-critical point, and it works
differently depending on the connection type.

19.2.4.1. Ident Authentication over TCP/IP

The “Identification Protocol” is described RFC 1413 Virtually every Unix-like operating system
ships with an ident server that listens on TCP port 113 by default. The basic functionality of an ident
server is to answer questions like “What user initiated the connection that goes out of yoXiepolrt

1. http://www.nrl.navy.mil/CCS/people/kenh/kerberos-fag.html
2. ftp://athena-dist.mit.edu

259

Chapter 19. Client Authentication

connects to my poiY?”. Since PostgreSQL knows bothandY when a physical connection is estab-
lished, it can interrogate the ident server on the host of the connecting client and could theoretically
determine the operating system user for any given connection this way.

The drawback of this procedure is that it depends on the integrity of the client: if the client machine

is untrusted or compromised an attacker could run just about any program on port 113 and return any
user name he chooses. This authentication method is therefore only appropriate for closed networks
where each client machine is under tight control and where the database and system administrators
operate in close contact. In other words, you must trust the machine running the ident server. Heed
the warning:

RFC 1413

The Identification Protocol is not intended as an authorization or access control protocol.

19.2.4.2. Ident Authentication over Local Sockets

On systems supportingO_PEERCRERequests for Unix-domain sockets (currently Linux, FreeBSD,
NetBSD, OpenBSD, and BSD/OS), ident authentication can also be applied to local connections. In
this case, no security risk is added by using ident authentication; indeed it is a preferable choice for
local connections on such systems.

On systems withou8O_PEERCRERequests, ident authentication is only available for TCP/IP connec-
tions. As a work around, it is possible to specify the localhost address 127.0.0.1 and make connections
to this address.

19.2.4.3. Ident Maps

When using ident-based authentication, after having determined the name of the operating system
user that initiated the connection, PostgreSQL checks whether that user is allowed to connect as the
database user he is requesting to connect as. This is controlled by the ident map argument that follows
theident key word in thepg_hba.conf file. There is a predefined ident mapmeuser , which

allows any operating system user to connect as the database user of the same name (if the latter
exists). Other maps must be created manually.

Ident maps other thasameuser are defined in the fileg_ident.conf in the data directory, which
contains lines of the general form:

map-name ident-username database-username

Comments and whitespace are handled in the usual wayn@ipename is an arbitrary name that will

be used to refer to this mappinggy_hba.conf . The other two fields specify which operating system
user is allowed to connect as which database user. The se@paame can be used repeatedly to
specify more user-mappings within a single map. There is no restriction regarding how many database
users a given operating system user may correspond to and vice versa.

The pg_ident.conf file is read on start-up and when the main server procgssinfaster)
receives a SIGHUP signal. If you edit the file on an active system, you will need to signal the
postmaster (usingpg_ctl reload orkill -HUP) to make it re-read the file.

A pg_ident.conf file that could be used in conjunction with tpg_hba.conf file in Example
19-1is shown inExample 19-2In this example setup, anyone logged in to a machine on the 192.168
network that does not have the Unix user ndmyanh , ann, orrobert would not be granted access.
Unix userrobert would only be allowed access when he tries to connect as PostgreSQhotser

260

Chapter 19. Client Authentication

not asrobert or anyone elseann would only be allowed to connect asn. Userbryanh would be
allowed to connect as eithbryanh himself or aguestl .

Example 19-2. An examplepg_ident.conf file

MAPNAME IDENT-USERNAME PG-USERNAME
omicron bryanh bryanh

omicron ann ann

bob has user name robert on these machines

omicron robert bob

bryanh can also connect as guestl

omicron bryanh guestl

19.2.5. PAM Authentication

This authentication method operates similarlyptssword except that it uses PAM (Pluggable
Authentication Modules) as the authentication mechanism. The default PAM service name is
postgresgl . You can optionally supply you own service name afterhm key word in the file
pg_hba.conf . For more information about PAM, please read the Linux-PAM Pagd the Solaris

PAM Pagé.

19.3. Authentication problems

Genuine authentication failures and related problems generally manifest themselves through error
messages like the following.

FATAL: no pg_hba.conf entry for host "123.123.123.123", user "andym", database "testdb"

This is what you are most likely to get if you succeed in contacting the server, but it does not want to
talk to you. As the message suggests, the server refused the connection request because it found no
authorizing entry in itpg_hba.conf configuration file.

FATAL: Password authentication failed for user "andym"

Messages like this indicate that you contacted the server, and it is willing to talk to you, but not
until you pass the authorization method specified in ghehba.conf file. Check the password

you are providing, or check your Kerberos or ident software if the complaint mentions one of those
authentication types.

FATAL: user "andym" does not exist

The indicated user name was not found.

FATAL: database "testdb" does not exist

The database you are trying to connect to does not exist. Note that if you do not specify a database
name, it defaults to the database user name, which may or may not be the right thing.

4. http://lwww.kernel.org/pub/linux/libs/pam/
5. http://www.sun.com/software/solaris/pam/

261

Chapter 19. Client Authentication

Tip: The server log may contain more information about an authentication failure than is reported
to the client. If you are confused about the reason for a failure, check the log.

262

Chapter 20. Localization

This chapter describes the available localization features from the point of view of the administrator.
PostgreSQL supports localization with two approaches:

- Using the locale features of the operating system to provide locale-specific collation order, number
formatting, translated messages, and other aspects.

- Providing a number of different character sets defined in the PostgreSQL server, including multiple-
byte character sets, to support storing text in all kinds of languages, and providing character set
translation between client and server.

20.1. Locale Support

Locale support refers to an application respecting cultural preferences regarding alphabets, sorting,
number formatting, etc. PostgreSQL uses the standard ISO C and POSIX locale facilities provided by
the server operating system. For additional information refer to the documentation of your system.

20.1.1. Overview

Locale support is automatically initialized when a database cluster is creatednitsimg . initdb

will initialize the database cluster with the locale setting of its execution environment; so if your
system is already set to use the locale that you want in your database cluster then there is nothing else
you need to do. If you want to use a different locale (or you are not sure which locale your system is
set to), you can telhitdb exactly which locale you want with the optiefiocale . For example:

initdb --locale=sv_SE

This example sets the locale to Swedish)(as spoken in SwedesE). Other possibilities might be

en_US (U.S. English) andr_CA (Canada, French). If more than one character set can be useful for

a locale then the specifications look like this: Cz.1ISO8859-2 . What locales are available under

what names on your system depends on what was provided by the operating system vendor and what
was installed.

Occasionally it is useful to mix rules from several locales, e.g., use English collation rules but Spanish
messages. To support that, a set of locale subcategories exist that control only a certain aspect of the
localization rules.

LC_COLLATE String sort order

LC_CTYPE Character classification (What is a letter? The
upper-case equivalent?)

LC_MESSAGES Language of messages

LC_MONETARY Formatting of currency amounts

LC_NUMERIC Formatting of numbers

LC_TIME Formatting of dates and times

The category names translate into namesitafo options to override the locale choice for a specific

263

Chapter 20. Localization

category. For instance, to set the locale to French Canadian, but use U.S. rules for formatting currency,
useinitdb --locale=fr_CA --lc-monetary=en_US

If you want the system to behave as if it had no locale support, use the specialdar&eSIX.

The nature of some locale categories is that their value has to be fixed for the lifetime of a database
cluster. Thatis, oncieitdb has run, you cannot change them anymo@.COLLATEandLC_CTYPE

are those categories. They affect the sort order of indexes, so they must be kept fixed, or indexes on
text columns will become corrupt. PostgreSQL enforces this by recording the values@DLLATE
andLC_CTYPEthat are seen bipitdb . The server automatically adopts those two values when it is
started.

The other locale categories can be changed as desired whenever the server is running by setting the
run-time configuration variables that have the same name as the locale categori@scttme 16.4

for details). The defaults that are chosenifiglo are actually only written into the configuration

file postgresgl.conf to serve as defaults when the server is started. If you delete the assignments
from postgresgl.conf then the server will inherit the settings from the execution environment.

Note that the locale behavior of the server is determined by the environment variables seen by the
server, not by the environment of any client. Therefore, be careful to configure the correct locale
settings before starting the server. A consequence of this is that if client and server are set up to
different locales, messages may appear in different languages depending on where they originated.

Note: When we speak of inheriting the locale from the execution environment, this means the
following on most operating systems: For a given locale category, say the collation, the following
environment variables are consulted in this order until one is found to be set: LC_ALL, LC_COLLATE
(the variable corresponding to the respective category), LANG If none of these environment vari-
ables are set then the locale defaults to C.

Some message localization libraries also look at the environment variable LANGUAGEvhich over-
rides all other locale settings for the purpose of setting the language of messages. If in doubt,
please refer to the documentation of your operating system, in particular the documentation about
gettext, for more information.

To enable messages translated to the user’s preferred language, NLS must have been enabled at build
time. This choice is independent of the other locale support.

20.1.2. Benefits

Locale support influences in particular the following features:

« Sort order in queries UsinQRDER BY

« Theto_char family of functions

The only severe drawback of using the locale support in PostgreSQL is its speed. So use locales only
if you actually need them.

20.1.3. Problems

If locale support doesn’t work in spite of the explanation above, check that the locale support in your
operating system is correctly configured. To check what locales are installed on your system, you may
use the commanidcale -a if your operating system provides it.

264

Chapter 20. Localization

Check that PostgreSQL is actually using the locale that you thinklitisCOLLATEandLC_CTYPE
settings are determinediattdb time and cannot be changed without repeatiitgb . Other lo-
cale settings includingC_MESSAGEandLC_MONETAR®Hre initially determined by the environment
the server is started in. You can check ti@ COLLATEandLC_CTYPEsettings of a database with the
utility programpg_controldata

The directorysrc/test/locale in the source distribution contains a test suite for PostgreSQL'’s
locale support.

Client applications that handle server-side errors by parsing the text of the error message will obvi-
ously have problems when the server's messages are in a different language. Authors of such applica-
tions are advised to make use of the error code scheme instead.

Maintaining catalogs of message translations requires the on-going efforts of many volunteers that
want to see PostgreSQL speak their preferred language well. If messages in your language is currently
not available or fully translated, your assistance would be appreciated. If you want to help, refer to
the Chapter 46r write to the developers’ mailing list.

20.2. Character Set Support

The character set support in PostgreSQL allows you to store text in a variety of character sets, in-
cluding single-byte character sets such as the 1ISO 8859 series and multiple-byte character sets such
as EUC (Extended Unix Code), Unicode, and Mule internal code. All character sets can be used
transparently throughout the server. (If you use extension functions from other sources, it depends on
whether they wrote their code correctly.) The default character set is selected while initializing your
PostgreSQL database cluster usimgib . It can be overridden when you create a database using
createdb or by using the SQL commantREATE DATABASESO you can have multiple databases

each with a different character set.

20.2.1. Supported Character Sets

Table 20-1shows the character sets available for use in the server.

Table 20-1. Server Character Sets

Name Description

SQL_ASCII IASCII

EUC_JP Japanese EUC

EUC_CN Chinese EUC

EUC_KR Korean EUC

JOHAB Korean EUC (Hangle base)

EUC_TW Taiwan EUC

UNICODE Unicode (UTF-8)

MULE_INTERNAL Mule internal code

LATIN1 ISO 8859-1/ECMA 94 (Latin alphabet no.1)
LATIN2 ISO 8859-2/ECMA 94 (Latin alphabet no.2)
LATIN3 ISO 8859-3/ECMA 94 (Latin alphabet no.3)
LATIN4 ISO 8859-4/ECMA 94 (Latin alphabet no.4)
LATINS ISO 8859-9/ECMA 128 (Latin alphabet no.5)

265

Chapter 20. Localization

Name Description

LATING ISO 8859-10/ECMA 144 (Latin alphabet no.6)

LATIN7 ISO 8859-13 (Latin alphabet no.7)

LATINS ISO 8859-14 (Latin alphabet no.8)

LATINS ISO 8859-15 (Latin alphabet no.9)

LATIN10 ISO 8859-16/ASRO SR 14111 (Latin alphabet
no.10)

ISO_8859_5 ISO 8859-5/ECMA 113 (Latin/Cyrillic)

ISO_8859_6 ISO 8859-6/ECMA 114 (Latin/Arabic)

ISO_8859_7 ISO 8859-7/ECMA 118 (Latin/Greek)

ISO_8859 8 ISO 8859-8/ECMA 121 (Latin/Hebrew)

KOI8 KOI8-R(U)

WIN \Windows CP1251

ALT 'Windows CP866

WIN1256 Windows CP1256 (Arabic)

TCVN TCVN-5712/Windows CP1258 (Vietnamese)

\WIN874 Windows CP874 (Thai)

Important: Before PostgreSQL 7.2, LATIN5S mistakenly meant ISO 8859-5. From 7.2 on, LATIN5
means ISO 8859-9. If you have a LATIN5 database created on 7.1 or earlier and want to migrate
to 7.2 or later, you should be careful about this change.

Not all APIs support all the listed character sets. For example, the PostgreSQL JDBC driver does not
SUpportMULE_INTERNALLATING , LATINS , andLATIN10 .

20.2.2. Setting the Character Set

initdb defines the default character set for a PostgreSQL cluster. For example,
initdb -E EUC_JP

sets the default character set (encodingiie_JP(Extended Unix Code for Japanese). You can use
--encoding instead ofE if you prefer to type longer option strings. If Aé or --encoding option
is given,SQL_ASCII is used.

You can create a database with a different character set:
createdb -E EUC_KR Kkorean

This will create a database namiegtean that uses the character $8C_KR Another way to ac-
complish this is to use this SQL command:

CREATE DATABASE korean WITH ENCODING 'EUC_KR’;

The encoding for a database is stored in the system cagiglagtabase . You can see that by using
the-l option or thel command opsqgl .

$ psql -l
List of databases

266

Chapter 20. Localization

Database | Owner | Encoding
euc_cn | t-ishii | EUC_CN
euc_jp | t-ishii | EUC_JP
euc_kr | t-ishii | EUC_KR
euc_tw | t-ishii | EUC_TW
mule_internal | t-ishii | MULE_INTERNAL
regression | t-ishii | SQL_ASCII
templatel | t-ishii | EUC_JP
test | t-ishii | EUC_JP
unicode | t-ishii | UNICODE
(9 rows)

20.2.3. Automatic Character Set Conversion Between Server and Client

PostgreSQL supports automatic character set conversion between server and client for certain charac-
ter sets. The conversion information is stored ingheconversion system catalog. You can create

a new conversion by using the SQL comm&REATE CONVERSIORostgreSQL comes with some
predefined conversions. They are listedable 20-2

Table 20-2. Client/Server Character Set Conversions

Server Character Set /Available Client Character Sets
SQL_ASCII SQL_ASCII, UNICODE MULE_INTERNAL
EUC_JP EUC_JP, SJIS , UNICODE MULE_INTERNAL
EUC_CN EUC_CNUNICODE MULE_INTERNAL
EUC_KR EUC_KRUNICODE MULE_INTERNAL
JOHAB JOHAB UNICODE
EUC TW EUC_TWBIGS5, UNICODE MULE_INTERNAL
LATIN1 LATIN1 , UNICODE MULE_INTERNAL
LATIN2 LATIN2 , WIN1250, UNICODE MULE_INTERNAL
LATIN3 LATIN3 , UNICODE MULE_INTERNAL
LATIN4 LATIN4 , UNICODE MULE_INTERNAL
LATINS LATINS , UNICODE
LATING LATING , UNICODE MULE_INTERNAL
LATIN7 LATIN7 , UNICODE MULE_INTERNAL
LATINS LATINS , UNICODE MULE_INTERNAL
LATIN9 LATIN9 , UNICODE MULE_INTERNAL
LATIN10 LATIN10 , UNICODE MULE_INTERNAL
ISO_8859 5 ISO_8859_5 , UNICODE MULE_INTERNALWIN,
ALT, KOI8
ISO 8859 6 ISO 8859 6 , UNICODE
ISO 8859 7 ISO 8859 7 , UNICODE
ISO_8859 8 ISO_8859 8 , UNICODE

267

Chapter 20. Localization

Server Character Set

IAvailable Client Character Sets

UNICODE

EUC_JP, SJIS , EUC_KRUHG JOHAB EUC_CN
GBK EUC_TWBIG5, LATIN1 to LATIN10,
ISO_8859_5 ,1SO_8859 6 , ISO_8859 7 ,
ISO_8859_8 , WIN, ALT, KOI8, WIN1256, TCVN
WIN874, GB18030, WIN1250

MULE_INTERNAL

EUC_JP, SJIS , EUC_KREUC_CNEUC_TWBIG5,
LATINL to LATIN5S , WIN, ALT, WIN1250, BIG5,
ISO_8859 5 , KOI8

KOI8 1ISO_8859_5 , WIN, ALT, KOI8, UNICODE
MULE_INTERNAL

WIN ISO_8859_5 , WIN, ALT, KOI8, UNICODE
MULE_INTERNAL

ALT ISO_8859_5 , WIN, ALT, KOI8, UNICODE
MULE_INTERNAL

WIN1256 WIN1256, UNICODE

TCVN TCVN UNICODE

WIN874 WIN874, UNICODE

To enable the automatic character set conversion, you have to tell PostgreSQL the character set (en-

coding) you would like to use in the client. There are several ways to accomplish this:

« Using the\encoding

command in psghencoding allows you to change client encoding on the

fly. For example, to change the encodingstns , type:
\encoding SJIS

Using libpg functions\encoding actually callsPQsetClientEncoding() for its purpose.
int PQsetClientEncoding(PGconn * conn, const char * encoding);

whereconn is a connection to the server, aadcoding is the encoding you want to use. If the
function successfully sets the encoding, it returns 0, otherwise -1. The current encoding for this
connection can be determined by using:

int PQclientEncoding(const PGconn * conn);

Note that it returns the encoding ID, not a symbolic string sudblas JP. To convert an encoding
ID to an encoding hame, you can use:

char *pg_encoding_to_char(int encoding_id);
Using SET client_encoding TO . Setting the client encoding can be done with this SQL com-
mand:
SET CLIENT_ENCODING TO value ’;
Also you can use the more standard SQL syr®8X NAME3or this purpose:
SET NAMES value ’;
To query the current client encoding:
SHOW client_encoding;
To return to the default encoding:
RESET client_encoding;

268

Chapter 20. Localization

« UsingPGCLIENTENCODINGf environment variabl®GCLIENTENCODINGs defined in the client’'s
environment, that client encoding is automatically selected when a connection to the server is made.
(This can subsequently be overridden using any of the other methods mentioned above.)

« Using the configuration variablelient_encoding . If the client_encoding variable in
postgresgl.conf is set, that client encoding is automatically selected when a connection to the
server is made. (This can subsequently be overridden using any of the other methods mentioned
above.)

If the conversion of a particular character is not possible -- suppose you EbasgPfor the server
andLATIN1 for the client, then some Japanese characters cannot be convetgd@itd -- it is
transformed to its hexadecimal byte values in parentheses(8&26€C) .

20.2.4. Further Reading

These are good sources to start learning about various kinds of encoding systems.

ftp://ftp.ora.com/pub/examples/nutshell/ujip/doc/cjk.inf

Detailed explanations &UC_JP, EUC_CNEUC_KREUC_TwWappear in section 3.2.
http://www.unicode.org/

The web site of the Unicode Consortium
RFC 2044

UTF-8 is defined here.

269

Chapter 21. Routine Database Maintenance
Tasks

There are a few routine maintenance chores that must be performed on a regular basis to keep a
PostgreSQL server running smoothly. The tasks discussed here are repetitive in nature and can easily
be automated using standard Unix tools such as cron scripts. But it is the database administrator’s

responsibility to set up appropriate scripts, and to check that they execute successfully.

One obvious maintenance task is creation of backup copies of the data on a regular schedule. Without
a recent backup, you have no chance of recovery after a catastrophe (disk failure, fire, mistakenly
dropping a critical table, etc.). The backup and recovery mechanisms available in PostgreSQL are
discussed at length @hapter 22

The other main category of maintenance task is periodic “vacuuming” of the database. This activity
is discussed ifsection 21.1

Something else that might need periodic attention is log file management. This is discuSsetidn
21.3

PostgreSQL is low-maintenance compared to some other database management systems. Nonetheless,
appropriate attention to these tasks will go far towards ensuring a pleasant and productive experience
with the system.

21.1. Routine Vacuuming

PostgreSQL'&YACuuntommand must be run on a regular basis for several reasons:

1. To recover disk space occupied by updated or deleted rows.
2. To update data statistics used by the PostgreSQL query planner.
3. To protect against loss of very old data dudremsaction ID wraparound

The frequency and scope of tMACUUMperations performed for each of these reasons will vary
depending on the needs of each site. Therefore, database administrators must understand these issues
and develop an appropriate maintenance strategy. This section concentrates on explaining the high-
level issues; for details about command syntax and so on, se&atieguncommand reference page.

Beginning in PostgreSQL 7.2, the standard fornvaCuuntan run in parallel with normal database
operations (selects, inserts, updates, deletes, but not changes to table definitions). Routine vacuuming
is therefore not nearly as intrusive as it was in prior releases, and it's not as critical to try to schedule

it at low-usage times of day.

21.1.1. Recovering disk space

In normal PostgreSQL operation, awDATEor DELETEOf a row does not immediately remove the

old version of the row. This approach is necessary to gain the benefits of multiversion concurrency
control (seeChapter 12 the row version must not be deleted while it is still potentially visible to
other transactions. But eventually, an outdated or deleted row version is no longer of interest to any
transaction. The space it occupies must be reclaimed for reuse by new rows, to avoid infinite growth
of disk space requirements. This is done by runnfAGUUM

Clearly, a table that receives frequent updates or deletes will need to be vacuumed more often than
tables that are seldom updated. It may be useful to set up periodic cron tasks that vacuum only selected

270

Chapter 21. Routine Database Maintenance Tasks

tables, skipping tables that are known not to change often. This is only likely to be helpful if you have
both large heavily-updated tables and large seldom-updated tables --- the extra cost of vacuuming a
small table isn’t enough to be worth worrying about.

The standard form o/ ACUUMs best used with the goal of maintaining a fairly level steady-state
usage of disk space. The standard form finds old row versions and makes their space available for
re-use within the table, but it does not try very hard to shorten the table file and return disk space to
the operating system. If you need to return disk space to the operating system you va&CUsav

FULL --- but what'’s the point of releasing disk space that will only have to be allocated again soon?
Moderately frequent standaxhCUUNMuNS are a better approach than infrequesaCUUM FULEuns

for maintaining heavily-updated tables.

Recommended practice for most sites is to schedule a database~witigMonce a day at a low-

usage time of day, supplemented by more frequent vacuuming of heavily-updated tables if necessary.
(If you have multiple databases in a cluster, don't forget to vacuum each one; the preagrammdb

may be helpful.) Use plaisACUUMNOtVACUUM FULLfor routine vacuuming for space recovery.

VACUUM FULIs recommended for cases where you know you have deleted the majority of rows in a
table, so that the steady-state size of the table can be shrunk substantialfA@itiM FULE more
aggressive approach.

If you have a table whose contents are deleted completely every so often, consider doing it with
TRUNCATEather than usin@ELETEfollowed by VACUUM

21.1.2. Updating planner statistics

The PostgreSQL query planner relies on statistical information about the contents of tables in order
to generate good plans for queries. These statistics are gathered AyAhgZEcommand, which

can be invoked by itself or as an optional stefyiCUUMIt is important to have reasonably accurate
statistics, otherwise poor choices of plans may degrade database performance.

As with vacuuming for space recovery, frequent updates of statistics are more useful for heavily-
updated tables than for seldom-updated ones. But even for a heavily-updated table, there may be no
need for statistics updates if the statistical distribution of the data is not changing much. A simple
rule of thumb is to think about how much the minimum and maximum values of the columns in the
table change. For exampletimestamp column that contains the time of row update will have a
constantly-increasing maximum value as rows are added and updated; such a column will probably
need more frequent statistics updates than, say, a column containing URLs for pages accessed on
a website. The URL column may receive changes just as often, but the statistical distribution of its
values probably changes relatively slowly.

It is possible to runPANALYZEon specific tables and even just specific columns of a table, so the
flexibility exists to update some statistics more frequently than others if your application requires it. In
practice, however, the usefulness of this feature is doubtful. Beginning in PostgreSQINALY,ZE

is a fairly fast operation even on large tables, because it uses a statistical random sampling of the rows
of a table rather than reading every single row. So it's probably much simpler to just run it over the
whole database every so often.

Tip: Although per-column tweaking of ANALYZEfrequency may not be very productive, you may
well find it worthwhile to do per-column adjustment of the level of detail of the statistics collected
by ANALYZE Columns that are heavily used in WHEREIlauses and have highly irregular data dis-
tributions may require a finer-grain data histogram than other columns. See ALTER TABLE SET
STATISTICS .

271

Chapter 21. Routine Database Maintenance Tasks

Recommended practice for most sites is to schedule a databasemAd®ZEonce a day at a low-
usage time of day; this can usefully be combined with a nightlguuMHowever, sites with relatively
slowly changing table statistics may find that this is overkill, and that less-fregqiitYZEruns are
sufficient.

21.1.3. Preventing transaction ID wraparound failures

PostgreSQL’s MVCC transaction semantics depend on being able to compare transaction ID (XID)
numbers: a row version with an insertion XID greater than the current transaction’s XID is “in the
future” and should not be visible to the current transaction. But since transaction IDs have limited
size (32 bits at this writing) a cluster that runs for a long time (more than 4 billion transactions)
will suffer transaction ID wraparoundthe XID counter wraps around to zero, and all of a sudden
transactions that were in the past appear to be in the future --- which means their outputs become
invisible. In short, catastrophic data loss. (Actually the data is still there, but that's cold comfort if you
can't get atit.)

Prior to PostgreSQL 7.2, the only defense against XID wraparound wagrtitdte- at least every 4
billion transactions. This of course was not very satisfactory for high-traffic sites, so a better solution
has been devised. The new approach allows a server to remain up indefinitely, witlbut or

any sort of restart. The price is this maintenance requirenssetry table in the database must be
vacuumed at least once every billion transactions

In practice this isn’t an onerous requirement, but since the consequences of failing to meet it can be
complete data loss (not just wasted disk space or slow performance), some special provisions have
been made to help database administrators keep track of the time since tediastMThe remainder

of this section gives the details.

The new approach to XID comparison distinguishes two special XIDs, numbers 1 and 2
(BootstrapXID andFrozenXID). These two XIDs are always considered older than every normal
XID. Normal XIDs (those greater than 2) are compared using modttlar2hmetic. This means that

for every normal XID, there are two billion XIDs that are “older” and two billion that are “newer”;
another way to say it is that the normal XID space is circular with no endpoint. Therefore, once a
row version has been created with a particular normal XID, the row version will appear to be “in the
past” for the next two billion transactions, no matter which normal XID we are talking about. If the
row version still exists after more than two billion transactions, it will suddenly appear to be in the
future. To prevent data loss, old row versions must be reassigned the&é#BnXID sometime
before they reach the two-billion-transactions-old mark. Once they are assigned this special XID,
they will appear to be “in the past” to all normal transactions regardless of wraparound issues, and so
such row versions will be good until deleted, no matter how long that is. This reassignment of XID is
handled byvACUUM

VACUUI@ normal policy is to reassighrozenXID to any row version with a normal XID more than

one billion transactions in the past. This policy preserves the original insertion XID until it is not
likely to be of interest anymore. (In fact, most row versions will probably live and die without ever
being “frozen”.) With this policy, the maximum safe interval betweexCUUMuns on any table

is exactly one billion transactions: if you wait longer, it's possible that a row version that was not
quite old enough to be reassigned last time is now more than two billion transactions old and has
wrapped around into the future --- i.e., is lost to you. (Of course, it'll reappear after another two
billion transactions, but that’s no help.)

Since periodi6/ACUUMunNSs are needed anyway for the reasons described earlier, it's unlikely that any
table would not be vacuumed for as long as a billion transactions. But to help administrators ensure
this constraint is metyACUUMtores transaction ID statistics in the system talgledatabase . In
particular, thedatfrozenxid column of a databasejsy_database row is updated at the comple-

272

Chapter 21. Routine Database Maintenance Tasks

tion of any database-wide vacuum operation (MACUUMhat does not name a specific table). The
value stored in this field is the freeze cutoff XID that was used byywaatuunommand. All normal
XIDs older than this cutoff XID are guaranteed to have been replaceetdzgnXID within that
database. A convenient way to examine this information is to execute the query

SELECT datname, age(datfrozenxid) FROM pg_database;

Theage column measures the number of transactions from the cutoff XID to the current transaction’s
XID.

With the standard freezing policy, ttege column will start at one billion for a freshly-vacuumed
database. When thege approaches two billion, the database must be vacuumed again to avoid risk
of wraparound failures. Recommended practice is to vacuum each database at least once every half-
a-billion (500 million) transactions, so as to provide plenty of safety margin. To help meet this rule,
each database-wideACUUMwutomatically delivers a warning if there are gty database entries
showing amage of more than 1.5 billion transactions, for example:

play=# VACUUM;

WARNING: some databases have not been vacuumed in 1613770184 transactions

HINT: Better vacuum them within 533713463 transactions, or you may have a wraparound failure.
VACUUM

VACUUMith the FREEZEoption uses a more aggressive freezing policy: row versions are frozen if
they are old enough to be considered good by all open transactions. In particekG6&M FREEZE

is performed in an otherwise-idle database, it is guaranteealthatv versions in that database will

be frozen. Hence, as long as the database is not modified in any way, it will not need subsequent vac-
uuming to avoid transaction ID wraparound problems. This technique is usieddby to prepare
thetemplate0 database. It should also be used to prepare any user-created databases that are to be

markeddatallowconn =false in pg_database , since there isn’'t any convenient way to vacuum
a database that you can'’t connect to. Note thaCUUI automatic warning message about unvac-
uumed databases will ignorg_database entries withdatallowconn = false , so as to avoid

giving false warnings about these databases; therefore it's up to you to ensure that such databases are
frozen correctly.

21.2. Routine Reindexing

In some situations it is worthwhile to rebuild indexes periodically withREENDEXcommand. (There
is alsocontrib/reindexdb which can reindex an entire database.) However, PostgreSQL 7.4 has
substantially reduced the need for this activity compared to earlier releases.

21.3. Log File Maintenance

It's a good idea to save the database server’s log output somewhere, rather than just routing it to
/dev/null . The log output is invaluable when it comes time to diagnose problems. However, the
log output tends to be voluminous (especially at higher debug levels) and you won't want to save it
indefinitely. You need to “rotate” the log files so that new log files are started and old ones thrown
away every so often.

273

Chapter 21. Routine Database Maintenance Tasks

If you simply direct the stderr of theostmaster into a file, the only way to truncate the log file is
to stop and restart theostmaster . This may be OK for development setups but you won't want to
run a production server that way.

The simplest production-grade approach to managing log output is to send it all to syslog and let
syslog deal with file rotation. To do this, set the configurations parametiey to 2 (to log to syslog

only) in postgresqgl.conf . Then you can send 8IGHUP signal to the syslog daemon whenever
you want to force it to start writing a new log file. If you want to automate log rotation, the logrotate
program can be configured to work with log files from syslog.

On many systems, however, syslog is not very reliable, particularly with large log messages; it may
truncate or drop messages just when you need them the most. You may find it more useful to pipe the
stderr of thepostmaster to some type of log rotation program. If you start the server withctl

then the stderr of thpostmaster s already redirected to stdout, so you just need a pipe command:

pg_ctl start | logrotate

The PostgreSQL distribution doesn’t include a suitable log rotation program, but there are many
available on the Internet; one is included in the Apache distribution, for example.

274

Chapter 22. Backup and Restore

As everything that contains valuable data, PostgreSQL databases should be backed up regularly. While
the procedure is essentially simple, it is important to have a basic understanding of the underlying
technigues and assumptions.

There are two fundamentally different approaches to backing up PostgreSQL data:

+ SQL dump

« File system level backup

22.1. SQL Dump

The idea behind the SQL-dump method is to generate a text file with SQL commands that, when
fed back to the server, will recreate the database in the same state as it was at the time of the dump.
PostgreSQL provides the utility program pg_dump for this purpose. The basic usage of this command
is:

pg_dump dbname > outfile

As you see, pg_dump writes its results to the standard output. We will see below how this can be
useful.

pg_dump is a regular PostgreSQL client application (albeit a particularly clever one). This means that
you can do this backup procedure from any remote host that has access to the database. But remember
that pg_dump does not operate with special permissions. In particular, you must have read access to
all tables that you want to back up, so in practice you almost always have to be a database superuser.

To specify which database server pg_dump should contact, use the command line -bptioss

and-p port . The default host is the local host or whatever ypGHOSENvironment variable spec-
ifies. Similarly, the default port is indicated by tR&PORTenvironment variable or, failing that, by
the compiled-in default. (Conveniently, the server will normally have the same compiled-in default.)

As any other PostgreSQL client application, pg_dump will by default connect with the database user
name that is equal to the current operating system user name. To override this, either speuify the
option or set the environment varial&USERRemember that pg_dump connections are subject to
the normal client authentication mechanisms (which are describ@tapter 19.

Dumps created by pg_dump are internally consistent, that is, updates to the database while pg_dump
is running will not be in the dump. pg_dump does not block other operations on the database while
it is working. (Exceptions are those operations that need to operate with an exclusive lock, such as
VACUUM FULI

Important: When your database schema relies on OIDs (for instance as foreign keys) you must
instruct pg_dump to dump the OIDs as well. To do this, use the -o command line option. “Large
objects” are not dumped by default, either. See pg_dump’s command reference page if you use
large objects.

275

Chapter 22. Backup and Restore

22.1.1. Restoring the dump

The text files created by pg_dump are intended to be read in by the psqgl program. The general com-
mand form to restore a dump is

psqgl dbname < infile

whereinfile is what you used asutfile for the pg_dump command. The databaskname

will not be created by this command, you must create it yourself feanplate0 before executing

psql (e.g., withcreatedb -T template0 dbname). psql supports similar options to pg_dump for
controlling the database server location and the user name. See its reference page for more informa-
tion.

If the objects in the original database were owned by different users, then the dump will instruct psql
to connect as each affected user in turn and then create the relevant objects. This way the original own-
ership is preserved. This also means, however, that all these users must already exist, and furthermore
that you must be allowed to connect as each of them. It might therefore be necessary to temporarily
relax the client authentication settings.

Once restored, it is wise to rlkNALYZEon each database so the optimizer has useful statistics. You
can also rurvacuumdb -a -z to ANALYZEall databases.

The ability of pg_dump and psql to write to or read from pipes makes it possible to dump a database
directly from one server to another; for example:

pg_dump -h hostl dbname | psql -h host2 dbname

Important: The dumps produced by pg_dump are relative to template0 . This means that any
languages, procedures, etc. added to templatel will also be dumped by pg_dump. As a result,
when restoring, if you are using a customized templatel , you must create the empty database
from template0 , as in the example above.

Tip: Restore performance can be improved by increasing the configuration parameter sort_mem
(see Section 16.4.2.1).

22.1.2. Using pg_dumpall

The above mechanism is cumbersome and inappropriate when backing up an entire database clus-
ter. For this reason the pg_dumpall program is provided. pg_dumpall backs up each database in a

given cluster, and also preserves cluster-wide data such as users and groups. The call sequence for
pg_dumpall is simply

pg_dumpall > outfile
The resulting dump can be restored with psql:
psql templatel < infile

(Actually, you can specify any existing database name to start from, but if you are reloading in an
empty cluster theremplatel is the only available choice.) It is always necessary to have database

276

Chapter 22. Backup and Restore

superuser access when restoring a pg_dumpall dump, as that is required to restore the user and group
information.

22.1.3. Large Databases

Since PostgreSQL allows tables larger than the maximum file size on your system, it can be problem-
atic to dump such a table to a file, since the resulting file will likely be larger than the maximum size
allowed by your system. As pg_dump can write to the standard output, you can just use standard Unix
tools to work around this possible problem.

Use compressed dumpsYou can use your favorite compression program, for example gzip.
pg_dump dbname | gzip > filename .gz
Reload with

createdb dbname
gunzip -c filename .gz | psql dbname

or

cat filename .gz | gunzip | psql dbname

Usesplit . Thesplit command allows you to split the output into pieces that are acceptable in
size to the underlying file system. For example, to make chunks of 1 megabyte:

pg_dump dbname | split -b 1m - filename
Reload with

createdb dbname
cat filename * | psgl dbname

Use the custom dump format. If PostgreSQL was built on a system with the zlib compression
library installed, the custom dump format will compress data as it writes it to the output file. For large
databases, this will produce similar dump sizes to ugiig , but has the added advantage that the
tables can be restored selectively. The following command dumps a database using the custom dump
format:

pg_dump -Fc dbname > filename

See the pg_dump and pg_restore reference pages for details.

22.1.4. Caveats

pg_dump (and by implication pg_dumpall) has a few limitations which stem from the difficulty of
reconstructing certain information from the system catalogs.

Specifically, the order in which pg_dump writes the objects is not very sophisticated. This can lead
to problems for example when functions are used as column default values. The only answer is to
manually reorder the dump. If you created circular dependencies in your schema then you will have
more work to do.

For reasons of backward compatibility, pg_dump does not dump large objects by default. To dump
large objects you must use either the custom or the TAR output format, and ude dpion in

277

Chapter 22. Backup and Restore

pg_dump. See the reference pages for details. The diregiotryb/pg_dumplo of the PostgreSQL
source tree also contains a program that can dump large objects.

Please familiarize yourself with the pg_dump reference page.

22.2. File system level backup

An alternative backup strategy is to directly copy the files that PostgreSQL uses to store the data in
the database. IBection 16.2t is explained where these files are located, but you have probably found
them already if you are interested in this method. You can use whatever method you prefer for doing
usual file system backups, for example

tar -cf backup.tar /usr/local/pgsql/data

There are two restrictions, however, which make this method impractical, or at least inferior to the
pg_dump method:

1. The database serverustbe shut down in order to get a usable backup. Half-way measures such
as disallowing all connections will not work as there is always some buffering going on. For this
reason it is also not advisable to trust file systems that claim to support “consistent snapshots”.
Information about stopping the server can be foun8ection 16.6Needless to say that you also
need to shut down the server before restoring the data.

2.1f you have dug into the details of the file system layout of the data you may be tempted to try
to back up or restore only certain individual tables or databases from their respective files or
directories. This wilhotwork because the information contained in these files contains only half
the truth. The other half is in the commit log filpg_clog/* , which contain the commit status
of all transactions. A table file is only usable with this information. Of course it is also impossible
to restore only a table and the associgtg@dtlog data because that would render all other tables
in the database cluster useless.

An alternative file-system backup approach is to make a “consistent snapshot” of the data directory,

if the file system supports that functionality. Such a snapshot will save the database files in a state
where the database server was not properly shut down; therefore, when you start the database server
on this backed up directory, it will think the server had crashed and replay the WAL log. This is not a
problem, just be aware of it.

Note that the file system backup will not necessarily be smaller than an SQL dump. On the contrary,
it will most likely be larger. (pg_dump does not need to dump the contents of indexes for example,
just the commands to recreate them.)

22.3. Migration Between Releases

As a general rule, the internal data storage format is subject to change between major releases of
PostgreSQL (where the number after the first dot changes). This does not apply to different minor re-
leases under the same major release (where the number of the second dot changes); these always have
compatible storage formats. For example, releases 7.0.1, 7.1.2, and 7.2 are not compatible, whereas
7.1.1 and 7.1.2 are. When you update between compatible versions, then you can simply reuse the
data area in disk by the new executables. Otherwise you need to “back up” your data and “restore” it

278

Chapter 22. Backup and Restore

on the new server, using pg_dump. (There are checks in place that prevent you from doing the wrong
thing, so no harm can be done by confusing these things.) The precise installation procedure is not
subject of this section; these details ar€imapter 14

The least downtime can be achieved by installing the new server in a different directory and running
both the old and the new servers in parallel, on different ports. Then you can use something like

pg_dumpall -p 5432 | psqgl -d templatel -p 6543

to transfer your data. Or use an intermediate file if you want. Then you can shut down the old server
and start the new server at the port the old one was running at. You should make sure that the database
is not updated after you run pg_dumpall, otherwise you will obviously lose that dat&agger 19

for information on how to prohibit access. In practice you probably want to test your client applica-
tions on the new setup before switching over.

If you cannot or do not want to run two servers in parallel you can do the back up step before installing
the new version, bring down the server, move the old version out of the way, install the new version,
start the new server, restore the data. For example:

pg_dumpall > backup

pg_ctl stop

mv /usr/local/pgsql /usr/local/pgsql.old
cd ~/postgresql-7.4.2

gmake install

initdb -D /usr/local/pgsqgl/data
postmaster -D /usr/local/pgsql/data
psql templatel < backup

SeeChapter 1@about ways to start and stop the server and other details. The installation instructions
will advise you of strategic places to perform these steps.

Note: When you “move the old installation out of the way” it is no longer perfectly usable. Some
parts of the installation contain information about where the other parts are located. This is usually
not a big problem but if you plan on using two installations in parallel for a while you should assign
them different installation directories at build time.

279

Chapter 23. Monitoring Database Activity

A database administrator frequently wonders, “What is the system doing right now?” This chapter
discusses how to find that out.

Several tools are available for monitoring database activity and analyzing performance. Most of this
chapter is devoted to describing PostgreSQL's statistics collector, but one should not neglect regular
Unix monitoring programs such @s andtop . Also, once one has identified a poorly-performing
query, further investigation may be needed using PostgreSEXP AIN command.Section 13.1
discusse&XPLAIN and other methods for understanding the behavior of an individual query.

23.1. Standard Unix Tools

On most platforms, PostgreSQL modifies its command title as reportes], I3y that individual server
processes can readily be identified. A sample display is

$ ps auxww | grep “postgres

postgres 960 0.0 1.1 6104 1480 pts/1 SN 13:17 0:00 postmaster -i

postgres 963 0.0 1.1 7084 1472 pts/1 SN 13:17 0:00 postgres: stats buffer process
postgres 965 0.0 1.1 6152 1512 pts/1 SN 13:17 0:00 postgres: stats collector process
postgres 998 0.0 2.3 6532 2992 pts/1 SN 13:18 0:00 postgres: tgl runbug 127.0.0.1 idle
postgres 1003 0.0 2.4 6532 3128 pts/1 SN 13:19 0:00 postgres: tgl regression [local] SEL
postgres 1016 0.1 2.4 6532 3080 pts/1 SN 13:19 0:00 postgres: tgl regression [local] idle

(The appropriate invocation p varies across different platforms, as do the details of what is shown.

This example is from a recent Linux system.) The first process listed here is the postmaster, the master
server process. The command arguments shown for it are the same ones given when it was launched.
The next two processes implement the statistics collector, which will be described in detail in the next
section. (These will not be present if you have set the system not to start the statistics collector.) Each
of the remaining processes is a server process handling one client connection. Each such process sets
its command line display in the form

postgres: user database host activity

The user, database, and connection source host items remain the same for the life of the client connec-
tion, but the activity indicator changes. The activity mayde (i.e., waiting for a client command),

idle in transaction (waiting for client inside éBEGIN block), or a command type name such
asSELECT Also, waiting is attached if the server process is presently waiting on a lock held by
another server process. In the above example we can infer that process 1003 is waiting for process
1016 to complete its transaction and thereby release some lock or other.

Tip: Solaris requires special handling. You must use /usr/ucb/ps , rather than /bin/ps . You
also must use two w flags, not just one. In addition, your original invocation of the postmaster
command must have a shorter ps status display than that provided by each server process. If you
fail to do all three things, the ps output for each server process will be the original postmaster
command line.

280

Chapter 23. Monitoring Database Activity

23.2. The Statistics Collector

PostgreSQL'statistics collectois a subsystem that supports collection and reporting of information
about server activity. Presently, the collector can count accesses to tables and indexes in both disk-
block and individual-row terms. It also supports determining the exact command currently being
executed by other server processes.

23.2.1. Statistics Collection Configuration

Since collection of statistics adds some overhead to query execution, the system can be configured to
collect or not collect information. This is controlled by configuration parameters that are normally set
in postgresgl.conf . (SeeSection 16.4or details about setting configuration parameters.)

The parametestats_start_collector must be set tarue for the statistics collector to be
launched at all. This is the default and recommended setting, but it may be turned off if you have
no interest in statistics and want to squeeze out every last drop of overhead. (The savings is likely to
be small, however.) Note that this option cannot be changed while the server is running.

The parameterstats_command_string , stats_block_level , andstats_row_level control

how much information is actually sent to the collector and thus determine how much run-time over-
head occurs. These respectively determine whether a server process sends its current command string,
disk-block-level access statistics, and row-level access statistics to the collector. Normally these pa-
rameters are set postgresql.conf so that they apply to all server processes, but it is possible to

turn them on or off in individual sessions using tBET command. (To prevent ordinary users from

hiding their activity from the administrator, only superusers are allowed to change these parameters

with SET))
Note: Since the parameters stats_command_string , stats_block_level , and
stats_row_level default to false , very few statistics are collected in the default configuration.

Enabling one or more of these configuration variables will significantly enhance the amount of
useful data produced by the statistics collector, at the expense of additional run-time overhead.

23.2.2. Viewing Collected Statistics

Several predefined views are available to show the results of statistics collection, li$tdalar23-1
Alternatively, one can build custom views using the underlying statistics functions.

When using the statistics to monitor current activity, it is important to realize that the information
does not update instantaneously. Each individual server process transmits new access counts to the
collector just before waiting for another client command; so a query still in progress does not affect the
displayed totals. Also, the collector itself emits new totals at most onqegptat_stat_interval

milliseconds (500 by default). So the displayed totals lag behind actual activity.

Another important point is that when a server process is asked to display any of these statistics, it
first fetches the most recent totals emitted by the collector process and then continues to use this
snapshot for all statistical views and functions until the end of its current transaction. So the statistics

will appear not to change as long as you continue the current transaction. This is a feature, not a bug,
because it allows you to perform several queries on the statistics and correlate the results without
worrying that the numbers are changing underneath you. But if you want to see new results with each
query, be sure to do the queries outside any transaction block.

281

Table 23-1. Standard Statistics Views

Chapter 23. Monitoring Database Activ

View Name

Description

pg_stat_activity

One row per server process, showing process
database, user, current query, and the time at
which the current query began execution. The

only available if the parameter
stats_command_string has been turned on.

the user examining the view is a superuser or
same as the user owning the process being

reporting delay, current query will only be
up-to-date for long-running queries.)

Furthermore, these columns read as null unless

reported on. (Note that because of the collectar’s

ity

Dv

columns that report data on the current query are

the

pg_stat_database

One row per database, showing the number o
active backend server processes, total transag
committed and total rolled back in that databas

the block already in buffer cache).

tions
5e,

total disk blocks read, and total number of buffer
hits (i.e., block read requests avoided by finding

pg_stat_all_tables

For each table in the current database, total
numbers of sequential and index scans, total
numbers of rows returned by each type of sca
and totals of row insertions, updates, and
deletions.

=)

pg_stat_sys_tables

Same apg_stat_all_tables
system tables are shown.

, except that on

pg_stat_user_tables

Same apg_stat_all_tables
user tables are shown.

, except that on

pg_stat_all_indexes

number of index scans that have used that ind
the number of index rows read, and the numbe
successfully fetched heap rows. (This may be

heap rows.)

For each index in the current database, the total

when there are index entries pointing to expired

pg_stat_sys_indexes

Same apg_stat_all_indexes , except that
only indexes on system tables are shown.

pg_stat_user_indexes

Same apg_stat_all_indexes , except that
only indexes on user tables are shown.

pg_statio_all_tables

For each table in the current database, the tot
number of disk blocks read from that table, the

the numbers of disk blocks read and buffer hits
from the table’s auxiliary TOAST table (if any),

hits for the TOAST table’s index.

and the numbers of disk blocks read and buffer

number of buffer hits, the numbers of disk blogks
read and buffer hits in all the indexes of that table,

pg_statio_sys_tables

Same apg_statio_all_tables , except that

only system tables are shown.

282

Chapter 23. Monitoring Database Activity

View Name Description

pg_statio_user_tables Same apg_statio_all_tables , except that
only user tables are shown.

pg_statio_all_indexes For each index in the current database, the
numbers of disk blocks read and buffer hits in that
index.

pg_statio_sys_indexes Same agg_statio_all_indexes , except that

only indexes on system tables are shown.

pg_statio_user_indexes Same apg_statio_all_indexes , except that
only indexes on user tables are shown.

pg_statio_all_sequences For each sequence object in the current database,
the numbers of disk blocks read and buffer hits in
that sequence.

pg_statio_sys_sequences Same apg_statio_all_sequences , except
that only system sequences are shown. (Presently,
no system sequences are defined, so this view is

always empty.)

pg_statio_user_sequences Same apg_statio_all_sequences , except
that only user sequences are shown.

The per-index statistics are particularly useful to determine which indexes are being used and how
effective they are.

Thepg_statio views are primarily useful to determine the effectiveness of the buffer cache. When
the number of actual disk reads is much smaller than the number of buffer hits, then the cache is
satisfying most read requests without invoking a kernel call. However, these statistics do not give the
entire story: due to the way in which PostgreSQL handles disk I/O, data that is not in the PostgreSQL
buffer cache may still reside in the kernel's I/O cache, and may therefore still be fetched without
requiring a physical read. Users interested in obtaining more detailed information on PostgreSQL I/O
behavior are advised to use the PostgreSQL statistics collector in combination with operating system
utilities that allow insight into the kernel’s handling of 1/O.

Other ways of looking at the statistics can be set up by writing queries that use the same underlying
statistics access functions as these standard views do. These functions are [Tstisle i23-2 The
per-database access functions take a database OID as argument to identify which database to report
on. The per-table and per-index functions take a table or index OID. (Note that only tables and indexes
in the current database can be seen with these functions.) The per-backend process access functions
take a backend process ID number, which ranges from one to the number of currently active backend
processes.

Table 23-2. Statistics Access Functions

Function Return Type Description

pg_stat_get_db_numbackends (didt§ger Number of active backend
processes for database

pg_stat_get_db_xact_commit (didg)nt Transactions committed in
database

pg_stat_get_db_xact_rollback [bigiieht) Transactions rolled back in
database

283

Chapter 23. Monitoring Database Activity

Function Return Type Description
pg_stat_get_db_blocks_fetched bigind) Number of disk block fetch
requests for database
pg_stat_get_db_blocks_hit (oigbipint Number of disk block fetch
requests found in cache for
database
pg_stat_get_numscans (oid) |oigint Number of sequential scans

done when argument is a table,
or number of index scans done
when argument is an index

pg_stat_get_tuples_returned (Iloiigiin)t Number of rows read by
sequential scans when argument
is a table, or number of index
rows read when argument is an
index

pg_stat_get_tuples_fetched (dig)nt Number of valid (unexpired)
table rows fetched by sequentia
scans when argument is a tabl
or fetched by index scans using
this index when argument is ar

FLEN

index

pg_stat_get_tuples_inserted (iigfinyt Number of rows inserted into
table

pg_stat_get_tuples_updated (dodg)nt Number of rows updated in table

pg_stat_get_tuples_deleted (didg)nt Number of rows deleted from
table

pg_stat_get_blocks_fetched (didg)nt Number of disk block fetch
requests for table or index

pg_stat_get_blocks_hit (oid) |pigint Number of disk block requests

found in cache for table or inde

X

pg_stat_get_backend_idset () set of integer Set of currently active backend
process IDs (from 1 to the
number of active backend
processes). See usage example in

the text.

pg_backend_pid () integer Process ID of the backend
process attached to the current
session

pg_stat_get_backend_pid (integirteger Process ID of the given backend
process

pg_stat_get_backend_dbid (integit) Database ID of the given
backend process

pg_stat_get_backend_userid (iieber) User ID of the given backend

rl process

284

Chapter 23. Monitoring Database Activity

Function Return Type Description

pg_stat_get_backend_activity texteger) Active command of the given
backend process (null if the
current user is not a superuser
nor the same user as that of the
session being queried, or

stats_command_string is not
on)
pg_stat_get_backend_activity_start ftimestaifiptagith fjme zone The time at which the given

backend process’ currently
executing query was started (null
if the current user is not a
superuser nor the same user as
that of the session being queried,

or stats_command_string is
not on)
pg_stat_reset () boolean Reset all currently collected
statistics
Note: pg_stat_get db_blocks_fetched minus pg_stat_get_db_blocks_hit gives the num-

ber of kernel read() calls issued for the table, index, or database; but the actual number of
physical reads is usually lower due to kernel-level buffering.

The functionpg_stat_get_backend_idset provides a convenient way to generate one row for
each active backend process. For example, to show the PIDs and current queries of all backend pro-
cesses:

SELECT pg_stat_get _backend_pid(s.backendid) AS procpid,
pg_stat_get_backend_activity(s.backendid) AS current_query
FROM (SELECT pg_stat_get_backend_idset() AS backendid) AS s;

23.3. Viewing Locks

Another useful tool for monitoring database activity is e locks system table. It allows the
database administrator to view information about the outstanding locks in the lock manager. For
example, this capability can be used to:

- View all the locks currently outstanding, all the locks on relations in a particular database, all the
locks on a particular relation, or all the locks held by a particular PostgreSQL session.

- Determine the relation in the current database with the most ungranted locks (which might be a
source of contention among database clients).

- Determine the effect of lock contention on overall database performance, as well as the extent to
which contention varies with overall database traffic.

Details of thepg_locks view appear irSection 43.32For more information on locking and manag-
ing concurrency with PostgreSQL, refer@hapter 12

285

Chapter 24. Monitoring Disk Usage

This chapter discusses how to monitor the disk usage of a PostgreSQL database system. In the current
release, the database administrator does not have much control over the on-disk storage layout, so
this chapter is mostly informative and can give you some ideas how to manage the disk usage with
operating system tools.

24.1. Determining Disk Usage

Each table has a primary heap disk file where most of the data is stored. To store long column val-
ues, there is also a TOAST file associated with the table, named based on the table’s OID (actually
pg_class.relfilenode), and an index on the TOAST table. There also may be indexes associated
with the base table.

You can monitor disk space from three places: from psql ugi@uUUNNnformation, from psql using
the tools incontrib/dbsize , and from the command line using the toolsmtrib/oid2name
Using psql on a recently vacuumed or analyzed database, you can issue queries to see the disk usage

of any table:

SELECT relfilenode, relpages FROM pg_class WHERE relname = ’customer’;

relfilenode | relpages
+

16806 | 60
(1 row)

Each page is typically 8 kilobytes. (Remembyelpages is only updated byyACUUNMNJANALYZE)

To show the space used by TOAST tables, use a query like the following, substituting the
relfilenode number of the heap (determined by the query above):

SELECT relname, relpages
FROM pg_class
WHERE relname = ’'pg_toast _16806' OR relname = ’'pg_toast_16806_index’
ORDER BY relname;

relname | relpages
+
pg_toast 16806 | 0
pg_toast_16806_index | 1

You can easily display index sizes, too:

SELECT c2.relname, c2.relpages
FROM pg_class ¢, pg_class c¢2, pg_index i
WHERE c.relname = ’'customer’
AND c.oid = i.indrelid
AND c2.0id = i.indexrelid
ORDER BY c2.relname;

relname | relpages
+

customer_id_indexdex | 26

286

Chapter 24. Monitoring Disk Usage

It is easy to find your largest tables and indexes using this information:

SELECT relname, relpages FROM pg_class ORDER BY relpages DESC;

relname | relpages
bigtable | 3290
customer | 3144
contrib/dbsize loads functions into your database that allow you to find the size of a table or

database from inside psql without the needaCUUNI ANALYZE

You can also useontrib/oid2name to show disk usage. S&EADME.oid2name in that directory
for examples. It includes a script that shows disk usage for each database.

24.2. Disk Full Failure

The most important disk monitoring task of a database administrator is to make sure the disk doesn't
grow full. A filled data disk may result in subsequent corruption of database indexes, but not of the
tables themselves. If the WAL files are on the same disk (as is the case for a default configuration)
then a filled disk during database initialization may result in corrupted or incomplete WAL files. This
failure condition is detected and the database server will refuse to start up.

If you cannot free up additional space on the disk by deleting other things you can move some of
the database files to other file systems and create a symlink from the original location. But note that
pg_dump cannot save the location layout information of such a setup; a restore would put everything
back in one place. To avoid running out of disk space, you can place the WAL files or individual
databases in other locations while creating them. Seiaite documentation an8ection 18.5or

more information about that.

Tip: Some file systems perform badly when they are almost full, so do not wait until the disk is full
to take action.

287

Chapter 25. Write-Ahead Logging (WAL)

Write-Ahead LoggindWAL) is a standard approach to transaction logging. Its detailed description
may be found in most (if not all) books about transaction processing. Briefly, WAL'’s central concept

is that changes to data files (where tables and indexes reside) must be written only after those changes
have been logged, that is, when log records have been flushed to permanent storage. If we follow this
procedure, we do not need to flush data pages to disk on every transaction commit, because we know
that in the event of a crash we will be able to recover the database using the log: any changes that
have not been applied to the data pages will first be redone from the log records (this is roll-forward
recovery, also known as REDO) and then changes made by uncommitted transactions will be removed
from the data pages (roll-backward recovery, UNDO).

25.1. Benefits of WAL

The first obvious benefit of using WAL is a significantly reduced number of disk writes, since only
the log file needs to be flushed to disk at the time of transaction commit; in multiuser environments,
commits of many transactions may be accomplished with a siegle() of the log file. Further-

more, the log file is written sequentially, and so the cost of syncing the log is much less than the cost
of flushing the data pages.

The next benefit is consistency of the data pages. The truth is that, before WAL, PostgreSQL was
never able to guarantee consistency in the case of a crash. Before WAL, any crash during writing
could resultin:

1. index rows pointing to nonexistent table rows
2.index rows lost in split operations
3. totally corrupted table or index page content, because of partially written data pages

Problems with indexes (problems 1 and 2) could possibly have been fixed by addisir)
calls, but it is not obvious how to handle the last case without WAL; WAL saves the entire data page
content in the log if that is required to ensure page consistency for after-crash recovery.

25.2. Future Benefits

The UNDO operation is not implemented. This means that changes made by aborted transactions will
still occupy disk space and that a permanamtclog file to hold the status of transactions is still
needed, since transaction identifiers cannot be reused. Once UNDO is implemgnted;, will no

longer be required to be permanent; it will be possible to renpgvelog at shutdown. (However,

the urgency of this concern has decreased greatly with the adoption of a segmented storage method
for pg_clog :itis no longer necessary to keep @igl clog entries around forever.)

With UNDO, it will also be possible to implemesavepointso allow partial rollback of invalid trans-

action operations (parser errors caused by mistyping commands, insertion of duplicate primary/unique
keys and so on) with the ability to continue or commit valid operations made by the transaction before
the error. At present, any error will invalidate the whole transaction and require a transaction abort.

WAL offers the opportunity for a new method for database on-line backup and restore (BAR). To use
this method, one would have to make periodic saves of data files to another disk, a tape or another
host and also archive the WAL log files. The database file copy and the archived log files could be
used to restore just as if one were restoring after a crash. Each time a new database file copy was
made the old log files could be removed. Implementing this facility will require the logging of data

288

Chapter 25. Write-Ahead Logging (WAL)

file and index creation and deletion; it will also require development of a method for copying the data
files (operating system copy commands are not suitable).

A difficulty standing in the way of realizing these benefits is that they require saving WAL entries for
considerable periods of time (e.g., as long as the longest possible transaction if transaction UNDO is
wanted). The present WAL format is extremely bulky since it includes many disk page snapshots. This
is not a serious concern at present, since the entries only need to be kept for one or two checkpoint
intervals; but to achieve these future benefits some sort of compressed WAL format will be needed.

25.3. WAL Configuration

There are several WAL-related configuration parameters that affect database performance. This sec-
tion explains their use. Consi8ection 16.4or details about setting configuration parameters.

Checkpointgre points in the sequence of transactions at which it is guaranteed that the data files have
been updated with all information logged before the checkpoint. At checkpoint time, all dirty data
pages are flushed to disk and a special checkpoint record is written to the log file. As result, in the
event of a crash, the recoverer knows from what record in the log (known as the redo record) it should
start the REDO operation, since any changes made to data files before that record are already on disk.
After a checkpoint has been made, any log segments written before the redo records are no longer
needed and can be recycled or removed. (When WAL-based BAR is implemented, the log segments
would be archived before being recycled or removed.)

The server spawns a special process every so often to create the next checkpoint. A checkpoint
is created evergheckpoint_segments log segments, or evemheckpoint_timeout seconds,
whichever comes first. The default settings are 3 segments and 300 seconds respectively. It is also
possible to force a checkpoint by using the SQL commarBCKPOINT

Reducingcheckpoint_segments and/orcheckpoint_timeout causes checkpoints to be done
more often. This allows faster after-crash recovery (since less work will need to be redone). However,
one must balance this against the increased cost of flushing dirty data pages more often. In addition,
to ensure data page consistency, the first modification of a data page after each checkpoint results in
logging the entire page content. Thus a smaller checkpoint interval increases the volume of output to
the log, partially negating the goal of using a smaller interval, and in any case causing more disk I/O.

There will be at least one 16 MB segment file, and will normally not be more than 2 *
checkpoint_segments + 1 files. You can use this to estimate space requirements for WAL.
Ordinarily, when old log segment files are no longer needed, they are recycled (renamed to become
the next segments in the numbered sequence). If, due to a short-term peak of log output rate, there
are more than 2 theckpoint_segments + 1 segment files, the unneeded segment files will be
deleted instead of recycled until the system gets back under this limit.

There are two commonly used WAL functionsiginsert andLogFlush . Loginsert is used to

place a new record into the WAL buffers in shared memory. If there is no space for the new record,
Loginsert will have to write (move to kernel cache) a few filled WAL buffers. This is undesirable
becausea.oginsert is used on every database low level modification (for example, row insertion)

at a time when an exclusive lock is held on affected data pages, so the operation needs to be as fast
as possible. What is worse, writing WAL buffers may also force the creation of a new log segment,
which takes even more time. Normally, WAL buffers should be written and flushed_byFush

request, which is made, for the most part, at transaction commit time to ensure that transaction records
are flushed to permanent storage. On systems with high log oufgpyRlush requests may not

occur often enough to prevent WAL buffers being written llmginsert . On such systems one
should increase the number of WAL buffers by modifying the configuration paramatetuffers

289

Chapter 25. Write-Ahead Logging (WAL)

The default number of WAL buffers is 8. Increasing this value will correspondingly increase shared
memory usage.

Checkpoints are fairly expensive because they force all dirty kernel buffers to disk using the operating
systemsync() call. Busy servers may fill checkpoint segment files too quickly, causing excessive
checkpointing. If such forced checkpoints happen more frequentlyctieskpoint_warning sec-

onds, amessage, will be output to the server logs recommending increlastkRpoint_segments

Thecommit_delay parameter defines for how many microseconds the server process will sleep after
writing a commit record to the log withoginsert but before performing bBogFlush . This delay al-

lows other server processes to add their commit records to the log so as to have all of them flushed with
a single log sync. No sleep will occurfdync is not enabled, nor if fewer thaaommit_siblings

other sessions are currently in active transactions; this avoids sleeping when it's unlikely that any
other session will commit soon. Note that on most platforms, the resolution of a sleep request is ten
milliseconds, so that any nonzerommit_delay setting between 1 and 10000 microseconds would
have the same effect. Good values for these parameters are not yet clear; experimentation is encour-
aged.

The wal_sync_method parameter determines how PostgreSQL will ask the kernel to force WAL
updates out to disk. All the options should be the same as far as reliability goes, but it's quite platform-
specific which one will be the fastest. Note that this parameter is irrelevesghif has been turned

off.

Setting theval_debug parameter to any nonzero value will result in eacbinsert andLogFlush
WAL call being logged to the server log. At present, it makes no difference what the nonzero value
is. This option may be replaced by a more general mechanism in the future.

25.4. Internals

WAL is automatically enabled; no action is required from the administrator except ensuring that the
additional disk-space requirements of the WAL logs are met, and that any necessary tuning is done
(seeSection 25.3

WAL logs are stored in the directopg_xlog under the data directory, as a set of segment files, each
16 MB in size. Each segment is divided into 8 kB pages. The log record headers are described in
access/xlog.h ; the record content is dependent on the type of event that is being logged. Segment
files are given ever-increasing numbers as names, start@@d00000000000 . The numbers do

not wrap, at present, but it should take a very long time to exhaust the available stock of numbers.

The WAL buffers and control structure are in shared memory and are handled by the server child
processes; they are protected by lightweight locks. The demand on shared memory is dependent on
the number of buffers. The default size of the WAL buffers is 8 buffers of 8 kB each, or 64 kB total.

It is of advantage if the log is located on another disk than the main database files. This may be
achieved by moving the directopy_xlog to another location (while the server is shut down, of
course) and creating a symbolic link from the original location in the main data directory to the new
location.

The aim of WAL, to ensure that the log is written before database records are altered, may be sub-
verted by disk drives that falsely report a successful write to the kernel, when, in fact, they have only

cached the data and not yet stored it on the disk. A power failure in such a situation may still lead

to irrecoverable data corruption. Administrators should try to ensure that disks holding PostgreSQL’s

WAL log files do not make such false reports.

After a checkpoint has been made and the log flushed, the checkpoint’s position is saved in the file
pg_control . Therefore, when recovery is to be done, the server first igadsntrol and then the

290

Chapter 25. Write-Ahead Logging (WAL)

checkpoint record; then it performs the REDO operation by scanning forward from the log position
indicated in the checkpoint record. Because the entire content of data pages is saved in the log on the
first page modification after a checkpoint, all pages changed since the checkpoint will be restored to
a consistent state.

Usingpg_control to get the checkpoint position speeds up the recovery process, but to handle possi-
ble corruption obg_control , we should actually implement the reading of existing log segments in
reverse order -- newest to oldest -- in order to find the last checkpoint. This has not been implemented,
yet.

201

Chapter 26. Regression Tests

The regression tests are a comprehensive set of tests for the SQL implementation in PostgreSQL. They
test standard SQL operations as well as the extended capabilities of PostgreSQL. From PostgreSQL
6.1 onward, the regression tests are current for every official release.

26.1. Running the Tests

The regression test can be run against an already installed and running server, or using a temporary in-
stallation within the build tree. Furthermore, there is a “parallel” and a “sequential” mode for running
the tests. The sequential method runs each test script in turn, whereas the parallel method starts up
multiple server processes to run groups of tests in parallel. Parallel testing gives confidence that inter-
process communication and locking are working correctly. For historical reasons, the sequential test
is usually run against an existing installation and the parallel method against a temporary installation,
but there are no technical reasons for this.

To run the regression tests after building but before installation, type

gmake check

in the top-level directory. (Or you can changesto/test/regress and run the command there.)
This will first build several auxiliary files, such as some sample user-defined trigger functions, and
then run the test driver script. At the end you should see something like

All 93 tests passed.

or otherwise a note about which tests failed. Seetion 26.Dbelow for more.

Because this test method runs a temporary server, it will not work when you are the root user (since
the server will not start as root). If you already did the build as root, you do not have to start all over.
Instead, make the regression test directory writable by some other user, log in as that user, and restart
the tests. For example

root# chmod -R a+w src/test/regress
root# chmod -R a+w contrib/spi
root# SuU - joeuser

joeuser$ cd top-level build directory
joeuser$ gmake check

(The only possible “security risk” here is that other users might be able to alter the regression test
results behind your back. Use common sense when managing user permissions.)
Alternatively, run the tests after installation.

The parallel regression test starts quite a few processes under your user ID. Presently, the maximum
concurrency is twenty parallel test scripts, which means sixty processes: there’s a server process, a
psql, and usually a shell parent process for the psql for each test script. So if your system enforces a
per-user limit on the number of processes, make sure this limit is at least seventy-five or so, else you
may get random-seeming failures in the parallel test. If you are not in a position to raise the limit, you
can cut down the degree of parallelism by settinghtAeX_CONNECTIONSarameter. For example,

gmake MAX_CONNECTIONS=10 check

runs no more than ten tests concurrently.

292

Chapter 26. Regression Tests

On some systems, the default Bourne-compatible shil<h) gets confused when it has to man-
age too many child processes in parallel. This may cause the parallel test run to lock up or fail. In
such cases, specify a different Bourne-compatible shell on the command line, for example:

gmake SHELL=/bin/ksh check

If no non-broken shell is available, you may be able to work around the problem by limiting the
number of connections, as shown above.

To run the tests after installation (s€hapter 13, initialize a data area and start the server, as ex-
plained inChapter 16then type

gmake installcheck

The tests will expect to contact the server at the local host and the default port number, unless directed
otherwise byPGHOSTaNdPGPORENvironment variables.

26.2. Test Evaluation

Some properly installed and fully functional PostgreSQL installations can “fail” some of these re-
gression tests due to platform-specific artifacts such as varying floating-point representation and time
zone support. The tests are currently evaluated using a sitifpple comparison against the outputs
generated on a reference system, so the results are sensitive to small system differences. When a
test is reported as “failed”, always examine the differences between expected and actual results; you
may well find that the differences are not significant. Nonetheless, we still strive to maintain accurate
reference files across all supported platforms, so it can be expected that all tests pass.

The actual outputs of the regression tests are in files irsidlest/regress/results direc-

tory. The test script usediff to compare each output file against the reference outputs stored
in the src/test/regress/expected directory. Any differences are saved for your inspection in
srcltest/regress/regression.diffs . (Or you can rurdiff yourself, if you prefer.)

26.2.1. Error message differences

Some of the regression tests involve intentional invalid input values. Erro