Title: Linear Algebra

Contents:

  1. LU Decomposition
  2. QR Decomposition
  3. QR Decomposition with Column Pivoting
  4. Singular Value Decomposition
  5. Cholesky Decomposition
  6. Tridiagonal Decomposition of Real Symmetric Matrices
  7. Tridiagonal Decomposition of Hermitian Matrices
  8. Hessenberg Decomposition of Real Matrices
  9. Hessenberg-Triangular Decomposition of Real Matrices
  10. Bidiagonalization
  11. Householder Transformations
  12. Householder solver for linear systems
  13. Tridiagonal Systems
  14. Balancing
  15. NArray

1 LU Decomposition

GSL::Linalg::LU.decomp(A)
GSL::Matrix#LU_decomp

These method calculate the LU decomposition of the matrix. The returned value is an array of [LU, perm, sign].

Examples:

  1. Singleton method of the GSL::Linalg::LU module

    irb(main):012:0> m = Matrix[1..9, 3, 3]
    => GSL::Matrix: 
    [ 1.000e+00 2.000e+00 3.000e+00 
      4.000e+00 5.000e+00 6.000e+00 
      7.000e+00 8.000e+00 9.000e+00 ]
    irb(main):013:0> lu, perm, sign = Linalg::LU.decomp(m)
  2. Instance method of GSL::Matrix class

    irb(main):012:0> lu, perm, sign = m.LU_decomp
GSL::Linalg::LU.solve(A, b)
GSL::Linalg::LU.solve(lu, perm, b)
GSL::Matrix#LU_solve(b)
GSL::Linalg::LUMatrix#solve(perm, b)

The following is an example to solve a linear system

A x = b, b = [1, 2, 3, 4]

using LU decomposition.

  1. Singleton method of the GSL::Linalg::LU module

    A = Matrix[[0.18, 0.60, 0.57, 0.96], [0.41, 0.24, 0.99, 0.58],
               [0.14, 0.30, 0.97, 0.66], [0.51, 0.13, 0.19, 0.85]]
    lu, perm, sign = A.LU_decomp         
    b = Vector[1, 2, 3, 4]
    x = Linalg::LU.solve(lu, perm, b)    
  2. Instance method of GSL::Linalg::LUMatrix class

    lu, perm, sign = A.LU_decomp  # lu is an instance of Linalg::LUMatrix class
    b = Vector[1, 2, 3, 4]
    x = lu.solve(perm, b)    
  3. Solve directly

    x = Linalg::LU.solve(A, b)  # LU decomposition is calculated internally (A is not modified)
GSL::Linalg::LU.svx(A, b)
GSL::Linalg::LU.svx(lu, perm, b)
GSL::Matrix#svx(b)
GSL::Linalg::LUMatrix#svx(perm, b)
These solve the system Ax = b. The input vector b is overwitten by the solution x.
GSL::Linalg::LU.refine(A, lu, perm, b, x)
This method applys an iterative improvement to x, the solution of A x = b, using the LU decomposition of A.
GSL::Linalg::LU.invert(A)
GSL::Linalg::LU.invert(lu, perm)
GSL::Matrix#invert
GSL::Linalg::LUMatrix#invert(perm)
These computes and returns the inverse of the matrix.
GSL::Linalg::LU.det(A)
GSL::Linalg::LU.det(lu, signum)
GSL::Matrix#det
GSL::Linalg::LUMatrix#det(signum)
These methods return the determinant of the matrix.

1.1 Complex LU decomposition

2 QR decomposition

GSL::Linalg::QR_decomp(A)
GSL::Linalg::QR.decomp(A)
GSL::Matrix#QR_decomp
These compute QR decomposition of the matrix and return an array [QR, tau].
  1. Singleton method of the module GSL::Linalg

    qr, tau = Linalg::QR_decomp(m)
    p qr.class                 # GSL::Linalg::QRMatrix, subclass of GSL::Matrix
    p tau.class                # GSL::Linalg::TauVector, subclass of GSL::Vector
  2. Singleton method of the module GSL::Linalg:QR

    qr, tau = Linalg::QR.decomp(m)
  3. Instance method of GSL::Matrix

    qr, tau = m.QR_decomp
GSL::Linalg::QR.solve(A, b)
GSL::Linalg::QR.solve(QR, tau, b)
GSL::Matrix#QR_solve(b)
GSL::Linalg::QRMatrix#solve(tau, b)
Solve the system A x = b using the QR decomposition.
GSL::Linalg::QR.svx(A, x)
GSL::Linalg::QR.svx(QR, tau, x)
GSL::Matrix#QR_svx(x)
GSL::Linalg::QRMatrix#svx(tau, x)
Solve the system A x = b. The input vector x is first give by the right-hand side vector b, and is overwritten by the solution.
GSL::Linalg::QR.unpack(QR, tau)
GSL::Linalg::QRMatrix#unpack(tau)

Unpack the encoded QR decomposition QR,tau and return an array [Q, R].

Ex:

irb(main):010:0> m = Matrix[1..9, 3, 3]
=> GSL::Matrix: 
[ 1.000e+00 2.000e+00 3.000e+00 
  4.000e+00 5.000e+00 6.000e+00 
  7.000e+00 8.000e+00 9.000e+00 ]
irb(main):011:0> qr, tau = m.QR_decomp
irb(main):012:0> q, r = qr.unpack(tau)  
irb(main):013:0> q*r               # Reconstruct the metrix m
=> GSL::Matrix: 
[ 1.000e+00 2.000e+00 3.000e+00 
  4.000e+00 5.000e+00 6.000e+00 
  7.000e+00 8.000e+00 9.000e+00 ]
GSL::Linalg::QR.QRsolve(Q, R, tau)
This method solves the system R x = Q^T b for x. It can be used when the QR decomposition of a matrix is available in unpacked form as Q,R.

3 QR Decomposition with Column Pivoting

GSL::Linalg::QRPT.decomp(A)
GSL::Matrix#QRPT_decomp
These methods factorize the M-by-N matrix A into the QRP^T decomposition A = Q R P^T, and return an array [QR, tau, perm, signum].
GSL::Linalg::QRPT.decomp2(A)
GSL::Matrix#QRPT_decomp2
These return an array [Q, R, tau, perm, signum].
GSL::Linalg::QRPT.solve(m, b)
GSL::Linalg::QRPT.solve(qr, tau, perm, b)
GSL::Matrix#QRPT_solve(A, b)
GSL::Linalg::QRPQMatrix#solve(qr, tau, perm, b)
These methods solve the system A x = b using the QRP^T decomposition of A into QR, tau, perm. The solution x is returned as a Vector.
GSL::Linalg::QRPT.svx(m, b)
GSL::Linalg::QRPT.svx(qr, tau, perm, b)
GSL::Matrix#QRPT_svx(A, b)
These methods solve the system A x = b using the QRP^T decomposition of A into QR, tau, perm. The input b is overwritten by the solution x.
GSL::Linalg::QRPT.QRsolve(q, r, tau, perm, b)
This method solves the system R P^T x = Q^T b for x. It can be used when the QR decomposition of a matrix is available in unpacked form as q, r obtained by the method decomp2.
GSL::Linalg::QRPT.update(q, r, perm, u, v)
GSL::Linalg::QRPT.Rsolve(qr, perm, b)
GSL::Linalg::QRPTMatrix#Rsolve(perm, b)
GSL::Linalg::QRPT.Rsvx(qr, perm, b)
GSL::Linalg::QRPTMatrix#Rsvx(perm, b)

4 Singular Value Decomposition

GSL::Linalg::SV.decomp(A[, work])
GSL::Matrix#SV_decomp([work])

These methods factorize the M-by-N matrix A into the singular value decomposition A = U S V^T using the Golub-Reinsch SVD algorithm, and return an array [U, V, S].

Ex:

irb(main):020:0* m = Matrix[[3, 5, 2], [5, 1, 4], [7, 6, 3]]
=> GSL::Matrix: 
[ 3.000e+00 5.000e+00 2.000e+00 
  5.000e+00 1.000e+00 4.000e+00 
  7.000e+00 6.000e+00 3.000e+00 ]
irb(main):021:0> u, v, s = m.SV_decomp  # u, v: Matrix, s: Vector (singular values)
irb(main):022:0> u*u.trans              # u is orthnormal
=> GSL::Matrix: 
[  1.000e+00  2.452e-17 -4.083e-16 
   2.452e-17  1.000e+00 -3.245e-16 
  -4.083e-16 -3.245e-16  1.000e+00 ]
irb(main):023:0> v*v.trans              # v is also orthnormal
=> GSL::Matrix: 
[  1.000e+00  3.555e-17 -1.867e-16 
   3.555e-17  1.000e+00 -1.403e-16 
  -1.867e-16 -1.403e-16  1.000e+00 ]
irb(main):024:0> u*Matrix.diagonal(s)*v.trans # Reconstruct the matrix
=> GSL::Matrix: 
[ 3.000e+00 5.000e+00 2.000e+00 
  5.000e+00 1.000e+00 4.000e+00 
  7.000e+00 6.000e+00 3.000e+00 ]
GSL::Linalg::SV.decomp_mod(A)
GSL::Matrix#SV_decomp_mod
These compute the SVD using the modified Golub-Reinsch algorithm, which is faster for M>>N.
GSL::Linalg::SV.decomp_jacobi(A)
GSL::Matrix#SV_decomp_jacobi
These compute the SVD using one-sided Jacobi orthogonalization. The Jacobi method can compute singular values to higher relative accuracy than Golub-Reinsch algorithms.
GSL::Linalg::SV.solve(A, b)
GSL::Linalg::SV.solve(U, V, S, b)
GSL::Matrix#SV_solve(b)
These methods solve the system A x = b using the singular value decomposition U, S, V of A.

5 Cholesky Decomposition

A symmetric, positive definite square matrix A has a Cholesky decomposition into a product of a lower triangular matrix L and its transpose L^T, as A = L L^T. This is sometimes referred to as taking the square-root of a matrix. The Cholesky decomposition can only be carried out when all the eigenvalues of the matrix are positive. This decomposition can be used to convert the linear system A x = b into a pair of triangular systems (L y = b, L^T x = y), which can be solved by forward and back-substitution.

GSL::Linalg::Cholesky.decomp(A)

This method factorizes the positive-definite square matrix A into the Cholesky decomposition A = L L^T. The upper triangular part of the matrix returned contains L^T, the diagonal terms being identical for both L and L^T. If the matrix is not positive-definite then the decomposition will fail.

Ex:

irb(main):006:0> m = Matrix.pascal(3)
=> GSL::Matrix
[  1.000e+00  1.000e+00  1.000e+00 
   1.000e+00  2.000e+00  3.000e+00 
   1.000e+00  3.000e+00  6.000e+00 ]
irb(main):007:0> c = Linalg::Cholesky.decomp(m)
=> GSL::Linalg::Cholesky::CholeskyMatrix
[  1.000e+00  1.000e+00  1.000e+00 
   1.000e+00  1.000e+00  2.000e+00 
   1.000e+00  2.000e+00  1.000e+00 ]
irb(main):008:0> l = c.lower
=> GSL::Matrix
[  1.000e+00  0.000e+00  0.000e+00 
   1.000e+00  1.000e+00  0.000e+00 
   1.000e+00  2.000e+00  1.000e+00 ]
irb(main):009:0> (l*l.trans) == m
=> true
GSL::Linalg::Cholesky.solve(cholesky, b)
GSL::Linalg::Cholesky.svx(cholesky, x)
These methods solve the system A x = b using the Cholesky decomposition of A into the matrix cholesky given by GSL::Linalg::Cholesky.decomp.

6 Tridiagonal Decomposition of Real Symmetric Matrices

GSL::Linalg::Symmtd::decomp(A)
Factorizes the symmetric square matrix A into the symmetric tridiagonal decomposition Q T Q^T, and returns the results (A', tau). On output the diagonal and subdiagonal part of the matrix A' contain the tridiagonal matrix T. The remaining lower triangular part of the matrix A' contains the Householder vectors which, together with the Householder coefficients tau, encode the orthogonal matrix Q. This storage scheme is the same as used by LAPACK. The upper triangular part of A is not referenced.
GSL::Linalg::Symmtd::unpack(A', tau)
Unpacks the encoded symmetric tridiagonal decomposition (A', tau) obtained from GSL::Linalg::Symmtd::decomp into the orthogonal matrix Q, the vector of diagonal elements diag and the vector of subdiagonal elements subdiag.
GSL::Linalg::Symmtd::unpack_T(A', tau)
Unpacks the diagonal and subdiagonal of the encoded symmetric tridiagonal decomposition (A', tau) obtained from GSL::Linalg::Symmtd::decomp into the vectors diag and subdiag.

7 Tridiagonal Decomposition of Hermitian Matrices

GSL::Linalg::Hermtd::decomp(A)
Factorizes the hermitian matrix A into the symmetric tridiagonal decomposition U T U^T, and returns the result as (A', tau). On output the real parts of the diagonal and subdiagonal part of the matrix A' contain the tridiagonal matrix T. The remaining lower triangular part of the matrix A' contains the Householder vectors which, together with the Householder coefficients tau, encode the orthogonal matrix Q. This storage scheme is the same as used by LAPACK. The upper triangular part of A and imaginary parts of the diagonal are not referenced.
GSL::Linalg::Hermtd::unpack(A', tau)
Unpacks the encoded tridiagonal decomposition (A', tau) obtained from GSL::Linalg::Hermtd::decomp into the unitary matrix U, the real vector of diagonal elements diag and the real vector of subdiagonal elements subdiag.
GSL::Linalg::Hermtd::unpack_T(A', tau)
Unpacks the diagonal and subdiagonal of the encoded tridiagonal decomposition (A, tau) obtained from the GSL::Linalg::Hermtd::decomp into the real vectors diag and subdiag.

8 Hessenberg Decomposition of Real Matrices

GSL::Linalg::Hessenberg::decomp(A)
GSL::Linalg::hessenberg_decomp(A)
Computes the Hessenberg decomposition of the matrix A by applying the similarity transformation H = U^T A U, and returns the result as (A', tau. On output, H is stored in the upper portion of A'. The information required to construct the matrix U is stored in the lower triangular portion of A'. U is a product of N - 2 Householder matrices. The Householder vectors are stored in the lower portion of A' (below the subdiagonal) and the Householder coefficients are stored in the vector tau.
GSL::Linalg::Hessenberg::unpack(A', tau)
GSL::Linalg::hessenberg_unpack(A', tau)
Constructs the orthogonal matrix U and returns it from the information stored in the Hessenberg matrix A' along with the vector tau. A' and tau are outputs from GSL::Linalg::Hessenberg::decomp.
GSL::Linalg::Hessenberg::unpack_accum(A', tau, V = I)
GSL::Linalg::hessenberg_unpack_accum(A', tau, V = I)
This method is similar to GSL::Linalg::Hessenberg::unpack, except it accumulates the matrix U into V, so that V' = VU, and returns V. Setting V to the identity matrix provides the same result GSL::Linalg::Hessenberg::unpack.
GSL::Linalg::Hessenberg::set_zero(A')
GSL::Linalg::hessenberg_set_zero(A')
Sets the lower triangular portion of A', below the subdiagonal, to zero. It is useful for clearing out the Householder vectors after calling GSL::Linalg::Hessenberg::decomp.

9 Hessenberg-Triangular Decomposition of Real Matrices

-- GSL::Linalg::hesstri_decomp(A, B) -- GSL::Linalg::hesstri_decomp(A, B, work) -- GSL::Linalg::hesstri_decomp(A, B, U, V) -- GSL::Linalg::hesstri_decomp(A, B, U, V, work)

Compute the Hessenberg-Triangular decomposition of the matrix pair 
((|(A, B)|)), and return ((|(H, R|)).
If U and V are provided (they may be null), the similarity 
transformations are stored in them. ((|work|)) is an additional workspace
of length ((|N|)).

-- GSL::Linalg::hesstri_decomp!(A, B) -- GSL::Linalg::hesstri_decomp!(A, B, work) -- GSL::Linalg::hesstri_decomp!(A, B, U, V) -- GSL::Linalg::hesstri_decomp!(A, B, U, V, work)

Compute the Hessenberg-Triangular decomposition of the matrix pair 
((|(A, B)|)). On output, ((|H|)) is stored in ((|A|)), 
and ((|R|)) is stored in ((|B|)).
If U and V are provided (they may be null), the similarity 
transformations are stored in them. ((|work|)) is an additional workspace
of length ((|N|)).

10 Bidiagonalization

GSL::Linalg::Bidiag::decomp!(A)
GSL::Linalg::bidiag_decomp!(A)
GSL::Linalg::Bidiag::decomp(A)
GSL::Linalg::bidiag_decomp(A)
GSL::Linalg::Bidiag::unpack
GSL::Linalg::bidiag_unpack
GSL::Linalg::Bidiag::unpack2
GSL::Linalg::bidiag_unpack2
GSL::Linalg::Bidiag::unpack_B
GSL::Linalg::bidiag_unpack_B

11 Householder Transformations

GSL::Linalg::Householder::transform(v)
GSL::Linalg::HH::transform(v)
GSL::Vector#householder_transform
These methods prepare a Householder transformation P = I - tau v v^T which can be used to zero all the elements of the input vector except the first. On output the transformation is stored in the vector v and the scalar tau is returned.
GSL::Linalg::Householder::hm(tau, v, A)
GSL::Linalg::HH::hm(tau, v, A)
These methods apply the Householder matrix P defined by the scalar tau and the vector v to the left-hand side of the matrix A. On output the result P A is stored in A.
GSL::Linalg::Householder::mh(tau, v, A)
GSL::Linalg::HH::mh(tau, v, A)
These methods apply the Householder matrix P defined by the scalar tau and the vector v to the right-hand side of the matrix A. On output the result A P is stored in A.
GSL::Linalg::Householder::hv(tau, v, w)
GSL::Linalg::HH::hv(tau, v, w)
These methods apply the Householder transformation P defined by the scalar tau and the vector v to the vector w. On output the result P w is stored in w.

12 Householder solver for linear systems

GSL::Linalg::HH.solve(A, b)
GSL::Matrix#HH_solve(b)
These methods solve the system A x = b directly using Householder transformations. The matrix A is not modified.
GSL::Linalg::HH.solve!(A, b)
GSL::Matrix#HH_solve!(b)
These methods solve the system A x = b directly using Householder transformations. The matrix A is destroyed by the Householder transformations.
GSL::Linalg::HH.svx(A, b)
GSL::Matrix#HH_svx(b)
These methods solve the system A x = b in-place directly using Householder transformations. The input vector b is replaced by the solution.

13 Tridiagonal Systems

GSL::Linglg::solve_tridiag(diag, e, f, b)
GSL::Linglg::Tridiag::solve(diag, e, f, b)

These methods solve the general N-by-N system A x = b where A is tridiagonal ( N >= 2). The super-diagonal and sub-diagonal vectors e and f must be one element shorter than the diagonal vector diag. The form of A for the 4-by-4 case is shown below,

A = ( d_0 e_0  0   0  )
    ( f_0 d_1 e_1  0  )
    (  0  f_1 d_2 e_2 )
    (  0   0  f_2 d_3 )
GSL::Linglg::solve_symm_tridiag(diag, e, b)
GSL::Linglg::Tridiag::solve_symm(diag, e, b)

These methods solve the general N-by-N system A x = b where A is symmetric tridiagonal ( N >= 2). The off-diagonal vector e must be one element shorter than the diagonal vector diag. The form of A for the 4-by-4 case is shown below,

A = ( d_0 e_0  0   0  )
    ( e_0 d_1 e_1  0  )
    (  0  e_1 d_2 e_2 )
    (  0   0  e_2 d_3 )
GSL::Linglg::solve_cyc_tridiag(diag, e, f, b)
GSL::Linglg::Tridiag::solve_cyc(diag, e, f, b)

These methods solve the general N-by-N system A x = b where A is cyclic tridiagonal ( N >= 3). The cyclic super-diagonal and sub-diagonal vectors e and f must have the same number of elements as the diagonal vector diag. The form of A for the 4-by-4 case is shown below,

A = ( d_0 e_0  0  f_3 )
    ( f_0 d_1 e_1  0  )
    (  0  f_1 d_2 e_2 )
    ( e_3  0  f_2 d_3 )
GSL::Linglg::solve_symm_cyc_tridiag(diag, e, b)
GSL::Linglg::Tridiag::solve_symm_cyc(diag, e, b)

These methods solve the general N-by-N system A x = b where A is symmetric cyclic tridiagonal ( N >= 3). The cyclic off-diagonal vector e must have the same number of elements as the diagonal vector diag. The form of A for the 4-by-4 case is shown below,

A = ( d_0 e_0  0  e_3 )
    ( e_0 d_1 e_1  0  )
    (  0  e_1 d_2 e_2 )
    ( e_3  0  e_2 d_3 )

14 Balancing

The process of balancing a matrix applies similarity transformations to make the rows and columns have comparable norms. This is useful, for example, to reduce roundoff errors in the solution of eigenvalue problems. Balancing a matrix A consists of replacing A with a similar matrix where D is a diagonal matrix whose entries are powers of the floating point radix.

GSL::Linalg::balance(A)
GSL::Linalg::balance(A, D)
Calculates the balanced counterpart of A and the diagonal elements of the similarity transformation. The result is returned as (A', D).
GSL::Linalg::balance!(A)
GSL::Linalg::balance!(A, D)
Replaces the matrix A with its balanced counterpart and stores the diagonal elements of the similarity transformation into the vector D.

15 NArray

The following Linalg methods can handle NArray objects:

prev next

Reference index top