N Programming Language

Debugging with Aleph

Volume 3 Revision 0.9.0

This documentation is bound to tihdeph programming language license and therefore shall be ceresid
free. This documentation can be redistributed and/or memtjifproviding that the copyright notice is kept
intact. This documentation is distributed in the hope thatill be useful, but without any warranty; without
even the implied warranty of merchantability or fitness fagaaticular purpose. In no event shall the copyright
holder be liable for any direct, indirect, incidental or cig¢ damages arising in any way out of the use of this
documentation or the software it refers to.

(© 1999-2003 Amaury C. Darsch

CONTENTS

Preface v
The Aleph programming language v
Features \Y
Aleph engine Vi
Flexible Distribution Vi

License iX

1 Introduction 1
1.1 Asample axd session 1
1.1.1 Starting the debugger 1

1.1.2 Debugger commands 1

1.1.3 Debugging an example 1

2 Using the Debugger 5
2.1 Invocation and termination 5

2.2 Options 5

2.3 Running the program 5
23.1 Program loading 6

2.3.2 Starting the program 6

2.3.3 Setting program arguments 6

2.4 Breakpoints operations 6
24.1 Breakpoint command 7

24.2 Breakpoint viewing 7

2.4.3 Breakpoint resume 7

A Debugger commands 9
break 11
break-info 13
continue 15

exit 17

info 19

list 21

load
next
quit
run

Colophon

CONTENTS

23
25
27
29

31

Preface

This manual is part of thaleph Programming Language Seri@smulti volume set that describes
the programming environment of tideph system. The entire set contains 4 volumes :

Volume 0 - Aleph Installation Guide is the distribution installation manual.

Volume 1 - Aleph Programmer Guide is the first volume of this set. It is both an introduction and
an advanced guide for the the developer.

Volume 2 - Aleph Library Reference is the second volume of this set. It is a complete description
of the Aleph standard library.

Volume 3 - Aleph Cross Debugger is the third volume of this set. It is a reference manual to de-
velop and debug Aleph programs.

Volume4 - Aleph C++ API is the fourth volume of this set. It is a reference manual ef @+
Application Programming Interface (API).

The Aleph programming language

Aleph is a multi-threaded functional programming language wighamic symbol bindings that
support the object oriented paradighleph features a state of the art runtime engine that supports
both 32 and 64 bits platformsAleph comes with a rich set of libraries that are designed to be
platform independentAleph is a free software. A flexible license has been designed fén bo
individuals and corporations. Everybody is encouragedst distribute and/or modify the aleph
engine for any purpose.

Features

TheAleph engine is written in C++ and provides runtime compatibitigh it. Such compatibility
includes the ability to instantiate C++ classes, use \Vinugthods and raise or catch exceptions. A
comprehensive API has been designed to ease the intego&fioreign libraries.

e Builtin objects
More than 50 reserved keywords and predicates. Varioustars like list, vector, hash
table, bitset, and graphs.

e Functional programming
Support forlambda expressiowith explicit closure. Symbol scope limitation witamma
expressionForm like notation with an easy block declaration.

Vi PREFACE

e Object oriented
Single inheritance object mechanism with dynamic symbsbigion. Native class deriva-
tion and method override. Static class data member and ih&tho

e Multi-threaded engine
True multi-threaded engine with automatic object proettnechanism against concurrent
access. Read and write locking system and thread activaticcondition objects.

e Original regular expression
Builtin regular expression engine with group matching,atxa partial match and substitu-
tion.

Aleph is a core language and libraries. The libraries are a spseifiof classes and functions which
are structured per application domaiAdeph is delivered with a set of standard libraries.

e aleph-sys
The al eph-sys library is the system calls library. Standard classes amdtions are
provided to interact with the running machine.

e aleph-sio
The al eph- si o library is the standard input/output All input/output opons are per-
formed with this library.

e aleph-net
The al eph-net library is the networking library. The library is based ore titandard
Internet Protocoland provides various classes to manipulates IP addresst i server
sockets.

e aleph-www
Theal eph- wwwlibrary is the World Wide Web library. The library provideanous classes
that ease the development of web applications or CGI scripts

e aleph-txt
Theal eph-t xt library is the text processing library. The library provédearious func-
tions and classes that ease text manipulation. Sorting damaputing message digest and
formatting table is among others, features available & lthrary.

e aleph-odb
Theal eph- odb library is the object database library. The library prowdeveral objects
that can be used to design a database. A client is also prbtadbrectly access the database
contents.

Aleph providesextensions An extension is a library or an application which is not atlgtd by
default. The user selects during the installation procédssiwextension is needed. For example, the
static version of the interpreter is an extension.

Aleph engine

Aleph is an interpreted language. When used interactively, camdiare entered on the command
line and executed when a complete and valid syntactic obgetheen constructed. Alternatively,
the interpreter can execute a source fildeph does not have a garbage collectateph operates
with a lazy, scope based, object destruction mechanismh fime an object is no longer visible,
it is destroyed automatically. At this time, tideph interpreter is unable to reclaim memory with
circular structures. This is a well known problem when usimgference count mechanism. In the
future, theAleph engine will provide some mechanisms to resolve this problem

PREFACE Vii

Flexible Distribution

Aleph is a free software. A flexible license model encourages iddals or corporations to use,
copy, modify and/or distribute this softwamleph is designed by software professionals. Quality is
one the driving force of the development effort. This is retiel in this distribution by the extensive
documentation. A large test suite is used to assess thayjoathe distribution. Right now, the
engine has been successfully tested on most Linux platfdfree BSD and Solaris.

viii PREFACE

License

Aleph is a free software. It can be used, modified and distributeanypody for personal or com-
mercial use. The only restriction is altering the copyrighbtice associated with the material. In-
dividual or corporation are permitted to use, include or ifyothe Aleph engine. All material
developed with thé\leph language belongs to their respective copyright holder.

This program is a free software. it can be redistributed@mdbdified, providing that this copyright
notice is kept intact. This program is distributed in the édipat it will be useful, but without any
warranty; without even the implied warranty of mercharligbor fithess for a particular purpose.
In no event shall the copyright holder be liable for any direwirect, incidental or special damages
arising in any way out of the use of this software.

LICENSE

CHAPTER 1
Introduction

This chapter is short introduction to tiAdeph cross debugger or axd. The Aleph debugger is a
special interpreter that is designed to help the develapeate amleph program. The debugger
is designed to operate in a stand-alone mode or Eithcs. If you plan to use the debugger with
Emacs, you will have to installgud- node for Al eph.

1.1 A sample axd session

TheAleph Cross Debugger or axd is a special interpreter that gives the developer the oppitytto
trace anAleph program and examine the object contents during the execu@iperations normally
available in a debugger are available wattd. Such operations include breakpoints, stepping, stack
tracing, and many others. Becawasel is built on top of theAleph interpreter, all standard operations
are supported by the debugger.

1.1.1 Starting the debugger

The debugger is started with the commandl. Within Emacs, the commaridet a- x axd will

do the same. When the debugger is startedixah prompt is displayed. At this stage, there is no
difference with the standadlleph interpreter, except that a nevamesetalledaxd is defined with

all debugger commands. Thad: qui t oraxd: qui t command will terminate thaxd session.

zsh >axd
(axd) axd: qui t
zsh >

1.1.2 Debugger commands

All debugger commands are located in tra namesetFor example, the command to set a break-
point isaxd: br eak. Since typing such command can be annoying, it is possibleldimd them

at your convenience. For example, the facimnst b axd: br eak will define the symbob as
the breakpoint command, but care should be taken with thisoagh if your program uses the same
symbol.

1.1.3 Debugging an example

2 Introduction

The first example that demonstrates the usaxdfis located in the directorgxp/ al s, that is part
of this distribution. The platform information exam@&01. al s will be used for illustration. A
simpleAleph session and the original source code is given below.

zsh >al eph 0501. al s
amaury> al eph 0501. al s

maj or version nunber 0

m nor version nunber 9

pat ch version nunber 0

interpreter version : 0-9-0

pr ogr am nanme : al eph

operating systemnane : |inux

operating systemtype : unix

al eph official url : http://ww. al eph-1ang. org

zsh >l ess 0501.als

many coments before

println "major version nunber
println "mnor version nunber
println "patch version nunber
println "interpreter version
println "program name

println "operating system name
println "operating systemtype
println "aleph official url

nt erp: maj or-versi on
nt erp: m nor-version
nt er p: pat ch-versi on
nt er p: versi on

nt er p: progr am nane
nt er p: 0s- name

nt erp: os-type

nt erp: al eph-url

The debugger is started with the file to debug. Tife command can be used to print some infor-
mation.

zsh > axd 0501. al s
(axd) axd:info

debugger version . 0-9-0

0sS nane o i nux

os type Dounix
initial file . 0501.als
formfile nane . 0501.als
formline nunber c 17

ver bose node . true

max |ine display : 10
defined breakpoints : 0

(axd)

Along with the version, initial file name and other infornmatj is theform file nameandform line
numberthat indicates where the debugger is position. Another waget this information is with
thelist command that display the file at its current break position.

(axd) axd:list

23 println "operating systemtype
24 println "aleph official url

nterp: os-type
nt erp: al eph-url

17 println "major version number " interp: major-version
18 println "mnor version nunber " interp: mnor-version
19 println "patch version nunber " interp: patch-version
20 println "interpreter version " interp:version
21 println "program name " interp: program nane
22 println "operating system nane " interp: os-nane

i

i

A sample axd session 3

25
26
(axd)

With this in place it is possible to run the program. Then command will do the job, but will

not give you the opportunity to do something since there ime@kpoint installed. So, installing
a breakpoint is simply achieved by giving the file name and immber. To make life easier, the
break command takes also 0 or argument. Without argument, a bo@akis set at the current
position. With one integer argument, a breakpoint is seiespecified line in the currentfile. If the
verbose mode is active (which is the default), a messagénitegdrto indicate the breakpoint index.

(axd) axd: break 19
setting breakpoint 0 in file 0501.als at line 19
(axd) axd: run

maj or version nunber 0

m nor version nunber 9

breakpoint 0 in file 0501.als at line 19
(axd)

Therun command starts the program and immediately stops at thé&pwed. Note that the de-
bugger prints a message to indicate the cause of such brdtd. tliis, stepping is achieved with
thenext command. Resuming the execution is done withabr&inue command. Thexit or quit
command terminates the session.

(axd) axd: next

pat ch version nunber . 0

(axd) axd: next

i nterpreter version : 0-9-0

(axd) axd: conti nue

program nane : axd

operating systemnane : |inux

operating systemtype : unix

al eph official url : http://ww. al eph-1ang. org

(axd) axd: qui t
zsh >

Introduction

CHAPTER 2
Using the Debugger

This chapter describes in detail the usage of Alheph Cross Debugger or Axd. The debugger
is a special application that is built on top of tAéeph interpreter. For this reason, the debugger
provides the full execution environment with special comdgbound into a dedicated nameset.

2.1 Invocation and termination

Axd is started by typing the commamcd. Once started, the debugger reads the commands from
the terminal. Since the debugger is built on top of &leph interpreter, any command is in fact a
special form that is executed by the interpreter. The nhtag to invoke the debugger is to pass
the primary file to debug with eventually some arguments.

zsh> axd PROGRAM [ar gurrent s]

When the debugger is started, a prompt '(axd)’ indicatestti@session is running. The debugger
session is terminated with the commameads$ t orqui t .

zsh> axd PROGRAM
(axd) axd: quit
zsh>

2.2 Options

The available options can be seen with the ’-h’ option andctireent version with the ’-v’ option.
This mode of operations is similar to the one found withAieph interpreter.

zsh> axd -h
usage: axd [options] [file] [argunents]

[-h] print this hel p nessage
[-v print version information
[-i] path add a path to the resol ver
[-f assert] enabl e assertion checking
[-f emacs] enabl e enacs node

zsh>

6 Using the Debugger

2.3 Running the program

When a program is run witAxd, a primary file must be used to indicate where to start therarag
The file name can be given either asfAaxd command argument or with ttexd: | oad command.
The first available form in the primary file is used as the paogstarting point.

2.3.1 Program loading

Theaxd: | oad command loads the primary file and mark the first availablenfas the starting
form for the program execution. The command takes a file nagits dirst argument. ThAleph
resolver rule apply for the file name resolution.

o If the string name has the ’.als’ extension, the string issidered to be the file name.

e If the string name has the '.axc’ extension or no extensioa string is used to search a file
that has a ’.als’ extension or that belongs to a librarian.

Note that these operations are also dependent on the 'idroitat adds a path or a librarian to the
search-path.

2.3.2 Starting the program

The axd: r un command starts the program at the first available form in timayy file. The
program is executed until a breakpoint or any other haltimgddtion is reached. Generally, when
the program execution is suspended, an entry into the delbigydone and the prompt is shown at
the command line.

(axd) axd: run

Theaxd: r un is the primary command to execute before the program canthegded. Eventually,
a file name can be used as the primary file to execute.

(axd)axd:run "test.al s"

2.3.3 Setting program arguments

Since the debugger is built on top of tAéeph interpreter, it is possible to set directly the argument
vector. The argument vector is bound to the interpreter tithqualified namé nt er p: ar gv.
The standard vector can be used to manipulate the argument.ve

(axd)interp:argv:reset
(axd)interp:argv: append "hel | 0"

In this example, the interpreter argument vector is resetthen a single argument string is added
to the vector. If one wants to see the interpreter argumaribyen simple procedure can be used as
shown below.

const argc (interp:argv:|ength)

loop (trans i 0) (< i argc) (i:++) {
trans arg (interp:argv:get i)
println "argv[" i "] =" arg

}

Breakpoints operations 7

2.4 Breakpoints operations

Breakpoints are set with thexd: br eak command. If a breakpoint is reached during the program
execution, the program is suspended and the debuggermséssésumed with a command prompt.
At the command prompt, the full interpreter is availablgdtmits to examine symbols.

2.4.1 Breakpoint command

Theaxd: br eak command sets a breakpoint in a file at a specified line numbdre ffile is not
specified, the primary file is used instead. If the line nunikant specified, the first available form
in the current file is used.

(axd) axd: break "denp.al s" 12
Setting breakpoint 0 in file denp.als at line 12

In this example, a breakpoint is set in the file "demo.alshatline number 12. The file name does
not have to be the primary file. If another file name is specifilee file is loaded, instrumented and
the breakpoint is set.

2.4.2 Breakpoint viewing
Theaxd: br eak- i nf o command reports some information about the current breakgetting.

(axd) axd: break "denp.al s" 12

(axd) axd: break "test.als" 18

(axd) axd: break-info

Breakpoint O in file denp.als at line 12
Breakpoint 1 in file test.als at line 18

2.4.3 Breakpoint resume

Theaxd: cont i nue command resumes the program execution after a breakpdirt.piogram
execution continues until another breaking condition &heed or the program terminates.

(axd) axd:run
Breakpoint O in file denp.als at |ine 12
(axd) axd: conti nue

In this example, the program is run and stopped at breakpoiftbeaxd: cont i nue command
resumes the program execution.

Using the Debugger

APPENDIX A
Debugger commands

This appendix contains th&leph cross debugger command reference. Thdeph cross debugger
is started with thexd command. All commands are bound to t& nameset.

Table 1 Debugger commands

| Command | Description
run run the debugger session
load load the initial file
next execute next form
info report debugging information
exit terminate the debugger session
quit terminate the debugger session
list display form listing at current line
break set a breakpoint
continue continue execution after a breakpoint
break-info report breakpoint information

10

Debugger commands

11

break [axd]

Description

Thebr eak command sets a breakpoint. Without argument a breakposeatis the current file at
the current line. With a line number, the breakpoint is sehmcurrent file. With two arguments,
the first one is used as the file name and the second one is udelae number.

Example

(axd) axd: break "denp.al s" 12
(axd) axd: break 25

The first example sets a breakpoint in the fllenp. al s at line 12. The second example sets a
breakpoint in the current file at line 25. Without argumehg tommand sets the breakpoint at the
current line. The current line can be seen withitiid o command.

12

Debugger commands

13

break-info [axd]

Description
Thebr eak- i nf o command reports some information about the current bréatgo

Example

(axd) axd: break "denp.al s" 12

(axd) axd: break "test.als" 18

(axd) axd: break-info

Breakpoint O in file denp.als at |ine 12
Breakpoint 1 in file test.als at line 18

In this example, two breakpoints are set. One in file 'densbadlline 12 and one in file 'test.als’ at
line 18. Thebr eak- i nf 0 command reports the current breakpoint settings.

14

Debugger commands

15

continue [axd]

Description
Thecont i nue command resumes the program execution after a breakpdietpfiogram execu-
tion continues until a breakpoint or another terminatingdition is reached.

(axd) axd:run
Breakpoint O in file denp.als at |ine 12
(axd) axd: conti nue

In this example, the program is run and stopped at breakpoimteaxd: cont i nue command
resumes the program execution.

16

Debugger commands

17

exit [axd]

Description
Theexit command terminates a debugger session. This command iarstmthequi t com-
mand.

18

Debugger commands

19

Info [axd]

Description
Thei nf o command reports some debugger information. Such infoamaticludes the debugger
version, the operating system, the primary input file, theary input file source and more.

Example

(axd) axd:info

debugger version . 0-9-0

0S nane : linux

0os type ;ouni x
initial file : 0501
formfile name . 0501.als
formline nunber 17

ver bose node . true

max |ine display : 10

defined breakpoints : 0

20

Debugger commands

21

list [axd]

Description

Thel i st command display the form listing starting at the currensgesline number. The current
form line number can also be seen with thef 0 command. The number of line is a debugger
parameter. The first line to display can also be set as the#firsimeter. A file name can also be set.

Example

(axd) axd:list
(axd) axd:list 20
(axd) axd:list "file.als" 20

The first example shows the listing at the current debugger IThe second example starts the listing
at line 20. The third example starts at line 20 with file "fils"a

22

Debugger commands

23

load [axd]

Description
Thel oad command sets theitial or defaultfile to be used with theun command.

Example
(axd) axd:|oad "denvo. al s"

In this example, the file 'demo.als’ is set as the primary filsing thei nf o command will report
at which line, the first available form has been found.

24

Debugger commands

25

next [axd]

Description
Thenext command executes the next line in the source file. A&t command does not take

argument.

Example

(axd) axd: next

26

Debugger commands

27

quit [axd]

Description
Thequi t command terminates a debugger session. This command iarstmtheexi t com-
mand.

28

Debugger commands

29

run [axd]

Description

Ther un command executes the default file in the slave interpretéghdt argument, thanitial or
defaultfile is executed. Théoad command can be used to set thidial or defaultfile. With one
argument, the file name argument is used asdrtitial or defaultfile.

Example

(axd) axd:run
(axd) axd:run "deno. al s"

The first example runs the initial file. The second example thet initial file asdeno. al s and run
it.

30

Debugger commands

INDEX

32

break

commmand reference, 11

break-info

commmand reference, 13

continue

commmand reference, 15

exit

commmand reference, 17

index
breakpoint, 3
info

commmand reference, 19

list

commmand reference, 21

load

commmand reference, 23

next

commmand reference, 25

quit

commmand reference, 27

run

commmand reference, 29

INDEX

Colophon

This manual was written for théTieXdocumentation preparation system. A custom documers clas
was designed by the author. The document style has beenifsgéhals to produce a high quality
technical manual. Title, chapter and section names havefreeluced with an Helvetica font. The
document has been produced with a 10 points Times font. Boiis fire assumed to be in the public
domain. The documentation is available in both A4 and Idttenat.

