N Programming Language

C++ Programming Interface

Volume 4 Revision 0.9.0

This documentation is bound to tiideph programming language license and therefore shall be ceresid
free. This documentation can be redistributed and/or memtjifproviding that the copyright notice is kept
intact. This documentation is distributed in the hope thatill be useful, but without any warranty; without
even the implied warranty of merchantability or fitness fagaaticular purpose. In no event shall the copyright
holder be liable for any direct, indirect, incidental or cig¢ damages arising in any way out of the use of this
documentation or the software it refers to.

(© 1999-2003 Amaury C. Darsch

CONTENTS

Preface

The Aleph programming language
Features

Aleph engine

Flexible Distribution

License

1 Introduction

1.1

1.2

1.3

The header files

111 The platform headers

1.1.2 The standard objets headers
1.1.3 The interpreter engine headers
Conventions

121 Header file extension

1.2.2 Aleph namespace

1.2.3 Makefile

Types, declaration and memory

1.3.1 Character and strings

1.3.2 Memory allocation

2 Eval-Apply and functions

21

2.2
2.3

Interpreter eval-apply

2.11 Various eval-apply

2.1.2 The simplest eval-apply
2.1.3 Runnable object

2.14 Evaluation nameset
2.15 Object eval-apply methods
The add function

Putting all together

23.1 Shared library entry point
2.3.2 Compiling everything
2.3.3 Testing the result

<

Vi
Vi

WWNMNNNNERPRPRERPERPRE

OO0 N~NOO OO 01010101

3 ObjectClass

3.1

3.2

3.3

Object evaluation

3.1.1 Object eval-apply methods
3.1.2 Eval default implementation
3.1.3 Qualified name evaluation
314 Quark definition

Static construction

3.2.1 Argument vector interface
A simple object

3.3.1 The default constructor
3.3.2 The representation method
3.3.3 The static constructor
3.34 First compilation

A Boolean example

Al
A.2

Boolean example header
Boolean example implementation

B Objectclass

Colophon

CONTENTS

11
11
11
11
12
12
12
12
13
14
15
15
15

17
17
19

25

29

Preface

This manual is part of thaleph Programming Language Seri@smulti volume set that describes
the programming environment of tideph system. The entire set contains 4 volumes :

Volume O - Aleph Installation Guide is the distribution installation manual.

Volume 1 - Aleph Programmer Guide is the first volume of this set. It is both an introduction and
an advanced guide for the the developer.

Volume 2 - Aleph Library Reference is the second volume of this set. It is a complete description
of the Aleph standard library.

Volume 3 - Aleph Cross Debuggeris the third volume of this set. It is a reference manual to de-
velop and debug Aleph programs.

Volume 4 - Aleph C++ API is the fourth volume of this set. It is a reference manual ef @+
Application Programming Interface (API).

The Aleph programming language

Aleph is a multi-threaded functional programming language wighaimic symbol bindings that
support the object oriented paradigAleph features a state of the art runtime engine that supports
both 32 and 64 bits platformsAleph comes with a rich set of libraries that are designed to be
platform independentAleph is a free software. A flexible license has been designed fén bo
individuals and corporations. Everybody is encouragedst distribute and/or modify the aleph
engine for any purpose.

Features

TheAleph engine is written in C++ and provides runtime compatibitigh it. Such compatibility
includes the ability to instantiate C++ classes, use \Vinugthods and raise or catch exceptions. A
comprehensive API has been designed to ease the intego&fioreign libraries.

o Builtin objects
More than 50 reserved keywords and predicates. Varioustars like list, vector, hash
table, bitset, and graphs.

e Functional programming
Support forlambda expressiowith explicit closure. Symbol scope limitation witamma
expressionForm like notation with an easy block declaration.

Vi PREFACE

e Object oriented
Single inheritance object mechanism with dynamic symbsbigion. Native class deriva-
tion and method override. Static class data member and ih&tho

e Multi-threaded engine
True multi-threaded engine with automatic object proettnechanism against concurrent
access. Read and write locking system and thread activaticcondition objects.

e Original regular expression
Builtin regular expression engine with group matching,atxa partial match and substitu-
tion.

Aleph is a core language and libraries. The libraries are a speeifiof classes and functions which
are structured per application domaiAdeph is delivered with a set of standard libraries.

e aleph-sys
The al eph-sys library is the system calls library. Standard classes amdtions are
provided to interact with the running machine.

e aleph-sio
The al eph- si o library is the standard input/output All input/output opons are per-
formed with this library.

e aleph-net
The al eph-net library is the networking library. The library is based ore titandard
Internet Protocoland provides various classes to manipulates IP addresst i server
sockets.

e aleph-www
Theal eph- wwwlibrary is the World Wide Web library. The library provideanous classes
that ease the development of web applications or CGI scripts

e aleph-txt
Theal eph-t xt library is the text processing library. The library provédearious func-
tions and classes that ease text manipulation. Sorting damaputing message digest and
formatting table is among others, features available & lthrary.

e aleph-odb
Theal eph- odb library is the object database library. The library prowdeveral objects
that can be used to design a database. A client is also prbtadbrectly access the database
contents.

Aleph providesextensions An extension is a library or an application which is not atlgtd by
default. The user selects during the installation procédssiwextension is needed. For example, the
static version of the interpreter is an extension.

Aleph engine

Aleph is an interpreted language. When used interactively, camdiare entered on the command
line and executed when a complete and valid syntactic obgetheen constructed. Alternatively,
the interpreter can execute a source fildeph does not have a garbage collectdteph operates
with a lazy, scope based, object destruction mechanismh fime an object is no longer visible,
it is destroyed automatically. At this time, tideph interpreter is unable to reclaim memory with
circular structures. This is a well known problem when usimgference count mechanism. In the
future, theAleph engine will provide some mechanisms to resolve this problem

PREFACE vii

Flexible Distribution

Aleph is a free software. A flexible license model encourages iddals or corporations to use,
copy, modify and/or distribute this softwamsleph is designed by software professionals. Quality is
one the driving force of the development effort. This is retiel in this distribution by the extensive
documentation. A large test suite is used to assess thayjoathe distribution. Right now, the
engine has been successfully tested on most Linux platfdfree BSD and Solaris.

Viii PREFACE

License

Aleph is a free software. It can be used, modified and distributeanypody for personal or com-
mercial use. The only restriction is altering the copyrighbtice associated with the material. In-
dividual or corporation are permitted to use, include or ifyothe Aleph engine. All material
developed with thé\leph language belongs to their respective copyright holder.

This program is a free software. it can be redistributed@mdbdified, providing that this copyright
notice is kept intact. This program is distributed in the édipat it will be useful, but without any
warranty; without even the implied warranty of mercharligbor fithess for a particular purpose.
In no event shall the copyright holder be liable for any direwirect, incidental or special damages
arising in any way out of the use of this software.

LICENSE

CHAPTER 1
Introduction

This chapter is an introduction to the general organizaticihe Aleph C++ application program-
ming interfaceor API. We start by looking at the various levels of the API dhen describes the
general presentation of the C++ header files. The readesne@ibsorb some materials before bee-
ing able to write its own class. For the impatient, we recomdn® read this chapter and the next
one. A simple example is given at the end of chapter 2.

1.1 The header files

All Aleph API files are structured into several directories, each efitlidledicated to a specific func-
tions. All directories are generally located belowed@ph specific directory or for some distributions
under the standavdusr / i ncl ude or/ usr/ | ocal /i ncl ude directories for a UNIX platform.

e plt
The platform independent header files.

e std
The standard object header files.

e eng
The Aleph engine header files.

Additional directories are included. One for each librang &xtension.

1.1.1 The platform headers

Thepl t directory contains the platform independant headers filgs.files are low level functions
and should be the last thing to use. Their use will be covextenl.|

1.1.2 The standard objets headers
Thest d directory contains the standard object headers files. Tirestdry is the primary source

of files. It contains the most important header, na®éject. TheObject header is covered in the
next chapter.

1.1.3 The interpreter engine headers

2 Introduction

Theeng directory contains the interpreter engine header filess @iliectory is as important as the
standard object one. It contains timerp object, which is the interpreter by itself.

1.2 Conventions

The general structure of tiideph API rely on various conventions and rules. These rules haea b
carefully designed to ensure portability accross platlanwell as a smooth support for 32 and 64
bits platforms.

1.2.1 Header file extension

All header files use thbpp extension. These header files only refereslegh functions or classes.
If there is one rule to keep in mind, it is this on&here is no platform header files This rule
provides the flexibility to design a system which is platfontiependant. Because of thiekef i | e
structure, any attempt to use a platform header will causengiation error. If one take a look at
the source tree, (s)he will find another header type withrsitahxx. This type of header are the
one which contains the platform dependant headers. Howéigtype of headers is never exported
to the API.

1.2.2 Aleph namespace

All functions and classes belong to the namesgdaeph. This namespace should be used only for
software code which is supposed to be part ofAbeph distribution. If you plan to develop your
own piece of code, please use another namespace.

1.2.3 Makefile

There is no particular rules favakef i | e, unless the software beeing develop is supposed to be
integrated into the distribution.

1.3 Types, declaration and memory

The basic types used everywhere are defined ipthie ccnf . hpp header file. This file contains
also some information about your operating system, thegasur type and the software revision. It
is strongly suggested to take a look at it. The basic typedadired inside thal eph namespace.

t ypedef unsigned char t_byte;
t ypedef unsigned short t _word;
typedef unsigned int t _quad;
typedef unsigned |long long t_octa;
typedef 1ong | ong t I ong;
t ypedef doubl e t _real;

The special typé _si ze is determined automatically according to the platform. A&2 platform
has:

typedef unsigned int t_size;
while a 64 bits platform has:

typedef unsigned | ong t_size;

Types, declaration and memory 3

It is by far thet _si ze type which is the most important. This type is automaticdlyermined
by your platform configuration. You should almost never useitnt type, except for resource
description. The ong type is most of the time appropriate ahdl ong required when a 64 bits
width needs to be forced. Since most compiler adopt#@4 model, thd ong type seems to be a
good choice. Note that this header file is automaticallyudet in theDbject file.

1.3.1 Character and strings

Thechar type is the prefered type for a character. The implementatges theonst char*

for the c-strings. The standard object library provid&tring class that take care of string manipu-
lation. On the other hand, the basic c-string declaratigmeigitable when dealing with literal string.
Thet byt e type is appropriate founsigned character

1.3.2 Memory allocation

We will talk a lot about memory allocation later. At this stagnote thahew anddel et e are the
best way to operate. You should almost never use the low feeahory allocation since it might
conflict with thememory tracerand worse with the shared libaries memory cleanup subsystem
Obviously, call toral | oc andf r ee are prohibited. In fact, these functions are not exportetthby
API. If an object is generated by a function or method and nedst destroyed, a call el et e

is the way to go, nothing else will workAs a matter of facts, the object destruction is a more
complex subject, which is detailed in chapter 3

Introduction

CHAPTER 2
Eval-Apply and functions

Theeval-applymechanism is the central runtime operation of Aheph engine. Depending on the
nature of the form to evaluate, one strategy or another id tessperform theeval-applyprocess. It
is interesting to note that a complete program executioreigeiy aneval-applyloop.

2.1

Interpreter eval-apply

TheAleph interpreter rely on a mechanism calledemal-applyloop. For each form being evaluated,
the first object evaluation method is called. The returngdailis eventually used to apply one or
several evaluated arguments. We describe in detail howrthchanism works with various example.

211

Various eval-apply

There are several kinds efal-applystrategy that are used depending on the nature of the form.

add+12

This is the simplest form to evaluate. The form consist o$tdf objects. The first object is
evaluated and the rest is transmitted to the evaluatedtahjeing theapplyphase. Our first
example will cover this type of form.

Boolean true
This form is an object construction form. Its evaluationligtgly different to the previous
one. This type of form is covered in the next chapter.

aleph:sys:sleep 1000
This form is similar to the first one, except that it uses a ifjediname instead of the a lexical
name.

str:split *:"
This form is a method call with argument. It's evaluation é&sdribed in the next chapter.

println "hello world"

This form is a special form. Its evaluation is described ipecific chapter. Forms that uses
a reserved keyword are generally special forms. Note tleateberved keywordsonstand
trans are special, for a special form.

+12
This form is a generic operating form. Its evaluation is diésa in a specific chapter.

6 Eval-Apply and functions

2.1.2 The simplest eval-apply

The simplest example to consider is the introductory fawhd 1 2. This form consists of three
objects. The first one is a lexical object, the second and #ri literals. When the form is evaluated
several steps are performed. The form is represented bydbns cells Thecar contains the lexical
object. Thecdr points to anothecons cell thosecar is anl nt eger object. Thecdr of the second
cons cellpoints to the third argument, thosar is also arl nt eger object. The lastdr is nil (null
pointer) to indicate the end of the form. This form is autaicwdly built by theAleph reader. During
the evaluation process, several operations take placesasilded below.

o Evaluates the first object in the form. The object is a lexiaiect represented bgdd.
Such evaluation is done with the interpreter by calling thigct virtual methoaval. In that
particular case, the lexical evaluates to a function object

e Apply the first evaluated object with the rest of the form. #at particular example, the first
object has been evaluated as a function object. The viapaly method is called with the
cdr of the form. The apply method returns the result of such appibin. In that particular
case, thedd function method returns dmt eger object, those value is 3.

e What happen inside thepply method is implementation dependent. However, for that par-
ticular example, thadd method evaluates each argument object, check that theyahde v
integers, compute the sum, and returns a newly createceinbdigect with the result.

This simple example illustrates the fundamental mechaofidhe Aleph engine. Note that the
process we have described here is simply the evaluatioregsarf acons cell We will come back
later on this.

2.1.3 Runnable object

Thealephinterpreter is aunnableobject. Arunnableobject is a special object that carry several
methods. Our first example do not need it, but the object isqfathe API. A typical use of the
runnableobject is within thepr i nt | n builtin function (special form). Such function get the stan
dard output stream from thennableobject. Therunnableobject is defined in the standard library
asRunnable.

2.1.4 Evaluation nameset

An eval-applyprocess is done within agvaluation namesetf heevaluation namesés$ the point at
which a symbol or an argument is evaluated. The first exangés dse the evaluation nameset to
resolve the symbadd Thenamesebbject is defined in the standard libraryMameset

2.1.5 Object eval-apply methods

The Object class contains several overloada@l andapply methods. We are here only concerned
with the simple one.

2.2 The add function

The C++ implementation of thaedd function declaration is given below. The first argument i th
runnableobject. The second argument is tealuation namesetbject. The third argument is the

argument list. At this stage of the call, the symhdld has been evaluated (we will how later), and
the function is called with the last two arguments as a resfidh apply call.

Putting all together 7

bj ect* exanpl e_add (Runnabl e* robj, Naneset* nset, Cons* args) {
/1 evaluate the argunents in a vector
Vector* argv = Vector::eval (nset, args);
/1 conpute the result
long result = argv->getint (0) + argv->getint (1);
/1l generate result
return new I nteger (result);

}

As it can be noticed, this implementation is quite simple altlwork. Unfortunately, it will also
leak, since the argument vector is not destroyed. Note hisoan exception might also happen. A
perfectimplementation should enclose the computatiorrijteéatchblock and destroy the argument
vector. The complete implementation, ready to compileiMsrgbelow, with the appropriate include
file and namespace. This example is available iretkp/ api directory asAdd. cpp.

#i ncl ude "Vector. hpp"
#i ncl ude "I nteger. hpp"

nanespace exanpl e {
/1 use the al eph nanespace
usi ng nanespace al eph;

/1 add function inplenentation
nj ect* exanpl e_add (Runnabl e* robj, Nameset* nset, Cons* args) {
/1 evaluate the argunents in a vector
Vector* argv = Vector::eval (robj, nset, args);
try {
/1 conpute the result
long result = argv->getint (0) + argv->getint (1);
/1 clean the vector
del ete argv;
/1l generate result
return new I nteger (result);
} catch (...) {
del ete argv;
t hr ow;

2.3 Putting all together

Once theadd function has been implemented, it must be registered witigninterpreter. There
are various ways to do so. The description below uses theatdAleph mechanism with shared
libraries. Once the library will be built, it is going to be gmible to test the function.

2.3.1 Shared library entry point

The first thing to do, in order to create a shared library, isléfine a unique entry point that is
called when the library is loaded. This entry point takesaafrregistering the library symbols.
The Aleph convention uses names in the formdif_namespace_library The plus (+) and and
minus (-) characters are automatically re-mapped to undegsharacter. For example, the library

8 Eval-Apply and functions

al eph- sys has the entry poirdl i _al eph_sys. Our example uses the namespace example, so
a valid entry point would bel i _exanpl e or preferablydl i _exanpl e_api . The entry point
must be mapped as a "C" name to aveane manglinglt is also part of thé\leph methodology to
break the call in two pieces. One is the "C" entry point andoter is the "C++" entry point.

#i ncl ude "Li bapi . hpp"
#i ncl ude " Api cal | s. hpp"
#i ncl ude "Functi on. hpp"

nanespace exanpl e {
/1 use the al eph nanespace
usi ng nanespace al eph;

/] initialize the api library

ohject* init_exanple_api (Interp* interp, Vector* argv) {
/1 make sure we are not called from sonething crazy
if (interp ==nilp) return nilp;

/1 create the api naneset
Naneset* api = interp->nknset ("api", interp->getgset ());

/1 bind the add function
api - >synctst ("add", new Function (api_add));

// not used but needed
return nilp;
}
}

extern "C' {
al eph: : Qbject* dli_exanple_api (al eph::Interp* interp,
al eph: : Vector* argv) {
return exanple::init_exanple_api (interp, argv);
}
}

2.3.2 Compiling everything

The compilation is quite simple. The library generation isitde more tricky. The previous
example is demonstrated with GCC and assume thatthph include file are located in the
/usr/local/include/al eph directory.

zsh > g++ -1. -I1/usr/local/include/aleph -g
-fPI C - D_REENTRANT -c *.cpp

zsh > g++ -shared -o |ibexanple-api.so *.0
-L/usr/local/lib -Ial eph-eng

These commands should work fine. However, depending on ystera, some adjustments might

be needed. You should look at tAéeph compilation process to get a better idea of what is going
on. Some system might require all libraries. More compilegdlican be used, and should be used.

2.3.3 Testing the result

Putting all together 9

With the library ready to use, it is possible to runAleph session and see what is happening.

zsh> al eph

al eph> interp:library "exanpl e-api”
al eph> println (add 1 2)

3

al eph> C-d

zsh >

This is it. If it does not work, you should check th® LI BRARY_PATHenvironment variable. In
last resort, the directorgxp/ api contains avakef i | e designed to work correctly, but it won’t
install the library.

10

Eval-Apply and functions

CHAPTER 3
Object Class

TheObject class is theoillar of the Aleph engine. The class defines the base methods that are used
during theeval-applyprocess. The class provides also the methods to controbjleetdocking as
well as the object reference count.

3.1 Object evaluation

The simplest object evaluation is the one that takes an téjetreturns an object. Most of the time
this evaluation iseflexive That is the calling object is returned. In this case, thectip said to be
self evaluated

3.1.1 Object eval-apply methods

The Object class contains several overloadaal andapply methods. The simplest one requires
only arunnableandnamesebbjects.

class Object {
many decl arati ons

/1] evaluate an object in the current nameset

/1] @aram robj the current runnabl e

/1l @aram nset the current naneset

virtual Object* eval (class Runnable* robj, class Naneset* nset);

/1]l apply an object with a set of argunents

/1] @aram robj the current runnabl e

/1l @aram nset the current naneset

/1] @aram args the argunments to apply

virtual Object* apply (class Runnabl e* robj, class Naneset* nset,
cl ass Cons* args);

3.1.2 Eval default implementation

The default implementation for trevalmethod is to return the calling object (akhi s). As men-
tioned earlier, such behavior is calledIf evaluation Most of the objects evaluates to themselves.
This include all literal objects such likent eger or String

12 Object Class

/1 evaluate an object in the current naneset

hj ect* nject::eval (Runnable* robj, Naneset* nset) {
return this;

}

}

It is remarkable to notice how such simple implementatianto&aso powerful.

3.1.3 Qualified name evaluation

The evaluation of a qualified name is a repetitive procegsgibes for each lexical element of that
name. For example, the qualified namel | o: wor | d is evaluated first by evaluatinigel | o
which in turn evaluateswor | d. Since, the evaluation by name is too costly in terms of gtrin
comparision, the qualified name evaluation is done fyar k mechanism.

3.1.4 Quark definition

A quark is unique integer representation for a given strifipe termquar k comes from thex
Window Systemwhich has a similar mechanism. For a given string, a quarkisitucted with the
static string methodnt er n.

static const long QUARK TOSTRING = String::intern ("to-string");

When a qualified name is constructed by the lexical analareequivalent quark representation is
computed automatically. This process makes now the qudfiféene evaluation a straight-forward
recursive system that involves just integer comparision.

3.2 Static construction

In order for the interpreter to construct a new object, ttesglhas to provide a static method that
returns such object based on an argument vector.

/1l generate a new bool ean
/1l @aramargv the argunent vector
static Object* nknew (Vector* argv);

The vector argument contaiegaluated objectit is up to the implementation to call the appropriate
constructor, depending on the arguments type and values.

3.2.1 Argument vector interface

The Vector class provides several method that ease the transformagimveen object and native
types.

e | ength
returns the numbre of elements in this vector

e getint
returns a native integer by index

e get bool
returns a native boolean by index

A simple object 13

e getreal

returns a native real (double) by index

e get char

returns a native character by index

e getstring

returns a string object by index

As an example, we reproduce here the implementation dBit8=et class.

Obj ect* BitSet::nmknew (Vector* argv) {

}

long argc = (argv == nilp) ? 0 : argv->length ();
if (argc == 0) return new Bit Set;
if (argc == 1) {

| ong size = argv->getint (0);

return new BitSet (size);

}

t hrow Exception ("argunent-error"”, "too nmany argunent for bitset");

This implementation provides two ways to creatgit$et object. Without argument, the argument
vector length is null and the method return a new object biyncplhe default constructor. With one
argument, a new bit set is created with a specific size. Ther gtises throw an exception. Note that
an exception can be raised by thet i nt method if the object argument cannot be mapped to an
integer value.

Another way to access the argument object is by performirecty dynamic castingWe left the
code fragment below of th€haracter class as an excercise.

nj ect* Character::nknew (Vector* argv) {

if ((argv == nilp) || (argv->length () == 0)) return new Character;
if (argv->length () !'= 1)
t hrow Exception ("argunent-error",
"too many argunent with character constructor");
/1 try to map the character argunent
nj ect* obj = argv->get (0);
if (obj == nilp) return new Character;

/1 try an integer object
Integer* ival = dynam c_cast <Integer*> (obj);
if (ival '=nilp) return new Character (ival->tointeger ());

/1 try a character object
Character* cval = dynanic_cast <Character*> (obj);
if (cval !'= nilp) return new Character (*cval);

/1 try a string object
String* sval = dynamic_cast <String*> (obj);
if (sval !'= nilp) return new Character (*sval);

/1 illegal object
t hrow Exception ("type-error", "illegal object with character”
obj ->repr ());

14 Object Class

3.3 A simple object

Writing a new C++ object that is usable by tAkeph engine is quite simple. The following example
implements the behavior ofl@oolean The class is calle@ool ean and is available in the stan-

dard library. We implement here a simple version withoutlified name support, but this minimal

example will compile and can be constructed in the integuret

#i fndef EXAMPLE_BOOLEAN_HPP
#define EXAMPLE_BOOLEAN HPP

#i f ndef ALEPH_OBJECT_HPP
#i ncl ude " hj ect. hpp"
#endi f

nanespace exanpl e {
/1 use the al eph nanespace
usi ng nanespace al eph;

/1] The exanpl e:: Bool ean cl ass
cl ass Bool ean : public Object {
private:

/11 the native bool ean

bool d_val ue;

public:
|/l create a new default bool ean
Bool ean (void);

/1l create a bool ean by val ue
Bool ean (const bool val ue);

/// @eturn the class nane
String repr (void) const;

/1l create a new bool ean
static Object* nknew (Vector* argv);
}

}
#endi f

This is the minimal declaration that is needed to compilenih@lean example. Note that the default
constructor is not really needed, but it is given here fasitation purpose.

3.3.1 The default constructor

The default constructor is not really needed here, but ieisegally wise to provide a default imple-
mentation. Remember that a default constructor is one aithdefault implementation provided
by the compiler for a given class. It is a good practice to Heagc things under control.

nanespace exanpl e {
/1 create a default bool ean
Bool ean: : Bool ean (void) {
d_value = fal se;

}

A simple object 15

/1 create a bool ean by val ue

Bool ean: : Bool ean (const bool value) ({
d_val ue = val ue;

}

}

3.3.2 The representation method

Therepr method is one of the mandatory method for an object derinaiince it is defined agrtual
purein thehj ect base class. The method returns a string representatioataflfiss, that is here
the string" Bool ean".

nanespace exanpl e {
/1 return the class nane
String Bool ean::repr (void) const {
return "Bool ean”;
}

}

3.3.3 The static constructor

The implementation for the static constructor is triviale Atcept only O or one argument and create
a new boolean object.

nanespace exanpl e {
/1 create a boolean in a generic way
static Object* Bool ean:: nmknew (Vector* argv) {
long argc = (argv == nilp) ? 0 : argv->length ();
if (argc == 0) return new Bool ean;
if (argc == 1) {
| ong val ue = argv->getbool (0);
return new Bool ean (val ue);
}
t hrow Exception ("argument-error"”, "too many argument for bool ean");
}
}

3.3.4 First compilation

If we assume that the standaktbph headers are located underthesr /| ocal /i ncl ude/ al eph/ st d,
we can compile the previous example, assuming we are gsing

zsh > gcc - D _REENTRANT -I. -I/usr/local/include/al eph/std
-1/usr/local/include/al eph/std -o Bool ean. 0 -c¢ Bool ean. cpp

The flags for compiling in debug mode, all warnings, no statidlzclude files, etc. can be used as
well. We will see in the next chapter how to use the standdeph makefile to develop a complete
library. If you plan to use your own build system, a complétedf directives and recommendation
is given in the next chapter as well. If you plan to contribiatéheAleph distribution, ther are more
constraints attached to the build process which are destiib a specificContributing to Aleph
chapter.

16

Object Class

APPENDIX A
Boolean example

A.1 Boolean example header

#i f ndef ALEPH_BOCOLEAN_HPP
#defi ne ALEPH BOOLEAN_HPP

#i fndef ALEPH_LI| TERAL_HPP
#include "Literal. hpp"
#endi f

#i f ndef ALEPH_SERI AL_HPP
#i ncl ude "Seri al . hpp"
#endi f

nanespace al eph {

cl ass Boolean : public Literal, public Serial {
private:

/1l the native bool ean representation

bool d_val ue;

publi c:
/1l create a new default boolean - by default it is false
Bool ean (void);

/1l create a new boolean froma native bool ean
/1l @aramvalue the value to create
Bool ean (const bool val ue);

/1l create a new bool ean froma string
/11 @aram val ue the value to convert
Bool ean (const String& val ue);

/1l copy constructor for this bool ean
/1l @aramthat the bool ean class to copy
Bool ean (const Bool ean& that);

18

Boolean example

/1] @eturn the class nanme
String repr (void) const;

/1l @eturn a literal representation of this bool ean
String toliteral (void) const;

/1l @eturn a string representation of this bool ean
String tostring (void) const;

/// @eturn a clone of this bool ean
oj ect* clone (void) const;

|/l @eturn the bool ean serial code
t_byte serialid (void) const;

/1l serialize this boolean to an output stream
/1] @aramos the output streamto wite
void wstream (class Qutput& 0s) const;

/11 deserialize a boolean from an input stream
/1l @aramis the input steamto read in
void rdstream (class Input& is);

/1l @eturn the bool ean val ue of this bool ean
bool tobool ean (void) const;

/1] assign a boolean with a native val ue
/1l @aramval ue the value to assign
Bool ean& operator = (const bool value);

/1] assign a boolean with a bool ean
/1l @aramval ue the value to assign
Bool ean& operator = (const Bool ean& val ue);

/1l conpare this boolean with a native val ue
/1l @aramval ue the value to compare

/1l @eturn true if they are equals

bool operator == (const bool val ue) const;

/1l conpare this boolean with a native val ue
/1l @aramval ue the value to compare

/1l @eturn true if they are not equals

bool operator != (const bool value) const;

/1] conpare two bool eans

/1l @aramval ue the value to compare

/1l @eturn true if they are equals

bool operator == (const Bool ean& val ue) const;

/1] conpare two bool ean

/1l @aramval ue the value to compare

/1l @eturn true if they are not equals

bool operator != (const Bool ean& val ue) const;

Boolean example implementation 19

/1l evaluate an object to a bool ean val ue

/1l @aramrobj the current runnabl e

/1l @aram nset the current naneset

/11 @aram obj ect the object to eval uate

static bool evalto (Runnable* robj, Nanmeset* nset, Object* object);

/1l generate a new bool ean
/1l @aram argv the argument vector
static Object* nknew (Vector* argv);

/11 operate this bool ean with another object

/1] @aram robj the current runnable

/1l @aramtype the operator type

/1l @aram obj ect the operand object

oj ect* oper (Runnable* robj, t_oper type, Object* object);

/1l set an object to this bool ean

/1] @aram robj the current runnable

/1]l @aram nset the current naneset

/1l @aram obj ect the object to set

oj ect* vdef (Runnabl e* robj, Naneset* nset, Cbject* object);

/11 apply this boolean with a set of arguments and a quark

/1] @aram robj the current runnable

/1]l @aram nset the current naneset

/1l @aramquark the quark to apply these argunents

/1l @aramargv the argunents to apply

oj ect* apply (Runnabl e* robj, Nameset* nset, const |ong quark
Vector* argv);

#endi f

A.2 Boolean example implementation

#i ncl ude "I nput. hpp"

#i ncl ude "Vector. hpp"

#i ncl ude " Bool ean. hpp"
#i ncl ude "Excepti on. hpp"

nanespace al eph {

/1 the bool ean supported quarks
static const | ong QUARK EQL
static const | ong QUARK_NEQ
static const | ong QUARK TOSTRI NG

String::intern ("==");
String::intern ("!="
String::intern ("to-string");

/] create a new boolean - the initial value is fal se

Bool ean: : Bool ean (void) {
d_value = fal se;

20

}
/1

Boolean example

create a boolean froma native val ue

Bool ean: : Bool ean (const bool value) {

}
/1

d_val ue = val ue;

create a boolean froma string

Bool ean: : Bool ean (const String& val ue) {

}
/1

if (value == "fal se")
d_value = fal se;
else if (value == "true")
d_val ue = true;
el se
t hrow Exception ("literal-error","illegal bool ean val ue", val ue);

copy constructor for this bool ean

Bool ean: : Bool ean (const Bool ean& that) {

}
/1

St
}

11
St
}

11
St

}
11

d value = that.d _val ue;

return the class nane

ring Bool ean::repr (void) const {

return "Bool ean”;

return a literal representation of this bool ean
ring Boolean::toliteral (void) const {

return tostring ();

return a string representation of this bool ean
ring Boolean::tostring (void) const {

return d_value ? "true" : "fal se"

return a clone of this bool ean

nj ect* Bool ean:: clone (void) const {

}
11

t_

return new Bool ean (*this);

return the bool ean serial code

byte Bool ean::serialid (void) const {
return SERI AL_BOOL_I D

Boolean example implementation 21

}

!/l serialize this bool ean

voi d Bool ean:: wrstream (Qut put & os) const {
rdl ock ();
char ¢ = d_value ? 0x01 : nilc;
os.wite (c);
unl ock ();

}

/1 deserialize this bool ean

voi d Bool ean::rdstream (I nput& is) {
wrl ock ();
char ¢ = is.read ();
d value = (¢ == nilc) ? false : true;
unl ock ();

}

// return this bool ean val ue

bool Bool ean: :tobool ean (void) const {
rdl ock ();
bool result = d_val ue;
unl ock ();
return result;

}

/1 assign a boolean with a native val ue

Bool ean& Bool ean: : operator = (const bool value) {
d_val ue = val ue;
return *this;

}

/1 assign a boolean with a bool ean

Bool ean& Bool ean: : operator = (const Bool ean& val ue) {
d_val ue = val ue. d_val ue;
return *this;

}

/1 conpare a boolean with a native val ue

bool Bool ean::operator == (const bool value) const {
return (d_val ue == val ue);

}

/1 conpare two bool ean

bool Bool ean:: operator == (const Bool ean& val ue) const {
return (d_val ue == val ue. d_val ue);

Boolean example

}

/1 conpare a boolean with a native val ue

bool Bool ean::operator != (const bool value) const {
return (d_val ue != val ue);

}

/1 conpare two bool ean

bool Bool ean::operator != (const Bool ean& val ue) const {
return (d_val ue != val ue.d val ue);

}

/1 evaluate an object to a bool ean val ue

bool Bool ean::evalto (Runnabl e* robj, Naneset* nset, Object* object) {

oject* obj = (object ==nilp) ? nilp : object->eval (robj, nset);
Bool ean* val = dynani c_cast <Bool ean*> (obj);
if (val == nilp) throw Exception ("type-error", "nil object to evaluate");

return val - >t obool ean ();

}

/1 create a new boolean in a generic way

nj ect* Bool ean: : nknew (Vector* argv) {

if ((argv == nilp) || (argv->length () == 0)) return new Bool ean;
if (argv->length () !'= 1)

t hrow Exception ("argument-error",

"too many argument w th bool ean constructor");

/1 try to map the bool ean argunent
oj ect* obj = argv->get (0);
if (obj == nilp) return new Bool ean;

/1 try a bool ean object
Bool ean* bval = dynami c_cast <Bool ean*> (obj);
if (bval !'= nilp) return new Bool ean (*bval);

/1 try a string object
String* sval = dynamic_cast <String*> (obj);
if (sval !'=nilp) return new Bool ean (*sval);

/1 illegal object
t hrow Exception ("type-error", "illegal object with bool ean constructor”
obj ->repr ());
}

/1 operate this bool ean with anot her object

oj ect* Bool ean: : oper (Runnable* robj, t_oper type, Object* object) {
Bool ean* bobj = dynamni c_cast <Bool ean*> (object);
switch (type) {
case Object:: EQ:

Boolean example implementation 23

if (bobj !'=nilp) return new Bool ean (d_val ue == bobj->d_val ue);
br eak;
case bj ect:: NEQ
if (bobj !'=nilp) return new Bool ean (d_val ue != bobj->d_val ue);
br eak;
defaul t:
t hrow Exception ("operator-error"”, "unsupported bool ean operator");
}
t hrow Exception ("type-error", "invalid operand wi th bool ean",

oj ect::repr (object));
}

/1 set an object to this bool ean

nj ect* Bool ean: : vdef (Runnabl e* robj, Naneset* nset, Cbject* object) {
Bool ean* bobj = dynani c_cast <Bool ean*> (object);
if (bobj !'=nilp) {
d_val ue = bobj->d_val ue;
return this;
}
t hrow Exception ("type-error", "invalid object with bool ean vdef",
oj ect::repr (object));
}

/1 apply this boolean with a set of argunments and a quark

oj ect* Bool ean: :apply (Runnabl e* robj, Nameset* nset, const |ong quark
Vector* argv) {

/1 get the nunmber of argunents

long argc = (argv == nilp) ? 0 : argv->length ();

/1 dispatch 0 argunent
if (argc == 0) {

if (quark == QUARK TOSTRING return new String (toliteral ());
}

/1 dispatch one argunent
if (argc == 1) {
if (quark == QUARK EQL) return oper (robj, Object::EQ, argv->get (0));
if (quark == QUARK NEQ) return oper (robj, Object::NEQ argv->get (0));
}

/1 call the object nethod
return Cbject::apply (robj, nset, quark, argv);

24

Boolean example

APPENDIX B
Object class

#i f ndef ALEPH_OBJECT_HPP
#define ALEPH_OBJECT_HPP

#i f ndef ALEPH _CCNF_HPP
#i ncl ude "ccnf. hpp"

#endi f

nanespace al eph {

111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111
111

The hject class is the foundation of the standard object library

The object class defines only a reference count field which is used

to control the life of a particular object. When an object is created,
the reference count is set to 0. Such object is said to be transient.
The "iref" static nmethod increment the reference count. The "dref"

net hod decrenent and eventual |y destroy the object. The "cref" nethod
eventual |y destroy an object if its reference count is nulll. The object
class is an abstract class. For each derived object, the repr method

is defined to return the class nane. Additionally, the object class
defines a set of nethods which are used by the runnable to virtually
nodi fy or evaluate an object. There are two sets of nethods. The first
set operates directly on the object. The second set operates by name

on the object. Wrking by nane is equivalent to access a nenber of a

a particular object. The "cdef" nethod create or set a constant object
to the calling object. The "vdef" nethod create or set an object to the
calling object. The "eval" nethod eval uates an object in the current
runnabl e naneset. The "apply" nethod eval uates a set of argunents

and apply themto the calling object. It is sonehow equivalent to a
function call. Wen called by nane, it is equivalent to a nmethod call
@ut hor amaury darsch

cl ass bject {
public:
enumt_oper {ADD, SUB, MJL, DIV, MNUS, EQ., NEQ GCEQ LEQ GTH, LTH};

private:
/11 object reference count
l ong d_rcount;

Object class

pr ot ect ed:
/1] the shared object structure
struct s_shared* p_shared;

public:
/1l create a new object
oj ect (void);

/1] destroy this object.
virtual ~Qbject (void);

[/l @eturn the class nane
virtual class String repr (void) const =0;

/1] @eturn an object class nane or ni
static const class String repr (Object* object);

/1l @eturn a clone of this object
virtual Object* clone (void) const;

/11 make this object shared
virtual void nksho (void);

/1l get a read lock for this object
virtual void rdlock (void) const;

/1l get a wite lock for this object
virtual void wlock (void) const;

/11 unlock this object
virtual void unlock (void) const;

/1l @eturn true if the object is shared
bool issho (void)
return (p_shared !'= nilp);

/1l clear and | ock the finalizer
static void clrfnl (void);

/1l increment the object reference count
/1l @aram object the object to process
static Oobject* iref (Object* object);

/1l decrenment the reference count and destroy the object if nul
/1l @aram object the object to process
static void dref (Object* object);

/1l clean this object if the reference count is nul
/11 @param obj ect the object to process
static void cref (Object* object);

/1] decrenent the object reference count but do not detroy if nul

27

/11l @param obj ect the object to process
static void tref (Object* object);

/1]l return true if the object has a reference count of 0 or 1
/1l @aram obj ect the object to process
static bool uref (Object* object);

/1] operate this object with another one

/1l @aram robj the current runnable

/1l @aramtype the operator type

/11 @param obj ect the operand object

virtual Object* oper (class Runnable* robj, t_oper type, Object* object);

/1l set an object as a const object

/1] @aram robj the current runnable

/1l @aram nset the current naneset

/1l @aram obj ect the object to set

virtual Object* cdef (class Runnabl e* robj, class Nanmeset* nset,
hj ect* object);

/1l set an object as a const object by quark

/1] @aram robj the current runnable

/1l @aram nset the current naneset

/1l @aramquark the quark to define as const

/1l @aram object the object to set

virtual Object* cdef (class Runnable* robj, class Nanmeset* nset,
const |ong quark, Object* object);

/1l set an object to this object

/1] @aram robj the current runnable

/11l @aram nset the current naneset

/1l @aram obj ect the object to set

virtual Object* vdef (class Runnabl e* robj, class Nanmeset* nset,
oj ect* object);

/1l set an object to this object by quark

/11l @aram robj the current runnable

/1l @aram nset the current naneset

/1l @aramquark the quark to set this object

/1l @aram object the object to set

virtual Object* vdef (class Runnable* robj, class Nanmeset* nset,
const |ong quark, Object* object);

/1l evaluate an object in the current naneset

/1] @aram robj the current runnable

/1l @aram nset the current naneset

virtual Object* eval (class Runnable* robj, class Naneset* nset);

/1] evaluate an object in the current naneset by quark

/1] @aram robj the current runnable

/1l @aram nset the current naneset

/1l @aramquark the quark to evaluate in this object

virtual Object* eval (class Runnabl e* robj, class Nanmeset* nset,

28

const |ong quark);

/1] apply an object with a set of argunents

/1] @aram robj
/1l @aram nset
/1l @aram args
vi rtual
cl ass Cons* args);

the current runnabl e
the current naneset
the argunments to apply

bj ect* apply (class Runnabl e* robj,

Object class

cl ass Nameset *

/1l apply an object by quark with a set of argunents

/1] @aram robj
/1l @aram nset
/1] @aram quark
/1l @aram args
vi rtual
const | ong quark

the current runnabl e
the current naneset

the quark to apply this argunents

the arguments to apply

bj ect* apply (class Runnabl e* robj,
cl ass Cons* args);

cl ass Naneset *

/11 apply an object by object with a set of argunents

/1] @aram robj
/1]l @aram nset

/1] @aram object the

/1l @aram args
vi rtual
nj ect* obj ect,

the current runnabl e
the current naneset

the argunments to apply

bj ect* apply (class Runnabl e* robj,
cl ass Cons* args);

object to apply this argunents

cl ass Nameset *

/1] apply an object with a vector of arguments by quark

/1] @aram robj
/1l @aram nset
/11l @aram quark
/1l @aram argv
vi rtual
const | ong quark

public:

the current runnabl e
the current naneset

the quark to apply these argunents
the vector argunments to apply

bj ect* apply (class Runnabl e* robj,
class Vector* argv);

/1 the menory allocation

voi d*
voi d*
voi d
voi d

oper at or
oper at or
oper at or
oper at or

#endi f

new
new

del ete
delete [] (void*

(const
[T (const
(voi d* handl e);
handl e) ;

t_size size);
t _size size);

cl ass Naneset *

nset,

nset,

nset,

nset,

INDEX

30

apply
object call, 6
argv
constuctor arguments, 12

Boolean
simple example, 14

eval
default implementation, 11
lexical evaluation, 6
eval-apply, 11

mknew
static constructor, 12

qualified
evalution, 12
quark
definition, 12

INDEX

Colophon

This manual was written for théTieXdocumentation preparation system. A custom documers clas
was designed by the author. The document style has beenifsgéhals to produce a high quality
technical manual. Title, chapter and section names havefreeluced with an Helvetica font. The
document has been produced with a 10 points Times font. Boiis fire assumed to be in the public
domain. The documentation is available in both A4 and Idttenat.

