N Programming Language

Programmer’s Guide

Volume 1 Revision 0.9.0

This documentation is bound to tiideph programming language license and therefore shall be ceresid
free. This documentation can be redistributed and/or memtjifproviding that the copyright notice is kept
intact. This documentation is distributed in the hope thatill be useful, but without any warranty; without
even the implied warranty of merchantability or fitness fagaaticular purpose. In no event shall the copyright
holder be liable for any direct, indirect, incidental or cig¢ damages arising in any way out of the use of this
documentation or the software it refers to.

(© 1999-2003 Amaury C. Darsch

CONTENTS

Preface

The Aleph programming language
Features

Aleph engine

Flexible Distribution

License

1 Getting Started

1.1

1.2

1.3

1.4

First programs

1.1.1 Hello world

1.1.2 Interpreter command
1.1.3 Interactive line editing
1.1.4 Command line arguments
1.15 Loading a source file
1.1.6 The compiler

1.1.7 Builtin objects

1.1.8 Comments

1.1.9 Forms

Lambda expression

1.2.1 Block form

1.2.2 Gamma expression
1.2.3 Lambda generation
1.2.4 Multiple arguments binding
Nameset and bindings

1.3.1 Symbol

1.3.2 Creating a nameset
1.3.3 Qualified name

1.3.4 Symbol binding

1.35 Constant binding
1.3.6 Arguments

Control flow

14.1 If statement

1.4.2 While statement
143 Do statement

144 Loop statement

Xiii

O OWOWWOWOVOOONNOOODUTOPR,PR,WWWNNNERPE

15

1.6

1.7

1.8

1.45
1.4.6
1.4.7
1.4.8
1.4.9

Switch statement
Return statement
Eval and protect
Assert statement
Block statement

Builtin objects

151
152
153

Arithmetic operations
Logical operations
Predicates

Class and Instance

16.1
1.6.2
1.6.3

Class and members
Instance
Instance method

Miscellaneous features

1.7.1
1.7.2
1.7.3
1.7.4

Threads

1.8.1
1.8.2
1.8.3

Iteration

Exception

Delayed evaluation
Regular Expressions

Form synchronization
Thread completion
Condition variable

2 Numbers and Strings

2.1

2.2

2.3

2.4

2.5

Integer
2.11
2.1.2
2.1.3
2.14
2.15

Integer format

Integer arithmetic
Integer comparison
Integer calculus

Other Integer methods

Relatif Number

221 Relatif operations

Real Number

231 Real format

2.3.2 Real arithmetic

2.3.3 Real comparison

2.3.4 A complex example
2.35 Other real methods
2.3.6 Accuracy and formating
Character

2.4.1 Character format

2.4.2 Character arithmetic
24.3 Character comparison
24.4 Other character methods
String

25.1 String format

25.2 String operations

2.5.3 String hash value

3 Container Objects

CONTENTS

11
11
11
12
12
12
12
13
13
13
13
14
15
15
15
16
17
17
17
18
18
19

21
21
21
21
22
23
23
23
23
24
24
24
25
25
26
26
27
27
28
28
28
29
29
29
30

31

CONTENTS

3.1

3.2

3.3

3.4

3.5

4 Class
4.1

4.2

4.3

Cons builtin object

3.1.1 Cons cell constructors
3.1.2 Cons cell methods
List builtin object

3.2.1 List construction

3.2.2 List methods

Vector builtin object

3.31 Vector construction
3.3.2 Vector methods
Iteration

3.4.1 Function mapping
3.4.2 Multiple iteration

3.4.3 Conversion of iterable objects
3.44 Explicit iterator
Special Object

3.5.1 Queue object

3.5.2 Bitset object

The Class object

411 Class declaration and binding
4.1.2 Class closure binding

4.1.3 Class symbol access

Instance

4.2.1 Instance construction

4.2.2 Instance initialization

4.2.3 Initialization with data member list
424 Instance symbol access

4.2.5 Instance method

4.2.6 Instance operators

4.2.7 Complex number example
Inheritance

431 Derivation construction
4.3.2 Derived symbol access

5 Advanced Concepts

51

5.2

5.3

54
5.5

Exception

5.1.1 Throwing an exception
51.2 Exception handler
Nameset

5.2.1 Default namesets

5.2.2 Nameset and inheritance
Delayed Evaluation

5.3.1 Creating a promise

5.3.2 Forcing a promise
Enumeration

Interpreter

55.1 Arguments vector

5.5.2 Interpreter version and os
5.5.3 File loading

31
31
31
32
32
32
32
32
32
33
33
33
33
34
34
34
35

37
37
37
37
38
38
38
39
39
39
40
41
41
42
43
43

45
45
45
45
46
46
47
47
47
47
47
48
48
49
49

Vi

554 Library loading

6 Threads Operations

6.1 Normal and Daemon threads
6.1.1 Starting a normal thread
6.1.2 Thread object and result

6.2 Shared Objects
6.2.1 Various shared objects
6.2.2 Shared object predicate
6.2.3 Shared protection access

6.3 Synchronization
6.3.1 Form synchronization
6.3.2 Thread completion
6.3.3 Complete example
6.3.4 Condition variable

7 Regular Expressions

7.1 Regular expression syntax
7.11 Regex characters and meta-characters
7.1.2 Regex character set
7.1.3 Regex blocks and operators
7.1.4 Grouping

7.2 Regex Object
7.2.1 Literal object
7.2.2 Regex operators
7.2.3 Regex methods
724 Argument conversion

8 Functional Programming

8.1 Function expression
8.1.1 Self reference
8.1.2 Closed variables
8.1.3 Dynamic binding

8.2 Functional objects
8.2.1 Lexical and qualified names
8.2.2 Symbol and argument access
8.2.3 Closure

8.3 Combinators example
8.3.1 Curried expression
8.3.2 Base combinators
8.3.3 Form transformation
8.3.4 Recursive combinator
8.3.5 Other combinators

9 Librarian and Resolver
9.1 Librarian
9.1.1 Creating a librarian

CONTENTS

49

51
51
51
51
52
52
52
53
53
53
54
54
56

57
57

58
58
59
59
59
59
60
60

61
61
61
62
62
63
63
63
64
64
65
65
65
66
68

69
69
69

57

CONTENTS vii

9.1.2 Using the librarian 69

9.1.3 Librarian contents 70

9.1.4 Librarian extraction 70

9.2 Librarian object 70
9.2.1 Output librarian 70

9.2.2 Input librarian 70

9.3 Resolver 71
9.3.1 Resolver object 71

A Reserved keywords 73
assert 75
block 77
class 79
const 81
daemon 83
delay 85
do 87
enum 89
errorin 91
eval 93
for 95
force 97
if 99
lambda 101
launch 103
loop 105
nameset 107
printin 109
protect 111
return 113
sync 115
switch 117
throw 119
trans 121
try 123
while 125
B Literal Objects 127
Literal 129
Item 131
Boolean 133
Integer 135
Relatif 139
Real 143
Character 149
String 153
regex 157

C Container Objects 161

viii

Cons
Enum
List
Vector
Node
Edge
Graph
Queue
Bitset
Buffer

Special Objects
Object
Interp
Thread
Condvar
Lexical
Qualified
Symbol
Closure
Librarian
Resolver

Colophon

CONTENTS

163
167
169
171
173
175
177
179
181
183

187
189
191
193
195
197
199
201
203
205
207

211

Preface

This manual is part of thaleph Programming Language Seri@smulti volume set that describes
the programming environment of tideph system. The entire set contains 4 volumes :

Volume O - Aleph Installation Guide is the distribution installation manual.

Volume 1 - Aleph Programmer Guide is the first volume of this set. It is both an introduction and
an advanced guide for the the developer.

Volume 2 - Aleph Library Reference is the second volume of this set. It is a complete description
of the Aleph standard library.

Volume 3 - Aleph Cross Debuggeris the third volume of this set. It is a reference manual to de-
velop and debug Aleph programs.

Volume 4 - Aleph C++ API is the fourth volume of this set. It is a reference manual ef @+
Application Programming Interface (API).

The Aleph programming language

Aleph is a multi-threaded functional programming language wighaimic symbol bindings that
support the object oriented paradigAleph features a state of the art runtime engine that supports
both 32 and 64 bits platformsAleph comes with a rich set of libraries that are designed to be
platform independentAleph is a free software. A flexible license has been designed fén bo
individuals and corporations. Everybody is encouragedst distribute and/or modify the aleph
engine for any purpose.

Features

TheAleph engine is written in C++ and provides runtime compatibitigh it. Such compatibility
includes the ability to instantiate C++ classes, use \Vinugthods and raise or catch exceptions. A
comprehensive API has been designed to ease the intego&fioreign libraries.

o Builtin objects
More than 50 reserved keywords and predicates. Varioustars like list, vector, hash
table, bitset, and graphs.

e Functional programming
Support forlambda expressiowith explicit closure. Symbol scope limitation witamma
expressionForm like notation with an easy block declaration.

X PREFACE

e Object oriented
Single inheritance object mechanism with dynamic symbsbigion. Native class deriva-
tion and method override. Static class data member and ih&tho

e Multi-threaded engine
True multi-threaded engine with automatic object proettnechanism against concurrent
access. Read and write locking system and thread activaticcondition objects.

e Original regular expression
Builtin regular expression engine with group matching,atxa partial match and substitu-
tion.

Aleph is a core language and libraries. The libraries are a speeifiof classes and functions which
are structured per application domaiAdeph is delivered with a set of standard libraries.

e aleph-sys
The al eph-sys library is the system calls library. Standard classes amdtions are
provided to interact with the running machine.

e aleph-sio
The al eph- si o library is the standard input/output All input/output opons are per-
formed with this library.

e aleph-net
The al eph-net library is the networking library. The library is based ore titandard
Internet Protocoland provides various classes to manipulates IP addresst i server
sockets.

e aleph-www
Theal eph- wwwlibrary is the World Wide Web library. The library provideanous classes
that ease the development of web applications or CGI scripts

e aleph-txt
Theal eph-t xt library is the text processing library. The library provédearious func-
tions and classes that ease text manipulation. Sorting damaputing message digest and
formatting table is among others, features available & lthrary.

e aleph-odb
Theal eph- odb library is the object database library. The library prowdeveral objects
that can be used to design a database. A client is also prbtadbrectly access the database
contents.

Aleph providesextensions An extension is a library or an application which is not atlgtd by
default. The user selects during the installation procédssiwextension is needed. For example, the
static version of the interpreter is an extension.

Aleph engine

Aleph is an interpreted language. When used interactively, camdiare entered on the command
line and executed when a complete and valid syntactic obgetheen constructed. Alternatively,
the interpreter can execute a source fildeph does not have a garbage collectdteph operates
with a lazy, scope based, object destruction mechanismh fime an object is no longer visible,
it is destroyed automatically. At this time, tideph interpreter is unable to reclaim memory with
circular structures. This is a well known problem when usimgference count mechanism. In the
future, theAleph engine will provide some mechanisms to resolve this problem

PREFACE Xi

Flexible Distribution

Aleph is a free software. A flexible license model encourages iddals or corporations to use,
copy, modify and/or distribute this softwamsleph is designed by software professionals. Quality is
one the driving force of the development effort. This is retiel in this distribution by the extensive
documentation. A large test suite is used to assess thayjoathe distribution. Right now, the
engine has been successfully tested on most Linux platfdfree BSD and Solaris.

Xii PREFACE

License

Aleph is a free software. It can be used, modified and distributeanypody for personal or com-
mercial use. The only restriction is altering the copyrighbtice associated with the material. In-
dividual or corporation are permitted to use, include or ifyothe Aleph engine. All material
developed with thé\leph language belongs to their respective copyright holder.

This program is a free software. it can be redistributed@mdbdified, providing that this copyright
notice is kept intact. This program is distributed in the édipat it will be useful, but without any
warranty; without even the implied warranty of mercharligbor fithess for a particular purpose.
In no event shall the copyright holder be liable for any direwirect, incidental or special damages
arising in any way out of the use of this software.

Xiv LICENSE

CHAPTER 1
Getting Started

This chapter is a quick introduction to the Aleph Prograngrianguage, simply callealeph. The
chapter describes the fundamental syntax without enténitogthe details which are described in
later chapters.

1.1 First programs

The fundamental aleph syntactic object is a form. A form isspd and immediately executed by
the Aleph engine. A form is generally constructed with a tiorcname and a set of arguments. The
process of executing a form is called tnaluation. As a simple program, the traditionahel | o
wor | d" program is shown below.

1.1.1 Hello world

The "hello world" program isle rigueurwhen introducing a new programming language. Here is
the aleph version of it.

al eph >printlin "hello world"

Aleph is an interpreted language. You can therefore invbleeinterpreter and enter the above
commands, or use your favorite editor and executes the file&cdBvention, an aleph source file has
the extensionals. A simple session to run the above program (assuming thesdile is called
hello.alg is shown below.

zsh >al eph hello.als
hello worl d

You can also simply invokalephand enter the command interactively. The result will be traes.
Simply typeCt r | - Dto exit the session. Another way to operate is to calAkeph compiler called
axc, and then invoke the interpreter with the compiled file, eletthe interpreter to figure this out.
Note that the interpreter assume tagcfor compiled file.

zsh >axc hello. al s
zsh >al eph hell 0. axc
hello world

zsh >al eph hello
hello world

2 Getting Started

The order of search is determined by a special system cdikefil¢ resolver Its behavior is de-
scribed in a special chapter of this manual.

1.1.2 Interpreter command

Thealephinterpreter can be invoked with several options, a file tacateand program arguments.
The- h option prints the various interpreter options.

zsh >al eph -h

usage: al eph [options] [file] [argunents]
[-h] print this hel p nessage
[-V] print version information
[-i] path add a path to the resol ver
[-f] assert enable assertion checking
[-f] nopath do not set initial path

The - v option prints the interpreter version and operating systdime - f option turn on or off
some additional options like assertion checking. The mogarguments are illustrated later in this
chapter. The i option add a path to the interpreter file path resolver. S#vér options can be
specified. The order of search is determined by the optioaroiithe use of the resolver combined
with the librarian is described in a specific chapter. If the initial file name xeaute contains a
directory path, such path is added automatically to the'pnéter resolver path unless thepat h
option is specified.

1.1.3 Interactive line editing

Line editing capabilities are supported when the integrristused interactively. Error messages are
displayed in red if the terminal supports colors. The foilogvtable is a resume of the default key
bindings.

Table 1 Terminal keyboard mapping

| Binding | Description
backspace erase the previous character
delete erase at the cursor position
insert toggle insert with in-place
left move the cursor to the left
rigth move the cursor to the right
up move up in the history list
down move down in the history list
ctrl-a move to the beginning of the line
ctrl-e move to the end of the line
ctrl-u clear the input line
ctrl-k clear from the cursor position
ctrl-l refresh the line editing

1.1.4 Command line arguments

The command line arguments to the interpreter are stored/éttr calledar gv which is part of
thei nt er p class. A complete discussion about class data member isatbirechapter 4. At this
stage, just look at the example below which illustrates #eaf the vector argument.

First programs 3

argv.als
print the argunment |length and the first one
println "argunent length: "
println "first argument

(interp:argv:|ength)
" (interp:argv:get 0)
zsh >al eph argv.als hello world

2

hell o

1.1.5 Loading a source file

The interpreter class provides also thead method to load a source file. The argument must be a
valid file path or an exception is raised. Thead method returnsi | . When the file is loaded, the
interpreter input, output and error streams are used. Tdwdperation read one form after another
and executes them sequentially.

load the source file fred.als
al eph >interp:load "fred. al s"

If the file has been compiled tlexcextension can be used instead. This force the interpreteatb
the compiled version. If you are not sure, or do not care abich file is loaded, the extension can
be omitted.

load the conpiled file fred. axc
al eph >interp:load "fred. axc"

| oad whatever is found

al eph >interp:load "fred"

Without extension, the compiled file is searched first. i§ ihot found the source file is searched and
loaded.

1.1.6 The compiler

axcis theAleph cross compilerlt generates a binary file that can be run across platfors-
option prints the various interpreter options.

usage: axc [options] [files]
[-h] print this hel p message
[-v] print version information
[-i] path add a path to the resol ver

One or several files can be specified on the command line. Tureesfile can be searched by the
resolver by using thei option.

1.1.7 Builtin objects

Aleph provides several builtin objects, namely Boolearigder, Real, Character and String. A
builtin object can be constructed literally for each of théges. The best way to build such object
is to bind it to asymbol Theconstandtrans reserved keywords are used to declare a new symbol.
A symbol is simply a binding between a name and an object. Atrany standard characters can be
used to declare a symbol.

4 Getting Started

const bool ean true O true
const integer 1999 0 1999
const real 2000.0 0 2000.0
const string "al eph" O al eph
const char Ta’ 0 a

None of the symbols (or names) used in the program above seevesl keywords. In fact, the
capitalize names are builtin objects (like Integer or $fyinTheconstreserved keyword creates a
const symbol and returns the last evaluated object. As aecoiesce, nestetbnst constructs are
possible liket rans b (const a 1). Thetrans reserved keyword declare a new non-constant
symbol. That is, the symbol can be changed. Note that it isyh&ol which is marked constant,
not the object.

trans a-synbol "hello world" O "hello world"
trans a-symnmbol 2000 0 2000
println a-synbol 0 2000

1.1.8 Comments

Comments starts with the character '#'. All characterslting end of line are consumed. Comments
can be placed anywhere in the source file. Comments entem@tjdan interactive session are
discarded.

1.1.9 Forms

The previous program was an illustration of the simpleginfdeclaration, referred asplicit form.

An implicit form is a single line command. When a command isdmeing complex, the use of the
standard form notation is more readable. The standard fees the '(’ and ')’ characters to start
and close a form. The previous programs could have beerewnitith the standard form notation
instead of the implicit one. The use of standard form notatiersus the implicit is one is a matter
of style and readability.

A form causes amvaluation When a form is evaluated, each symbol in the form are ewvaduat
to their corresponding internal object. Then the intemgaré&eats the first object of the form as the
object to execute and the rest is the argument list for thengabbject. The use of form inside a
form is the standard way to perform recursive evaluatiorténplex expression.

const three (+ 1 2) O 3

The previous program defines a symbol which is initializethwhe integer 3, that is the result of
the computation (+ 1 2). The program shows also that Polishtion is used for arithmetic. If fact,
'+’ is a builtin operator which causes the arguments to bersath(if possible).

Evaluation can be nested as well as definition and assignatnen a form is evaluated, the result
of the evaluation is made available to the calling form. # tesult is obtained at the top level, that
result is discarded.

const b (trans a (+ 1 2))
assert a 3
assert b 3
trans a 4
b 3

assert

This program illustrates the mechanic of the evaluatiorc@ss. The evaluation is done recursively.
The(+ 1 2) form is evaluated as 3 and the result transmitted to the fdrmans a 3) . This

Lambda expression 5

form not only creates the symbol 'a’ and binds to it the integjebut returns also 3 (i.e. the result
of the previous evaluation). Finally, the foritonst b 3) is evaluated, that is, b is created and
the result discarded. Internally, things are a little marmplex, but the idea remains the same. This
program illustrates also the usage of #ssertkeyword.

1.2 Lambda expression

A lambda expressiois a function in the aleph terminology. The term come hisglly from Lisp to
express the fact that a lambda expression is analog to theepbaof expression found in the lambda
calculus. There are various ways to create a lambda expregsiambda expression is created with
thetrans reserved keywords. A lambda expression takes 0 or more angisrand return an object.
A lambda expression is also an object by itself. When a langxgaession is called, the arguments
are evaluated from left to right and placed on the interpretal stack. The function is then called
and the object result is transmitted to the calling form. Tike oftrans vs constis explain later. As
an example, we define the factorial of an integer in a recensay.

declare the factorial function
trans fact (n) (
if (==n1) 1 (* n (fact (- n 1))))

conpute factorial 5
println "factorial 5 =" (fact 5)

This program calls for several comments. First ttens keyword defines a new function object
with one argument called. The body of the function is defined with thif reserved keyword
and can be easily understood. The function is called in ttxé¢ foem when theprintin reserved
keyword is executed. Note that here, the cafl&@t produces an integer object, which is converted
automatically by therintin keyword.

1.2.1 Block form

The notation used in thieact program is the standard form notation originating from Lasyl the
Scheme dialectAleph offers another notation called thdock formnotation with the use of thg
and} characters. A block form is a syntactic notation where eaamin the block form is executed
sequentially. The form can be either an implicit or a regfitem. Thef act procedure can be
rewritten with the block notation as illustrated below.

declare the factorial procedure
trans fact (n) {

if (==n 1) 1 (* n (fact (- n 1)))
}

conpute factorial 5
println "factorial 5 =" (fact 5)

Another way to create alambda expression is via the resé&eyadordlambda. Recall that alambda
expression is an object. So when such object is created) hedounded to a symbol. The factorial
example could be rewritten with an explicit lambda call.

declare the factorial procedure
const fact (lambda (n) (
if (==n1) 1 (* n (fact (- n 1))))

6 Getting Started

conpute factorial 5
println "factorial 5 =" (fact 5)

Note that here, the symbblact is a constant symbol. The use obnst is rather reserved for
gamma expression

1.2.2 Gamma expression

A lambda expression can somehow becomes very slow durirexdwation, since the symbol evalu-
ation is done within a set of nested call to resolve the symbolother words, each recursive call to
a function creates a new symbol set which is linked with itepts When the recursion is becoming
deep, so is the path to traverse from the lower set to the tepAleph provides another mechanism
calledgamma expressiowhich binds only the function symbol set to the top level oitée rest
remains the same. Using a gamma expression can speedujraighy the execution. Here is the
factorial program.

declare the factorial procedure
const fact (n) (
if (==n1) 1 (* n (fact (- n 1))))

conpute factorial 5
println "factorial 5 =" (fact 5)

We will come back later to the conceptgémma expressiof he use of the reserved keywarainst
to declare ggamma expressiomakes now sense. Since most function definitions are canstdn
one level, it was a language choice to implement this syiataagjar. Note thagammais a reserved
keyword and can be used to create a gamma expression objedhether hand, note that the
gamma expression mechanism does not work for instance chéttwill illustrate this point later
in the book.

1.2.3 Lambda generation

A lambda expression can be used to generate another lampdession. In other word, a function
can generate a function, hence the term that AlepHusetional programmindanguage. Suppose
one might want to write a function which take an argument agbgate a function which add this
argument to the generated function argument (got thatlje ktethe program.

a ganmma which creates a | anbda
const gen (n) (
lambda (x) (n) (+ x n))

create a function which add 2 to its argunent
const add-2 (gen 2)

call add-2 with an argunent and check
println "result =" (add-2 3)

The interesting part in the previous program is the concémiased variables. Looking at the
lambda expression insidgen, notice that the argument to the gammaisvhile n is marked in
a form before the body of the gamma. This notation indicdtes the gamma should retain the
value of the argument when the closure is created. In the literature, you mightalisr a similar
mechanism referenced aglasure A closure is simply a variable which is closed under a certai
context. When a variable is reference in a context withoytdafinition, such variable is called a
free variable We will see later more programs with closures. Note thahéAleph terminology, it

Nameset and bindings 7

is the object created by the gamma call which is called a cfosuiote also that the same mechanism
apply with lambda.

In short, a lambda expression is a function with or withoaseld variables, which works with nested
symbol sets (or namesets). A gamma expression is a functtbromwithout closed variable which
is binded to the top level nameset. The reserved keywrars binds a lambda expression. The
reserved keywor@onst binds a gamma expression. A gamma expression cannot be sised a
instance method.

1.2.4 Multiple arguments binding

A lambda or gamma expression can be defined to work with exgrar@ents using the special gs
binding. During a lambda or gamma expression executiorspkeial symbohr gs is defined with
the extra arguments passed at the call. For example, a garpression with 0 formal argument
and 2 actual arguments hasgs defined as a cons cell.

const proc-nilp (args) {
trans result 0O
for (i) (args) (result:+=1i)
eval result
}
assert 3 (proc-nilp 1 2)
assert 7 (proc-nilp 1 2 4)

ar gs can also be defined with formal arguments. In that casgs is defined as a cons cell with
the remaining actual arguments.

check with argunents

const proc-args (a b args) {
trans result (+ a b)
for (i) (args) (result:+=1i)
eval result

}

assert 3 (proc-args 1 2)

assert 7 (proc-args 1 2 4)

It is an error to specify formal arguments afergs. Multiple ar gs formal definition are not
allowed.ar gs can also be defined acanstargument.

check with argunents

const proc-args (a b (const args)) {
trans result (+ a b)
for (i) (args) (result:+=1)
eval result

}
assert 7 (proc-args 1 2 4)

1.3 Nameset and bindings

A nameset is a container of bindings between a namesgmbolic variable We use the term
symbolic variableo denote any binding between a name and an object. Theradoaisy ways to
express such bindings. The common one in Aleph is called d&alnAnother type of binding is
an argument. Despite the fact they are different, they shaet of common properties, like being

8 Getting Started

settable. Another point to note is the nature of the nameéseta matter of fact, Aleph has various
type of namesets. The top level nameset is callgdbhal setand is designed to handle a large
number of symbols. In a lambda or gamma expression, the rerisesalled aocal setand is
designed to be fast with a small number of symbols. The mdrdlis little story is to think always

in terms of namesets, no matter how it is implemented. All esets support the concept of parent
binding. When a nameset is created (typically during thecetien of a lambda expression), this
nameset is linked with its parent one. This means that a sytabkup is done by traversing all
nameset from the bottom to the top and stopping when one iglfdn term of Aleph notation, the
current nameses referenced with the special symbolTheparent namesds referenced with the
special symbol.. Thetop level namesas referenced with the symbal.

1.3.1 Symbol

A symbol is an object which defines a binding between a nameaanabject. When a symbol
is evaluated, the evaluation process consists in retuthi@@ssociated object. There are various
ways to create or set a symbol, and the different reserveddels account for the various nature of
binding which has to be done depending on the current narstedet One of the symbol property is
to beconstor not. When a symbol is marked as a constant, it cannot befimddNote here that it

is the symbol which is constant, not the object. A symbol caoreated with the reserved keywords
constor trans.

1.3.2 Creating a nameset

A nameset is an object which can be constructed directly mgube object construction notation.
Once the object is created, it can be binded to a symbol. Beaeameset callegikanpl e in the
top level nameset.

create a new naneset called exanple
const exanpl e (nameset .)

bind a synmbol in this nanmeset
const exanple:hello "hello"
println exanple:hello

1.3.3 Qualified name

In the previous example, a symbol is referenced in a givenesetrby using gualified namdike
exanpl e: hel | 0. A qualified name define a path to access a symbol. The use bfiegiaame

is a powerful notation to reference an object in referencantmther object. For example, the qual-
ified name. : hel | o refers to the symbohel | o in the current nameset. The qualified name
... hel | oreferstothe symbdiel | o in the top level nameset. There are other use for qualified
names, like method call with an instance.

1.3.4 Symbol binding

Thet r ans reserved keyword has been shown in all previous examipteans creates or set a
symbol in the current nameset. For example, the forrans a 1 is evaluated as follow. First, a
symbol nameda is searched in the current nameset. At this stage, two &itgatan occur. If the
symbol is found, it is set with the corresponding value. & fymbol is not found, it is created in the
current nameset and set. The use of qualified name is alsdtfeetifand encouraged) witinans.
The exact nature of the symbol binding with a qualified nanmedds on the partial evaluation of

Control flow 9

the qualified name. For exampte, ans exanpl e: hel | o 1 will set or create a symbol binding

in reference to thexanpl e object. If examplerefers to a nameset, the symbol is binded in this
nameset. lexanpl e is a classhel | o is binded as a static symbol for that class. In theory, there
is no restriction to us&rans on any object. If the object does not have a symbol bindinglogipy,

an exception is raised. For examplenifs an integer object, the fortr ans n: i 1 will fail.

With 3 or 4 argumentg,r ans defines automatically a lambda expression. This notatiarsisitac-

tic sugar. The lambda expression is constructed from thenaegt list and bounded to the specified
symbol. The rule used to set or define the symbol are the sadesasbed above.

create automatically a | anbda expression
trans min (xy) (if (<xvy) xYy)

1.3.5 Constant binding

Theconst reserved keyword is similar tor ans, except that it creates@nstantsymbol. Once
the symbol is created, it cannot be changed. Tast property is hold by the symbol itself.
When trying to set @onst symbol, an exception is raiseconstworks also with qualified names.
The rules described previously are the same. When a parsihlaion is done, the partial object is
called to perform a constant binding. If such capabilityginet exist, an exception is raised.

With 3 or 4 arguments;onst defines automatically embdalambda expression. Likgans the
rule are the same except that the symbol is marked constant.

create automatically a const | anbda expression
const max (x y) (if (> xy) xvy)

1.3.6 Arguments

An expression argument is similar to a symbol, except thiatutsed only with function argument.
The concept of binding between a name and an object is stilsdme, but with an argument, the
object is not stored as part of the argument, but rather ahantocation (in fact, it is the execution
stack). An argument can also benstant On the other hand, a single argument can have multiple
bindings. Such situation is found during the same functahic two different threads. An argument
list is part of the lambda or gamma expression declaratiotnelargument is defined as a constant
argument a sub form notation is used to defined this matteex@mple, therax gamma expression

is given below.

create a const gamma expression with const argunent
const max (gamma ((const x) (const y)) (if (> xy) xvy))

A special symbols nameatgsis defined during a lambda or gamma expression evaluatidmtiagt
remaining arguments passed at the time the call is made.yhhieat can be eithemi | or bound to
a list of objects.

const proc-args (a b)
trans result (+ a b)
for (i) (args) (result:+=1i)
eval result

assert 3 (proc-args 1 2)
assert 7 (proc-args 1 2 4)

10 Getting Started

1.4 Control flow

Aleph provides various reserved keywords which can be seestamdardmperative statements
Such statements are useful to writadableprogram but are not necessary the best in terms of
efficiency. In most cases, a statement returns the lastaealwbject. Most of the statements are
control flowstatements.

1.4.1 If statement

Theif reserved keyword takes two or three arguments. The firshaggtiis the boolean condition

to check. If the condition evaluatesto ue the second argument is evaluated. The form return the
result of such evaluation. If the condition evaluateE &b se, the third argument is evaluated or nil

is returned if it does not exist. An interesting example viltitombines théf reserved keyword and

a deep recursion is the computation of Fileonaccisequence.

const fibo (gamma (n) (
if (<n2) n(+ (fibo (- n1)) (fibo (- n 2))))

1.4.2 While statement

Thewhile reserved keyword takes 2 arguments. The firstis the loopittondThe second argument
is the loop body. The first argument must evaluate to a bool&ae body is executed as long as
the boolean condition is true. An interesting example eelab integer arithmetic with ahi | e
loop is the computation of thgreatest common divisor or gclVe illustrate here its computation as
describe by Knuth in the volume 2 of ti#et of Computer Programming

const gcd (u v) {
while (!'=v 0) {
trans r (u:nod v)

u:= v
vi=r
eval u

}

Note in this previous example the use of the symhor'he qualified namea: = is in fact amethod
call. Here, the integen is assigned with a value. In this case, the symbol is not abdnl is the
object which is muted.

1.4.3 Do statement

Thedo reserved keyword is similar to thehile reserved keyword, except that the loop condition is
evaluated after the body execution. The syntax call is appts thewhile. The first argument is
the loop body and the second argument is the exit loop camditi

count the nunber of digits in a string
const number-of-digits (s) {
const len (s:length)
trans index O
trans count O
do {
trans ¢ (s:get index)
if (c:digit-p) (count:++)

Control flow 11

} (< (index:++) len)
eval count

1.4.4 Loop statement

Theloop reserved keyword is another form of loop. It take four argoteeThe first is the initialize
form. The second is the exit condition. The third is the stepnfand the fourth is the form to
execute at each loop step. Unlike thki | e anddo loop, thel oop statement creates its own
nameset, since the initialize condition generally creatsg symbol for the loop only.

a sinple loop fromO to 10
loop (trans i 0) (< i 10) (i:++) (println i)

1.4.5 Switch statement

The switch reserved keyword is a condition selector. The first argunsetiie switch selector. The
second argument is a list of various value which can be mdtblyethe switch value. A special
symbol callecelsecan be used to match any value.

return the primary color in a rgb
const get-primary-color (color value) (
switch col or (
("red" (return (val ue:substr 0 2))
("green" (return (value:substr 2 4))
("blue" (return (value:substr 4 6))

)
)

1.4.6 Return statement

Thereturn reserved keyword indicates an exceptional condition infline of execution within a
lambda or gamma expression. When a return is executed, sbeiated argument is returned and
the execution terminates. déturn is used at the top level, the result is simply discarded.

initialize a vector with a val ue
const vector-init (length value) {
treat nil vector first
if (<= 1length 0) return (Vector)
trans result (Vector)
do (result:add value) (> (length:--) 0)

}

1.4.7 Eval and protect

Theevalreserved keyword forces the evaluation of the object argiinesal is typically used in a
function body to return a particular symbol valweal can also be used to force the evaluation of a
protectedobject. In many casesyal is more efficient thameturn. Theprotect reserved keyword
constructs an aleph object without evaluating it. Typicalhen used with a fornprotect return the

12 Getting Started

form itself. protect can also be used to prevent a symbol evaluation. When usbawitmbol, the
symbol object itself is returned.

const add (protect (+ 1 2)) O cons cell
(eval add) o 3

1.4.8 Assert statement

Theassertreserved keyword check for equality between the two argusreerd abort the execution
in case of failure. By default, the assertion checking is taif, and can be activated with the
command option f assert . Needless to say thassertis used for debugging purpose.

assert true (> 20
assert O (- 22
assert "true" (String true)

1.4.9 Block statement

The block reserved keyword executes a form in a new local set. The ketak destroyed at the
completion of the execution. Thaock reserved keyword returns the value of the last evaluated
form. Since a new local set is created, any nhew symbol creatdds nameset is destroyed at the
completion of the execution. In other word, thiock reserved keyword allows the creation of a
local scope.

trans a 1

bl ock {
assert
trans
assert
assert

+11)

SRR G)
BN R

}

assert 1 a

1.5 Builtin objects

Aleph provides several builtin objects and builtin operatior arithmetic and logical operations.
Thel nt eger andReal classes are primarily used to manipulate numbers.Bwd ean class is
used to for boolean operation. Other builtin objects inelGdar act er andSt ri ng. The exact
usage of these classes is described in the next chapter.

1.5.1 Arithmetic operations

Aleph provides various ways to perform arithmetic opersioChapter 2 gives a thorough discus-
sion on the subject. Thglobal arithmetic is mostly done with the for add,- for substract* for
mult and/ for divide. Each of these operators works with both integet i@al number.

(+ 1 2) o 3
(- 1) 0o -1
(* 35.00 O 15.0

Class and Instance 13

(/ 4.02) O 2.0

1.5.2 Logical operations

TheBool ean class is used to represent the boolean vaiue andfalse These last two symbols
are builtin in the interpreter asonst symbols. Aleph provides also some reserved keywords like
not , and andor . Their usage is self understandable.

not true O false
and true (== 1 0) O fal se
or (<-10) (>10) O true

1.5.3 Predicates

A predicateis a function which returns a boolean object. Aleph provieseral predicates to check
for some builtin objects. By convention, a predicate teatés with the sequence. The nil-p
predicate is a special predicate which returns true if theatlis nil. Aleph provides a predicate for
each builtin objects.

Table 2 Aleph builtin predicates

| Predicate | Description
nil-p return true with nil object
real-p return true with real object
regex-p return true with regex object
string-p return true with string object
number-p return true with number object
boolean-p return true with boolean object
integer-p return true with integer object
character-p return true with character object

For example, one can write a function which returns true éf dihgument is a number, that is, an
integer or a real number.

return true if the argunent is a nunber
const numnber-p (n) (
or (integer-p n) (float-p n))

Predicates fofunctionalandsymbolicprogramming are also builtin into the Aleph engine.
Finally, for each object, a predicate is also associatedek@amplecons- p is the predicate for the
Cons object.

1.6 Class and Instance

Aleph provides support for the object oriented programngiagadigm. Aclassin the aleph termi-
nology is a nameset which can be binded automatically wheinstanceof that class is created.
Compared to other language, there is no need to declare thengdanber for a particular class. Data
members are created during the instance construction. ¢ elbows an instance to call function
with the instance nameset visible for that function.

1.6.1 Class and members

14 Getting Started

Table 3 Aleph special predicates

| Predicate | Description
class-p return true with class object
thread-p return true with thread object
promise-p return true with promise object
lexical-p return true with lexical object
literal-p return true with literal object
closure-p return true with closure object
nameset-p return true with nameset object
instance-p return true with instance object
qualified-p return true with qualified object

Table 4 Builtin object special predicates

| Predicate | Description
cons-p return true for a cons object
list-p return true for a list object
node-p return true for a node object
edge-p return true for an edge object
graph-p return true for a graph object
gueue-p return true for a queue object
bitset-p return true for a bitset object
vector-p return true for a vector object

A class is declared with the reserved keywolass The class acts like a nameset. Functions can be
bounded to this class.

const Col or (class)
const Col or: BLACK "#000000"
const Col or: WH TE " #FFFFFF"

Any object can be bounded as a data member, including lambgknema expressions.

const Col or (class)
const Color:get-primary-fromstring (color value) {
trans val "O0x"
val : += (switch col or (
("red" (val ue: substr 1 3))
("green" (value:substr 3 5))
("blue" (value:substr 5 7))
)
)

I nt eger val

}

1.6.2 Instance

An instance of a class is created like any builtin object.i@thod called ni ti al i ze is defined
for that class, the method is used as a constructor of thigrios.

const Col or (class)
trans Color:initialize (red green blue) {

Miscellaneous features 15

const this:red (I'nteger red)
const this:green (Integer green)
const this:blue (Integer blue)

}

const red (Col or 255 0 0)
const green (Col or 0 255 0)
const blue (Color 0 0 255)

1.6.3 Instance method

When a lambda expression is bound to the class or the instdratdambda can be invoked as an
instance method. When an instance method is invoked, thanices nameset is set as the parent
nameset for that lambda. This is the main reason why a gamprassion cannot be used as an
instance method. The instance nameset defines the instatecendmbers and the special symbol
t hi s.

const int-max (x y)
if (>xvy) (Integer x) (Integer y))

const Col or: RED- FACTOR 0.75

const Col or: GREEN- FACTOR 0. 75

const Col or: BLUE- FACTOR 0. 75

trans Col or: get-darker nil {
trans red (int-max (this:red:* Col or : RED- FACTOR) 0)
trans green (int-max (this:green:* Col or: GREEN- FACTOR) 0)
trans red (int-max (this:blue:* Col or: BLUE- FACTOR) 0)
Col or red green blue

}

get a darker color than red

const dark-red (red: get-darker)

1.7 Miscellaneous features

Aleph provides several facilities for control flow and extiepal operations. Most of these features
are available via the use of reserved keywords.

1.7.1 Iteration

An iteration facility is provided for some objects known iéarable objects. Cons, Li st and
Vect or are typical iterable objects. There are two ways to iterath these objects. The first
method uses thfor reserved keyword. The second method uses an explicitorendtich can be
constructed by the object.

conpute the scal ar product of two vectors
const scal ar-product (u v) {

trans result O

for (xy) (uv) (result:+=(* x vy))

eval result

16 Getting Started

Thefor reserved keyword iterate on both objecindv. For each iteration, the symbwlandy are
set with their respective object value. In the example aptheresult is obtained by summing all
intermediate products.

test the scal ar product function
const vl (Vector 1 2 3)

const v2 (Vector 2 4 6)

(scal ar-product v1 v2) 0O 28

The iteration can be done explicitly by creating an iterddoreach vectors and advancing steps by
steps.

scalar product with explicit iterators
const scal ar-product (u v) {
trans result O
trans u-it (u:get-iterator)
trans v-it (v:get-iterator)
while (u:valid-p) {
trans x (u:get-object)
trans y (v:get-object)
result:+= (* x vy)
u: next
V: next

}

eval result

}

In the example above, two iterators are constructed forbedttorsu andv. The iteration is donein
awhi | e loop by invoking theval i d- p predicate. Thget - obj ect method returns the object
value at the current iterator position.

1.7.2 Exception

An exceptionis an unexpected change in the execution flow. The Aleph miodedxception is
based on a mechanism which throws the exception to be caygtténdler. The mechanism is also
designed to be compatible with the native "C++" implemeatat

An exception is thrown with the reserved keywahdow . When an exception is thrown, the normal
flow of execution is interrupted and an object used to careyekception information is created.
Such exception object is propagated backward in the calk statil an exception handler catch it.
The reserved keyworily executes a form and catch an exception if one has been thifitmone
argument, the form is executed and the result is the resthiediorm execution unless an exception
is caught. If an exception is caught, the result is the exeemtbject. If the exception is a native
one, the result is nil.

try (+ 1 2) 0o 3
try (throw O nil
try (throw "hello") O nil
try (throw "hello" "world") O nil
try (throw "hell o" "world" "fol ks") O "folks"

The exception mechanism is also designed to install an éecepandler and eventually retrieve
some information from the exception object. The reservedb®t what can be used to retrieve
some exception information.

protected factorial

Threads 17

const fact (n) {
if (not (integer-p n)) (throw "nunber-error" "invalid argunent")
if (== n0) 1 (* n (fact (- n 1)))

}

exception handl er

const handl er ni
errorln what:eid ',’ what:reason

(try (fact 5) handl er) O 120
(try (fact "hello") handler) O nunber-error, invalid argunment

1.7.3 Delayed evaluation

The Aleph interpreter provides a special mechanism to delay an eatual he reserved keyword
delay creates a special object callegpepmisewhich records the form to be later evaluated. The
reserved keyworébrce causes g@romiseto be evaluated. Subsequent call witince will produce
the same result.

trans y 3

const I ((lambda (x) (+ x y)) 1)
assert 4 (force |)

trans y O

assert 4 (force |)

1.7.4 Regular Expressions

The Aleph interpreter provides a builtin mechanism for regular espi@n. Aregexis an object
which is used to match certain text patterns. Regular esfmes are built implicitly by théleph
reader wit the use of the and] characters.

if (== (const re [($d%d): ($d$d)]) "12:31") {
trans hr (re:get 0)
trans m (re:get 1)

}

In the previous exampleggexis bind to the symbal e. Theregexcontains two groups as defined by
the(and) characters. The call to the operator returnst r ue if the regexmatches the argument
string. Theget method can be used to retrieve the group by index.

1.8 Threads

The Aleph interpreter provides a powerful mechanism whibbwes the concurrent execution of
forms and the synchronization of shared objects. Thereveoetytpes of threads, namehormal
threadanddaemon thread They differ only by the interpreter exit condition. Thednpreter will
wait until all normal threads are completed. On the otherdhdne interpreter will not wait for
daemon threads. They are automatically stopped when athadahreads are finished. Normal
threads are created with the reserved keywatohch, and daemon threads are created with the
reserved keywordaemon When threads are used, the interpreter manages autolyatiesshared
objects and protect them against concurrent access. CGhagéscribes in details the shared object
behavior.

18 Getting Started

shared vari abl e access
const var O

const decr nil (while true (var:= (- var 1)))
const incr nil (while true (var:= (+ var 1)))

const prtv nil (while true (println "value =" var))

start 3 threads
I aunch (prtv)
I aunch (decr)
I aunch (incr)

1.8.1 Form synchronization

Although, Aleph provides an automatic synchronization haedsm for reading or writing an object,
it is sometimes necessary to control the execution flow. e basically two techniques to do so.
First, protect a form from being executed by several thre&dsond, wait for one or several threads
to complete their task before going to the next executiop. stéhe reserved keyworslync can be
used to synchronize a form. When a form, is synchronizedAtaph engine guarantees that only
one thread will execute this form.

const print-nessage (code nesg) (
sync {
errorln "error
errorln "message:

code
" mesg

}
)

The previous example create a gamma expression which mekéhstiboth the error code and error
message are printed in one group, when several threads call i

1.8.2 Thread completion

The other piece of synchronization is the thread complétidicator. The thread descriptor contains
a method calleavai t which suspend the calling thread until the thread attachebe descriptor
has been completed. If the thread is already completed, ¢tlead returns immediately.

sinple flag
const flag fal se

sinple shared tester
const ftest (val) (flag) (assert val (flag:shared-p))

no thread nmean not shared
ftest false

#1in athread it is shared
const thr (launch (ftest true))
thr:wait

assert true (flag: shared-p)

This example is taken from the test suites. It checks thabsed variable becomes shared when
started in a thread. Note the use of thed t method to make sure the thread has completed before

Threads 19

checking for the shared flag. Itis also worth to note tmitt is one of the method which guarantees
that a thread result is valid.

Another use of thevai t method can be made with a vector of thread descriptors whemants

to wait until all of them have completed.

shared vector of threads descriptors
const thr-group (Vector)

wait until all threads in the group are finished
const wait-all nil (for (thr) (thr-group) (thr:wait))

1.8.3 Condition variable

A condition variableis another mechanism to synchronize several threads. Aittmmgariable is
modeled with theCondvar object. At construction, the condition variable is initzgd tof al se.

A thread calling thenvai t method will block until the condition becomes ue. Themar k method
can be used by a thread to change the state of a conditiofheaiad eventually awake some threads
which are blocked on it. The use of condition variable isipatarly recommended when one need
to make sure a particular thread has been doing a parti@adkr A detailed description is given in
thethreadchapter.

20

Getting Started

CHAPTER 2
Numbers and Strings

This chapters covers in detail the builtin objects used taimdate numbers and strings. First the
integer, relatif and real numbers are describ@deph offers a broad range of methods for these
three objects to support numerical computation. As a sesteq string and character objects are
described. Many examples show the various operations vdaintbe used as automatic conversion
between one type and another. Finally, the boolean objeetssribed. These objects belongs to the
class ofliteral objects. The objects described in this chapter are chitedl since they always have

a string representation.

2.1 Integer

The fundamental number representation is ltiteger. Thealeph integer is a 64 bits signed 2's
complement number. Even when running with a 32 bits machiire64 bits representation is used.
If a larger representation is needed, Beatif object might be more appropriate.

2.1.1 Integer format

The default literal format for an integer is the decimal tiota The minus sign (without blank)
indicates a negative number. Hexadecimal and binary weotatian also be used with prefix and
Ob. The underscore charactecan be used to make the notation more readable.

const a 123 O 123
trans b -255 O -255
const h Oxff O 255
const b 0Ob1111 1111 0O 255

Integer number are constructed from the literal notatiofyousing an explicit integer instance.
The Integer class offers standard constructors. The defanstructor creates an integer object and
initialize it to 0. The other constructors take either amg®r, a real number, a character or a string.

const a (Integer) oo
const b (Integer 2000) O 2000
const ¢ (Integer "23") O 23

When the hexadecimal or binary notation is used, care sHmutdken to avoid a negative integer.
For exampleQx_8000_0000_0000_0000 is the smallest negative number. This number will
never be positive.

22 Numbers and Strings

2.1.2 Integer arithmetic

Standard arithmetic operators are available as builtimaipes. The usual addition '+, multiplica-
tion "*" and division '/’ operate with two arguments. The sitbaction ’-’ operates with one or two
arguments.

(+34 0O 7
(- 34 0O -1
(- 3) 0o -3
(* 34) 0 12
(/ 42y 0 2

As a builtin object, theé nt eger object offers various methods for builtin arithmetic whiinectly
operates on the object. The following example illustratesé methods.

trans i 00O O
(i:+4) o1
(i:--) oo
(i:+ 4) O 4
(i:=4) O 4
(i:- 1) O 3
(i:* 2) O 8
(i:1 2) o 2
(i:+=1) O 5
(i:-=1) O 4
(i:*=2) O 8
(i:/1=2) O 4

As a side effect, these methods allows a const symbol to béfiechdSince the methods operates
on an object, they do not modify the state of the symbol. Suethods are callethutablemethods.

const i 0O O
(i:=1) 01

2.1.3 Integer comparison

The comparison operators works the same. The only differerthat they always return a Boolean
result. The comparison operators are hamely equal '=="eqofl '!=", less than <’, less equal
'<=', greater >’ and greater equat*='". These operators take two arguments.

== 0 1) O false
('=01) O true
(> 4 3) O true
(>=4 3) O true
(< 43) 0O false
(<=4 3) O false

Like the arithmetic methods, the comparison operators appated as object methods. These
methods return a boolean object.

(i:= 1) 01

(i:==1) O true
(i:'=0) O true
(i:> 0) O true

Relatif Number 23

(i:>=0) O true
(i:< 2) O true
(i:<=2) O true

2.1.4 Integer calculus

Armed with all these functions, it is possible to develop #dyg of functions operating with num-
bers. As another example, we revisit flibonaccisequence as demonstrated in the previous chap-
ter. Such example was terribly slow, because of the doublgsen. Another method suggested by
Springer and Friedman uses two functions to perform the $aime

const fib-it (gamma (n accl acc2) (
if (== n 1) acc2 (fib-it (- n 1) acc2 (+ accl acc2))))

const fiboi (gamma (n) (
if (==no0) 0 (fib-it n 0 1)))

This later example is by far much faster, since it uses only @tursion. Although, it is no the
fastest way to write it, but nobody is going to question thregaht aspect of recursion.

2.1.5 Other Integer methods

Thel nt eger class offers other convenient methods. ©lel- p andeven- p are predicates. The
nod take one argument and returns the modulo between the cailieger and the argument. The
t 0- st ri ng method returns a string representation of the integer. atige methods returns the
absolute value of the calling integer.

(i:=2) o 2
(i:even-p) O true
(i:=13) O 3
(i:o0dd-p) 0 true
(i:nod 2) 01
(i:=-1) O -1
(i:abs) o1
(i:to-string) O "-1"

2.2 Relatif Number

A relatif or big-numis an integer with infinite precision. Thieel ati f class is similar to the
Integer class except that it works with infinitely long number. Thiatié notation uses a or Rto
express a relatif number versus an integer one.

const a 123R 0 123R
trans b -255R 0 255R
const ¢ OxffR 0 255R
const d O0b1111 1111R O 255R
const e (Relatif) 0 OR
const f (Relatif 2000) O 2000R
const g (Relatif "23") O 23R

24 Numbers and Strings

2.2.1 Relatif operations

Most of the integer operations are supported byReéatif object. The only difference is that there
is no limitation on the number size. This naturally comeswitcomputational price. An amazing
example is to compute the biggest knpwme Mersenne numbefThe world record exponent is
6972593 The number is therefore.

const i 1R
const m (- (i:shl 6972593) 1)

This number hag209896digits. You can use ther i nt | n method if you wish, but you have been
warned...

2.3 Real Number

TheRealtype is another fundamental number representation foiifigp@abint number. The internal
representation is machine dependent, and generally felloerdouble representation with 64 bits as
specified by the IEEE 754-1985 standard for binary floatingterithmetic. All integer operations
are supported for real numbers.

2.3.1 Real format

The Aleph reader supports two types of literal represemtdtir real number. The first representation
is thedotted decimahotation. The second notation is theentific notation

const a 123.0 # a positive rea
const b -255.5 # a negative rea
const ¢ 2.0e3 # year 2000.0

Real number are constructed from the literal notation ordiggian explicit real instance. Tieal
class offers standard constructors. The default constraotates a real number object and initialize
it to 0.0. The other constructors takes either an integexabrrumber, a character or a string.

2.3.2 Real arithmetic

The real arithmetic is similar to the integer one. When arget is added to a real number, that
number is automatically converted to a real and vice verstimbkely, a pure integer operation
might generate a real result. The example below is extrdodatone of the Aleph test suite.

(+1999.0 1) O 2000.0
(+ 1999.0 1.0) O 2000.0
(- 2000.0 1) O 1999.0
(- 2000.0 1.0) O 1999.0
(* 1000 2.0) O 2000.0
(* 1000.0 2.0) O 2000.0
(/ 2000.0 2) O 1000.0
(/ 2000.0 2.0) O 1000.0

Like thel nt eger object, theReal object has arithmetic builtin methods.

trans r 0.0 O 0.0
(r:++) O 0
O 0

1.
(r:--) 0.

Real Number 25

(r:+ 4.0) 0 4.0
(r:=4.0) 0 4.0
(r:- 1.0) O 3.0
(r:* 2.0) O 8.0
(r:/ 2.0) 0 2.0
(r:+=1.0) 0 5.0
(r:-=1.0) 0 4.0
(r:*=2.0) O 8.0
(r:/=2.0) 0 4.0

2.3.3 Real comparison

The comparison operators works as the integer one. As fathiee operators, an implicit conversion
between an integer to a real is done automatically.

== 2000 2000) O true
(!'= 2000 1999) O true
(< 1999.0 2000.0) O true
(<= 1999 2000) O true
(<= 2000.0 2000) O true
(> 2000 1999.0) O true
(>= 2000.0 2000.0) O true

Comparison methods are also available forReal object. These methods take either an integer
or areal as argument.

(r:= 1.0) O 1.0
(r:==1.0) O true
(r:!'=10.0) O true
(r:> 0.0) O true
(r:>=0.0) O true
(r:< 2.0) O true
(r:<=2.0) O true

2.3.4 A complex example

One of the most interesting point with functional programgilanguage is the ability to create
complex computation function. For example, let's assumewsé to compute the value at a point
x of theLegendre polynom of order. tDne of the solution is to encode the function given its arder
Another solution is to compute the function and then comtheéevalue. Here is the implementation
taken from the aleph test suite. Note that the recursiveitiefirof a Legendre polynoris:

PQ(,CE) =1

Pi(x) ==

nP,(x) = (2n — 1)aP,—1(x) — (n — 1) P,_o(x)

| egendre polynomorder 0 and 1
const | p-0 (gama (x) 1)
const |Ip-1 (gamma (x) X)

| egendre pol ynom of order n
const I p-n (gama (n) (
if (>n 1) {

26 Numbers and Strings

const Ip-n-1 (Ip-n (- n 1))
const Ip-n-2 (Ip-n (- n 2))
ganma (x) (n Ip-n-1 1p-n-2)

¢ ¢ G20l x
(I'p-n-1 x))
(* (- n1) (Ip-n-2x))) n)
} (if (== n1) Ip-11p-0)
))

generate order 2 pol ynom
const Ip-2 (Ip-n 2)

print 1p-2 (2)
println "lp2 (2) =" (Ip-2 2)

Note that the computation can be done either with integezalrrumbers. With integers, you might
get some strange results anyway, but it will work. Note alee the closed variable mechanism is
used. The recursion capture each level of the polynom uriil¢onstructed. As an exercise, try
to use a lambda expression instead of a gamma one, and cothpagrecution result with large
number ofn. Note also that we have here a double recursion. try to rewir# example by using
the same technique demonstrated with the Fibonacci seq@aetccompare the execution time.

2.3.5 Other real methods

The real numbers are delivered with a battery of functiorisest include the trigonometric func-
tions, the logarithm and couple others. Hyperbolic funtsidike si nh, cosh, t anh, asi nh,
acosh andat anh are also supported. Thlar t method return the square root of the calling real.
Thef | oor andcei | i ng returns respectively the floor and the ceiling of the calliegl.

const r0 0.0 g 0.0
const r1 1.0 o 1.0
const r2 2.0 0o 2.0
const rn -2.0 o -2.0
const rq (r2:sqrt) O 1.414213
const pi 3.1415926 O 3. 141592
(rq:floor) 0 1.0
(rqg:ceiling) g 2.0
(rn: abs) O 2.0
(rl:1o09) 0 0.0
(r0: exp) 0 1.0
(r0:sin) 0 0.0
(r0:cos) 0 1.0
(r0:tan) 0 0.0
(r0:asin) 0 0.0
(pi:floor) 0 3.0
(pi:ceiling) 0 4.0

2.3.6 Accuracy and formating

Real numbers are not necessarily accurate, nor preciseacueacy and precision are highly de-
pendent on the hardware as well as the nature of the opetating performed. In any case, never

Character 27

assume that a real value is an exact one. Most of the time,l&oegarison will fail, even if
the numbers are very close together. When comparing reabersit is preferable to use tie
operator. Such operator result is bounded by the interredigion representation and will gen-
erally return the desired value. The real precision is aarpreter value which is set with the
set - real - preci si on method while theget - r eal - pr eci si on returns the interpreter pre-
cision. By default, the precision is set to 0.00001.

i nterp:set-real -precision 0.0001
const r 2.0

const s (r:sqrt) O 1.4142135
(s:?=1.4142) O true

Real number formating is another story. Ther mat method takes @recision argumentvhich
indicates the number of digits to print for the decimal patbte that the format command might
round the result as indicated in the example below.

const pi 3.1415926535
pi:format 3 O 3.142

If additional formating is needed, tf&tring fi | | -1 eft andfi | | - ri ght methods can be used
as illustrated in th&tring section.

const pi 3.1415926535 0O 3.1415926535
const val (pi:format 4) O 3.1416
(val:fill-left "0 9) O 0003. 1416

2.4 Character

The Character object is another builtin object of the aleph engine. A chemais internally repre-
sented by a byte and has a literal representation.

2.4.1 Character format

The standard quote notation is used to represent a charbctbat respectAleph differs substan-
tially from other functional language where the quote pcbteform (hence the nanpe ot ect in
Aleph).

const LAO1 'a' # the character a
const ND10 'O’ # the digit O

All characters from théso-8859-1standard are supported in a string. For a lexical name, the ch
acter set is restricted to a smaller set.

abcdefghji k|l mnopqgrstuvwxyz
ABCDEFGHJI KLMNOPQRSTUVWXYZ
0123456789 . +-* /[=><1 7?2

Characters are constructed from the literal notation ordiggian explicit character instance. The
Char act er class offers standard constructors. The default constreceates a null character.
The other constructors take either an integer, a charactesting. The string can be either a single
character or the literal notation.

const nilc (Character) O null character

28 Numbers and Strings

const a (Character 'a') 0O 'a
const O (Character 48) O 0
const mul (Character "*") g "*
const div (Character "’ /’") O '/’

2.4.2 Character arithmetic

A character is like an integer, except that it operates irraéinge 0 to 255. The character arithmetic
is simpler compared to the integer one and no overflow or dlodechecking is done. Note that the
arithmetic operations take an integer as an argument.

(+a 1) 0 b
(- "9 1) 0°'sg

Character object methods are also provided for arithmetérations. Like the standatdt’ and
' -’ operators, these methods take an integer as an argument.

trans ¢ 'a 0O 'a
(c:++) o 'b
trans ¢ '9 0O '9
(c:--) o 'sg
(c:+ 1) oo
(c:- 9 o’'o

2.4.3 Character comparison

Comparison operators are also working with Bear act er object. The standard operators are
namely equal '==", not equal ''=’, less thar<’, less equal <=’, greater >>' and greater equal
'>=". These operators take two arguments.

=='a ’'b’) O false
('="0 1) O true
(> 'b "a’) O true
(>="A 'a) 0O true
(< "4 *3) O false
(<=9 '0’) O false

The comparison operators are supported as object methbdse ethods return a boolean object
and take a character as an argument.

(c:= "A) O A
(c:=="A") 0O true
(c:t="a) 0O true
(c:> 'a') 0O true
(c:>="a) O true
(c:< 7Z) O true
(c:<="2Z") 0O true

2.4.4 Other character methods

TheChar act er object comes with additional methods. These are mostlyarsion methods and
predicates. Théo- stri ng method returns a string representation of the calling ctaraThe

String 29

t o-i nt eger method returns an integer representation the calling ckeraThe predicates are
al pha- p,di git-p,bl ank-p,eol -p,eof -pandni | -p.

const LAO1 ' &’ g ra
const ND10 ' O’ g o
(LAO1:to-string) 0O "a"
(LAO1:to-integer) O 97
(LAO1: al pha-p) O true
(ND10: digi t-p) O true

2.5 String

The String object is one of the most important builtin object in the alemgine. A string can be
seen as a vector of characters. However, the internal remtea®on of string is slightly different.
2.5.1 String format

The standard double quote notation is used to represenmilijta string. Standard escape sequences
are also accepted to construct a string.

const hello "hello" O true

Any literal object can be used to construct a string. Thismsehat integer, real, boolean or character
objects are all valid to construct strings. The default tmmsor creates a null string. The string
constructor can also takes a string.

const nils (String) o "
const one (String 1) g "1"
const a (String 'a’) 0O "a"
const b (String true) O "true"

2.5.2 String operations

With strings, numerous methods can be provided. We illtestrare the most common one. Volume
2 of this manual series contains a complete descriptioneobth i ng object. The global operators
+,==and! = are supported for strings.

const h "hello"

(h: I ength) o5

(h:get 0) o 'h
(h:=="world") 0O false
(h:!'="world") 0O true

(h:+= " world* 0O "hello world"

The sub-1 eft andsub-ri ght methods return a sub-string, given the position index. For
sub- | ef t, the index is the terminating index, whigaib- ri ght is the starting index, counting
from O.

const nmsg "hello world"
(msg: sub-left 5) O "hello"
(msg: sub-right 6) O "world"

30 Numbers and Strings

Thestrip,strip-left andstrip-right are methods used to strip blanks and tatis.i p
combines botfst ri p-1 eft andstri p-right.

const h a |l ot of blanks
(h:strip) O "a lot of blanks"

Thespl i t method returns a vector of strings by splitting the stringoading to a break sequence.
By default, the break sequence is the blank, tab and newtiamacters. The break sequence can be
one or more characters passed as one single argument to tftvedme

const str "hello:world"
const vec str:split ":"
println (vec:length) O 2

Thefill-left andfill-right methods can be used to fill a string with a character up to a
certain length. If the string is longer than the length, imadthappens.

const pi 3.1415926535 0O 3.1415926535
const val (pi:format 4) O 3.1416
(val :fill-left "0 9) O 0003. 1416

2.5.3 String hash value

Computing the hash value of a string is an interesting probl&he algorithm used by the aleph
engine is shown as an example below. Note thaththehi d method is builtin in theSt ri ng
object. The program shows both internal and computed values

conpute string hashid
const hashid (s) {
const len (s:length)
trans cnt O
trans val O
trans sht 17
do {
compute the hash val ue
trans i (Integer (s:get cnt))
val : = (val : xor (i:shl sht))
adj ust shift index
if (< (sht:-=7) 0) (sht:+= 24)
} (< (cnt:++) len)
eval val

}

When rungxample 0203.a)she following result is obtained.

test our favorite string
const hello "hello world"
(hell o: hashid) O 1054055120
(hashid hello) O 1054055120

As a side note, it is recommended to print the shift amounhégrogram. One may notice, that
the value remains bounded by 24. Since we are xoring the falaky it does illustrate that the
algorithm is design for a 32 bits machine. It will work as weith a 64 bits machine (and give
the same result), but the full integer range is not used. Aexanmcise, try to rewrite it for a 64

bits machine and compare the result. Try also to compute tidutn with a prime number of your

choice.

CHAPTER 3
Container Objects

This chapter covers the builtin container objects and mpeeifically, théterable objects such like
Cons, Li st andVect or. We start this chapter with théons class and move to thiei st and
Vector objects. Special objects likRueueandBitset are mentioned at the end.

3.1 Cons builtin object

Originally, a Cons object orcons cellhave been the fundamental object of the Lisp or Scheme
machine. The cons cell is the building block for list and igofat importance ik\leph as well. A
Cons object or simply acons cellis a simple element used to build linked list. The cons cdlilfo

an object and a pointer to the next cons cell. The cons cedloblig calledcar and the next cons
cell is called thecdr . This notation, found in Lisp in maintained here for the sak&radition.

3.1.1 Cons cell constructors

The default constructor creates a cons cell those car ialinéd to the nil object. The constructor
can also take one or several objects.

const nil-cons (Cons)
const |st-cons (Cons 1

a' "hello")

The constructor can take any kind of objects. When all objbave the same type, the result list
is said to behomogeneouslf all objects do not have the same type, the result list id &abe
heterogeneousCons list can also be constructed directly from the Ale@des. Since all internal
forms are built with cons cell, the construction can be adideby simplyprotectingthe form from
being interpreted.

const blist (protect ((1) ((2) ((3)))))

3.1.2 Cons cell methods

A Cons object provides several methods to accesscthe and thecdr of a cons cell. Other
methods allows access to a cons list by index.

const ¢ (Cons "hello" "world")
(c:1ength) o 2

32 Container Objects

(c:get-car) O "hello"
(c:get-cadr) O "world"
(c:get 0) O "hello"
(c:get 1) O "world"

Theset - car method set the car of the cons cell. Tdgpend method appends a new cons cell at
the end of the cons list and set the car with the specified bbjec

3.2 List builtin object

The Li st builtin object provides the facility of a double-link listThe Li st object is another
example ofterableobject. Theli st object provides support for forward and backward iteration
3.2.1 List construction

A list is constructed like a cons cell with zero or more argatse Unlike the cons cell, thei st
can have a null size.

const nil-list (List)
const dbl-list (List 1 'a "hello")

3.2.2 List methods

Li st methods are similar th€ons object. Theappend method appends an object at the end of
the list. Thei nsert method inserts an object at the beginning of the list.

const list (List "hello" "world")

(list:length) g 2
(list:get 0) O "hello"
(list:get 1) O "world"

(list:append "folks") O "hello" "world" "fol ks"

3.3 Vector builtin object

TheVect or builtin object provides the facility of an index array of ebjs. Thevect or objectis
another example dferableobject. TheVect or object provides support for forward and backward
iteration.

3.3.1 Vector construction

A vector is constructed like a cons cell or a list. The defaolistructor creates a vector with 0
objects.

const nil-vector (Vector)
const obj-vector (Vector 1

a’ "hello")

3.3.2 Vector methods

Iteration 33

Vect or methods are similar to thiei st object. Theappend method appends an object at the
end of the vector. Theet method set a vector position by index.

const vec (Vector "hello" "world")

(vec: | ength) o 2

(vec: get 0) O "hello"

(vec: get 1) O "world"

(vec: append "folks") 0O "hello" "world" "fol ks"
(vec:set 0 "bonjour") O "bonjour" "world" "fol ks"

3.4 lteration

When an object isterable, it can be used with the reserved keywdod. for iterates on one or
several objects and binds associated symbols during eaglokthe iteration process. All iterable
objects provides also the methgdt - i t er at or which returns an iterator for a given object. The
use of iterator is justify during backward iteration, sirice only perform forward iteration.

3.4.1 Function mapping

Given a functiorf unc, it is relatively easy to apply this function to all objecfsam iterable object.
The result is a list of successive calls with the functionctSfunction is called a mapping function
and is generally calledap.

const map (obj func) {
trans result (Cons)
for (car) (obj) (result:link (func car))
eval result

}

Thel i nk method differs from th@append method in the sense that the object to append is set to
the cons cell car if the car and cdr is nil.

3.4.2 Multiple iteration

Multiple iteration can be done with one callfior. The computation of a scalar product is a simple
but illustrative example.

conpute the scal ar product of two vectors
const scal ar-product (u v) {

trans result O

for (xy) (uv) (result:+=(* x vy))

eval result

}

Note that the functioscal ar - pr oduct does not make any assumption aboutthe object to iterate.
One could compute the scalar product between a vector atiskbmple.

const u (Vector 1 2 3)
const v (List 2 3 4)
(scal ar-product u v) O 28

34 Container Objects

3.4.3 Conversion of iterable objects

The use of an iterator is suitable for direct conversion keetwone object and another. The conver-
sion to a vector can be simply defined as indicted below.

#convert an iterabl e object to a vector
const to-vector (obj) {

trans result (Vector)

for (i) (obj) (result:append i)

eval result

3.4.4 Explicit iterator

An explicit iterator is constructed with thgeet - i t er at or method. At construction, the iterator is
reset to the beginning position. Tiget - obj ect method returns the object at the current iterator
position. Thenext advances the iterator to its next position. Mad i d- p method returnsr ue

if the iterator is in a valid position. When the iterator sopg backward operations, the ev
method move the iterator to the previous position. Note @ais objects do not support backward
iteration. Thebegi n method reset the iterator to the beginning. €nel method moves the iterator
the last position. This method is available only with backshiterator.

reverse a list
const reverse-list (obj) {
trans result (List)
trans itlist (obj:get-iterator)
itlist:end
while (itlist:valid-p) {
result:append (itlist:get-object))
itlist:prev
}

eval result

3.5 Special Object

Aleph provides several builtin container objects which have proto be useful. Such objects are
QueueandBitset.

3.5.1 Queue object

A queueis a special object which acts as container witlif@policy. When an object is placed in
the queue, it remains there until it has been dequeued.

create a queue with objects
const gq (Queue "hello" "world")
g:enpty-p O false

g:length 0O 2

dequeue sone obj ect
g: dequeue O hello

Special Object 35

g: dequeue O world
q:enpty-p O true

3.5.2 Bitset object

A bitset is a special container for bit. A bitset can be cardtrd with a specific size. When the
bitset is constructed, each bit can be marked and testedlby.in

create a bitset
const bs (BitSet)
bitset-p bs O true

check, mark and cl ear
assert false (bs:get 0)
bs: mark 0
assert true (bs:get 0)
bs:clear 0
assert false (bs:get 0)

36

Container Objects

CHAPTER 4
Class

This chapter covers thileph class model and its associated operations. Aleph class model is
slightly different compared to traditional one. Becausephl has dynamic symbol bindings, it is not
necessary to declare the class data members. A classtiepin object which can be manipulated
by itself. Such class is said to belongs to a groupneta classas described later in this chapter.
Once the class concept has been detailed, the chapter noavesdoncept of instance of that class
and shows how instance data members and functions can be Tilsedchapter terminates with a
description of dynamic class programming.

4.1 The Class object

A classin the Aleph terminology is simply a nameset which can beicafgd via a construction
mechanism. A class is created with the reserved keywtass The result is an object of type
Cl ass which supports various symbol binding operations.

4.1.1 Class declaration and binding

A new class is an object created with the reserved keywlass Such class is an object which can
be bound to a symbol.

const Col or (class)
A list of initial instance data members can be specified asgumaent to thelassreserved keyword.
const Conplex (class (re inm)

Because a class acts like a nameset, it is possible to biadtlgisymbols with thejualified name
notation.

const Col or (class) O <d ass object>
const Col or: RED- FACTOR 0.75 O 0.75
const Col or: BLUE- FACTOR 0.75 O 0.75
const Col or: GREEEN- FACTOR 0.75 O 0.75

When a data is defined in the class nameset, it is common tatrafeastatic data memberA static
data member is invariant over the instance of that class.iitieedata member is declared with the
constreserved keyword, the symbol bindingdsnst in the class nameset. It is also possible to
use thdrans reserved keyword.

38 Class

4.1.2 Class closure binding

A lambda or gamma expression can be define for a class. If #%s do not reference an instance
of that class, the resulting closure is callestatic methoaf that class. Static methods are invariant
among the class instances. The standard declaration sfortadambda or gamma expression is
still valid with a class.

const Color:get-primary-fromstring (color value) {

trans val "O0x"
val : += (switch col or (

("red" (val ue: substr 1 3))

("green" (value:substr 3 5))

("blue" (value:substr 5 7))

)

)
I nt eger val

}

The invocation of a static method is done with the stand@aified namenotation.

(Color:get-primary-fromstring "red" "#23c4e5") O 0x23
(Color:get-primary-fromstring "green" "#23c4e5") 0O Oxc4
(Color:get-primary-fromstring "blue" "#23c4e5") O Oxeb

4.1.3 Class symbol access

A class acts as a nameset and therefore provides the methiEneavaluate any symbol with the
qualified namenotation.

const Col or: RED- VALUE " #f f 0000" O "#ff0000"

const Color:print-primary-colors (color) {
println "red color " (Color:get-primry-color "red" col or)
println "green col or (Col or: get-primary-col or "green" col or)
println "blue color (Col or:get-primary-col or "blue" color)

}

print the color conmponents for the red col or
Col or: print-primary-col ors Col or: RED- VALUE

4.2 Instance

An instanceof a class is an Aleph object which is constructed by a spetdsk method called a
constructor If an instance constructor does not exist, the instancaidsts have a default construc-
tion. Aninstance acts also as a nameset. The only diffengithe class, is that a symbol resolution
is done first in the instance nameset and then in the instdass. CAs a consequence, creating an
instance is equivalent to define a default nameset hierarchy

4.2.1 Instance construction

By default, a instance of the class is an object which defingsstance nameset. The simplest way
to define an anonymous instance is to create it directly.

Instance 39

const i ((class))
const Col or (class)
const red (Col or)

The example above define an instance of an anonymous classlals object is bound to a symbol,
such symbol can be used to create an instance of that clagn #hinstance is created, the special
symbol namedhis is defined in the instance nameset. This symbol is boundéetmstance object
and can be used to reference in an anonymous way the instaelte i

4.2.2 Instance initialization

When an instance is created, the Aleph engine looks for aiapkenbda expression called
i nitialize. Thislambda expression, if it exists, is executed afterdisfault instance has been
constructed. Such lambda expression is a method sinceiieéarto thethis symbol and bind some
instance symbols. The arguments which are passed duringdtaace construction are passed to
theinitialize method.

const Col or (class)

trans Color:initialize (red green blue) {
const this:red (I'nteger red)
const this:green (Integer green)
const this:blue (Integer blue)

}

create sonme default colors

const Color:RED (Color 255 0 0)

const Col or: GREEN (Col or 0 255 0)

const Col or: BLUE (Col or 0 0 255)

const Col or: BLACK (Col or 0 0 0)

const Col or: WHI TE (Col or 255 255 255)

In the example above, each time a color is created, a newntestzbject is created. The constructor
is invoked with thethis symbol bound to the newly created instance. Note that théfigganame

t hi s: r ed defines a new symbol in the instance nameset. Such symbahistisnes referred as an
instance data membeNote as well that there is no ambiguity in resolving the sphmted. Once
the symbol is created, it shadows the one defined as a cotostaugument.

4.2.3 Initialization with data member list

If the class was defined with a list of data members, the instécreated with these data members
initialized to nil. Each symbol is defined as a transient sghsince they are supposed to be modified
later. As a consequence, it is possible to use the reserysebketrans inside thei niti al i ze
method.

const Conplex (class (re inm)
trans Conmplex:initialize (re im
trans this:re (Real re)
trans this:im(Real im

The use of a class data member list is primarily dictated byettistence of @opy constructofor
that class. If a method try to construct an object, an eviaonaif an unbound data member with
trans might trigger an inner instance data member to be set ingtEte real one. This behavior
exists only withtrans. Whenconstis used, the implementation guarantee that the symbolgndi
will be local to that instance.

40 Class

4.2.4 Instance symbol access

An instance acts as a nameset. It is therefore possible dddxially to an instance a symbol. When
a symbol needs to be evaluated, the instance nameset ibeédirst. If the symbol is not found,
the class nameset is searched. When an instance symbol ¢sbaymbol have the same name,
the instance symbol is said to shadow the class symbol. Tinglesiexample below illustrates this

property.

const c¢ (cl ass)
const c:a 1l o1
const i (c)

const | (c)

const i:a 2 o 2

cl ass symbol access
println cra 01
shadow synmbol access
println i:a o 2
non shadow access
println j:a 01

When the instance is created, the special symieta is bound in the instance nameset with the
instance class object. This symbol can therefore be usetttsa a shadow symbol

const c¢ (cl ass)
const i (c)

const c:a 1 O 1
const i:a 2 o 2
println ira o 2
println i:nmetaza O 1

The symbolmeta must be used carefully, especially inside constructoresihanight create an
infinite recursion as shown below.

const c (class)
trans c:initialize nil (const i (this:meta))
const i (c)

4.2.5 Instance method

When lambda expression is defined within the class or thanestnameset, that lambda expression
is callable from the instance itself. If the lambda expr@ssises thehis symbol, that lambda is
called an instance method since the synth@ is defined in the instance nameset. If the instance
method is defined in the class nameset, the instance mettsaddido beglobal (i.e. callable by
any instance of that class). If the method is defined in thiante nameset, that method is said to
belocal and is callable by the instance only. Due to the nature of #maset parent binding, only
lambda expression can be used. Gamma expressions will mktsiee the gamma nameset has
always the top level nameset as its parent one.

const Col or (class)

class constructor

trans Color:initialize (red green blue) {
const this:red (I'nteger red)
const this:green (Integer green)

Instance 41

const this:blue (Integer blue)

}

const Color:RF 0.75

const Color: G- 0.75

const Col or: BF 0.75

this method returns a darker col or

trans Col or:darker nil {
trans |Ir (Integer (max (this:red:* Color:RF) 0))
trans I g (I nteger (max (this:green:* Color:GF) 0))
trans | b (Integer (max (this:blue:* Color:BF) 0))
Color Ir Iglhb

}
get a darker color than yell ow
const yell ow (Col or 255 255 0)

const dark-yellow (yel |l ow darker)

4.2.6 Instance operators

Any operator can be defined at the class or the instance |&eérators like== or != generally
requires the ability to assert if the argument is of the saype of the instance. The global operator
== will return true if two classes are the same. With the use efbta, it is possible to assert such
equality.

this method checks that two colors are equals
trans Col or: == (col or)
if (== Color color:neta)
if ('=this:red col or:red) (return fal se)
if (!=this:green color:green) (return false)
if (!=this:blue color:blue) (return false)
eval true
fal se

create a new yel |l ow col or
const yellow (Col or 255 255 0)
(yell ow. == (Col or 255 255 0)) O true

The global operator= returnst r ue if both arguments are the same, even for classes. Method
operators are left open to the user.

4.2.7 Complex number example

As a final example, a class simulating the behavior of a coxplanber is given hereafter. The
interesting point to note is the use of the operators. Astilated before, the class uses uses a default
method method to initialize the data members.

class declaration
const Conplex (class (re inm)

constructor initializer

trans Conplex:initialize (reim {
trans this:re (Real re)
trans this:im(Real inm

}

42 Class

class mutators
trans Conplex:set-re (x) (trans this:re re)
trans Conplex:set-im(x) (trans this:imim

cl ass accessors
trans Conplex:get-re nil (Real this:re)
trans Conplex:get-imnil (Real this:im
trans Conpl ex: nodule nil {
trans result (Real (+ (* this:re this:re) (* this:imthis:in))
result:sqrt
}
trans Conplex:format nil {
trans result (String this:re)
result:+= "+i"
result:+= (String this:im
}

conpl ex predicate
const complex-p (c) (
if (instance-p c) (== Conplex c:nmeta) false)

operators
trans Conplex:== (c) (
if (complex-p c) (and (this:re:==c:re) (this:tim==c:inm) (
if (number-p c) (and (this:re:==1c¢) (this:imzero-p)) false))

trans Conplex:= (c) {
if (complex-p c) {
this:re:= (Real c:re)
this:im= (Real c:im
return this

}

this:re:= (Real c)
this:im= 0.0
return this

}

trans Conplex:+ (c) {
trans result (Conplex this:re this:im
if (complex-p c) {
result:re:+=c:re
result:im+= c:im
return result
}
result:re: += (Real c¢)
eval result

4.3 Inheritance

Inheritance is the mechanism by which a class or an instarfearits methods and data member

Inheritance 43

access from a parent object. The Aleph class model is basacsmgle inheritance model. When
an instance object defines a parent object, such objectésiGduper instanceThe instance which
has a super instance is callederived instanceThe main utilization of inheritance is the ability to
reuse methods for that super instance.

4.3.1 Derivation construction

A derived object is generally defined within thai ti al i ze method of that instance by setting
thesuper data membersuper is set to nil at the instance construction. The good newsaisahy
object can be defined as a super instance, including bubiject

const c¢ (class)
const c:initialize nil {
trans this:super 0

}

In the example above, an instance of class constructed. The super instance is with an integer
object. As a consequence, the instance is derived frorhith@ger instance.

4.3.2 Derived symbol access

When an instance is derived from another one, any symbolwigtongs to the super instance can
be access with the use of tseper data member. If the super class can evaluate a symbol, that
symbol is resolved automatically by the derived instance.

const ¢ (cl ass)
const i (c)
trans i:a 1

const j (c)

trans j:super i
printlnj:a o1

When a symbol is evaluated, a set of search rules is appliégbhAgives the priority to the class
nameset vs the super instance. As a consequence, a statimdatber might shadow a super
instance data member. The rule associated with a symbalati@h can be summarized as follow.

e Look in the instance nameset.
e Look in the class nameset.
e Look in the super instance if it exists.

e Look in the base object.

44

Class

CHAPTER 5
Advanced Concepts

This chapter covers advanced concepts of the Aleph progiagrianguage. The first subject is the
exception model. The second subject covers some propefties namesets. Finally, the interpreter
object is described in details.

5.1 Exception

An exceptionis an unexpected change in the execution flow. The Aleph miodedxception is
based on a mechanism which throws the exception to be caygtttédndler. The mechanism is also
designed to be compatible with the native "C++" implemeatat

5.1.1 Throwing an exception

An exception is thrown with the reserved keywahdow . When an exception is thrown, the normal
flow of execution is interrupted and an object used to careyekception information is created.
Such exception object is propagated backward in the calk statil an exception handler catch it.

if (not (nunber-p n))
(throw "type-error" "invalid object found" n)

The example above is the general form to throw an exceptiba fifst argument is thile exception
id. The second argument is tle&ception reasanThe third argument is thexception objectThe
exception id and reason are always a string. The excepti@etadan be any object which is carried
by the exception. The reserved keywdhdow accepts 0 or more arguments.

t hr ow
throw "type-error”
throw "type-error" "invalid argunment”

With 0 argument, the exception is thrown with the exceptibseét to "user-exception”. With one
argument, the argument is the exception id. With 2 argumérgsexception id and reason are set.

5.1.2 Exception handler

The reserved keyworily executes a form and catch an exception if one has been thibitinone
argument, the form is executed and the result is the resthieoform execution unless an exception
is caught. If an exception is caught, the result is the exeemtbject. If the exception is a native
one, the result is nil.

46 Advanced Concepts

try (+ 1 2) 0o 3
try (throw d nil
try (throw "hello") O nil
try (throw "hello" "world") O nil
try (throw "hell o" "world" "fol ks") O "folks"

In its second form, thé&ry reserved keyword can accept a second form which is execuied an
exception is caught. When an exception is caught, a new retrisesreated and the special symbol
what is bounded with the exception object. In such environméat,exception can be evaluated.
The what : ei d qualified name is the exception id. Thksat : r eason qualified name is the
exception reason anghat : obj ect is the exception object.

try (throw "hello")

(eval what:eid) O "hello"
try (throw "hello" "world")

(eval what:reason) O "world"
try (throw "hello" "world" 2000)

(eval what:object) O 2000

Exceptions are useful to notify abruptly that something twetong. With an untyped language like
Aleph, it is also a convenient mechanism to abort an expressill if some arguments do not match
the expected types.

protected factorial
const fact (n) {
if (not (integer-p n))
(throw "nunber-error” "invalid argument in fact")
if (== n0) 1 (* n (fact (- n 1)))
}
(try (fact 5) 0) 0 120
(try (fact "hello") 0) O O

5.2 Nameset

A nameset is created with the reserved keywmartheset Without argument, theamesetreserved
keyword creates a nameset without setting its parent. Withasgument, a nameset is created and
the parent set with the argument.

const nset (naneset)
const nset (nanmeset ...)

5.2.1 Default namesets

When a nameset is created, the symbat automatically created and bound to the newly created
nameset. If a parent nameset exists, the symbois also automatically created. The use of the
current nameset is a useful notation to resolve a partiadare given a hierarchy of namesets.

trans a 1 o1
bl ock {
trans a(+al O 2
println ..:a 1l O1

}

Delayed Evaluation 47

println a o1

5.2.2 Nameset and inheritance

When a nameset is set as the super object of an instance, atenesting results are obtained.
Because symbols are resolved in the nameset hierarchg, itheo limitation to use a nameset to
simulate a kind of multiple inheritance. The following exalmillustrates this point.

const cls (class)

const ins (cls)

const i ns: super (naneset)

const i ns: super:val ue 2000

const ins:super:hello "hello world "

println ins:hello ins:value O hello world 2000

5.3 Delayed Evaluation

Aleph provides a mechanism calleiélayed evaluationSuch mechanism permits the encapsulation
of a form to be evaluated inside an object callgat@mise

5.3.1 Creating a promise

The reserved keywordelay creates gromise When thepromiseis created, the associated object
is not evaluated. This means that the promise evaluatesef. it

const a (delay (+ 1 2))
promi se-p a O true

The previous example createp@miseand store the argument form. The form is not yet evaluated.
As a consequence, the symlaobvaluates to thpromiseobject.

5.3.2 Forcing a promise

The reserved keyworfbrce the evaluation of gromise Once thepromisehas been forced, any
further call will produce the same result. Note also thah& stage, th@romiseevaluates to the
evaluated form.

trans y 3

const I ((lanmbda (x) (+ x y)) 1)
assert 4 (force |)

trans y O

assert 4 (force |)

5.4 Enumeration

Enumaration, that is, named constant bound to an objechedeclared with the reserverd keyword
enum The enumeration is built with a list of literal and evaluhses is.

const e (enum E1 E2 E3)

48 Advanced Concepts

assert true (enump e)

The complete enumeration evaluates t&Eammobject. Once built, enumeration item evaluates by
literal and returns aht emobject.

assert true (itemp e:E1)
assert "lten!' (e:El:repr)

Items are comparable objects. Only items can be comparea giwen, item, the source enumera-
tion can be obtained with thget - enummethod.

check for itemequality
const il e:El

const i2 e:E2

assert true (il:==1i1)
assert false (== 1i11i2)

get back the enuneration
assert true (enump (il:get-enun))

5.5 Interpreter

TheAleph interpreter is by itself a special object with specializesgtihhods which do not have equiv-
alent using the standard aleph notation. The interpretaliniays referred with the special symbol
i nt er p. The following table is a summary of the symbols and methadsb to the interpreter.

Table 5 Interpreter builtin symbols

| Symbol | Description |
argv command arguments vector
0s-name operating system name
os-type operating system type
version full aleph version
program-name interpreter program name
major-version aleph major version number
minor-version aleph minor version number
patch-version aleph patch version number
aleph-url aleph official url name
load load a file and execute it
clone clone the interpreter
launch launch a normal thread
daemon launch a daemon thread
library load and initialize a library
set-real-precision set real number precision
get-real-precision set real number precision

5.5.1 Arguments vector

Thei nt er p: ar gv qualified name evaluates to a vector of strings. Each argtisetored in the
vector during the interpreter initialization.

zsh> al eph hello world

Interpreter 49

al eph> println (interp:argv:length) O 2
aleph> println (interp:argviget 0) 0O hello

5.5.2 Interpreter version and os

Several symbols can be used to track the interpreter veesidnthe operating system. The full
version is bound to thent er p: ver si on qualified name. The full version is composed of the
maj or, m nor andpat ch number. The operating system name is bound to the qualifiegt na
i nt er p: os- nane. The operating system type (likai x) is bound ta nt er p: os-t ype.
println "major version nunber "
println "minor version nunber
println "patch version nunber
println "interpreter version
println "operating system name
println "operating systemtype
println "aleph official url

i nterp: maj or-version
i nterp: mnor-version
i nterp: patch-version
i nterp:version
[
[
[

nt er p: 0s- name
nt erp: os-type
nt er p: al eph-url

5.5.3 File loading

Thei nt er p: | oad method loads and execute a file. The interpreter interactimemand session
is suspended during the execution of the file. In case of erdran exception is raised, the file
execution is terminated. The process used to load a file isrged by thdile resolver Without
extension, a compiled file is searched first and if not founauace file is searched.

5.5.4 Library loading

Thei nt er p: I i br ary method loads and initializes a library. The interpreterntains a list of
opened library. Multiple execution of this method for thensalibrary does nothing. The method
returns the library object.

interp:library "al eph-sys"

println "random nunber: " (al eph:sys:random

50

Advanced Concepts

CHAPTER 6
Threads Operations

This chapter covers the threads facilities builtin in #heph interpreter. The thread subsystem
allows for the execution of concurrent forms with an autdmsynchronization mechanism. De-
signing a good program with concurrent execution is a diffiask. It takes a while to get used with
the various synchronization mechanisms which ensure aesafaution, that is no race condition or
dead lock. Fortunately, Aleph provides some unique feattirat should ease such design.

6.1 Normal and Daemon threads

The interpreter supports two types of threads, calledmalanddaemorthreads. A normal thread

is started with the reserved keywdedinch. A daemon thread is started with the reserved keyword
daemon The difference between a normal thread and a daemon thseadyi in the termination

of the interpreter. An aleph program is completed when alinad threads have terminated. This
means that the master thread (i.e the first thread) is suspamdil all normal threads have been
executed. With daemon threads, the master thread termieegs if some daemon threads are still
running.

6.1.1 Starting a normal thread

A normal thread is started with the reserved keywlatthch. The form to execute in a thread is the
argument. The simplest thread to execute isthéhread.

I aunch (nil)

Even thenil thread does nothing in term of computation, it does a lot imigh internally by turning
on the shared objects sub-system.

6.1.2 Thread object and result

When a thread terminate, the thread object holds the rektiiedast executed form. The thread
object is returned by thleunch or daemoncommand. Thé hr ead- p predicates returnisr ue if
the object is a thread descriptor. The thread type can bekahidit thenor nal - p ordaenon- p
predicates.

const thr (launch (nil))
println (thread-p thr) O true
println (thr:normal-p) O true

52 Threads Operations

The member dataesul t of the thread object holds the result of the thread. Althotnghresult
can be accessed at any time, the returned value will be niltbethread as completed its execution.

const thr (launch (nil))
println (thr:result) 0O nilp

Although the Aleph engine will ensure that the resulnisl until the thread has completed its
execution, it does not mean that it is a reliable approaclesb until the result is nati | . The
engine provides various mechanisms to synchronize a ttareédventually wait for its completion.

6.2 Shared Objects

The whole purpose of using a multi-threaded environmemt pgovide a concurrent execution with
some shared variables. Although, several threads can texeoocurrently without sharing data,
the most common situation is that one or more global varialdeaccessed (and even changed) by
one or more threads. Various scenarios are possible. Fommg&aa variable is changed by one
thread, the other thread just read its value. Another sgeigone read, multiple write, or even
more complicated, multiple read and multiple write. In amge, the interpreter subsystem must
ensure that each objects are in a good state when such opetatoccur.

The Aleph engine provides an automatic synchronizatiorhaeism for global objects, where only
one thread can modify an object, but several thread cant.eBlis mechanism known asad-write
locking guarantee that there is only one writer, but eventually ipleltreader. When a thread start
to modify an object, no other thread are allowed to read otevthis object until the transaction
has been completed. On the opposite, no thread is allowdthiage (i.e. write) an object, until all
thread which access (i.e. read) the object value have coedpllee transaction. Because a context
switch can occur at any time, the object read-write lockinlgemsure a safe protection during each
concurrent access.

6.2.1 Various shared objects

Shared objects can be very complicated to detect. For exari vector is shared by various
threads, the engine will make sure that all vector objeatsaéso shared. A closed variable in a
lambda or gamma expression is another example of potehtia¢éd object. Executing such lambda
form in a thread will automatically mark the closed variabdes shared objects. Additionally, when
the thread system is started, all object in the global nata@semarked shared.

6.2.2 Shared object predicate

The object predicate methadhar ed- p returns true if an object is shared. Since all global objects
are marked shared as soon as the thread system is turnee éwljdlving example shows how a nil
thread marks a shared variable.

create sinple synbol
const a 1
assert fal se (a:shared-p)

turn on the thread system
I aunch (nil)
assert true (a:shared-p)

check anot her synbol
trans b 1

Synchronization 53

assert true (b:shared-p)

When an object is marked shared, it will remain in this stateést of the session. Note that when
an object is copied (by copy construction), the shared ssat@t copied. The copied object will
become shared depending on its surrounding context. Sutbxdaan be a nameset or any other
type of container which is shared or not.

6.2.3 Shared protection access

We illustrate the previous discussion with an interestirgneple and some variations around it.
Let’s consider a form which increase an integer object aradhear form which decrease the same
integer object. If the integer is initialized to 0, and theotferms run in two separate threads, we
might expect to see the value bounded by the time allocateddoh thread. In other word, this

simple example is a very good illustration of your machineestuler.

shared vari abl e access
const var O

const incr nil (while true

(println "increase: " (var:= (+ var 1))))
const decr nil (while true
(println "decrease: " (var:= (- var 1))))

start both threads
I aunch (decr)
I aunch (incr)

In the previous example,ar is initialized to 0. Thd ncr thread incrementgar while thedecr
thread decrementsar . Depending on the operating system, the result stays bouwithin a
certain range (generally -5000 to 5000). The previous exaicgn be changed by using the main
thread or a third thread to print the variable value. The et is the same, except that there is
more threads competing for the shared variable.

shared vari abl e access
const var O

incrementer, decrenenter and printer

const incr nil (while true (var:= (+ var 1)))

const decr nil (while true (var:= (- var 1)))
const prtv nil (while true (println "value =" var)

start all threads
I aunch (decr)
I aunch (incr)
I aunch (prtv)

6.3 Synchronization

Although, Aleph provides an automatic synchronization haedsm for reading or writing an object,
it is sometimes necessary to control the execution flow. e basically two techniques to do so.
First, protect a form from being executed by several thre&dsond, wait for one or several threads
to complete their task before going to the next executiop. ste

54 Threads Operations

6.3.1 Form synchronization

The reserved keyworslynccan be used to synchronize a form. When a form, is synchrdnike
Aleph engine guarantees that only one thread will execugedim.

const print-nessage (code nesg) (
sync {
errorln "error
errorln "nmessage:

code
" mesg

}
)

The previous example create a gamma expression which mekéhsitiboth the error code and error
message are printed in one group, when several threads call i

6.3.2 Thread completion

The other piece of synchronization is the thread completidicator. The thread descriptor contains
a method calleavai t which suspend the calling thread until the thread attachetd descriptor
has been completed. If the thread is already completed, étlead returns immediately.

sinple flag
const flag fal se

sinmple shared tester
const ftest (val) (flag) (assert val (flag:shared-p))

no thread nmean not shared
ftest false

#in athread it is shared
const thr (launch (ftest true))
thr: wait

assert true (flag: shared-p)

This example is taken from the test suites. It checks thabsed variable becomes shared when
started in a thread. Note the use of thed t method to make sure the thread has completed before
checking for the shared flag. Itis also worth to note tmitt is one of the method which guarantees
that a thread result is valid.

Another use of thevai t method can be made with a vector of thread descriptors whemants

to wait until all of them have completed.

shared vector of threads descriptors
const thr-group (Vector)

wait until all threads in the group are finished
const wait-all nil (for (thr) (thr-group) (thr:wait))

6.3.3 Complete example

We illustrate the previous discussion with a complete eXxamhe idea is to perform a matrix
multiplication. A thread is launched when when multiplyioge line with one column. The result
is stored in the thread descriptor. A vector of thread dptmris used to store the result.

Synchronization 55

initialize the shared library
interp:library "al eph-sys"

shared vector of threads descriptors
const thr-group (Vector)

this procedure waits until all threads in
the group are finished
const wait-all nil (for (thr)

(thr-group) (thr:wait))

this procedure initialize a matrix w th random nunbers
the matrix is a square one with its size as an argunent
const init-matrix (n) {
trans i (Integer 0)
const m (Vector)
do {
trans v (m append (Vector))
trans j (Integer)
do {
v: append (al eph: sys: random
} (< (j:i+t) n)
} (< (i:++) n)
eval m

}

this procedure multiply one line with one col um
const nult-line-colum (u v) {

assert (u:length) (v:I|ength)

trans result 0O

for (xy) (uv) (result:+= (* x vy))

eval result

}

this procedure multiply two vectors assuni ng one
#is aline and one is a colum coning fromthe matrix
const mult-matrix (mx ny) {
for (lv) (nx) {
assert true (vector-p |lv)
for (cv) (ny) {
assert true (vector-p cv)
t hr-group: append (launch (nult-line-colum Iv cv))
}
}
}

check for sone arguments

note the use of errorln method

if (== 0 (interp:argv:length)) {
errorln "usage: al eph 0607.als size"
al eph:sys:exit 1

}

56 Threads Operations

get the integer and multiply
const n (Integer (interp:argv:get 0))
mult-matrix (init-matrix n) (init-matrix n)

wait for all threads to conplete
wait-all

make sure we have the right nunber
assert (* n n) (thr-group:Ilength)

6.3.4 Condition variable

A condition variableis another mechanism to synchronize several threads. Atcmmgariable is
modeled with theCondvar object. At construction, the condition variable is initi#d tof al se.
Athread calling thevai t method will block until the condition becomées ue. Thermrar k method
can be used by a thread to change the state of a conditiofleasiad eventually awake some threads
which are blocked on it. The following example shows how thenmthread blocks until another
change the state of the condition.

create a condition variable
const cv (Condvar)

this function runs in a thread - does sone conputation
and mark the condition variable
const do-sonething nil {

do some conmputation

mark the condition
cv: mar k

}

start some conputation in a thread
| aunch (do-sonet hi ng)

block until the condition is changed
cv:wait-unl ock

continue here

In this example, the condition variable is created at thartmégg. The thread is started and the
main thread blocks until the thread change the state of thditon variable. It is important to
note the use of theai t - unl ock method. When the main thread is re-started (after the dondit
variable has been marked), the main thread owns the lockiassd with the condition variable.
Thewai t - unl ock method unlocks that lock when the main thread is restarteate MlIso that
thewai t - unl ock method reset the condition variable. if thai t method was used instead of
wai t - unl ock the lock would still be owned by the main thread. Any attempbther thread to
call the mark method would result in the calling thread tocklantil the lock is released.

The Condvar class has several methods which can be used to control tlevibelof the condi-
tion variable. Most of them are related to lock control. Theset method reset the condition
variable. The ock andunl ock control the condition variable locking. Thear k, wai t and
wai t - unl ock method controls the synchronization among several threads

CHAPTER 7
Regular Expressions

This chapter covers th&leph regular expressionsggey syntax and programming use. TA&ph
regexis an original implementation with its own syntax and exemumodel.

7.1 Regular expression syntax

Aleph implements a regular expression engine via a sp&sgexobject. A regular expression can
be built implicitly or explicitly with the use of th&®egex object. Theregexsyntax uses the '[' and
'l characters as block delimiters. When used in a source fiile lexical analyzer automatically
recognizes aegexand built the object accordingly. In other word, tregexsystem is builtin in
the Aleph language. The following example shows two equivalent wagdfine the samesgex
expression.

syntax builtin regex

(== [$d+] 2000) O true
explicit builtin regex

(== (Regex "$d+") 2000) O true

In its first form, the '[" and ']’ characters are used as synteetimiters. The lexical analyzer auto-
matically recognizes this token asegexand built the equivalerRegex object. The second form
is the explicit construction of thBegex object. Note also that the [and ']" characters are also
used asegexblock delimiters.

7.1.1 Regex characters and meta-characters

Any character, except the one used as operators can be uagdgex The '$’ character is used
as a meta-character (or control character) to representtiaipar set of characters. For example,
[hel Il o worl d] is aregexwhich match only thé hel | o wor | d" string. The[$d+] regex
matches one or more digits. The following meta characterdaiitin in theregexengine.

e $amatches any letter or digit.

e $b matches any blank characters.
e $d matches any digit.

¢ 3l matches any lower case letter.

e $n matches new line characters.

58 Regular Expressions

e $smatches any letter.
e $umatches any upper case letter.
e 3w matches any aleph word constituent.

e $x matches any hexadecimal characters.
The uppercase version is the complement of the correspgialirercase character set.

e $A matches any character except letter or digit.

e $B matches any character except blanks.

e 3D matches any character except digit.

e $L matches any character except lower case letters.

e $N matches any character except new line.

e $Smatches any character except letters.

e $U matches any character except upper case letters.

e $W matches any character except aleph word constituents.

e $X matches any character except hexadecimal characters.

A character which follows a $ character and that is not a mbtaacter is treated as a normal
character. For exampl®[is the '[' character. A quoted string can be used to define aittar
matching which could otherwise be interpreted as contrat&tters or operator. A quoted string
also interprets standasscapedequences but not meta characters.

(== [$d+] 2000) O true
(== ["$d+"] 2000) O false

7.1.2 Regex character set

A character setis defined with the”and ">’ characters. Any enclosed character defines a character
set. Note that meta characters are also interpreted insith@racter set. For example$d+- >
represents any digit or a plus or minus. If the first charasttre ~ character in the character set, the
character set is complemented with regards to its definition

7.1.3 Regex blocks and operators

The T and ']' characters are theegexsub-expressions delimiters. When used at the top level
of a regexdefinition, they can identify an implicit object. Their usethe top level for explicit
construction is optional. The following example is styatiquivalent.

sinple real number check

const real -1 (Regex "$d*. $d+")

another way with [] characters
const real -2 (Regex "[$d*. $d+]")

Sub-expressions can be nested (that’s their role) and cmdhiith operators. There is no limit in
the nesting level.

Regex Object 59

pair of digit testing
== [dd[dd] +] 2000) O true
== [dd[dd] +] 20000) O false

The following unary operators can be used with single chiaracontrol characters and sub-
expressions.

e * match zero or more times
e + match one or more times
e ? match zero or one time.

e | alternation

Alternation is an operator which work with a secondary egpi@n. Care should be taken when
writing the right sub-expression. For example the follogviegex[$d| hel | o] is equivalent to
[[$d]| h] el I 0] . In other word, the minimal first sub-expression is used wd@npiling theregex

7.1.4 Grouping

Groups of sub-expressions are created with the '(" and "#rabters. When a group is matched,
the resulting sub-string is placed on a stack and can be aged In this respect, thregexengine
can be used to extract sub-strings. The following exampieets the month, day and year from
a particular date formaf: (dd) : (dd) : (dddd)] . Thisregexassumes a date in the
formnmm dd: yyyy.

if (== (const re [(dd): (dd)]) "12:31") {
trans hr (re:get 0)
trans m (re:get 1)

}

Grouping is the mechanism to retrieve sub-strings when ahmassuccessful. If theegexis bind to
a symbol, theget method can be used to get the sub-string by index.

7.2 Regex Object

Although aregexcan be built implicitly, theRegex object can also be used to build a nexgex
The argument is a string which is compiled during the objeaistruction.

7.2.1 Literal object

A Regex object is a literal object. This means that the- st r i ng method is available and that a
call to thepri nt | n special form will work directly.

const re (Regex "$d+")
printlnre O $d+
println re:to-string O [$d+]

7.2.2 Regex operators

The == and! = operators are the primary operators to performegexmatch. The== operator
returns true if the egex matches the string argument from the beginning to the enttinfs Such

60 Regular Expressions

operator implies the begin and end of string anchoring. ¥haperator returns true if theegex
matches the string or a substring or the string argument.

7.2.3 Regex methods

The primaryregexmethod is theget method which returns by index the sub-string when a group
has been matched. Thengt h method returns the number of group match.

if (== (const re [(dd): (dd)]) "12:31") {
re:length O 2
re:get 0 0O 12
re:get 1 0O 31

}

Themat ch method returns the first string which is matched byrégex

const regex [$d+]
regex: match "Happy new year 2003" O 2003

Ther epl ace method any occurrence of the matching string with the s@airggiment.

const regex [$d+]
regex: replace "Hell o year 2000" "2003" O hello year 2003

7.2.4 Argument conversion

The use of thdRegex operators implies that the arguments are evaluated aal lidbject. For this
reason, an implicit string conversion is made during suotrafor call. For example, passing the
integer1?2 or the string’ 12" is strictly equivalent. Care should be taken when usingithicit
conversion with real numbers.

CHAPTER 8
Functional Programming

This chapter covers the interesting aspecta\leiph with respect to thdunctional programming
paradigm Functional programming is often described as the abtilityr¢ate functions that creates
functions As a matter of fact, it is a far bigger subject that finds itstiio theLambda CalculusA
language (likeAleph) that supports the functional programming paradigm is atsoetimes called
ahigh order language

8.1 Function expression

A lambda expressioar agamma expressiatan be seen like a function object with no name. During
the evaluation process, the expression object is evalaateg|l as the arguments (from left to right)
and a result is produced by applying those arguments to tinifun object. An expression can be
built dynamically as part of the evaluation process.

al eph >println ((lanmbda (n) (+n 1)) 1)
2

The difference betweenlambda expressioand agamma expressias only in the nameset binding
during the evaluation process. Tlanbda expressionameset is linked with the calling one, while
thegamma expressiomameset is linked with the top level nameset. The usgaofima expression

is particularly interesting with recursive functions asah generate a significant execution speedup.
The previous example will behaves the same with a gamma ssipre

al eph >println ((gamma (n) (+n 1)) 1)
2

8.1.1 Self reference

When combining a function expression with recursion, thednir the function to call itself is
becoming a problem since that function expression doesang b name. For this reasolieph
provides the reserved keywoself that is a reference to the function expression. We illusttiais
capability with the well-known factorial expression weittin pure functional style.

al eph >println ((gama (n)
(if (s<=n1) 1 (* n(self (- n1))))) 5
120

62 Functional Programming

The use of gjamma expressioversus dambda expressiois a matter of speed. Since tgamma
expressiordoes not havéree variable the symbol resolution is not a concern here.

8.1.2 Closed variables

One of theAleph characteristic is the treatment foée variables A variable is said to be free if it
is not bound in the expression environment or its childrethatime of the symbol resolution. For
example, the expressidr(| ambda (n) (+ n x)) 1) computes the sum of the argument
with the free variabl&. The evaluation will succeeds if x is defined in one of the peeavironment.
Actually this example can also illustrates the differenetneen dambda expressioand agamma
expressionLet’s consider the following forms.

trans x 1

const do-print nil {

trans x 2

println ((lanmbda (n) (+ n x)) 1)
}

The function do-print (which is gamma expressiobecause of theonstreserved keyword) will
produce3 since it sums the argumentbound to 1, with the free variablewhich is defined in the
calling environment a2. Now if we rewrite the previous example withgamma expressiotihe
result will be one, since the expression parent will be tipdéwel environment that defingsas 1.

trans x 1

const do-print nil {

trans x 2

println ((gamma (n) (+ n x)) 1)
}

With this example, it is easy to see that there is a need to lectaldletermine a particular symbol
value during the expression construction. Doing so is dallesing a variable Closing a variable
is a mechanism that binds into the expression a particulabsywith a value and such symbol
is called aclosed variablesince its value is closed under the current environmertiatian. For
example, the previous example can be rewritten to closeytnbal x .

trans x 1

const do-print nil {

trans x 2

printin ((ganma (n) (x) (+ n x)) 1)
}

Note that the list of closed variable immediately follow #mgument list. In this particular case, the
functiondo- pri nt will print 3 sincex has been closed with the val@énas defined in the function
do-print.

8.1.3 Dynamic binding

Becauseéileph has a dynamic binding symbol resolution, it is possible teehander some circum-
stances a free or closed variable. This kind of situationttgppen when a particular symbol is
defined under a condition.

| anbda (n) {

Functional objects 63

if (<= n1l) (trans x 1)
println (+ n x)

}

With this example, the symbol x is a free variable if the argaitm is greater than 1. While this
mechanism can be powerful, extreme caution should be mada wing such feature. Note also
that many other language do not allow this kind of behavidratlkind of restriction is primarily
driven by the need to have a language vetatic binding The bad news is that it is impossible to
write a compiler with dynamic symbol binding.

8.2 Functional objects

Everything inAleph is an object. As a consequence, an object can be maniputated,if it is
lexical element, a symbol or a closure.

8.2.1 Lexical and qualified names

The basic forms elements are the lexical and qualified nalrescal and qualified names are con-
structed by theédleph reader. Although the evaluation process make that lexigjglod transparent,
it is possible to manipulate them directly.

al eph >const sym (protect |ex)
al eph >println (symrepr)
Lexi cal

In this example, th@rotect reserved keyword is used to avoid the evaluation of the &:xibject
named ex. Therefore the symbaymrefers to a lexical object. Since a lexical (and a qualified)
objectis a also a literal object, tipe i nt | n reserved function will work and print the object name.
In fact, a literal object provides theo- st r i ng method that returns the string representation of a
literal object.

al eph >const sym (protect |ex)
al eph >println (symto-string)
| ex

8.2.2 Symbol and argument access

Each nameset maintains a table of symbols. A symbol is ajngiétween a name and an object.
Eventually, the symbol carries tleonst flag. During the lexical evaluation process, the lexical
object tries to find an object in the nameset hierarchy. Sujécd can be either a symbol or an
argument. Again, this process is transparent, but can beatlea manually. Both lexical and
qualified named object have tinap method that returns the first object associated in the namese
hierarchy.

al eph >const obj 0

al eph >const | ex (protect obj)
al eph >const sym (| ex: map)

al eph >println (symrepr)
Synbol

A symbol is also a literal object, so the-stri ng andt o-1iteral methods will return the
symbol name. Symbol methods are provided to access or mtdifgymbol values. It is also
possible to change tleonst symbol flag with theset - const method.

64 Functional Programming

al eph >println (sym get-const)
true

al eph >println (sym get-object)
0

al eph> sym set - obj ect true

al eph >println (sym get-object)
true

A symbol name cannot be modified, since the name must be symizkd with the nameset associ-
ation. On the other hand, a symbol can be explicitly consddicAs any object, the operator can
be used to assign a symbol value. The operator will behawesileset - obj ect method.

al eph >const sym (Synmbol "synbol")
al eph >println sym

synbol

al eph >sym =0

al eph >println (eval sym

0

8.2.3 Closure

As an object, th&l osur e can be manipulated outside the traditional declarative waglosure

is a special object that holds an argument list, a set of dlwagables and a form to execute. The
mechanic of a closure evaluation has been described eawaat we are interested here is the
ability to manipulate a closure as an object and eventuatlgtif it. Note that by default a closure is
constructed as a lambda expression. With a boolean args@igiattrue the same result is obtained.
With false, a gamma expression is created.

al eph >const f (C osure)
al eph >println (closure-p f)
true

This example creates an empty closure. The default closueguivalent to thé rans f ni l

ni | . The same can be obtained witbonst f (C osure true)).Foragamma expression,
the following forms are equivalentonst f (Cl osure fal se) andconst f nil nil.
Rememberthatitisr ans andconst that differentiate between alambda and a gamma expression.
Once the closure object is defined, #&t - f or mmethod can be used to bind a form.

the sinmple way

trans f nil (println "hello world")

the conpl ex way

const f (d osure)

f:set-form(protect (println "hello world"))

There are numerous situations where it is desirable to mutardically a closure expression. The
simplest one is the closure that mute itself based on som@xtorWith the use ofel f, a new
form can be set to the one that is executed. Another use is hanistn calladvice where some
new computation are inserted prior the closure executiate khat appending to a closure can lead
to some strange results if the existing closure expressiesriet ur n special forms. In a multi-
threaded environment, the ability to change a closure espye is particularly handy. For example
a special thread could be used to monitor some context. Wipantigular situation develops, that
threads might trigger some closure expression changese that changing a closure expression
does not affect the one that is executed. If such change @dcuing a recursive call, that change is
seen only at the next call.

Combinators example 65

8.3 Combinators example

The remaining part of this chapter is an example of funclipnagramming based on combinators
abstraction. A combinator (in th&leph terminology) is a single argument closure withdrete
variables At this stage, there is no difference between a lambda sgfmeand a gamma expression.
The difference shows up only in the execution context. Thegokst combinatorisonst | (x)
(eval x),thatis thedentitycombinator.

8.3.1 Curried expression

A multi-argument closure can be converted to a single argiielesure by encapsulating the argu-
ments into other closure. For example, the functidn, y) = = + y can be computed, either with

const f (x y) (+ x y) orbywritingconst g (x) (gamma (y) (x) (+ x y)).

In the first form, the expression is called with the argumewtsle the second form requires two

calls. No matter how the call is made, the result, remainsanee.

direct call

al eph >println (f 1 2)
3

curried call

al eph >println ((g 1) 2)
3

Clearly, this mechanism can be extended to several argsmé@iftis technique, calledurrying,

is named after Haskell B. Curry, but was first introduced byskkSchonfinkel. Wittleph, the
form evaluation is a two step process (eval, apply) than frams left to right. Each arguments are
first evaluated, placed on the eval stack and the functiopjdied. With the curry approach, the
evaluation is sequential. If the arguments are evaluatewtmal objects (that is objects that do
not have side effects), the result should be the same, bhtosihplexobject (for example a file
descriptor), the result might be different. Nevertheless,will assume that a regulateph form
(fxyz) can be curried to produce the same result by wrififyg:)y)z).

8.3.2 Base combinators

If we are given a functioff, can we express the same function in the form of nested catdym
C10s...C,? The answer to that question is actually quite complex arahés addressed by the
computability theorySince we don’t want to do the math here, let's rather focusaone interesting
examples to illustrate our point. Thaentity combinator has been show previously. There are two
other interesting combinators called K and S. K is the cdatteh combinator, which drops its
second argument and return its first one. An evaluation(liKey) is expected to evaluate x and
return it. The curried form will bé(K z)y) which does the same. S is the distribution combinator,
which distributes an argument to two functions. An evalatike (S fgx), which is curried like
(((Sf)g)x) will be equivalenttd(fz)(gz)). With Aleph, both K and S combinators can be defined
as follow.

const K (x) (ganma (y) (x) (eval x))
const S (f) (gamma (g) (f) (gamma (x) (f g) ((f x) (g x))))

It is amazing to note how these two combinators are poweHat. example, th&KK combinator
sequence is thielentitycombinator. This can be verified with exampl@03. al s. In other words,
we haveSK K = I. Because th&entitycombinator is convenient, we will keep it'as is’.

8.3.3 Form transformation

66 Functional Programming

Forms can be converted to a combinatoric representatiorat ffansformation process is rather
simple and use only th8KI combinators. To convince ourself, let's take a simple exXanige
f(z) = 2 4+ . The form to convertis simply+zz)

e step lterms currying
(+xx) 0 ((+x) x)

e step 2S term mapping
((+x)x) 0 (S [(+x)]) [X]

e step 3l term mapping

(SIEXD] H S+

e step 4S term mapping
(SIHEXN IO S USH) XM

e step 5l term mapping

(SASHEYXMID (SASEHENMI

e step 6K term mapping

(SUSHIYMID (S(SK+H) NI

Note that the step 1 transform the form into a combinatopeasentation. At this stage, the notation
for the '+’ operator is also a transformation from the builtiperator to a curried version of it. If call
c+ the curried '+’ operator, we have the final implementation.

the S conbi nator
const S (f) (gamma (g) (f) (gamma (x) (f g) ((f x) (g x))))

the K conbi nator
const K (x) (ganma (y) (x) (eval x))

the | conbi nator
const | (x) (eval x)

curried '+ operator
const c+ (x) (gamma (y) (x) (+ xy))

testing the reduction (+ x x) => (S ((S (K +)) 1)) I)
println "((+ x x) 512) =" (((S ((S(Kc+)) 1)) 1) 512)

The good news about all of this is that the transformatiorc@ss is rather mechanical. Once a form
has been transformed, it can be represented by a graph vetscivject to optimization. Such opti-
mization is called aombinator graph reductianWhat it means is that we have here a mechanism
to optimize a form. Moreover, we have also a simple mechatagmerform a form compilation that
could be interpreted with a virtual combinatorial machiach compilation process is the subject of
a later discussion... In summary, given a lambda or gammeessgjon with zero or more argument,
the combinatoric transformation involves several steps.

e Step 1Form currying
The form is transformed recursively to produce an expressith one argument. The oper-
ators are curried. The special forms are subject to a speeament.

e Step 2SKI transformation
The curried expression is transformed into a combinateficesentation with the SKI com-
binators.

Combinators example 67

8.3.4 Recursive combinator

Combinators offer an elegant way to address recursive fétra.idea is to create a combinator that
can restart itself while evaluating some arguments. Wetillie this point with thde factofactorial
function.

factorial - the old fashion way
const fact (n) (if (== n 1) 1 (* n (fact (- n 1))))

The transformation creates a combinatoric representatidhe factorial with a closed variable
which is the form to restart.

factorial - as a conbinator
const c-fact (f) (ganma (n) (f)

(if (==n1) 1 n((ff)(-n1)))))

Thec- f act gamma expression evaluates to a gamma expression. The gaxpmeasion uses the
closed variablé to restart itself. This is the recursion in its combinatdaion. Note that we need
another combinator to start the first evaluation. Exand@le5. al s demonstrates this example.

the U conbi nator

const U (f) (f f)

the generated factorial
const fact (U c-fact)

However, we have used a trick here when definingcthBact gamma expression since the expres-
sion restart itself. What we would like to have is rather:

factorial - non restarting
const c-fact (f) (gamma (n) (f) (if (==n 1) 1 (* n (f (- n 1)))))

What we need now is combinator that tales care of restatti@gictorial. This combinator is known
as theY combinatoand is defined as follow:

the Y conbi nat or

const Y (f) ((gamma (g) (f) (f (gamma (x) (9) ((g9 9) x))))
(gamma (g) (f) (f (gamma (x) (9) ((9 9) X)))))

the generated factorial

const fact (Y c-fact)

Example0806.alsdemonstrates what has just been described here. Note ¢h¥gtcbmbinator is
complex because it needs , first to restart the function ¢likeU combinator does), but also needs
to proceed with the evaluation of the function itself. Adglisome information statement is quite
revealing.

factorial - as a conbinator
const c-fact (f) {
println "creating factorial ganma expression”
gamma (n) (f) {
println "evaluating the factorial ganma with n =" n
if (==nl) 1 (* n(f (- n1l)))
}
}

zsh >al eph 0806. al s
creating factorial gamma expression

68 Functional Programming

evaluating the factorial gamma with n = 5
creating factorial gamma expression

eval uating the factorial ganma with n = 4
creating factorial gamma expression
evaluating the factorial gamma with n = 3
creating factorial ganmma expression
evaluating the factorial gamma with n = 2
creating factorial gamma expression
evaluating the factorial gamma with n
fact 5 = 120

1
-

The Y combinator has also the interesting property to actfa®d point combinator. It is amazing
to note that(c-fact (Y c-fact)) is almost equivalenttdyY c-fact) (up to a closure).
That is the property’ F = F(Y F) holds and YF is a fixed point. Such property is the root of the
recursion. In fact, any combinator lilee f act can be transformed into a recursive function with
the help of the Y combinator. To convince yourself, look aample0807. al s which computes

a Fibonacci value with the Y combinator. It is also clear tiet Y combinator is an elegant way
to perform recursiomvithout namdike the reserved keyworsklf does. Note also that a fixed point
combinator can be characterized (up to a closure) with thec8kKibinators byy” = ((S1)Y).

8.3.5 Other combinators

There are other combinators. All of them involve some sortahputation analog to the SKi
combinators. For example tBecombinatois the composition combinatét((B f)g)x) = f(g(z)).
The C combinatoris an argument swap combinatd(C f)z)y) = ((fy)z). TheW combinatoiis
the argument doubling combinatdi f)«) = ((fz)z). It can be shown that the base {S K} is the
smallest combinator base. However, other base can be usledite same job. For example {I B C
W K} is another base. The rule of game is to find the base thaisglgou.

CHAPTER 9
Librarian and Resolver

This chapter covers the use of the librarian utility as well as thé&ibrarian object. The file path
resolver is also described as a mean to search for a partiteleo execute in a program.

9.1 Librarian

A librarian file is a special file that acts as a containers fmous files. A librarian file is created
with the axl Aleph Cross Librariarutility. Once a librarian file is created, it can be added t® th
interpreter resolver. The file access is later performedraatically by name with the standard
interpretel oad method.

9.1.1 Creating a librarian

Theaxl utility is the preferred way to create a librarian. Given adfdiles, axl combines them into
a single one.

zsh > axl -h
usage: axl [options] [files]

[-h] print this hel p nmessage

[-v] print version information

[-c] create a new librarian

[-x] extract fromthe librarian

[-s] get file names fromthe librarian
[-t] report librarian contents

[-f] Ilib set the librarian file name
The- c option creates a new librarian. The librarian file name icH@el with the- f option.
zsh > axl -c -f librarian.axl file-1.als file-2.als

The previous command combinés | e-1. al s andfil e-2. al s into a single file called
I'i brarian. axl . Note that any file can be included in a librarian.

9.1.2 Using the librarian

Once alibrarian is created, the interpreteroption can be used to specify it. The option accepts
either a directory name or a librarian file. Once the libmnatias been opened, the interprétead
method can be used as usual.

70 Librarian and Resolver

zsh > aleph -i librarian. axl
al eph> interp:load "file-1.als"
al eph> interp:load "file-2.als"

The librarian acts like a filarchive The interpreter file resolver takes care to extract the rfdenf
the librarian when thé oad method is invoked.

9.1.3 Librarian contents

The axl utility provides the-t and- s options to look at the librarian contents. The option
returns all file name in the librarian. The option returns a one line description for each file in the
librarian.

zsh > axl -t -f librarian. axl
........ 1234 file-1.als
........ 5678 file-2.als

The one line report contains the file flags, the file size andildhaame. The file flags are not used at
this time. One possible use in the future is for examplegto-loadbit or any other useful things.

9.1.4 Librarian extraction

The - x option permits to extract file from the librarian. Withoutyafile argument, all files are
extracted. With some file arguments, only those specifiesl dite extracted.

zsh > axl -x -f librarian. axl
zsh > axl -x -f librarian.axl file-1.als

9.2 Librarian object

ThelLibrarian object can be used within akleph program as a convenient way to create a collec-
tion of files or to extract some of them.

9.2.1 Output librarian

TheLibrarian object is a standardleph object. Its predicate iki br ari an- p. Without argu-
ment, a librarian is created mutput mode With a string argument, the librarian is openedriput
mode with the file name argument. Thoaitput modes used to create a new librarian by adding file
into it. Theinput modés created to read file from the librarian.

create a new librarian
const | br (Librarian)

add a file into it

| br:add "file-1.als"

wite it

Ibr:wite "librarian.axl"

Theadd method adds a new file into the librarian. Thei t e method the full librarian as a single
file those name isr i t e method argument.

9.2.2 Input librarian

Resolver 71

With an argument, the librarian object is created in inputimoOnce created, file can be read or
extracted. Thé engt h method (which also work with an output librarian) returne trumber of
files in the librarian. Thé&xi st s- p predicate returns true if the file name argument exists in the
librarian.Theget - nanes method returns a vector of file names in this librarian. €xér act
method returns aimput streanobject for the specific file name.

open a librarian for reading

const |br (Librarian "librarian.axl")

get the nunber of files

println (Ibr:length)

extract the first file

const is (lbr:extract "file-1.als")

#is is an input stream- dunp each line
while (is:valid-p) (println (is:readln))

Most of the time, the librarian object is used to extract filjmamically. Because a librarian is
mappednto the memory at the right offset, there is no worry to usgliirarian, even for a small
file. Note that any type of file can be used, text or binaries.

9.3 Resolver

TheAleph resolver is a special object used by the interpreter to vedoé path based on the search
path. The resolver uses a mixed list of directories andiilinfiles in its search path. When a file
path needs to be resolved, the search path is scanned urdtithed is found. Because the librarian
resolution is integrated inside the resolver, there is nedrie worry about file extraction. That
process is done automatically. The resolver can also beinsit: anAleph program to perform
any kind of file path resolution.

9.3.1 Resolver object

The resolver object is created without argument. dtid method adds a directory path or a librarian
file to the resolver. Theal i d method checks for the existence of a file. Thwokup method
returns an input stream object associated with the object.

create a new resol ver
const rslv (Resol ver)
assert true (resolver-p rslv)

add the local directory on the search path
rslv:add "."

check if file test.als exists
#if this is ok - print its contents
if (rslv:valid-p "test.als") {
const is (rslv:lookup "test.als")
while (is:valid-p) (println (is:readln))
}

72

Librarian and Resolver

APPENDIX A
Reserved keywords

This appendix contains a summary of the Aleph reserved keyswwith their syntax.

74

Reserved keywords

75

assert [reserved]

Description

Theassertreserved keyword check for equality between two operand#h 8bjects must be of the
same type. If the equality test fails, the reserved keywaittt @ message and abort the execution.
By default, the assertion checking is turned off. The intetgr option-f assert enables the
assertion checking. When the interpreter is compiled inugeimode, the assertion checking is
turned on by default.

Syntax

assert form1l form?2

Example

assert true (== 1 1)
assert 3 (+ 2 1)

76

Reserved keywords

77

block [reserved]

Description

Theblock reserved keyword defines a new nameset for sequential éxeadtregular form or im-
plicit form. When the block form is evaluated, the block naetes linked to its parent nameset.
When all forms have been executed, the block nameset ioglegtand he result of the last evalua-
tion in the block is considered to be the result of the bloceation.

Syntax

bl ock regul ar form
bl ock bl ock form

Example

trans a 1

bl ock {
assert
trans
assert
assert

}

assert 1 a

+11)

ORI G)
BN R

78

Reserved keywords

79

class [reserved]

Description

Theclassreserved keyword creates a new class object. Without angijaie instance of that class
is created without data members. With a list of argumentsiriktance is created with a set of data
member initialized to nil.

Syntax

cl ass
cl ass data nmenber-1|i st

Example

const Col or (class)

trans Color:initialize (red green blue) {
const this:red red
const this:green green
const this:blue blue

}

const red (Col or 255 0 0)
const green (Col or 0 255 0)
const blue (Color 0 0 255)

80

Reserved keywords

81

const [reserved]

Description
Theconstreserved keyword binds a symbol with an object and marksdtamstant symbol. When

used with three or four argument, a gamma expression is adiaily created.constcan also be
used to bind class or instance members.

Syntax

const symnbol obj ect
const symnbol argument body
const synbol argument cl osed vari abl es body

Example

const nunber 123
const max (x y) (if (> xy) xvy)

82

Reserved keywords

83

daemon [reserved]

Description

Thedaemonreserved keyword creates a netw ead by executing the form argument in a daemon
thread. The created thread is executed by creating a clahe ofterpreter and starting immediately
the execution of the form with the cloned interpreter. Theowand returns the thread object in the
calling thread. When the thread terminates, the threadcobm@ds the result of the last executed
form. The main thread does not wait for a daemon thread toitaite

Syntax

daenpn form

Example

daermon (println "hello world")

84

Reserved keywords

85

delay [reserved]

Description

The delay reserved keyword delays the evaluation of the form argurgrtreating aPr oni se
object. The promise evaluate to itself until a call to foree evaluation has been made. When the
promise has been forced, the evaluation result is storedhéncall to force will produce the same
result.

Syntax

delay form

Example
trans y 3
const | ((lanbda (x) (+ x y)) 1)
assert 4 (force I)
trans y O
assert 4 (force I)

86

Reserved keywords

87

do [reserved]

Description
Thedo reserved keyword is used to build loop with forward conditidhe first argumentis the loop
body and the second argument is the loop condition which emgtiates to a boolean object.

Syntax

do body condition

Example

const nunber-of-digits (s) {
const len (s:length)
trans index O
trans count O
do {
trans c (s:get index)
if (c:digit-p) (count:++)
} (< (index:++) len)
eval count

88

Reserved keywords

89

enum [reserved]

Description

The enum reserved keyword creates an enumeration from a list oflitéFhe result object is an
Enumobiject that holds the enumerated items. An item evalua#enlts with arl t emobject that
is bound to the enumeration object.

Syntax

enum literal

Example

const e (enum E1 E2 E3)

90

Reserved keywords

91

errorin [reserved]

Description

Theerrorln reserved keyword prints on the interpreter error streant afssguments. Each argu-
ments have to be a literal which are converted to a string. Mélearguments have been printed a
new line character is printed. Thegror reserved keyword behaves likerorln excepts that a new
line character is not printed at the end of the arguments.

Syntax

errorln
errorln nil
errorln literal -argunent-1list

Example

errorln
errorln "hello mleniunm ' * 2000

92

Reserved keywords

93

eval [reserved]

Description
Theevalreserved keyword simply evaluates the object argumentfdrneis useful when returning
an argument from a lambda or gamma expression using an itrfplia.

Syntax

eval object

Example

const ret (x) (eval x)
eval (protect (+ 1 2))

94

Reserved keywords

95

for [reserved]

Description

The for reserved keyword provides a facility to iterate warable objects. Cons, Li st and
Vect or are typical iterable objects. For each iterable objectsymabsl is set after each itera-
tion. Each object symbol value can be used for further coatfmrt. The iteration stops when one
of the objects iterator is at the end position.

Syntax

for synbol-list iterable-object-1ist body

Example

conmpute the scal ar product of two vectors
const scal ar-product (u v) {

trans result O

for (xy) (uv) (result:+=(* x vy))

eval result

96

Reserved keywords

97

force [reserved]

Description

The force reserved keyword forces the evaluation of its argumenthdfargument evaluates to a
pr oni se object, the promise evaluation is forced. If the argumenbisa promiseforce behaves
like eval. When a promise has been forced, further call to force willahange the evaluation result.

Syntax

force object

Example
trans y 3
const | ((lanmbda (x) (+ x y)) 1)
assert 4 (force I)
trans y O
assert 4 (force I)

98

Reserved keywords

99

If [reserved]

Description
Theif reserved keyword executes a form based on the evaluatiorboblean expression. In its

first representatiornif executes a form if the condition is evaluated toue. An alternate form can
be specified and is executed if the boolean expression agaltaf al se. It is an error to use a
conditional form which does not evaluate to a boolean object

Syntax

if cond true-form
if cond true-formelse-form

Example

const max (x y) (if (> xy) xvy)

100 Reserved keywords

101

lambda [reserved]

Description

Thelambda reserved keyword creates a nelWosur e object with eventually a set of arguments
and a set of closed variables. In its first form, the closudeidared with a set of argumentsrurl

to indicate no argument. In its second form, the closure étaded with a set of arguments and a set
of closed variables. The closed variables are evaluatéeainstruction of the closure and become
part of the closure object. When the closure is called, a rawaset is created and linked with the
parent nameset. The set of calling arguments are boundedtinameset with the formal argument
list to become the actual arguments. The set of closed Vasiablinked at runtime to the closure
nameset. A lambda or gamma expression can have its argueatetd agonstargument.

Syntax

| anbda nil body
| anbda argunent -1ist body
| anbda argument -|i st closed-variabl es-1ist body

Example

const no-args (lambda nil (+ 1 1))
const add (lambda ((const x) (const y)) (+ x y))
const closed (lambda (x) (y) (+ x y))

102 Reserved keywords

103

launch [reserved]

Description

Thelaunch reserved keyword creates a neWr ead by executing the form argument in a normal
thread. The created thread is added in the normal thredn/lsteating a clone of the interpreter and
starting immediately the execution of the form with the @drinterpreter. The command returns the
thread object in the calling thread. When the thread tertag)dhe thread object holds the result of
the last executed form. The main thread is suspended untibehal threads have completed their
execution.

Syntax

| aunch form

Example

[aunch (println "hello world")

104 Reserved keywords

105

loop [reserved]

Description

Theloop reserved keyword executes a loop based on an initial condiéin exit condition and a
step form. The initial condition is only executed one timéeTexit condition is tested at each loop
iteration. Thd oop reserved keyword creates its own nameset since the indradition generally
binds symbol locally for the loop.

Syntax

loop init-formexit-formstep form

Example

loop (trans i 0) (< i 10) (i:++) (println i)

106 Reserved keywords

107

nameset [reserved]

Description

Thenamesetreserved keyword creates a new nameset. With no argumesily nameset is created
and no parent is binded to this nameset. With one argumerdytfument must evaluate to a nameset
and that nameset is used as the parent one. If a nameset leasrambed with the global nameset as
the parent, the symbol. . can be used to reference the top level nameset. The symbetemees
the current nameset. The symbol references the parent nameset of the current nameset.

Syntax

nameset
nameset parent-naneset

Example

const | ocal - naneset - not - bound (naneset)
const | ocal - naneset - bounded (naneset ...)
const ...:global - naneset (nameset)

108 Reserved keywords

109

println [reserved]

Description

The printin reserved keyword prints on the interpreter output strearatafarguments. Each
arguments have to be a literal which is converted to a stkiviigen all arguments have been printed
a new line character is printed. Tpent reserved keyword behaves likeintin excepts that a new
line character is not printed at the end of the arguments.

Syntax

println
println nil
println literal -argunment-1i st

Example

println
println "hello nmileniunt ' * 2000

110 Reserved keywords

111

protect [reserved]

Description
The protect reserved keyword take a single argument and returns it witbealuation. Protect is
mainly use to get a symbol or form object.

Syntax

prot ect object

Example

const cons (protect (+ 1 2))

112 Reserved keywords

113

return [reserved]

Description

Thereturn reserved keyword causes the current expression to stopalsation and returns the
argument or nilr et ur n is primarily used in lambda or gamma expressions. If usedtapdevel
block, the block execution is stopped and the control isstiened to the top level.

Syntax

return object

Example

return (+ 1 2)

114 Reserved keywords

115

sync [reserved]

Description

Thesyncreserved keyword is a form synchronizer. Within a multetdied environment, the Aleph
engine guarantees that only one thread will execute the.fdlra other threads are suspended until
the form has been completed.

Syntax

sync form

Example
const print-nessage (code nesg) (
sync {
errorln "error : " code
errorln "message: " mesg

116 Reserved keywords

117

switch [reserved]

Description

The switch reserved keyword is a form selector. The first argument iotiject to switch. The
second argumentis a list of forms with an object matcher arekacution form. Thel se reserved
keyword can be used as default matcher.

Syntax

switch selector |ist-of-condition

Example

const get-primary-color (color value) (
swi tch col or (
("red" (return (val ue:substr 0 2))
("green" (return (value:substr 2 4))
("blue" (return (value:substr 4 6))

)
)

118 Reserved keywords

119

throw [reserved]

Description

Thethrow reserved keyword throws an exception. Without argumengxaeption of typauser-
exceptions thrown. with one argument, tlexception ids set. With two arguments, tlexception id
andexception reasoare set. With three argumenésception igexception reasoand theexception
objectare set.

Syntax

t hr ow

t hrow exception id

t hrow exception i d exception reason

t hrow exception id exception reason exception object

Example

t hr ow
throw "type-error”
throw "type-error" "invalid argunent”

120 Reserved keywords

121

trans [reserved]

Description

Thetrans reserved keyword creates or sets a symbol with an objesrts searches in the current
nameset only. If a symbol is found, it is set with the objetthé symbol is not found, it is created
in the current namesetrans can also be used withualifiednames. With 3 or 4 argumentsans
creates automatically a lambda expression.

Syntax

trans synmbol object
trans synbol argunent body
trans synbol argunent closed vari abl es body

Example

trans a 1
trans fact (n) (if (<n 1) 1 (* n (fact (- n 1))))

122 Reserved keywords

123

try [reserved]

Description

Thetry reserved keyword catch an exception in the current exatuatoneset. The first argument
is a form to execute. The optional second argument i€xeeption handleto be called in case of
exception. If there is no exception handler, all exceptamescaught. The result of execution is either
the result of the form execution, or the exception objectagecof exception, or nil if the exception
is a native one. If there is an exception handler, the hamslkxecuted with a new nameset and the
special symbohhat is bound to the exception. If the exceptionis nil, the symiahtis undefined.

Syntax

try form
try form exception-handl er

Example
try (+ 1 2) o 3
try (throw O nil
try (throw "hello") O nil
try (throw "hello" "world") d nil
try (throw "hello" "world" "folks") O "folks"

124 Reserved keywords

125

while [reserved]

Description
Thewhile reserved keyword is used to build loop with forward conditid he first argument is the
loop condition and the second argument is the loop body.

Syntax

whi | e cond body

Example

const gcd (u v) {
while (!'=v 0) {
trans r (u:nod v)
u:= v
vi=r
}

eval u

126 Reserved keywords

APPENDIX B
Literal Objects

This chapter is a reference of the Aleph reserved objectstivéir respective builtin methods. The
Aleph reserved objects are those objects defined in the Igloteapreter nameset and bind as re-
served names.

Table 6 Aleph reserved objects

| Object | Description
ltem enumeration item
Real double floating point number
Regex regular expression object
String string reserved object
Boolean boolean reserved object
Integer 64 bits signed integer
Relatif infinite precision signed integer
Character 8 bits is0-8859-1 character

For each reserved object, Aleph providesradicatewhich can be used to test for the object type.

The base type for each reserved object isltfieral type. The predicatéi t er al - p always
returnst r ue for these objects. The table below is a resume of the res@mnesiicates.

Table 7 Aleph reserved object predicates

| Object | Predicate
ltem item-p
Real real-p
Regex regex-p
String string-p
Boolean boolean-p
Integer integer-p
Relatif relatif-p
Literal literal-p
Character character-p

All literal have a string representation. The- st ri ng method is always available for these re-
served objects. A literal object has a default construcdamerally, it can also be constructed by a
same type object or by a string object.

128 Literal Objects

129

Literal [reserved]

Description

The Literal object is a base object for all literal object. The sole pggof a literal object is to
provide to methods named- string andto-1iteral thatreturn a string representation of
the literal object.

Derivation summary

| Derived from | Description |
| Serial | the base serial object |

Methods Summary

| Method | Description
to-string returns a string representation
to-literal returns a literal representation

Literal:to-string

m return: String

® arguments: none

The to-string method returns a string representation of the literal. Thegsis expected to
represent at best the literal.

Literal:to-literal
m return: String
m arguments: none

Theto-Iliteral method returnsa string representation of the literal. Ttiegsdiffers from the
t o- st ri ng method in the sense that the string is a literal representaior example the literal
representation of a string is tigeiotedstring.

130 Literal Objects

131

ltem [reserved]

Description

Theltem reserved object is an enumeration item. The item is bound Enameration object. An
item object is created during the evaluation of an enunratbject. An enumeration item cannot

be constructed directly.

Derivation summary

| Derived from

| Description |

| Literal

| the base literal object |

Operators Summary

| Operator

| Description

return true if both items are equal
return true if both items are not equal

Methods Summary

| Method

| Description |

| get-enum

| return the bound enumeration |

[tem:get-enum

m return: Enum

® arguments: none

The get - enum method returns the enumeration object bound to the item.it€hemust be a
dynamic item or an exception is thrown.

132 Literal Objects

133

Boolean [reserved]

Description

TheBooleanreserved objectimplements the behavior of a native bodigsm Two builtin symbols,
namelytrue andfalse are used to represent the value of a boolean instance. THe@otype is
primarily used for test expression.

Derivation summary

| Derived from | Description |
| Literal the base literal object |

Constructors Summary

| Constructor | Description
Boolean default boolean to false
BooleanBoolean boolean from boolean value
BooleanString boolean from string value

Operators Summary

| Operator | Description

== return true if both boolean are equal
I= return true if both boolean are not equal

134 Literal Objects

Integer [reserved]

135

Description

Thelnteger reserved objectimplements the behavior of a native 64 igitesd integer type. Standard
decimal notation is used to construct integer object frortesidl. The integer object can also be

constructed from a string. Standard operators are provatdtis class.

Derivation summary

| Derived from | Description

| Literal | the base literal object

Constructors Summary

| Constructor | Description
Integer default integer to O
IntegerReal integer from real value
IntegerString integer from string value
Integerinteger integer from integer value
IntegerCharacter integer from character value

Operators Summary

Methods Summary

Integer:or
m return: I nt eger
®m arguments: I nt eger

The or method returns the binary or between the integer and thgentagument.

Integer:abs
m return: I nt eger
® arguments: none

The abs method returns the absolute value of the calling integ¢airce.

eal

136 Literal Objects
| Operator | Description
== return true if integer or real are equal
I= return true if integer or real are not equal
+ return the sum with an integer or real
- return the negation or substraction with an integer or 1
return the multiplication with an integer or real
/ return the inverse or division with an integer or real
< return true if less than an integer or real
<= return true if less equal than an integer or real
> return true if greater than an integer or real
>= return true if greater equal than an integer or real
++ return this integer incremented by one
- return this integer decremented by one
+= return this integer summed with the argument
-= return this integer substracted with the argument
= return this integer multiplied with the argument
/= return this integer divided with the argument
| Method | Description
or binary or with the argument
abs return the absolute value
not return the binary negation
shl shift left by a certain amount
shr shift right by a certain amount
and binary and with the argument
xor binary xor with the argument
mod return the modulo with the argument
odd-p return true with an odd number
even-p return true with an even number
zero-p return true if the integer is null
Integer:not
m return: I nt eger
m arguments: none

The not method returns the binary negation of the calling integstaince.

Integer:shl

m return:

® arguments:

I nt eger

| nt eger

The shl method returns a new integer corresponding to the callitegyer instance shifted left by

the integer argument.
Integer:shr

m return:

® arguments:

I nt eger

| nt eger

137

The shr method returns a new integer corresponding to the calliteger instance shifted right
by the integer argument.

Integer:and
m return: I nt eger
®m arguments: I nt eger

The and method returns a new integer corresponding to the binarpatwieen the calling integer
instance and the integer argument.

Integer:xor
m return: I nt eger
® arguments: I nt eger

The xor method returns a new integer corresponding to the binarpetween the calling integer
instance and the integer argument.

Integer:mod
m return: I nt eger
® arguments: I nt eger

The nod method returns the modulo between the integer instancehenthteger argument. A
t ype- error exception is raised if the argument is not an argument.

Integer:odd-p

m return: Bool ean

E arguments: none
The odd- p method returnsr ue if the integer instance is odd, false otherwise.
Integer:even-p

m return: Bool ean

® arguments: none

The even-p method returns r ue if the integer instance is even, false otherwise.

Integer:zero-p

m return: Bool ean

® arguments: none

The zer o- p method returns r ue if the integer instance is null, false otherwise.

138 Literal Objects

Relatif [reserved]

139

Description

The Relatif reserved object implements the behavior of an unlimitedesignteger type. Standard
decimal notation followed by the 'r’ or 'R’ character is ustdconstruct relatif object from a literal.
The relatif object can also be constructed from a strings Thass is similar to thimteger class.

Derivation summary

| Derived from | Description

| Literal | the base literal object

Constructors Summary

| Constructor | Description
Relatif default relatif to 0
Relatif Real relatif from real value
Relatif String relatif from string value
Relatif Integer relatif from integer value
Relatif Relatif relatif from relatif value
Relatif Character relatif from character value

Operators Summary

Methods Summary

Relatif:or
m return: Rel ati f
® arguments: Rel ati f

The or method returns the binary or between the relatif and thdifelgument.

Relatif:abs

m return: Rel ati f

® arguments: none

te-

140 Literal Objects
| Operator | Description
== return true if relatif or integer equal
I= return true if relatif or integer are not equal
+ return the sum with an relatif or integer
- return the negation or substraction with an relatif or in
ger
return the multiplication with an relatif or integer
/ return the inverse or division with an relatif or integer
< return true if less than an relatif or integer
<= return true if less equal than an relatif or integer
> return true if greater than an relatif or integer
>= return true if greater equal than an relatif or integer
++ return this relatif incremented by one
- return this relatif decremented by one
+= return this relatif summed with the argument
-= return this relatif substracted with the argument
= return this relatif multiplied with the argument
/= return this relatif divided with the argument
| Method | Description
or binary or with the argument
abs return the absolute value
not return the binary negation
shl shift left by a certain amount
shr shift right by a certain amount
and binary and with the argument
xor binary xor with the argument
mod return the modulo with the argument
odd-p return true with an odd number
even-p return true with an even number
zero-p return true if the relatif is null

The abs method returns the absolute value of the calling relatifinee.

Relatif:not
m return:

® arguments:

Rel ati f

none

The not method returns the binary negation of the calling relastamce.

Relatif:shl
H return:

® arguments:

Rel ati f
Rel ati f

The shl method returns a new relatif corresponding to the callinatifénstance shifted left by

the relatif argument.

Relatif:shr

m return:

Rel ati f

141

® arguments: Rel ati f

The shr method returns a new relatif corresponding to the callihatifénstance shifted right by
the relatif argument.

Relatif:and
m return: Rel ati f
® arguments: Rel ati f

The and method returns a new relatif corresponding to the binarylatdieen the calling relatif
instance and the relatif argument.

Relatif:xor
m return: Rel ati f
® arguments: Rel ati f

The xor method returns a new relatif corresponding to the binarybatween the calling relatif
instance and the relatif argument.

Relatif:mod
m return: Rel ati f
m arguments: I nt eger

The nod method returns the modulo between the relatif instance haddlatif argument. A
t ype- error exception is raised if the argument is not an argument.

Relatif:odd-p
m return: Bool ean
m arguments: none

The odd- p method returnsr ue if the relatif instance is odd, false otherwise.

Relatif:even-p

m return: Bool ean

® arguments: none
The even-p method returnsr ue if the relatif instance is even, false otherwise.
Relatif:zero-p

m return: Bool ean

® arguments: none

The zer o- p method returns r ue if the relatif instance is null, false otherwise.

142 Literal Objects

143

Real [reserved]

Description

TheRealreserved object implements the behavior of a double flogtgt number type. Standard
decimal dot notation or scientific notation is used to carddtreal object from a literal. The real
object can also be constructed from an integer, a characsestoing.

Derivation summary

| Derived from | Description |
| Literal | the base literal object |

Constructors Summary

| Constructor | Description
Real default real 0.0
RealReal real from real value
Reallnteger real from integer value
RealString real from string value
RealCharacter real from character value

Operators Summary

Methods Summary

Real:nan-p
m return: Bool ean
m arguments: none

The nan- p method returnsr ue is the calling real number instance is not-a-number (nan).

Real:ceiling
m return: Real
m arguments: none

The cei | i ng method returns the ceiling of the calling real number instan

144 Literal Objects
| Operator | Description

== return true if integer or real are equal

?= return true if integer or real are equal at the precision

I= return true if integer or real are not equal

+ return the sum with an integer or real

- return the negation or substraction with an integer or 1

return the multiplication with an integer or real

/ return the inverse or division with an integer or real

< return true if less than an integer or real

<= return true if less equal than an integer or real

> return true if greater than an integer or real

>= return true if greater equal than an integer or real

++ return this real incremented by one

- return this real decremented by one

+= return this real summed with the argument

-= return this real substracted with the argument

= return this real multiplied with the argument

/= return this real divided with the argument
Real:floor

m return: Real

® arguments: none

The f |1 oor method returns the floor of the calling real number instance.

Real:abs

m return:

® arguments:

Real

none

The abs method returns the absolute value of the calling real nurimiséance.

Real:sqrt

m return:

® arguments:

Real

none

The sqrt method returns the square root of the calling real numbé¢auits.

Real:log

m return:

® arguments:

Real

none

The | og method returns the natural logarithm of the calling real baminstance.

Real:exp

m return:

® arguments:

Real

none

eal

145

| Method | Description
abs return the absolute value
sqrt return the square root
log return the natural logarithm
exp return the exponential
sin return the sine
cos return the cosine
tan return the tangent
asin return the arc sine
acos return the arc cosine
atan return the arc tangent
sinh return the hyperbolic sine
cosh return the hyperbolic cosine
tanh return the hyperbolic tangent
nan-p return true if nan
floor return the floor
asinh return the hyperbolic arc sine
acosh return the hyperbolic arc cosine
atanh return the hyperbolic arc tangent
zero-p return true if null
format return a formatted string
ceiling return the ceiling

The exp method returns the exponential of the calling real numbstaimce.

Real:sin
m return: Real
m arguments: none

The si n method returns the sine of the calling floating point instanthe angle is expressed in
radian.

Real:cos
m return: Real
m arguments: none

The cos method returns the cosine of the calling floating point insta The angle is expressed
in radian.

Real:tan
m return: Real
m arguments: none

The t an method returns the tangent of the calling floating pointanse. The angle is expressed
in radian.

Real:asin

m return: Real

146 Literal Objects

® arguments: none

The asi n method returns the arc sine of the calling floating pointanse. The result is in radian.

Real:acos
m return: Real
| | arguments: none

The acos method returns the arc cosine of the calling floating poistance. The result is in
radian.

Real:atan
m return: Real
m arguments: none

The at an method returns the arc tangent of the calling floating paistance. The result is in
radian.

Real:sinh
m return: Real
m arguments: none

The si nh method returns the hyperbolic sine of the calling real nunistance.

Real:cosh
m return: Real
m arguments: none

The cosh method returns the hyperbolic cosine of the calling real bemnnstance.

Real:tanh
m return: Real
E arguments: none

The at an method returns the hyperbolic tangent of the calling reahber instance.

Real:asinh
m return: Real
m arguments: none

The asi nh method returns the hyperbolic arc sine of the calling reahiper instance.

Real:acosh

m return: Real

® arguments: none

147

The acosh method returns the hyperbolic arc cosine of the callingmeahber instance.

Real:atanh
m return: Real
m arguments: none

The at anh method returns the hyperbolic arc tangent of the callingnmember instance.

Real:zero-p
m return: Bool ean
®m arguments: none

The zer o- p method returns true if the calling real instance is nulkéabtherwise.

Real:format
m return: String
m arguments: | nt eger

The format method format the calling real instance withdigits after the decimal point. The
number of digits is the format argument.

148 Literal Objects

149

Character [reserved]

Description

The Character reserved object implements the behavior of an 8 bit charagpe. A character
can be constructed from a literal quoted notation or withriagt Various methods are provided to
compare or convert characters.

Derivation summary

| Derived from | Description |
| Literal the base literal object |

Constructors Summary

| Constructor | Description
Character default null character
CharacteCharacter character from character value
Characteinteger character from integer value
CharactefString character from string value
Operators Summary
| Operator | Description
== return true if character are equal
I= return true if character are not equal
< return true if less than a character
<= return true if less equal than a character
> return true if greater than a character
>= return true if greater equal than a character
++ return this character incremented by one
- return this character decremented by one
+= return this character summed with the argument
-= return this character substracted with the argument

Methods Summary

Character:incr

150 Literal Objects

| Method | Description
alpha-p return true if the character is alphabetic
digit-p return true if the character is a digit
blank-p return true if the character is a blank or tab
eol-p return true if the character is an end of line
eof-p return true if the character is an end of file
nil-p return true if the character is nil
to-integer return an integer representation
m return: Char act er
m arguments: none

The i ncr method increments the current character value by one.

Character:decr

m return: Char act er

m arguments: none
The decr method decrements the current character value by one.
Character:alpha-p

m return: Bool ean

® arguments: none
The al pha- p method returnsr ue if character is an alphabetic characfea se otherwise.
Character:digit-p

m return: Bool ean

m arguments: none
The di gi t - p method returnsr ue if character is a digit charactdral se otherwise.
Character:blank-p

m return: Bool ean

m arguments: none
The bl ank- p method returnsr ue if character is a blank or tab charactieal se otherwise.
Character:eol-p

m return: Bool ean

® arguments: none

The eol - p method returnsr ue if character is an end of line charactegl se otherwise.

Character:eof-p

151

m return: Bool ean

E arguments: none
The eof - p method returnsr ue if character is an end of file charactégl se otherwise.
Character:nil-p

m return: Bool ean

® arguments: none

The ni | - p method returnsr ue if character is the nil charactdral se otherwise.

152 Literal Objects

String [reserved]

153

Description

TheString reserved object implements the behavior of an internakattar array. The double quote
notation is the literal notation for a string. A string cas@be constructed from the standard Aleph
objects. Strings can be compared, transformed or extragtedhe help of the methods listed below.

Derivation summary

| Derived from

Description

| Literal

the base literal object

Constructor Summary

| Constructor | Description
String default null string
String String string from string value
StringReal string from real value

String Integer
StringBoolean

string from integer value
string from boolean value

Operators Summary

| Operator | Description
== return true if string are equal
I= return true if string are not equal
< return true if the string is less than the other
<= return true if the string is less or equal than the other
> return true if the string is greater than the other
>= return true if the string is greater or equal than the other
+ return the sum with a literal
+= return this string summed with a literal

Methods Summary

String:length

154 Literal Objects

| Method | Description

length return the length of this string
strip-left remove leading blanks and tabs
strip-right remove trailing blanks and tabs
strip remove leading and trailing blanks
split split a string into a vector
extract extract strings from a string
to-upper convert to upper case
to-lower convert to lower case

get return a character by index
sub-left return a left sub string

sub-right return a right sub string

fill-left return a string filled on the left
fill-right return a string filled on the right
substr return a sub string by index

m return: I nt eger

m arguments: none

The | engt h method returns the length of the string.
String:strip-left
m return: String
® arguments: none
The strip-1eft method removes the leading blanks and tabs and returns atmegv s
String:strip-right
m return: String
m arguments: none

The strip-right method removes the trailing blanks and tabs and returns aimey.

String:strip
m return: String
® arguments: none

The stri p method removes the leading, trailing blanks and tabs andn®t new string.

String:split
m return: Vect or
m arguments: none| String

The split method split the string into one or more string accordingreak sequence. If no
argument is passed to the call, the break sequence is assoiimed blank, tab and eol characters.

String:extract

155

m return: Vect or

® arguments: Char act er

The extract method extracts one or more string which are enclosed by aataharacter
passed as an argument. The method returns a vector of strings

String:to-upper

m return: String

m arguments: none
The t o- upper converts all string characters to upper case and returng atneg.
String:to-lower

m return: String

m arguments: none

The t o- | ower method converts all string characters to lower case andrgainew string.

String:get
m return: Char act er
® arguments: I nt eger

The get method returns a the string character at the position givahdargument. If the index
is invalid, an exception is raised.

String:sub-left
m return: String
m arguments: | nt eger

The sub-1 eft method returns the left sub string of the calling string aphie argument index.
If the index is out of range, the string is returned.

String:sub-right
m return: String
m arguments: | nt eger

The sub-ri ght method returns the right sub string of the calling stringtstg at the argument
index. If the index is out of range, the string is returned.

String:fill-left
m return: String
m arguments: Char act er | nteger
Thefill-1eft methodreturnsa string filled on the left with the charactguenent. The second

argument is the desired length of the resulting string. dfahlling is too long, the string is returned.

156 Literal Objects

String:fill-right

m return: String
m arguments: Char acter |nteger
The fill-1eft method returns a string filled on the right with the charaetgrument. The

second argument is the desired length of the resultinggsttirthe calling is too long, the string is
returned.

String:substr

m return: String

® arguments: I nt eger | nteger

The substr method returns a string starting at the first argument indeixeanding at the second
argument index. If the indexes are out of range, an excefimaised.

157

regex [reserved]

Description

The Regex object is a special object which is automatically instaetiaby the interpreter when
using the delimiter charactgrand] . Theregexsyntax involves the use of standard characters, meta
characters and control characters. Additionnaly, a stargbe use to specify a series of characters.
In its first form, the '[" and ']’ characters are used as synteetimiters. The lexical analyzer auto-
matically recognizes this token agsegexand built the equivalerRegex object. The second form

is the explicit construction of thBegex object. Note also that the [and ']" characters are also
used asegexblock delimiters.

Any character, except the one used as operators can be uagdgex The '$’ character is used
as a meta-character (or control character) to representtiaipar set of characters. For example,
[hell o worl d] is aregexwhich match only thé hel | o wor | d" string. The[$d+] regex
matches one or more digits. The following control charactéee builtin in theegexengine.

e $amatches any letter or digit.

e $bmatches any blank characters.

e $d matches any digit.

¢ 3l matches any lower case letter.

e $nmatches new line characters.

e $smatches any letter.

e $umatches any upper case letter.

e $w matches any aleph word constituent.
e $x matches any hexadecimal characters.

The uppercase version is the complement of the correspgialirercase character set. A character
which follows a $ character and that is not a meta charactee#&ed as a normal character. For
example$[is the ' character. A quoted string can be used to defineadtar matching which
could otherwise be interpreted as control characters oratqre A quoted string also interprets
standardescapedequences but not meta characters.

e $A matches any character except letter or digit.

e $B matches any character except blanks.

e 3D matches any character except digit.

e 3L matches any character except lower case letters.

e $N matches any character except new line.

e $Smatches any character except letters.

e $U matches any character except upper case letters.

e $W matches any character except aleph word constituents.

e $X matches any character except hexadecimal characters.

158 Literal Objects

A character set is defined with the”and ">’ characters. Any enclosed character defines a character
set. Note that meta characters are also interpreted insith@r@cter set. For example$d+- >
represents any digit or a plus or minus. If the first charastdre ~ character in the character set, the
character set is complemented with regards to its definition

The following unary operators can be used with single chiaracontrol characters and sub-
expressions.

e * match zero or more times
e + match one or more times
e ? match zero or one time.

e | alternation

Alternation is an operator which work with a secondary egpien. Care should be taken when writ-
ing the right sub-expression. Groups of sub-expressiansraated with the ’(" and ’)’ characters.
When a group is matched, the resulting sub-string is placestack and can be later used. In this
respect, theegexengine can be used to extract sub-strings.

Derivation summary

| Derived from | Description |
| Literal the base literal object |

Constructors Summary

| Constructor | Description
Regex default regex object
RegexString regex with string specification
Operators Summary
| Operator | Description
== return true if the string is matched
I= return true if the string does not match
< return true if the string partially match

Methods Summary

Regex:length

m return: I nt eger

159

| Method | Description
get returns a group sub-string by index
length returns the length of the group vector
match returns the first matching string
replace replace all matching strings with the argument
m arguments: none

The | engt h method returns the length of the group vector wheeggxmatch has been success-
ful.

Regex:get
m return: String
m arguments: I nt eger

The get method returns by index the group sub-string wheegexmatch has been successful.
Regex:match

m return: String

® arguments: String
The mat ch method returns the first matching string of the argumemgtri
Regex:replace

m return: String

m arguments: String String

The r epl ace method returns a string constructed by replacing all matghub-string (from the
first argument) with the second argument string.

160 Literal Objects

APPENDIX C
Container Objects

This chapter is a reference of the Aleph reserved contaljects with their respective builtin meth-

ods. Some of these container objectsitebleobjects.

Table 8 Aleph container objects

Object Description

Cons cons cell and single linked list
Enum enumeration object
List double linked list
Node graph node object
Edge graph edge object
Graph general graph
Queue queue object
Vector array index vector
Bitset bit set object

Buffer buffer object

Table 9 Aleph iterable containers

Object Description

Cons cons cell and single linked list
List double linked list

Vector array index vector

For each container object, Aleph providegradicatewhich can be used to test for the object type.
When an object is iterable, an iterator constructor congirus provided. Théterable-ppredicate
returns true if the container is an iterable object. Tt - i t er at or method can be used to
construct an object iterator. For a given iterator, the jmagdsend- p andval i d- p can be used to
check for the end or a valid iterator position. Tiext method move the iterator to its next position.
Thepr ev method move the iterator (if possible) to its previous pogitTheget - obj ect method
returns the object at the current iterator position.

162

Container Objects

Table 10Aleph container object predicates

Object Predicate
Cons cons-p
Enum enum-p
List list-p
Node node-p
Edge edge-p
Graph graph-p
Queue queue-p
Vector vector-p
Bitset bitset-p
Buffer buffer-p

Cons [reserved]

163

Description

A Cons instance or simply &ons cellis a simple element used to build linked list. The cons cell
holds an object and a pointer to the next cons cell. The cdhslgject is calledcar and the next
cons cell is called thedr . Historically, car meansCurrent Address Registandcdr means
Current Data RegisterWe retain in Aleph this notation for the sake of tradition.

Constructors Summary

Constructor

Description

Cons
Consobject-list

default cons cell with nil car
linked cons cell with arguments

Methods Summary

Method Description

get-car returns the car of the cons cell

get-cdr returns the cdr of the cons cell

get-cadr returns the car of the cdr or nil

get-caddr returns the car of the cdr of the cdr or nil
get-cadddr returns the car of the cdr of the cdr of the cdr or nil
length returns the length of the cons cell

nil-p returns true if the car is nil

block-p returns true if the cons cell is a block
get-iterator returns a forward iterator

set-car set the car of the cons cell

set-cdr set the cdr of the cons cell

append appends an object at the end of the cons cell
link appends an object or set the car if nil

get returns an object at a certain position

Cons:get-car

m return: bj ect
m arguments: none
The get - car

Cons:get-cdr

m return: Cons

method returns the car of the calling cons cell.

164 Container Objects

m arguments: none
The get - cdr method returns the cdr of the calling cons cell.
Cons:get-cadr

m return: bj ect

m arguments: none
The get - cadr method returns the car of the cdr of the calling cons cell bif the cdr is nil.
Cons:get-caddr

m return: oj ect

® arguments: none

The get - caddr method returns the car of the cdr of the cdr of the calling amlisor nil if the
cdris nil.

Cons:get-cadddr
m return: bj ect
® arguments: none

The get - cadddr method returns the car of the cdr of the cdr of the cdr of thincptons cell
or nil if the cdr is nil.

Cons:length
m return: I nt eger
m arguments: none

The | engt h method returns the length of the cons cell. The minimum lengturned is always
1.

Cons:nil-p
m return: Bool ean
E arguments: none

The ni | - p predicate returnsr ue if the car of the calling cons cell is nil,al se otherwise.

Cons:block-p
m return: Bool ean
m arguments: none

The bl ock- p predicate returnsr ue if the cons cell is of type blocK,al se otherwise.

Cons:get-iterator

m return: |terator

165

® arguments: none

The get-iterator returns a forward iterator for this cons cell. No backwardhods are
supported for this object.

Cons:set-car

m return: bj ect

m arguments: bj ect
The set - car set the car of the calling cons cell. The object argumentigmed by the method.
Cons:set-cdr

m return: Cons

B arguments: Cons

The set-cdr set the cdr of the calling cons cell. The cons cell argumengtisrned by the
method.

Cons:append

m return: oj ect

m arguments: oj ect

The append method appends an object at the end of the cons cell chairelayirmg a new cons
cell and linking it with the last cdr. The object argumentdsturned by this method.

Cons:link
m return: oj ect
m arguments: oj ect

The append method is similar tappend except that a new cons cell is not created if the car is
nil. Instead the car is set with the calling object. The obfggument is returned by this method.

Cons:get
m return: oj ect
m arguments: | nt eger

The get method returns the car of the cons cell chain at a certairiposipecified by the integer
index argument.

166 Container Objects

167

Enum [reserved]

Description
TheEnumbuiltin object is an enumeration object. The enumerati@oisstructed with the reserved
keywordenumand a list of literals or by string name with a constructor.

Constructors Summary

Constructor Description
Enum empty enumeration
Enumstring-literals... enumeration with literal items

Methods Summary

Method Description

add add a new item by name
Enum:add

m return: none

® arguments: String

The add method adds a new item to the enumeration by name. This methaths nil.

168 Container Objects

169

List [reserved]

Description
The Li st builtin object provides the facility of a double-link listThe Li st object is another
example ofterableobject. Theli st object provides support for forward and backward iteration

Constructors Summary

Constructor Description
List empty double linked list
List object-list double linked list with arguments

Methods Summary

Method Description

length returns the length of the cons cell
get-iterator returns a forward iterator

append appends an object at the end of the cons cell
insert inserts an object or set the car if nil

get returns an object at a certain position

List:length
m return: I nt eger
® arguments: none

The | engt h method returns the length of the list. The minimum lengthfisrGan empty list.

List:get-iterator

m return: |terator

® arguments: none

The get -i terator returns aforward/backward iterator for this list.

List:append
m return: bj ect
m arguments: oj ect

The append method appends an object at the end of the list. The objeatragt is returned by
this method.

170 Container Objects

List:insert
m return: oj ect
m arguments: oj ect

The i nsert method inserts an object at the beginning of the list. Thea@drgumentis returned
by this method.

List:get
m return: oj ect
m arguments: | nt eger

The get method returns the object in the list at a certain positicecHjed by the integer index
argument.

171

Vector [reserved]

Description
TheVect or builtin object provides the facility of an index array of ebjs. Thé/ect or objectis
another example dferableobject. TheVect or object provides support for forward and backward

iteration.

Constructors Summary

Constructor

Description

Vector
Vectorobject-list

empty vector
vector with arguments

Methods Summary

Method Description

get returns an object at a certain position

set set an object at a certain position

find find an object in this vector

reset reset the vector

length returns the length of the vector

append appends an object at the end of the vector
exists return true if the object argument exists
remove remove an object from this vector
get-iterator returns a forward iterator

Vector:get
m return: bj ect
® arguments: I nt eger

The get method returns the object in the vector at a certain pos#ji@tified by the integer index

argument.
Vector:set
m return: bj ect

® arguments:

I nt eger Obj ect

The set method set a vector position with an object. The first argurisathe vector index. The
second argument is the object to set. The method returndfbetdo set.

172 Container Objects

Vector:find
m return: I nt eger
m arguments: oj ect

The fi nd method try to find an object in the vector. If the object is fduthe vector index is
returned as an Integer object, else nilp is returned.

Vector:reset

m return: none

® arguments: none

The reset method reset the vector. When the method is complete, thenisempty.

Vector:length

m return: I nt eger

® arguments: none

The | engt h method returns the length of the vector. The minimum lengt@ for an empty
vector.

Vector:append

m return: oj ect

m arguments: bj ect

The append method appends an object at the end of the vector. The olsgpain@nt is returned
by this method.

Vector:exists

m return: Bool ean

m arguments: bj ect

The exi st s method returns true if the object argument exists in theare®his method is useful
to make sure that only one occurrence of an object is addedédotar.

Vector:remove

m return: none

m arguments: bj ect

The renove method removes an o bject from the vector.

Vector:get-iterator

m return: |terator

® arguments: none

The get -i terator returns aforward/backward iterator for this vector.

173

Node [reserved]

Description

TheNode builtin object is part of the graph facility of the Aleph stiard objects. A node (or vertex)
is a graph components which is linked with edges (object lEdgenode can hold a client object.

Once a node has been constructed, it is possible to linklit @dges and add it to a graph.

Constructors Summary

Constructor Description
Node default node
Nodeobject node with client object

Methods Summary

input-degree
output-degree
add-input-edge
add-output-edge
get-input-edge
get-output-edge

Method Description

get-client returns the node client object
set-client set the node client object
degree returns the node degree

returns the node input degree
returns the node input degree
link this node with an input edge
link this node with an output edge
link this node with an input edge
link this node with an output edge

Node:get-client

m return: oj ect

® arguments: none

The get-client method returns the node client object. If the client objeatdt set, nil is

returned.

Node:set-client

m return: oj ect

m arguments: bj ect

The set - cl i ent method sets the node client object. The object is returnetibynethod.

Node:degree

174 Container Objects

m return: I nt eger
® arguments: none

The degr ee method returns the node degree, that is the sum of the inguée@nd the output
degree.

Node:input-degree
m return: I nt eger
n arguments: none

The i nput - degr ee method returns the node input degree, that is the numbepaf edges to
this node.

Node:output-degree
m return: I nt eger
m arguments: none

The out put - degr ee method returns the node output degree, that is the numbeitpdibedges
for this node.

Node:add-input-edge
m return: Edge
m arguments: Edge

The add- i nput - edge method adds the edge object argument to the node input edtig&hiis
method also sets the edge target node and increase the mudelégree. The edge argument is
returned by this method.

Node:add-output-edge
m return: Edge
® arguments: Edge

The add- out put - edge method adds the edge object argument to the node output istige |
This method also sets the edge source node and increaseitheuput degree. The edge argument
is returned by this method.

Node:get-input-edge
m return: Edge
® arguments: I nt eger

The get - i nput - edge method returns the node input edge by index. If the indexgstie or
bigger that the node input degree, an exception is raised.

Node:get-output-edge
m return: Edge
® arguments: I nt eger

The get - out put - edge method returns the node output edge by index. If the inderdmtive
or bigger that the node output degree, an exception is raised

175

Edge [reserved]

Description

The Edge builtin object is part of the graph facility of the Aleph stiard objects. An edge is a
graph component which connects two nodes called resphctive source and target nodes. An
edge can be constructed alone, with two edges or with a digiect. The edge can also be added
later to the graph.

Constructors Summary

Constructor Description

Edge default edge

Edgeobject edge with client object

Edgenode node edge with source and target nodes

Methods Summary

Method Description

get-source returns the edge source node
get-target returns the edge target node
get-client returns the node client object
set-source set the edge source node
set-target set the edge target node
set-client set the node client object

Edge:get-source

m return: Node

® arguments: none

The get-source method returns the edge source node. If the client objecbtiset, nil is
returned.

Edge:get-target
m return: Node
n arguments: none

The get-target method returns the edge target node. If the client objecbissat, nil is
returned.

Edge:get-client

176 Container Objects

m return: bj ect

® arguments: none

The get-client method returns the node client object. If the client objsandt set, nil is
returned.

Edge:set-source

m return: Node

® arguments: Node
The set - sour ce method sets the edge source node. The node is returned logetiied.
Edge:set-target

m return: Node

®m arguments: Node
The set -t arget method sets the edge target node. The node is returned byéiiod.
Edge:set-client

m return: oj ect

m arguments: oj ect

The set -cl i ent method sets the node client object. The object is returnetibynethod.

177

Graph [reserved]

Description
TheG aph builtin object is a general graph class that manages a setdefsrand edges. The graph
is built by adding node and edges to the graph. Additionaéedgn be added by connecting nodes.

Constructors Summary

Constructor Description
Graph default graph

Methods Summary

Method Description

add add a node or edge

exists checks if a node or edge exists

get-edge return an edge by index

get-node return a node by index

number-of-nodes return the number of nodes

number-of-edges return the number of edges
Graph:add

m return: bj ect

m arguments: Node | Edge

The add method adds a node or an edge to the graph. When adding antleelgeethods check
that the source and target nodes are also part of the graph.

Graph:exists
m return: Bool ean
m arguments: Node | Edge

The exi st s method returns true if the node or edge argument exists igréqeh.

Graph:get-edge
m return: Edge
m arguments: I nt eger

The get - edge method returns an edge by index. If the index is out of rangesxa@eption is
raised.

178 Container Objects

Graph:get-node
m return: Node
m arguments: I nt eger

The get - node method returns a node by index. If the index is out of rangeg»areption is
raised.

Graph:number-of-nodes

m return: I nt eger

® arguments: none

The nunber - of - nodes methods returns the number of nodes in the graph.

Graph:number-of-edges

m return: I nt eger

® arguments: none

The nunber - of - edges methods returns the number of edges in the graph.

179

Queue [reserved]

Description

The Queue builtin object is a container used to queue and dequeuetsbjébe order of entry in
the queue defines the order of exit from the queue. The queasmsructed either empty or with a
set of objects.

Constructors Summary

Constructor Description
Queue default queue
Queueobj ects. . . queue with objects

Methods Summary

Method Description

flush flush the queue

enqueue engueue an object

dequeue dequeue an object

length returns the numbers of queued objects
empty-p returns true if the queue is empty

Queue:enqueue
m return: oj ect
m arguments: bj ect

The enqueue adds an object in the queue and returns the queued object.

Queue:dequeue

m return: oj ect

® arguments: none

The dequeue dequeue an object in the order it was queued.

Queue:length
m return: bj ect
n arguments: none

The | engt h returns the number of queued objects.

180

Queue:empty-p
m return: oj ect
n arguments: none

The enpt y- p method returns true if the queue is empty.

Queue:flush
m return: none
] arguments: none

The f | ush method flushes the queue so that it is empty.

Container Objects

181

Bitset [reserved]

Description
TheBi t set builtin object is a container for multi bit storage. The sifehe bitset is determined
at construction. With the use of an index, a particular hit lba set, cleared and tested.

Constructors Summary

Constructor Description
Bitset default bitset
Bitsetsi ze bitset with size

Methods Summary

Method Description
get get a bit by index
set set a bit by index
mark mark a bit by index
clear clear a bit by index
length returns the bitset length
Bitset:get
m return: Bool ean
® arguments: I nt eger

The get method returns the bit value by the index argument.

Bitset:set
m return: none
m arguments: I nt eger Bool ean

The set method set the bit value by the index argument with the badeaond argument.

Bitset:mark
m return: none
® arguments: I nt eger

The mar k method marks a bit by the index argument.

182
Bitset:clear
H return: none
m arguments: I nt eger

The cl ear method clears a bit by the index argument.

Bitset:length

m return: I nt eger

® arguments: none

The | engt h method returns the length of the bitset.

Container Objects

Buffer [reserved]

183

Description

TheBuf f er builtin object is a character buffer that is widely used withoperations. The buffer

can be constructed with or without literal arguments. Tladard methods to add or pushback
characters are available. One attractive method is the wrgthod which can write a complete
buffer to an output stream specified as an argument.

Constructors Summary

Constructor

Description

Buffer
Buffer [l i t eral]

default buffer
buffer with literals

Methods Summary

Method Description

add add a literal or buffer

get get a character

read read a character

reset reset this buffer

length return the buffer length

write write the buffer to an output stream

to-string return a string representation

get-word get a word from a network byte order

get-quad get a quad from a network byte order

get-octa get a octa from a network byte order
Buffer:add

m return: none

® arguments:

Literal | Buf fer

The add method add a literal object or a buffer to the buffer. Thedit@bject is automatically
converted to a sequence of characters. For a buffer, the @atitent is copied into the buffer.

Buffer:get
m return: Char act er
m arguments: none

The get method returns the next available character in the buffedbunot remove it.

184 Container Objects

Buffer:read

m return: Char act er
® arguments: none

The r ead method returns the next available character and remowernt the buffer.

Buffer:reset

m return: none

® arguments: none

The reset method reset the entire buffer and destroy its contents.

Buffer:length

m return: I nt eger

® arguments: none

The | engt h method returns the length of the buffer.

Buffer:write

m return: none

® arguments: Cut put

The wr i t e method writes the buffer contents to the output stream aegiim

Buffer:to-string

m return: String

® arguments: none

The t o- st ri ng method returns a string representation of the buffer.

Buffer:pushback

m return: none

® arguments: Literal

The add method push back a literal object in the buffer. The literajeat is automatically
converted to a sequence of characters.

Buffer:get-word

m return: I nt eger
E arguments: none

The get-word method reads a word from the buffer and convert it to an integke word is
assumed to be in network byte order and is converted to thddrosat before becoming an integer.

Buffer.get-quad

185

m return: I nt eger

® arguments: none

The get - quad method reads a quad from the buffer and convert it to an intéfee quad is
assumed to be in network byte order and is converted to thddrosat before becoming an integer.

Buffer:.get-octa

m return: I nt eger

® arguments: none

The get - quad method reads an octa from the buffer and convert it to an émteghe octa is
assumed to be in network byte order and is converted to thddrosat before becoming an integer.

186 Container Objects

APPENDIX D
Special Objects

This chapter is a reference of the Aleph reserved speciattdyvith their respective builtin methods.
Special objects are those objects which interact with ttermeter.

Table 11 Aleph special objects

Object Description

Object base object

Interp current interpreter
Thread thread descriptor object
Condvar condition variable object
Symbol symbol name object
Closure closure object

Lexical lexical name object
Resolver file path resolver object
Qualified qualified name object
Librarian librarian collector object

For each special objects (exc&ij ect), Aleph provides gredicatewhich can be used to test for
the object type.

Table 12 Aleph special object predicates

Object Predicate
Interp interp-p
Thread thread-p
Condvar condvar-p
Closure closure-p
Lexical lexical-p
Symbol symbol-p
Resolver resolver-p
Qualified qualified-p
Librarian librarian-p

188 Special Objects

189

Object [reserved]

Description
The base objeddbj ect provides several methods which are common to all objects.

Methods Summary

Method Description

repr object representation string
rdlock object read lock

wrlock object write lock

unlock object unlock

shared-p shared object predicate

Object:repr
m return: String
m arguments: none

The repr method returns the object name in the form of a string. Theltrs#ring is called the
representatiorstring.

Object:rdlock
m return: none
® arguments: none

The rdl ock method try to acquire the object in read-lock mode. If theeobjs currently locked
in write mode by another thread, the calling thread is sudpeintil the lock is released.

Object:wrlock
m return: none
n arguments: none

The wr | ock method try to acquire the object in write-lock mode. If théeaibis currently locked
by another thread, the calling thread is suspended untibttieis released.

Object:unlock
m return: none
n arguments: none

The unl ock method try to unlock an object. An object will be unlockedrifdeonly if the calling
thread is the one who acquired the lock.

190 Special Objects

Object:shared-p

m return: Bool ean

® arguments: none

The shar ed- p method returnsr ue if the object is shared.

191

Interp [reserved]

Description
The interpreter object is automatically bounded for eagtetng. There is no constructor for this
object. The current interpreter is bounded toititerp reserved symbol.

Data member Summary

Member Description

argv interpreter argument vector
0s-name operating system name
os-type operating system type
version full aleph version
program-name interpreter program name
major-version aleph major version number
minor-version aleph minor version number
patch-version aleph patch version number
aleph-url aleph official url name

Methods Summary

Method Description

load load a file
clone clone the interpreter
library open a shared library
set-real-precision set real precision
get-real-precision get real precision

Interp:load
m return: Bool ean
® arguments: String

The | oop method opens a file those name is the method argument andeweaa form in the
file by doing a read-eval loop. When all forms have been exef;the file is closed and the method
returnt r ue. In case of exception, the file is closed and the method refuahse.

Interp:clone
m return: Interp
®m arguments: none

The cl one method returns a clone of the calling interpreter.

192 Special Objects

Interp:library

m return: Li brary

m arguments: String

The | i brary method opens a shared library and a returns a shared libioggto

Interp:launch

m return: Thr ead

m arguments: form

The | aunch method executes the form argumentin a normal thread. Thealdhhread is created
by cloning the current interpreter.

Interp:daemon

m return: Thr ead

m arguments: form

The daenmon method executes the form argumentin a daemon thread. Theahtirread is created
by cloning the current interpreter.

Interp:set-real-precision

m return: none

m arguments: Real

The set-real - preci sion method sets the interpreter real precision. Téed-precisionis
used by the’= operator to compare real values.

Interp:get-real-precision
m return: Real
® arguments: none

The get - real - preci si on method returns the interpreter real precision. fdad-precisionis
used by the’= operator to compare real values.

193

Thread [reserved]

Description
TheThr ead object is a special object which acts as a thread descriptmh object is created with
thel aunch ordaenon reserved keywords. Note that the thread object does notdhemrstructor.

Data member Summary

Member Description
result thread completion result

Methods Summary

Method Description

wait wait for a thread to complete

normal-p normal thread predicate

daemon-p daemon thread predicate
Thread:wait

m return: none

m arguments: none

The wai t method suspends the calling thread until the thread arguasssompleted. Theai t
method is the primary mechanism to detect a thread completio

Thread:normal-p

m return: Bool ean

® arguments: none

The nor mal - p method returnsr ue if the thread argument is a normal thread.

Thread:daemon-p

m return: Bool ean
m arguments: none

The daenon- p method returnsr ue if the thread argument is a normal thread.

194 Special Objects

195

Condvar [reserved]

Description

The condition variabl€ondvar object is a special object which provides a mean of syncheeni
tion between one and several threads. The condition is gdid false unless it have been marked.
When a condition is marked, all threads waiting for that ¢ood to become true are notified and
one thread is run with that condition.

Methods Summary

Method Description

lock lock the condition variable mutex

mark mark the condition variable and notify
wait wait for a marking

reset reset the condition variable

unlock unlock the condition variable mutex
wait-unlock wait for a marking, then reset and unlock

Condvar:lock
m return: none
| | arguments: none

The | ock method locks the condition variable mutex. If the mutex reatly locked, the calling
thread is suspended until the lock is released. the methadhss the resumed thread owns the
condition variable lock. It is the thread responsibilityréset the condition variable and unlock it.

Condvar:mark
H return: none
| | arguments: none

The mar k method mark the condition variable and notify all pendingé#uds of such change. The
mark method is the basic notification mechanism.

Condvar:wait
m return: none
| | arguments: none

The wai t method wait for a condition variable to be marked. When sumidition occurs, the
suspended thread is run. When the method returns, the rdghinead owns the condition variable
lock. It is the thread responsibility to reset the conditiamiable and unlock it.

Condvar:reset

196 Special Objects

m return: none

® arguments: none

The r eset method acquire the condition variable mutex, reset the naamtt unlock it. If the lock
has been taken, the calling thread is suspended.

Condvar:unlock
m return: none
| | arguments: none

The unl ock method unlock the condition variable mutex. This methodusthbe used after a
calltol ock orwai t .

Condvar:wait-unlock

m return: none

® arguments: none

The wai t -unl ock method wait until a condition variable is marked. When suchdition
occurs, the suspended thread is run. Before the methodhsetine condition variable is reset and
the mutex unlocked. With two threads to synchronize, thithé preferred method compared to
wai t .

197

Lexical [reserved]

Description

ThelLexi cal objectis a special object built by thideph reader. A lexical name is also a literal
object. Although the best way to create a lexical name is wifbrm, the lexical object can also
be constructed with a string name. A lexical name can be nthfipa symbol by using theap
method.

Derivation summary

Derived from Description
Literal the literal object class

Constructors Summary

Constructor Description
Lexical create a nil lexical
Lexicalname create a lexical by name

Methods Summary

Method Description

map get the object mapped by the lexical
Lexical:map

m return: oj ect

m arguments: none

The nap method returns the object that is mapped by the lexical ndwost of the time, a symbol
object is returned since it is the kind of object stored in meset. Eventually the mapping might
returns an argument object if used inside a closure.

198 Special Objects

Qualified [reserved]

199

Description

TheQual i fi ed objectis a special object built by thdeph reader. A qualified object is similar to
a lexical object. Itis also a literal object. Like a lexicame, a qualified name can be created with
a form or by direct construction with a name. Like a lexicaingg themmap method can be used to
retrieve the symbol associated with that name.

Derivation summary

Derived from

Description

Literal

the literal object class

Constructors Summary

Constructor

Description

Qualified
Qualifiedname

create a nil qualified
create a qualified by name

Methods Summary

Method

Description

map

get the object mapped by the qualified

Qualified:map
m return: oj ect

® arguments: none

The map method returns the object that is mapped by the qualified naviast of the time, a
symbol object is returned since it is the kind of object sidrea nameset. Eventually the mapping
might returns an argument object if used inside a closure.

200 Special Objects

201

Symbol [reserved]

Description

The Synbol object is a special object used by nameset to map a name withjaat. Generally

a symbol is obtained by mapping a lexical or qualified name.aA®bject, the symbol holds a
name, an object and @nstflag. The symbol nhame cannot be changed since it might int@du
inconsistencies in the containing nameset. On the othet,lihaconstflag and the object can be
changed. A symbol is a literal object. A symbol that is notdeid to a nameset can be constructed
dynamically. Such symbol is said to bet interned

Derivation summary

Derived from

Description

Literal

the literal object class

Constructors Summary

Constructor

Description

Symbolname
Symbolname object

create a symbol by name
create a symbol by name and object

Methods Summary

Method Description

get-const get the symbol const flag
set-const set the symbol const flag
get-object get the symbol object
set-object set the symbol object

Symbol:get-const

m return: Bool ean

® arguments: none

The get - const method returns the symbol const flag. If the flag is true, threlsy object
cannot be changed unless that flags is reset witls #te const method.

Symbol:set-const

202 Special Objects

m return: none
m arguments: Bool ean

The set - const method set the symbol const flag. This method is useful to maymbol as
const or to make a const symbol mutable.

Symbol:get-object

m return: bj ect

m arguments: none
The get - obj ect method returns the symbol object.
Symbol:set-object

m return: none

m arguments: oj ect

The set - obj ect method set the symbol object.

Closure [reserved]

203

Description

TheC osur e object is a special object that represents a lambda or gampnassion. A closure
is represented by a set of arguments, a set of closed vagiabtea form to execute. A boolean flag
determines the type of closure. The closure predicatebda- p returnst r ue if the closure is a
lambda expression. Closed variables can be defines andg&hith the use of the qualified name
mechanism. Closure mutation is achieved withdldel- ar gurent andset - f or mmethod. An
empty closure can be defined at construction as well.

Derivation summary

Derived from

Description

Object

the base object class

Constructors Summary

Constructor Description
Closure create a default closure
Closuretype create a lambda expression if true

Methods Summary

add-argument

Method Description

lambda-p return true for a lambda closure
get-form get the closure form

set-form set the closure form

add an argument to the closure

Closure:lambda-p
m return: Bool ean

® arguments: none

The | anbda- p predicate returns true if the closure is a lambda expres3ioa predicate returns

false for a gamma expression.

Closure:get-form

m return: oj ect

204 Special Objects

® arguments: none

The get - f or m method returns the closure form object.

Closure:set-form

m return: none

m arguments: bj ect

The set - f or m method sets the closure form object.

Closure:add-argument

m return: none

m arguments: String| Lexical | form

The add- ar gunment method adds an argument to the closure. The argument objebtieceither
a string, a lexical object of a simple form that defineastlexical name.

205

Librarian [reserved]

Description

The Li brari an object is a special object that read or write a librarian. Hafitt argument, a
librarian is created for writing purpose. With one file narmguanent, the librarian is created for
reading.

Derivation summary

Derived from Description
Object the base object class

Constructors Summary

Constructor Description
Librarian create a librarian for writing
Librarianname create a librarian for reading

Methods Summary

Method Description

add add a new file to the librarian

write write a librarian

length return the librarian length

extract extract a file from the librarian
exists-p check if a file exists in the librarian
get-names returns a vector of file in the librarian

Librarian:add
m return: none
m arguments: String

The add method adds a file into the librarian. The librarian must Hzeen opened in write mode.

Librarian:write
H return: none

m arguments: String

206 Special Objects

The wri t e method writes a librarian to a file those name is the argument.

Librarian:length

m return: I nt eger

® arguments: none

The | engt h method returns the number of file in the librarian. This mdthork, no matter how
the librarian has been opened.

Librarian:exists-p

m return: Bool ean

® arguments: String

The exi st s- p predicate returns true if the file argument exists in thealilam.

Librarian:extract

m return: | nput Mapped

m arguments: String

The ext ract method returns an input stream mapped to the file name argumen

207

Resolver [reserved]

Description
The Resol ver object is a special object that gives the ability to open alfdeed on a file path
resolver. The resolver maintains a list of valid path andmet an input stream for a file on demand.

Derivation summary

Derived from Description
Object the base object class

Constructors Summary

Constructor Description
Resolver create a default resolver

Methods Summary

Method Description

add add a new path to the resolver
lookup find a file by resolving its name
valid-p check for a valid file

Resolver:add

m return: none
m arguments: String

The add method adds a path into the resolver. The path can pointereitha directory or a
librarian.

Resolver:lookup

m return: I nput
m arguments: String

The | ookup method resolves the file name argument and returns an impatstor that file.

Resolver:valid-p

208 Special Objects

m return: Bool ean

® arguments: String

The val i d- p predicate returns true if the file name argument can be redolif the file name
can be resolved, tHeookup method can be called to get an input stream.

BIBLIOGRAPHY

[1] Revised Report on the Algorithmic Language Scheme. fieethreport, November 1991.
[2] C++ Language Reference Manydl996.

[3] Guy L. Steele JrCommon Lisp, The Languag990.

[4] Donald E. Knuth.The Art of Computer Programming, Volume1997.

[5] Donald E. Knuth.The Art of Computer Programming, Volume1997.

[6] Donald E. Knuth.The Art of Computer Programming, Volume1®97.

[7] George Springer and Daniel P. Friedm&theme and the Art of Programmint997.

[8] Bjarne StroustrupThe C++ Programming Language?000.

210 BIBLIOGRAPHY

INDEX

212

Character operator, 28
Integer operator, 22
Real operator, 25

Character operator, 28
Integer operator, 22
Real operator, 25

Character operator, 28
Integer operator, 22
Real operator, 25

Character operator, 28
Integer operator, 22
Real operator, 25

Integer operator, 22
Real operator, 24

Character operator, 28
Integer operator, 22
Real operator, 24

Character operator, 28
Integer operator, 22
Real operator, 24

Integer operator, 22
Real operator, 24

Character operator, 28
Integer operator, 22
Real operator, 25
fact
factorial example, 5
| oad, 3

abs
Integer method, 135
Real method, 144
Relatif method, 139
acos
Real method, 146
acosh
Real method, 146
add
Buffer method, 183
Enum method, 167
Graph method, 177
Librarian method, 205
Resolver method, 207
add-argument
Closure method, 204

add-

add-

input-edge

Node method, 174
output-edge

Node method, 174

advice

alep

closure expression, 64
h
interpreter, 1

alpha-p

and

Character method, 150

Integer method, 137
Relatif method, 141

append

args

argu

asin

Cons method, 165
List method, 169
Vector method, 172

expression argument, 9

multiple arguments binding, 7

ment
on command line, 2
with lambda expression, 9

Real method, 145

asinh

Real method, 146

assert

atan

atan

axc

general syntax, 12
reserved keywords, 75

Real method, 146
h
Real method, 147

aleph cross compiler, 1

Bitset

blan

constructors summary, 181
methods summary, 181
object reference, 181

k-p

Character method, 150

block

reserved keywords, 77

block-p

Cons method, 164

Boolean

constructor summary, 133
derivation summary, 133
object reference, 133
operators summary, 133

Buffer

constructors summary, 183

INDEX

INDEX

methods summary, 183
object reference, 183

ceiling

Real method, 143
Character

constructors summary, 149

derivation summary, 149

method<, 28

method<=, 28

method>, 28

method>=, 28

method +, 28

method ++, 28

method +=, 28

method -, 28

method —, 28

method -=, 28

method =, 28

method ==, 28

methods summary, 149

object reference, 149

operators summary, 149

standard constructors, 27
class

reserved keywords, 79
clear

Bitset method, 181
clone

Interp method, 191
Closure

constructors summary, 203

creating, 64

derivation summary, 203

methods summary, 203

object reference, 203
comments, 4
Condvar

methods summary, 195

object reference, 195
Cons

constructors summary, 163

methods summary, 163

object reference, 163
cons

object methods, 31
const

general syntax, 9

lambda expression, 9

reserved keywords, 81
cos

Real method, 145
cosh

Real method, 146

213

daemon

Interp method, 192

reserved keywords, 83
daemon thread, 51
daemon-p

Thread method, 193
decr

Character method, 150
degree

Node method, 173
delay

reserved keywords, 85
dequeue

Queue method, 179
digit-p

Character method, 150
do

general syntax, 10

reserved keywords, 87

Edge

constructors summary, 175

object reference, 175
empty-p

Queue method, 180
enqueue

Queue method, 179
Enum

constructors summary, 167

methods summary, 167

object reference, 167
enum

reserved keywords, 89
eof-p

Character method, 150
eol-p

Character method, 150
errorin

reserved keywords, 91
eval

general syntax, 12

reserved keywords, 93
evaluation, 4
even-p

Integer method, 137

Relatif method, 141
exception, 16

handler, 45

throwing, 45
exists

Graph method, 177

Vector method, 172
exists-p

Librarian method, 206

214

exp
Real method, 144
extract
Librarian method, 206
String method, 154

fill-left, 30

String method, 155
fill-right, 30

String method, 155
find

Vector method, 171
floor

Real method, 144
flush

Queue method, 180
for

reserved keywords, 16, 95
force

reserved keywords, 97
form

block notation, 5

general syntax, 4
format

Real method, 147
function

declaration, 5

gamma expression

general syntax, 6
get

Bitset method, 181

Buffer method, 183

Cons method, 165

List method, 170

Regex method, 159

String method, 155

Vector method, 171
get-cadddr

Cons method, 164
get-caddr

Cons method, 164
get-cadr

Cons method, 164
get-car, 31

Cons method, 163
get-cdr, 31

Cons method, 163
get-client

Edge method, 175

Node method, 173
get-const

Symbol method, 201
get-edge

INDEX

Graph method, 177
get-enum

Item method, 131
get-form

Closure method, 203
get-input-edge

Node method, 174
get-iterator

Cons method, 164

List method, 169

Vector method, 172
get-node

Graph method, 178
get-object

Symbol method, 202
get-octa

Buffer method, 185
get-output-edge

Node method, 174
get-quad

Buffer method, 184
get-real-precision

Interp method, 192
get-source

Edge method, 175
get-target

Edge method, 175
get-word

Buffer method, 184
Graph

constructors summary, 177

methods summary, 177

object reference, 177

hashid, 30
hello world, 1

if

general syntax, 10

reserved keywords, 99
incr

Character method, 149
input-degree

Node method, 174
insert

List method, 170
Integer

abs, 23

constructors summary, 135

derivation summary, 135

even-p, 23

literal format, 21

method *, 22

method *=, 22

INDEX
method +, 22
method ++, 22
method +=, 22
method -, 22
method —, 22
method -=, 22
method /, 22
method /=, 22

methods summary, 135
mod, 23
object reference, 135
odd-p, 23
operators summary, 135
to-string, 23

Interp
member summary, 191
methods summary, 191
object reference, 191

interpreter
arguments, 48
command line arguments, 2
get-real-precision, 27
interactive key binding, 2
loading a source file, 3
set-real-precision, 27
version and os, 49

Item
derivation summary, 131
methods summary, 131
object reference, 131
operators summary, 131

lambda

reserved keywords, 101
lambda expression

and argument, 9

functional closure, 6
lambda-p

Closure method, 203
launch

Interp method, 192

reserved keywords, 103
length

Bitset method, 182

Buffer method, 184

Cons method, 164

Librarian method, 206

List method, 169

Queue method, 179

Regex method, 158

String method, 153

Vector method, 172
Lexical

constructors summary, 197

derivation summary, 197
methods summary, 197
object reference, 197
lexical
character set, 27
Librarian
constructors summary, 205
derivation summary, 205
methods summary, 205
object reference, 205
library
Interp method, 192
link
Cons method, 165
cons method, 33
List
constructors summary, 169
methods summary, 169
object reference, 169
Literal
derivation summary, 129
methods summary, 129
object reference, 129
load
Interp method, 191
lock
Condvar method, 195
log
Real method, 144
lookup
Resolver method, 207
loop
general syntax, 11
reserved keywords, 105

map, 33

Lexical method, 197

Qualified method, 199
mark

Bitset method, 181

Condvar method, 195
match

Regex method, 159
mod

Integer method, 137

Relatif method, 141
muting

closure expression, 64

nameset, 8

and symbol, 8

reserved keywords, 107
nan-p

Real method, 143

215

216

nil-p
Character method, 151
Cons method, 164
Node
constructors summary, 173
methods summary, 173, 175
object reference, 173
normal thread, 51
normal-p
Thread method, 193
not
Integer method, 136
Relatif method, 140
number-of-edges
Graph method, 178
number-of-nodes
Graph method, 178

Object
methods summary, 189
object reference, 189
object
builtin, 3
odd-p
Integer method, 137
Relatif method, 141
or
Integer method, 135
Relatif method, 139
output-degree
Node method, 174

predicate, 13

functional programming, 13

symbolic programming, 13
printin

reserved keywords, 109
protect

general syntax, 12

reserved keywords, 111
pushback

Buffer method, 184

Quialified
constructors summary, 199
derivation summary, 199
methods summary, 199
object reference, 199
Queue
constructors summary, 179
methods summary, 179
object reference, 179

rdlock

INDEX

Object method, 189

Buffer method, 184

Real

abs, 26

acos, 26

acosh, 26

asin, 26

asinh, 26

atan, 26

atanh, 26

ceiling, 26

constructor, 24
constructors summary, 143
cos, 26

cosh, 26

derivation summary, 143
floor, 26

literal format, 24

log, 26

method<, 25
method<=, 25
method>, 25
method>=, 25

method *, 24

method *=, 24

method +, 24

method ++, 24

method +=, 24

method -, 24

method —, 24

method -=, 24

method /, 24

method /=, 24

method =, 25

method ==, 25
methods summary, 143
object reference, 143
operators summary, 143
precision and accuracy, 27
sin, 26

sinh, 26

sqrt, 26

tan, 26

tanh, 26

recursion

U combinator, 67
Y combinator, 67

Regex

constructor summary, 158
derivation summary, 158
methods summary, 158
operators summary, 158

INDEX

regex
object reference, 157
Relatif
constructors summary, 139
derivation summary, 139
methods summary, 139
object reference, 139
operators summary, 139
remove
Vector method, 172
replace
Regex method, 159
repr
Object method, 189
reserved keyword
if, 10
reserved keywords
assert, 12
const, 9
do, 10
eval, 12
loop, 11
protect, 12
return, 11
switch, 11
throw, 45
try, 45
while, 10
reset
Buffer method, 184
Condvar method, 195
Vector method, 172
Resolver
constructors summary, 207
derivation summary, 207
methods summary, 207
object reference, 207
return
general syntax, 11
reserved keywords, 113

set

Bitset method, 181

Vector method, 171
set-car, 31

Cons method, 165
set-cdr, 31

Cons method, 165
set-client

Edge method, 176

Node method, 173
set-const

Symbol method, 201
set-form

217

Closure method, 204

closure method, 64
set-object

Symbol method, 64, 202
set-real-precision

Interp method, 192

set-source

Edge method, 176
set-target

Edge method, 176
shared-p

Object method, 190
shl

Integer method, 136
Relatif method, 140
shr
Integer method, 136
Relatif method, 140
sin
Real method, 145
sinh
Real method, 146
split
String method, 154
sqrt
Real method, 144
String
constructors summary, 153
derivation summary, 153
methods summary, 153
object reference, 153
operators summary, 153
standard constructors, 29
strip
String method, 154
strip-left
String method, 154
strip-right
String method, 154
sub-left
String method, 155
sub-right
String method, 155
substr
String method, 156
switch
general syntax, 11
reserved keywords, 117
Symbol
constructors summary, 201
derivation summary, 201
methods summary, 201
object reference, 201

218

symbol
and nameset, 8
sync
reserved keywords, 115

tan

Real method, 145
tanh

Real method, 146
Thread

member summary, 193

methods summary, 193

object reference, 193
thread

normal and daemon, 51
throw

reserved keywords, 45, 119
to-literal

Literal method, 129
to-lower

String method, 155
to-string

Buffer method, 184

Literal method, 129
to-upper

String method, 155
trans

lambda expression, 9

reserved keywords, 121

symbol binding, 9
try

reserved keywords, 45, 123

unlock
Condvar method, 196
Object method, 189

valid-p
Resolver method, 207
Vector
constructors summary, 171
methods summary, 171
object reference, 171

wait

Condvar method, 195

Thread method, 193
wait-unlock

Condvar method, 196
while

general syntax, 10

reserved keywords, 125
write

Buffer method, 184

Librarian method, 205
wrlock
Object method, 189

xor
Integer method, 137
Relatif method, 141

Y
fixed point combinator, 68

zero-p
Integer method, 137
Real method, 147
Relatif method, 141

INDEX

Colophon

This manual was written for théTieXdocumentation preparation system. A custom documers clas
was designed by the author. The document style has beenifsgéhals to produce a high quality
technical manual. Title, chapter and section names havefreeluced with an Helvetica font. The
document has been produced with a 10 points Times font. Boiis fire assumed to be in the public
domain. The documentation is available in both A4 and Idttenat.

