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1 Introduction: Differentiation of Algorithms

Most nonlinear computations require the evaluation of first and higher derivatives of vector
functions with m components in n real or complex variables. This requirement arises par-
ticularly in optimization, nonlinear equation solving, numerical studies of bifurcation, and
the solution of nonlinear differential or integral equations. Often these functions are defined
by sequential evaluation procedures involving many intermediate variables. By eliminating
the intermediate variables symbolically, it is theoretically always possible to express the m
dependent variables directly in terms of the n independent variables. Typically, however,
the attempt results in unwieldy algebraic formulae, if it can be completed at all. Symbolic
differentiation of the resulting formulae will usually exacerbate this problem of expression
swell and often entails the repeated evaluation of common expressions.

An obvious way to avoid such redundant calculations is to apply an optimizing compiler
to the source code that can be generated from the symbolic representation of the derivatives
in question. Exactly this approach was investigated by Bert Speelpenning, a student of
Bill Gear, during his Ph.D. research [20] at the University of Illinois from 1977 to 1980.
Eventually he realized that at least in the cases n = 1 and m = 1, the most efficient code
for the evaluation of derivatives can be obtained directly from that for the evaluation of the
underlying vector function. In other words, he advocated the differentiation of evaluation
algorithms rather than formulae. In his thesis he made the particularly striking observation
that the gradient of a scalar-valued function (i.e. m = 1) can always be obtained for no
more than five times the operations count of evaluating the function itself. This bound is
completely independent of n, the number of independent variables, and allows the row-wise
computation of Jacobians for at most 5 m times the effort of evaluating the underlying
vector function.

When m, the number of component functions, is larger than n, Jacobians can be ob-
tained more cheaply column by column through propagating gradients forward. This clas-
sical technique of automatic differentiation goes back at least to Wengert [22] and was later
popularized by Rall [18]. It was noted in [8] that in general neither the row-by-row nor the
column-by-column method is optimal for the calculation of Jacobians. The potentially more
efficient alternatives, however, require some combinatorial optimization and involve large
data structures that are not necessarily accessed sequentially [11]. Therefore, the package
ADOL-C described here was written primarily for the evaluation of derivative vectors (e.g.
rows or columns of Jacobians). This approach also simplifies parameter passing between
subroutines and calls from different computer languages.

The reverse propagation of gradients employed by Speelpenning is closely related to the
adjoint sensitivity analysis for differential equations, which has been used at least since
the late sixties, especially in nuclear engineering [5],[6], weather forecasting [21], and neu-
ral networks [23]. The discrete analog used here was apparently first discovered in the
early seventies by Ostrovskii et al. [17] and Linnainmaa [16] in the context of rounding



5

error estimates. Since then, there have been numerous re-discoveries and various software
implementations. Speelpenning himself wrote a Fortran precompiler called JAKE, which
was upgraded at Argonne National Laboratory to JAKEF. Currently, there exist at least
five other precompilers for automatic differentiation, namely ADIFOR5, GRESS/ADGEN6,
ODYSSEE7, PADRE28, and TAMC9.

Following the work of Kedem [14] with the Fortran preprocessor AUGMENT, Rall [19]
implemented in 1983 the forward propagation of gradients by overloading in PASCAL-SC.
In contrast to precompilation, overloading requires only minor modifications of the user’s
evaluation program and does not generate intermediate source code. Our package ADOL-C
utilizes overloading in C++, but the user has to know only C. The acronym stands for
Automatic Differentiation by OverLoading in C++. As starting points to retrieve further
information on techniques and application of automatic differentiation, as well on other
overloading based packages like AD0110 and IMAS11, we refer to the conference proceedings
[10] and [2] and the web page http://www.mcs.anl.gov/autodiff/AD_Tools/index.html.

ADOL-C facilitates the simultaneous evaluation of arbitrarily high directional deriva-
tives and the gradients of these Taylor coefficients with respect to all independent variables.
Relative to the cost of evaluating the underlying function, the cost for evaluating any such
scalar-vector pair grows as the square of the degree of the derivative but is still completely
independent of the numbers m and n.

For the reverse propagation of derivatives, the whole execution trace of the original
evaluation program must be recorded, unless it is recalculated in pieces as advocated in [9].
In ADOL-C, this potentially very large data set is written first into a buffer array and later
into a file if the buffer is full or if the user wishes a permanent record of the execution trace.
In either case, we will refer to the recorded data as the tape. The user may create several
tapes in several named arrays or files. During subsequent derivative evaluations, tapes are
always accessed strictly sequentially, so that they can be paged in and out to disk without
significant runtime penalties. If written into a file, the tapes are self-contained and can be
used by other Fortran, C or C++ programs.

This manual is organized as follows. Section 2 explains the modifications required to
convert undifferentiated code to code that compiles with ADOL-C. For better efficiency
and programming convenience one may employ the vector and matrix classes described
in Section 3. Section 4 covers aspects of the tape of recorded data that ADOL-C uses to
evaluate arbitrarily high order derivatives. The discussion includes storage requirements and
the tailoring of certain tape characteristics to fit specific user needs. Section 5 offers a more

5Contact: Paul Hovland, ANL-MCS, USA, e-mail: hovland@mcs.anl.gov
6Contact: Jim Horwedel, ORNL, USA, e-mail: jqh@ornl.gov
7Contact: Christele Faure, INRIA Sophia-Antipolis, France, e-mail: odyssee@sophia.inria.fr
8Contact: Kiochi Kubota, CHUO University, Japan, e-mail: kubota@ise.chuo-u.ac.jp
9Contact: Ralf Giering, Max-Planck-Intitut für Meteorologie, Germany, e-mail: giering@dkrz.de

10Contact: John Reid, Atlas Centre, Rutherford Appleton Laboratory, England, e-mail: jkr@rl.ac.uk
11Contact: Andreas Rhodin, GKSS Research Center, Germany, e-mail: rhodin@gkss.de
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mathematical characterization of ADOL-C. The basic derivative evaluation routines are
explained in Section 6. Descriptions of the calling sequences of more convenient derivative
evaluation routines are contained in Section 7. This section covers also the detection of
sparsity using ADOL-C. Section 8 details the installation and use of the ADOL-C package.
Finally, Section 9 furnishes some example programs that incorporate the ADOL-C package
to evaluate first and higher-order derivatives. These and other examples are distributed
with the ADOL-C source. The user should simply refer to them when the more abstract
and general descriptions of ADOL-C provided in this document do not suffice.

From the users point of view Version 1.8 is almost identical to Version 1.7, which was
released in September 1996. There are quite a few new drivers, including some for the
detection of sparsity and the evaluation of higher order tensors of explicit or implicit func-
tions. With the exception of hos forward all formerly existing ADOL-C functions have the
same calling sequences. While keeping the old header files adutils.h and adutilsc.h for
compatibility reasons Version 1.8 provides a more structured hierarchy of header files sup-
plying the user with the interfaces to all ADOL-C functions (see Section 8.3). The library
sources have been completely reorganized and the taping mechanism was altered so that
tapes generated with Version 1.7 are no longer interpretable. New tapes will be stamped
and old tapes rejected by Version 1.8. Compatibility with the Fortran version ADOL-F
developed by Dima Shiriaev in 1996 has not been maintained as the future of that project
is currently uncertain. Internal changes to ADOL-C achieve reductions in tape sizes and
run times of up to about 25 percent compared to Version 1.7.

2 Preparing a Section of C or C++ Code for Differentiation

ADOL-C was designed so that the user has to make only minimal changes to his undif-
ferentiated code. The main modifications concern variable declarations and input/output
operations.

2.1 Declaring Active Variables

The key ingredient of automatic differentiation by overloading is the concept of an active
variable. All variables that may at some time during the program execution be considered
differentiable quantities must be declared to be of an active type. ADOL-C uses one active
scalar type, called adouble, whose real part is of the standard type double. There are
corresponding types adoublev and adoublem of vectors and matrices, whose components
function like adoubles. Typically, one will declare the independent variables and all quanti-
ties that directly or indirectly depend on them as active. Other variables that do not depend
on the independent variables but enter, for example, as parameters, may remain one of the
passive types double, float, or int. There is no implicit type conversion from adouble to
any of these passive types; thus, failure to declare variables as active when they depend on
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other active variables will result in a compile-time error message. In data flow terminology,
the set of active variable names must contain all its successors in the dependency graph.
All components of indexed arrays must have the same activity status.

The real component of an adouble x can be extracted as value(x). In particular,
such explicit conversions are needed for the standard output procedure printf. The output
stream operator � is overloaded such that first the real part of an adouble and then the
string “(a)” is added to the stream. The input stream operator � can be used to assign
a constant value to an adouble. Naturally, adoubles may be components of vectors,
matrices, and other arrays, as well as members of structures or classes. For regular arrays
it may be more efficient to use the vector and matrix classes discussed in Section 3.

The C++ class adouble, its member functions, and the overloaded versions of all
arithmetic operations, comparison operators, and most ANSI C functions are contained in
the file adouble.C and its header adouble.h. The latter must be included for compilation
of all program files containing adoubles and corresponding operations.

2.2 Marking Active Sections

All calculations involving active variables that occur between the void function calls

trace on(tag,keep) and trace off(file)

are recorded on a sequential data set called tape. Pairs of these function calls can appear
anywhere in a C++ program, but they may not overlap. The nonnegative integer argu-
ment tag identifies the particular tape for subsequent function or derivative evaluations.
Unless several tapes need to be kept, tag = 0 may be used throughout. The optional
integer arguments keep and file will be discussed in Section 4. We will refer to the se-
quence of statements executed between a particular call to trace on and the following call
to trace off as an active section of the code. The same active section may be entered
repeatedly, and one can successively generate several traces on distinct tapes by changing
the value of tag. Both functions trace on and trace off are prototyped in the header file
taputil.h, which is included by the header adouble.h automatically.

Active sections may contain nested or even recursive calls to functions provided by the
user. Naturally, their formal and actual parameters must have matching types. In par-
ticular, the functions must be compiled with their active variables declared as adoubles
and with the header file adouble.h included. Variables of type adouble may be declared
outside an active section and need not go out of scope before the end of an active section.
It is not necessary – though desirable – that free-store adoubles allocated within an active
section be deleted before its completion. The values of all adoubles that exist at the begin-
ning and end of an active section are automatically recorded by trace on and trace off,
respectively.
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2.3 Selecting Independent and Dependent Variables

One or more active variables that are read in or initialized to the values of constants or
passive variables must be distinguished as independent variables. Other active variables that
are similarly initialized may be considered as temporaries (e.g., a variable that accumulates
the partial sums of a scalar product after being initialized to zero). In order to distinguish
an active variable x as independent, ADOL-C requires an assignment of the form

x �= px // px of any passive numeric type .

This special initialization ensures that value(x) = px, and it should precede any other
assignment to x. However, x may be reassigned other values subsequently. Similarly, one
or more active variables y must be distinguished as dependent by an assignment of the form

y �= py // py of any passive type ,

which ensures that py = value(y) and should not be succeeded by any other assignment
to y. However, a dependent variable y may have been assigned other real values previously,
and it could even be an independent variable as well. The derivative values calculated after
the completion of an active section always represent derivatives of the final values of the
dependent variables with respect to the initial values of the independent variables.

The order in which the independent and dependent variables are marked by the �=
and �= statements matters crucially for the subsequent derivative evaluations. However,
these variables do not have to be combined into contiguous vectors. ADOL-C counts the
number of independent and dependent variable specifications within each active section and
records them in the header of the tape.

2.4 A Subprogram as an Active Section

As a generic example let us consider a C(++) function of the form shown in Figure 1.

If eval is to be called from within an active C(++) section with x and y as vectors of
adoubles and the other parameters passive, then one merely has to change the type decla-
rations of all variables that depend on x from double or float to adouble. Subsequently,
the subprogram must be compiled with the header file adouble.h included as described in
Section 2.1. Now let us consider the situation when eval is still to be called with integer
and real arguments, possibly from a program written in Fortran77, which does not allow
overloading.

To automatically compute derivatives of the dependent variables y with respect to the
independent variables x, we can make the body of the function into an active section. For
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void eval(int n, int m, // number of independents and dependents
double *x, // independent variable vector
double *y, // dependent variable vector
int *k, // integer parameters
double *z) // real parameters

{ // beginning of function body
double t = 0; // local variable declaration
for (int i=0; i < n; i++) // begin crunch

t += z[i]*x[i]; // continue crunch
· · · · · · · · · · · · // continue crunch
· · · · · · · · · · · · // continue crunch
y[m-1] = t/m; // end crunch

} // end of function

Figure 1: Generic example of a subprogram to be activated

example, we may modify the previous program segment as in Figure 2. The renaming and
doubling up of the original independent and dependent variable vectors by active counter-
parts may seem at first a bit clumsy. However, this transformation has the advantage that
the calling sequence and the “crunchy” part of eval remain completely unaltered. If the
temporary variable t had remained a double, the code would not compile, because of a
type conflict in the assignment following the declaration. More detailed example codes are
listed in Section 9.

2.5 Overloaded Operators and Functions

As in the subprogram discussed above, the actual computational statements of a C(++)
code need not be altered for the purposes of automatic differentiation. All arithmetic
operations, as well as the comparison and assignment operators, are overloaded, so any or
all of their operands can be an active variable. An adouble x occurring in a comparison
operator is effectively replaced by its real value value(x). Most functions contained in
the ANSI C standard for the math library are overloaded for active arguments. The only
exceptions are the non-differentiable functions fmod and modf. Otherwise, legitimate C
code in active sections can remain completely unchanged, provided the direct output of
active variables is avoided. The rest of this subsection may be skipped by first time users
who are not worried about marginal issues of differentiability and efficiency.

The modulus fabs(x) is everywhere Lipschitz continuous but not properly differentiable
at the origin, which raises the question of how this exception ought to be handled. For-
tunately, one can easily see that fabs(x) and all its compositions with smooth functions
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void eval( int n,m, // number of independents and dependents
double *px, // independent passive variable vector
double *py, // dependent passive variable vector
int *k, // integer parameters
double *z) // parameter vector

{ // beginning of function body
short int tag = 0; // tape array and/or tape file specifier
trace on(tag); // start tracing
adouble *x, *y; // declare active variable pointers
x = new adouble[n]; // declare active independent variables
y = new adouble[m]; // declare active dependent variables
for (int i=0; i < n; i++)

x[i] �= px[i]; // select independent variables
adouble t = 0; // local variable declaration
for (int i=0; i < n; i++) // begin crunch

t += z[i]*x[i]; // continue crunch
· · · · · · · · · · · · // continue crunch
· · · · · · · · · · · · // continue crunch
y[m-1] = t/m; // end crunch as before
for (int j=0; j < m; j++)

y[j] �= py[j]; // select dependent variables
delete[] y; // delete dependent active variables
delete[] x; // delete independent active variables
trace off(); // complete tape

} // end of function

Figure 2: Activated version of the code listed in Figure 1

are still directionally differentiable. These directional derivatives of arbitrary order can
be propagated in the forward mode without any ambiguity. In other words the routine
forward described in Section 6 computes Gateaux derivatives in certain directions, which
reduce to Fréchet derivatives only if the dependence on the direction is linear. Otherwise,
the directional derivatives are merely positively homogeneous with respect to the scaling
of the directions. For the reverse mode, the derivative of fabs(x) at the origin is set by
ADOL-C somewhat arbitrarily to zero.

We have defined binary functions fmin and fmax for adouble arguments, so that
function and derivative values are obtained consistent with those of fabs according to the
identities

min(a, b) = [a + b − |a − b|]/2 and max(a, b) = [a + b + |a − b|]/2 .
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These relations cannot hold if either a or b is infinite, in which case fmin or fmax and their
derivatives may still be well defined. It should be noted that the directional differentiation
of fmin and fmax yields at ties a = b different results from the corresponding assignment
based on the sign of a − b. For example, the statement

if (a < b) c = a; else c = b;

yields for a = b and a′ < b′ the incorrect directional derivative value c′ = b′ rather than
the correct c′ = a′. Therefore this form of conditional assignment should be avoided by
use of the function fmin(a,b). There are also versions of fmin and fmax for two passive
arguments and mixed passive/active arguments are handled by implicit conversion. On the
function class obtained by composing the modulus with real analytic functions, the concept
of directional differentiation can be extended to the propagation of unique one-sided Taylor
expansions. The branches taken by fabs, fmin, and fmax, are recorded on the tape.

The functions sqrt, pow, and some inverse trigonometric functions have infinite slopes
at the boundary points of their domains. At these marginal points the derivatives are set by
ADOL-C to either ±InfVal, 0 or NoNum, where InfVal and NoNum are user-defined
parameters, see Section 4.2. On IEEE machines InfVal can be set to the special value
Inf = 1.0/0.0 and NoNum to NaN = 0.0/0.0. For example, at a = 0 the first derivative
b′ of b = sqrt(a) is set to

b′ =











InfVal if a′ > 0
0 if a′ = 0
NoNum if a′ < 0

.

In other words, we consider a and consequently b as a constant when a′ or more generally
all computed Taylor coefficients are zero.

The general power function pow(x,y) = xy is computed whenever it is defined for the
corresponding double arguments. If x is negative, however, the partial with respect to an
integral exponent is set to zero. The derivatives of the step functions floor, ceil, frexp,
and ldexp are set to zero at all arguments x. The result values of the step functions are
recorded on the tape and can later be checked to recognize whether a step to another level
was taken during a forward sweep at different arguments than at taping time.

Some C implementations supply other special functions, in particular the error function
erf(x). For the latter, we have included an adouble version in adouble.C, which has
been commented out for systems on which the double valued version is not available. The
increment and decrement operators ++, −− (prefix and postfix) are available for adoubles
and also the active subscripts described in the Section 3.4. Ambiguous statements like a +=
a++; must be avoided because the compiler may sequence the evaluation of the overloaded
expression differently from the original in terms of doubles.
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As we have indicated above, all subroutines called with active arguments must be mod-
ified or suitably overloaded. The simplest procedure is to declare the local variables of the
function as active so that their internal calculations are also recorded on the tape. Unfor-
tunately, this approach is likely to be unnecessarily inefficient and inaccurate if the original
subroutine evaluates a special function that is defined as the solution of a particular math-
ematical problem. The most important examples are implicit functions, quadratures, and
solutions of ordinary differential equations. Often the numerical methods for evaluating
such special functions are elaborate, and their internal workings are not at all differentiable
in the data. Rather than differentiating through such an adaptive procedure, one can obtain
first and higher derivatives directly from the mathematical definition of the special function.
Currently this direct approach has been implemented only for user-supplied quadratures as
described in Section 8.5.

2.6 Conditional Assignments

In some situations it may be desirable to calculate the value and derivatives of a function at
arbitrary arguments by using a tape of the function evaluation at one argument and reeval-
uating the function and its derivatives using the given ADOL-C routines. This approach
can significantly reduce run times, and it also allows one to port problem functions, in the
form of the corresponding tape files, into a computing environment that does not support
C++ but does support C or Fortran.

Whenever the evaluation utilities function, gradient, etc., return negative values one
has to re-tape the active section at the current argument. The crux of the problem lies in
the fact that the tape records only the operations that are executed during one particular
evaluation of the function. It also has no way to evaluate integrals since the corresponding
quadratures are never recorded on the tape.

It appears unsatisfactory that, for example, a simple table lookup of some physical
property forces the re-recording of a possibly much larger calculation. However, the basic
philosophy of ADOL-C is to overload arithmetic, rather than to generate a new program
with jumps between “instructions”, which would destroy the strictly sequential tape access
and require the infusion of substantial compiler technology. Therefore, we introduced the
two constructs of conditional assignments and active integers as partial remedies to the
branching problem.

In many cases, the functionality of branches can be replaced by conditional assignments.
For this purpose, we provide a special function called condassign(a,b,c,d). Its calling
sequence corresponds to the syntax of the conditional assignment

a = (b > 0) ? c : d;

which C++ inherited from C. However, here the arguments are restricted to be active or
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passive scalar arguments, and all expression arguments are evaluated before the test on b,
which is different from the usual conditional assignment or the code segment.

Suppose the original program contains the code segment

if (b > 0) a = c; else a = d;

Here, only one of the expressions (or, more generally, program blocks) c and d is eval-
uated, which exactly constitutes the problem for ADOL-C. To obtain the correct value
a with ADOL-C, one may first execute both branches and then pick either c or d using
condassign(a,b,c,d). To maintain consistency with the original code, one has to make
sure that the two branches do not have any side effects that can interfere with each other
or may be important for subsequent calculations. Furthermore the test parameter b has
to be an adouble or an adouble expression. Otherwise the test condition b is recorded
on the tape as a constant with its runtime value. Thus the original dependency of b on
active variables gets lost, for instance if b is a comparison expression, see Section 2.5. If
there is no else part in a conditional assignment, one may call the three argument version
condassign(a,b,c), which is logically equivalent to condassign(a,b,c,a) in that nothing
happens if b is non-positive. The header file adouble.h contains also corresponding defi-
nitions of condassign(a,b,c,d) and condassign(a,b,c) for passive double arguments so
that the modified code without any differentiation can be tested for correctness.

2.7 Step-by-Step Modification Procedure

To prepare a section of given C or C++ code for automatic differentiation as described
above, one applies the following step-by-step procedure.

1. Use the statements trace on(tag) [or trace on(tag,keep)] and trace off()
[or trace off(file)] to mark the beginning and end of the active section.

2. Select the set of active variables, and change their type from double or float to
adouble (or the array types adoublev and adoublem discussed in the next section).

3. Select a sequence of independent variables, and initialize them with �= assignments
from passive variables (or vectors).

4. Select a sequence of dependent variables among the active variables, and pass their
final values to passive variable (or vectors thereof) by �= assignments.

5. Compile the codes after including the header file adouble.h.

Typically, the first compilation will detect several type conflicts – usually attempts to con-
vert from active to passive variables or to perform standard I/O of active variables. Since
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all standard C programs can be activated by a mechanical application of the procedure
above, the following section is of importance only to advanced users.

3 Active Arrays and Structures

Some or all real fields of structures or members of classes may be redeclared as adoubles
so that differentiation can proceed without the explicit unrolling of composite structures
and operations. In this way, one may activate standard vector and matrix classes for
numerical calculations. However, the individual activation of real fields or members may
entail a significant overhead, which can be avoided by using the following active classes, if
the scalars in question are arranged in regular arrays.

3.1 An Active Vector Class

To reduce the overhead in dealing with individual scalar variables and their operations, we
have introduced a class of active vectors called adoublevs. Vectors a of active components
are declared by the statement

adoublev a(p);

where p is an integer constant or variable. Like all local variables, vectors are deallocated
when they go out of scope at the end of the block in which they were declared. Nevertheless,
since their length is computed only at run time, the vector class can often be used in lieu
of dynamically allocated arrays, thereby avoiding a possibly drastic increase in the storage
requirement of ADOL-C as discussed below. Vector elements of the form a[i] can take the
place of any scalar variable of type adouble.

3.2 Overloaded Vector Operations

Provided their lengths are compatible, active vectors can be added or subtracted, yielding
a third vector of the same length. Similarly, they can be multiplied by active or passive
scalars yielding a vector, whereas the dot-product of two vectors is a scalar. Moreover, the
special operators �= and �= are also overloaded so that active vectors can be marked
as independent or dependent, respectively. Here, the second operand must be a double*,
which is assumed to represent a passive vector of the same length as the active operand. As
in the scalar versions, the statement a �= b simultaneously initializes the active vector
a with the values in the passive vector b, and the statement a �= b passes the values in
the active vector a to the passive vector b.
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In the example code in Figure 2, one could therefore have replaced the first loop by the
statement x �= xp, and the last loop by y �= yp. The use of active vector operations
can reduce the length of the tape and the run time of the code significantly. This advantage
applies in particular for linear algebra operations, where many unnecessary intermediates
are maintained in scalar mode.

The following binary operations are defined between adoublevs:

+ , − , ∗ ,

where ∗ denotes the dot product. In the last case the result is an adouble; in the first two
an adoublev. The assignments

− = , + = , �= , �=

may also be considered as binary operations between vectors. For the first two assignments
both sides must be active. For the last two, the left side must be active and the right side
passive. The assignment operator

=

must have an adoublev as its left hand side whereas the right hand side may be either an
adoublev, a double* or a passive scalar. In the last case the right hand side constant is
assigned to all components of the vector. The binary operations

∗ , / , ∗ = , / =

are also defined when the left argument is an adoublev and the right argument is an active
or passive scalar. Note, that here ∗ does not represent the dot product. Mathematically
meaningless operations between vectors and scalars will produce a compiler error message.
None of the operations listed above is currently defined for the active matrix types described
below.

3.3 An Active Matrix Class

The matrix type adoublem is used only to facilitate the automatic and contiguous alloca-
tion (and deallocation) of arrays whose elements are adoublevs . The statement

adoublem A(q,p);

allocates a q×p matrix of adoubles. The q quantities A[i] represent adoublevs of size p.
Fortran-like access by columns is not possible. As an example, consider the multiplication
of a q×p matrix A by a vector b as shown in Figure 3. If one wishes to multiply A
by a p×s matrix B instead of the vector b, one might use the code in Figure 4, where
we have omitted initializations and independent/dependent selections. Even if no vector
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operations are performed, the use of the active vector and matrix types in declarations is
much preferable to the declaration of adouble arrays, which should be avoided, especially
in dynamic storage mode. The reasons for this preference are explained in Section 4.3,
which can be skipped unless the reader wishes to obtain some basic understanding of how
the package works internally and to tailor the package to his needs.

const p = 10; const q = 20; double bp[p];
adoublem A(q,p);
for (int j=0; j < p; j++)
{

cin � bp[j]; // read in values
for (int i=0; i < q; i++)

cin � A[i][j]; // overloaded Input
}
adoublev b(p);
b �= bp; // mark b as independent vector
adoublev c(q);
for (int i=0; i < q; i++)

c[i] = A[i]*b; // dot product
double cp[q];
c �= cp; // mark c as dependent vector
for (int i=0; i < q; i++)

cout � cp[i]; // output results

Figure 3: Matrix-vector multiplication using ADOL-C arrays

3.4 Active Subscripts

In many important procedures such as table lookup or numerical pivoting, the result of a
conditional assignment is not a real variable but an integer that is subsequently used as an
index into an array of active reals. For that purpose we have introduced the class along of
active integers, which are implemented as a derived class of adoubles, so that all arithmetic
operations involving them are recorded on the tape. In the current version the class along
is derived from class badouble, i.e. operations with along variables are performed in
floating point arithmetic, which may yield different results than integer arithmetic. The
key functionality is that of subscripting; that is for an along j the expressions

a[j] with a an adoublev and A[j] with A an adoublem



17

double** A;
adoublem B(p,s);
adoublem C(q,s);
. . . . . . . . . . . . // initializations
for (int i=0; i < q; i++)
{

C[i] = 0; // set to zero
for (int j=0; j < p; j++)

C[i] += A[i][j]*B[j]; // SAXPY
}

Figure 4: Matrix-matrix multiplication using ADOL-C arrays

are considered and recorded as a binary operation between a and j or A and j. The resulting
a[j] and A[j] behave like variables of type adouble and adoublev except that they may
not occur as arguments of the operators �= and �= .

Using the conditional assignment of active integers, one can, for example, fully record
a function that involves Gaussian elimination with pivoting on a tape, see Section 9.5. In
that case the recoding effort is minimal, and there is not much overhead at run time, either.

4 Numbering the Tapes and Controlling the Buffer

The trace generated by the execution of an active section may stay within a triplet of internal
arrays or it may be written out to corresponding files. We will refer to these triplets as
the tape array or tape file, which may subsequently be used to evaluate the underlying
function and its derivatives at the original point or at alternative arguments. If the active
section involves user-defined quadratures it must be executed and re-taped at each new
argument. Similarly, if conditions on adouble values lead to a different program branch
being taken at a new argument the evaluation process also needs to be re-taped at the
new point. Otherwise, direct evaluation from the tape by the routine function (Section
7.1) is likely to be faster. The use of quadratures and the results of all comparisons on
adoubles are recorded on the tape so that function and other forward routines stop and
return appropriate flags if their use without prior re-taping is unsafe. To avoid any re-
taping certain types of branches can be recorded on the tape through the use of conditional
assignments and active integers described before in Section 2.6 and 3.4, respectively.

Several tape files may be generated and kept simultaneously. A tape array is used as a
triplet of buffers for a tape file if the length of any of the buffers exceeds the array length of
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BUFSIZE. This parameter is defined in the header file usrparms.h and may be adjusted
by the user. For simple usage, trace on may be called with only the tape tag as argument,
and trace off may be called without argument.

The optional integer argument keep of trace on determines whether the numerical val-
ues of all active variables are recorded in a buffered temporary file called value stack before
they will be overwritten. This option takes effect if keep = 1 and prepares the scene for an
immediately following gradient evaluation by a call to the routine reverse (see Sections 5.1
and 6). The name of the temporary file is FNAME3 found in usrparms.h. Alternatively,
gradients may be evaluated by a call to gradient, which includes a preparatory forward
sweep for the creation of the temporary file. If omitted, the argument keep defaults to 0,
so that no temporary file is generated.

By setting the optional integer argument file of trace off to 1, the user may force a
numbered tape file to be written even if the tape array (buffer) does not overflow. If the
argument file is omitted, it defaults to 0, so that the tape array is written onto a tape file
only if the length of any of the buffers exceeds BUFSIZE elements.

After the execution of an active section, if a tape file was generated (i.e., if the length of
some buffer exceeded BUFSIZE elements or if the argument file of trace off was set to 1),
the files will be saved in the current working directory under the names FNAME.<tag>,
FNAME1.<tag>, and FNAME2.<tag>, where tag is the mandatory argument to
trace on and FNAME, FNAME1, and FNAME2 are the tape file names found in
usrparms.h. Later, all problem-independent routines (like forward, reverse, gradient,
jacobian, tensor eval, . . . ) expect as first argument a tag to determine the tape on which
their respective computational task is to be performed. By calling trace on with different
tape tags, one can create several tapes for various function evaluations and subsequently
perform function and derivative evaluations on one or more of them.

For example, suppose one wishes to calculate for two smooth functions f1(x) and f2(x)

f(x) = max{f1(x), f2(x)}, ∇f(x),

and possibly higher derivatives where the two functions do not tie. Provided f1 and f2 are
evaluated in two separate active sections, one can generate two different tapes by calling
trace on with tag = 1 and tag = 2 at the beginning of the respective active sections.
Subsequently, one can decide whether f(x) = f1(x) or f(x) = f2(x) at the current argument
and then evaluate the gradient ∇f(x) by calling gradient with the appropriate argument
value tag = 1 or tag = 2.

4.1 Examining the Tape and Predicting Storage Requirements

At any point in the program, one may call the routine

void tapestats(unsigned short tag, int* counts)
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with counts an array of at least eleven integers. The first argument tag specifies the
particular tape of interest. The components of counts represent

counts[0]: the number of independents, i.e. calls to �= ,
counts[1]: the number of dependents, i.e. calls to �= ,
counts[2]: the maximal number of live active variables,
counts[3]: the size of value stack (number of overwrites),
counts[4]: the buffer size (a multiple of eight),
counts[5]: the total number of operations recorded,
counts[6-10]: other internal information about the tape.

The values maxlive = counts[2] and vssize = counts[3] determine the temporary storage
requirements during calls to the workhorses forward and reverse. For a certain degree
deg ≥ 0, the scalar version of the routine forward involves (apart from the tape buffers)
an array of (deg+1)∗maxlive doubles in core and, in addition, a sequential data set (the
value stack) of vssize∗keep revreals if called with the option keep > 0. Here the type
revreal is defined as double or float in the header file usrparms.h. The latter choice
halves the storage requirement for the sequential data set, which stays in core if its length
is less than TBUFSIZE bytes and is otherwise written out to a temporary file. The
parameter TBUFSIZE is defined in the header file usrparms.h. The drawback of the
economical revreal = float choice is that subsequent calls to reverse yield gradients and
other adjoint vectors only in single-precision accuracy. This may be acceptable if the adjoint
vectors represent rows of a Jacobian that is used for the calculation of Newton steps. In
its scalar version, the routine reverse involves the same number of doubles and twice as
many revreals as forward. The storage requirements of the vector versions of forward
and reverse are equal to that of the scalar versions multiplied by the vector length.

4.2 Customizing ADOL-C

Based on the information provided by the routine tapestats, the user may alter the follow-
ing types and constant dimensions in the header file usrparms.h to suit his problem and
environment.

BUFSIZE: This integer determines the length of internal buffers (default: 65 536). If the
buffers are large enough to accommodate all required data, any file access is avoided
unless trace off is called with a positive argument. This desirable situation can be
achieved for many problem functions with an execution trace of moderate size. Pri-
marily BUFSIZE occurs as an argument to malloc, so that setting it unnecessarily
large may have no ill effects, unless the operating system prohibits or penalizes large
array allocations.

TBUFSIZE: This integer determines the length of internal buffer of the value stack (de-
fault: 65 536).
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locint: The range of the integer type locint determines how many adoubles can be simul-
taneously alive (default: unsigned short). In extreme cases when there are more
than 65 536 adoubles alive at any one time, the type locint must be changed to
unsigned int or unsigned long.

revreal: The choice of this floating-point type trades accuracy with storage for reverse
sweeps (default: double). While functions and their derivatives are always evaluated
in double precision during forward sweeps, gradients and other adjoint vectors are
obtained with the precision determined by the type revreal. The less accurate choice
revreal = float nearly halves the storage requirement during reverse sweeps.

DEBUG: Defining DEBUG forces ADOL-C to print out messages about its progress
(default: undefined).

inf num: This together with inf den sets the “vertical” slope InfVal = inf num/inf den
of special functions at the boundaries of their domains (default: inf num = 1.0). On
IEEE machines the default setting produces the standard Inf. On non-IEEE machines
change these values to produce a small InfVal value and compare the results of two
forward sweeps with different InfVal settings to detect a “vertical” slope.

inf den: See inf num (default: 0.0).

non num: This together with non den sets the mathematically undefined derivative value
NoNum = non num/non den of special functions at the boundaries of their do-
mains (default: non num = 0.0). On IEEE machines the default setting produces
the standard NaN. On non-IEEE machines change these values to produce a small
NoNum value and compare the results of two forward sweeps with different NoNum
settings to detect the occurrence of undefined derivative values.

non den: See non num (default: 0.0).

FNAME: This name made unique by appending tag determines the file holding the op-
erations tape when the internal buffer is exceeded (default: “ adol-op tape.”).

FNAME1: This name made unique by appending tag determines the file holding the
integer tape when the internal buffer is exceeded (default: “ adol-in tape.”).

FNAME2: This name made unique by appending tag determines the file holding the
real-valued tape when the internal buffer is exceeded (default: “ adol-rl tape.”).

FNAME3: This is the name of the file that holds the value stack when the internal buffer
is exceeded (default: “ adol-vs tape.”). The file will be deleted automatically.

ATRIG ERF: By removing the comment signs the overloaded versions of the inverse
hyperbolic functions and the error function are enabled (default: undefined).
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4.3 Warnings and Suggestions for Improved Efficiency

Since the type adouble has a nontrivial constructor, the mere declaration of large adouble
arrays may take up considerable run time. The user should be warned against the usual
Fortran practice of declaring fixed-size arrays that can accommodate the largest possible
case of an evaluation program with variable dimensions. If such programs are converted to
or written in C, the overloading in combination with ADOL-C will lead to very large run
time increases for comparatively small values of the problem dimension, because the actual
computation is completely dominated by the construction of the large adouble arrays.
The user is advised to either use the vector and matrix types in automatic storage mode
or create dynamic arrays of adoubles by using the C++ operator new and to destroy
them using delete. For storage efficiency it is desirable that dynamic objects are created
and destroyed in a last-in-first-out fashion. DO NOT use malloc() and related C memory-
allocating functions when declaring adoubles (see the following paragraph).

Whenever an adouble is declared, the constructor for the type adouble assigns it a
nominal address, which we will refer to as its location. The location is of the type locint
defined in the header file usrparms.h. Active vectors occupy a range of contiguous locations.
As long as the program execution never involves more than 65 536 active variables, the type
locint may be defined as unsigned short. Otherwise, the range may be extended by
defining locint as (unsigned) int or (unsigned) long, which may nearly double the
overall mass storage requirement. Sometimes one can avoid exceeding the accessible range
of unsigned shorts by using more local variables and deleting adoubles or adoublevs
created by the new operator in a last-in-first-out fashion. When memory for adoubles is
requested through a call to malloc() or other related C memory-allocating functions, the
storage for these adoubles is allocated; however, the C++ adouble constructor is never
called. The newly defined adoubles are never assigned a location and are not counted in
the stack of live variables. Thus, any results depending upon these pseudo-adoubles will
be incorrect. The same point applies, of course, for active vectors. When an adouble or
adoublev goes out of scope or is explicitly deleted, the destructor notices that its location(s)
may be freed for subsequent (nominal) reallocation. In general, this is not done immediately
but is delayed until the locations to be deallocated form a contiguous tail of all locations
currently being used.

As a consequence of this allocation scheme, the currently alive adouble locations always
form a contiguous range of integers that grows and shrinks like a stack. Newly declared
adoubles are placed on the top so that vectors of adoubles obtain a contiguous range of
locations. While the C++ compiler can be expected to construct and destruct automatic
variables in a last-in-first-out fashion, the user may upset this desirable pattern by deleting
free-store adoubles too early or too late. Then the adouble stack may grow unnecessarily,
but the numerical results will still be correct, unless an exception occurs because the range
of locint is exceeded. In general, free-store adoubles and adoublevs should be deleted in
a last-in-first-out fashion toward the end of the program block in which they were created.
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When this pattern is maintained, the maximum number of adoubles alive (and, as a
consequence, the randomly accessed storage space of the derivative evaluation routines) is
bounded by a small multiple of the memory used in the relevant section of the original
program. Failure to delete dynamically allocated adoubles may cause that the maximal
number of adoubles alive at one time will be exceeded if the same active section is called
repeatedly.

To avoid the storage and manipulation of structurally trivial derivative values, one
should pay careful attention to the naming of variables. Ideally, the intermediate values
generated during the evaluation of a vector function should be assigned to program variables
that are consistently either active or passive, in that all their values either are or are not
dependent on the independent variables in a nontrivial way. For example, this rule is
violated if a temporary variable is successively used to accumulate inner products involving
first only passive and later active arrays. Then the first inner product and all its successors in
the data dependency graph become artificially active and the derivative evaluation routines
described in Sections 6 and 7 will waste time allocating and propagating trivial or useless
derivatives. Sometimes even values that do depend on the independent variables may be
of only transitory importance and not affect the dependent variables. For example, this
is true for multipliers that are used to scale linear equations, but whose value does not
influence the dependent variables in a mathematical sense. Such dead-end variables can be
deactivated by the use of the value function, which converts adoubles to doubles. The
deleterious effects of unnecessary activity are partly alleviated by run time activity flags in
the derivative routine hov reverse mentioned in Section 7.2.

5 Evaluating Derivatives from a Tape

After the execution of an active section, the corresponding tape contains a detailed record
of the computational process by which the final values y of the dependent variables were
obtained from the values x of the independent variables.

5.1 General Mathematical Description

Provided no arithmetic exception occurred, no comparison (including fmax, fmin or fabs)
yielded a tie, and all special functions were evaluated in the interior of their domains, the
functional relation between the input variables x and the output variables y, which we
will denote by y = F (x), is in fact analytic. In other words, we can compute arbitrarily
high derivatives of the vector function F : IRn 7→ IRm defined by the active section. We
find it most convenient to describe and compute derivatives in terms of univariate Taylor
expansions, which are truncated after the highest derivative degree d that is desired by the
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user. Let

x(t) ≡
d
∑

j=0

xjt
j : IR 7→ IRn (1)

denote any vector polynomial in the scalar variable t ∈ IR. In other words, x(t) describes a
path in IRn parameterized by t. The Taylor coefficient vectors

xj = 1
j!

∂j

∂tj
x(t)

∣

∣

∣

t=0

are simply the scaled derivatives of x(t) at the parameter origin t = 0. The first two vectors
x1, x2 ∈ IRn can be visualized as tangent and curvature at the base point x0, respectively.
Provided that F is d times continuously differentiable, it follows from the chain rule that
the image path

y(t) ≡ F (x(t)) : IR 7→ IRm (2)

is also smooth and has (d + 1) Taylor coefficient vectors yj ∈ IRm at t = 0, so that

y(t) =
d
∑

j=0

yjt
j + O(td+1). (3)

Also as a consequence of the chain rule, one can observe that each yj is uniquely and
smoothly determined by the coefficient vectors xi with i ≤ j. In particular we have

y0 = F (x0), y1 = F ′(x0) x1, (4)

and
y2 = F ′(x0) x2 + 1

2F ′′(x0) x1 x1.

In writing down the last term we have already departed from the usual matrix-vector nota-
tion. It is well known that the number of terms that occur in these “symbolic” expressions
for the yj (in terms of the first j derivative tensors of F and the “input” coefficients xi with
i ≤ j) grows very rapidly with j. Fortunately, this exponential growth does not occur in
automatic differentiation, where the many terms are somehow implicitly combined so that
storage and operations count grow only quadratically in the bound d on j.

Provided F is analytic, this property is inherited by the functions

yj = yj(x0, x1, . . . , xj) ∈ IRm,

and their derivatives satisfy the identity

∂yj

∂xi
=

∂yj−i

∂x0
= Aj−i(x0, x1, . . . , xj−i) (5)

as established in [7]. The m×n matrices Ak, k = 0, . . . , d, are actually the Taylor coefficients
of the Jacobian path F ′(x(t)), a fact that is of interest primarily in the context of ordinary
differential equations and differential algebraic equations.
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Given the tape of an active section and the coefficients xj , the resulting yj and their
derivatives Aj can be evaluated by appropriate calls to the ADOL-C procedures forward
and reverse. The scalar version of forward propagates just one truncated Taylor series
from the (xj)j≤d to the (yj)j≤d. The vector version of forward propagates families of p ≥ 1
such truncated Taylor series in order to reduce the relative cost of the overhead incurred
in the tape interpretation. There are also specialized codes for the cases d = 0 and d = 1,
where some unnecessary dereferencing can be avoided. Details of the appropriate calling
sequences are given in Section 6.

Given a weighting vector u, the ADOL-C procedure reverse computes the collection of
row vectors

zj ≡ uT ∂yj

∂x0
= uT Aj ∈ IRn (6)

for j = 0, 1, . . . , d. If j = 0 and u is the i-th Cartesian basis vector in IRm, then (6) yields
the i-th row of the Jacobian F ′(x). To produce the entire Jacobian in this mode, one may
make m calls to reverse, setting u to the i-th Cartesian basis vector for i = 1, 2, . . . , m.

An alternative is provided by the vector version of reverse, which yields a collection of
matrices of the form

Zj ≡ U
∂yj

∂x0
∈ IRq×n, (7)

where U ∈ IRq×m represents a weighting matrix. When U = Im with q = m, one call to
reverse yields the set of full Jacobians ∂yj/∂x0. This choice requires more storage, but it
significantly reduces the relative cost of the tape interpretation when the degree d is small.

5.2 Derivatives for Optimization and Nonlinear Equations

When d = 0 in the vector mode, we have the undifferentiated relation y0 = F (x0), and

zT
0 = uT F ′(x0) (8)

yields the Jacobian of F multiplied from the left by u ∈ IRm. In nonlinear least squares
calculations, one may use uT ≡ F (x0)

T so that z0 ∈ IRn is simply the gradient of the
sum of squares. For the iterative computation of Newton-like steps, one may wish to
calculate uT F ′(x0) for a sequence of m vectors u. Thus, reverse with d = 0 can be used to
premultiply the Jacobian by one (or more) row vector uT from the left. Similarly, one can
use forward with d = 1 to calculate the matrix-vector product

y1 = F ′(x0) x1, (9)

where x1 is an arbitrary n vector. Using the vector version of forward one can also multiply
the Jacobian simultaneously by several column vectors.



5.3 Derivatives for Ordinary Differential Equations 25

For a scalar function F (i.e. m = 1), one finds that with uT = 1 ∈ IR, the adjoint
z0 = F ′(x0) is the gradient of F , and the adjoint

z1 =
∂y1

∂x0
=

∂F ′(x0)x1

∂x0
= ∇2F (x0)x1 (10)

represents the product of the Hessian ∇2F (x0) with an arbitrary vector x1. More generally,
let us consider the case where F T (x) ≡ [f(x), cT (x)] consists of a scalar objective function
f(x) and an m − 1 vector c(x) of constraint functions. Here one may choose uT as a
vector of Lagrange multiplier estimates such that approximately uT F ′(x) = 0 with the
first component normalized to 1. Then z0 ∈ IRn represents the gradient of the Lagrangian
function uT F (x), and z1 ∈ IRn represents its Hessian multiplied by the vector x1.

To perform Newton-like steps in order to solve nonlinear equations one needs to find
the solution w of the following equation

F ′(x0)w = b (11)

for a given right-hand side b. Then the routine jac solv can be applied to calculate the
desired values of w.

5.3 Derivatives for Ordinary Differential Equations

When F is the right-hand side of an (autonomous) ordinary differential equation

x′(t) = F (x(t)),

we must have m = n. Along any solution path x(t) its Taylor coefficients xj at some time,
say t = 0, must satisfy the relation (2) with the yj the Taylor coefficients of its derivative
y(t) = x′(t), namely,

xi+1 = 1
1+i

yi.

Using this relation, one can generate the coefficients xi recursively from the current point
x0 by calling forward with increasing degree i = 0, 1, . . . , d − 1. This task is achieved by
the driver routine forode.

For the numerical solutions of ordinary differential equations, one may also wish to
calculate the Jacobians

Bj ≡
dxj+1

dx0
∈ IRn×n , (12)

which exist provided F is sufficiently smooth. These matrices can be obtained from the
partial derivatives ∂yi/∂x0 obtained from reverse by an appropriate version of the chain
rule. This task is performed by the utility accode, which involves 1

2d(d− 1) matrix-matrix
products. Through an optional argument of reverse one can find out which entries of
the Jacobian F ′(x(t)) are zero or constant with respect to t, and this sparsity information
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can be exploited by accode and other utilities. In particular, there need be no loss in
computational efficiency if a time-dependent ordinary differential equation is rewritten in
autonomous form.

5.4 Dependence Analysis

The sparsity pattern of Jacobians is often needed to set up data structures for their storage
and factorization or to allow their economical evaluation by compression [3]. Compared to
the evaluation of the full Jacobian F ′(x0) in real arithmetic computing the Boolean matrix
P̃ ∈ {0, 1}m×n representing its sparsity pattern in the obvious way requires a little less
run-time and certainly a lot less memory. This is already true for the current version of
ADOL-C and significant improvements can be expected from further development.

The entry P̃ji in the j-th row and i-th column of P̃ should be 1 = true exactly when
there is a data dependence between the i-th independent variable xi and the j-th depen-
dent variable yj . Just like for real arguments one would wish to compute matrix-vector
and vector-matrix products of the form P̃ ṽ or ũT P̃ by appropriate forward and reverse
routines where ṽ ∈ {0, 1}n and ũ ∈ {0, 1}m. Here multiplication corresponds to logical
AND and addition to logical OR, so that algebra is performed in a semi-ring.

For practical reasons it is assumed that s = 8∗sizeof(unsigned long int) such Boolean
vectors ṽ and ũ are combined to integer vectors v ∈ INn and u ∈ INm whose components
can be interpreted as bit patterns. Moreover p or q such integer vectors may be combined
column-wise or row-wise to integer matrices X ∈ INn×p and U ∈ INq×m, which naturally
correspond to Boolean matrices X̃ ∈ {0, 1}n×(sp) and Ũ ∈ {0, 1}(sq)×m. The provided bit
pattern versions of forward and reverse allow to compute integer matrices Y ∈ INm×p and
Z ∈ INq×m corresponding to

Ỹ = P̃ X̃ and Z̃ = Ũ P̃ , (13)

respectively, with Ỹ ∈ {0, 1}m×(sp) and Ũ ∈ {0, 1}(sq)×n. In general the application of the
bit pattern versions of forward or reverse can be interpreted as propagating dependences
between variables forward or backward, therefore both the propagated integer matrices and
the corresponding Boolean matrices are called dependence structures.

To determine the whole sparsity pattern P̃ of the Jacobian F ′(x) as an integer matrix P
one may call forward or reverse with p ≥ n/s or q ≥ m/s, respectively. For this purpose
the corresponding dependence structure X or U must be defined to represent the identity
matrix of the respective dimension. Due to the fact that always a multiple of s Boolean
vectors are propagated there may be superfluous vectors, which can be set to zero.



27

6 Forward and Reverse Calls

In this section, the basic versions of the forward and reverse routines, which utilize
the overloading capabilities of C++, are described in detail. With exception of the bit
pattern versions all interfaces are prototyped in the header file interfaces.h, where also
some more specialized forward and reverse routines are explained. Furthermore ADOL-C
provides C and Fortran-callable versions prototyped in the same header file. The bit pattern
versions of forward and reverse introduced in Section 6.3 are prototyped in the header
file SPARSE/sparse.h, which will be included by the mentioned header file interfaces.h

automatically.

6.1 The Scalar Case

Given any correct tape, one may call from within the generating program, or subsequently
during another run, the following procedure:

int forward(tag,m,n,d,keep,X,Y)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int d; // highest derivative degree d
int keep; // flag for reverse sweep
double X[n][d+1]; // Taylor coefficients X of independent variables
double Y[m][d+1]; // Taylor coefficients Y as in (3)

The rows of the matrix X must correspond to the independent variables in the order of
their initialization by the �= operator. The columns of X = {xj}j=0...d represent Taylor
coefficient vectors as in (1). The rows of the matrix Y must correspond to the dependent
variables in the order of their selection by the �= operator. The columns of Y = {yj}j=0...d

represent Taylor coefficient vectors as in (3). Thus the first column of Y contains the
function value F (x) itself, the next column represents the first Taylor coefficient vector of
F , and the last column the d-th Taylor coefficient vector. The integer flag keep plays a
similar role as in the call to trace on: it determines how many Taylor coefficients of all
intermediate quantities forward writes into a buffered temporary file (the value stack) in
preparation for a subsequent reverse sweep. If keep is omitted, it defaults to 0.

The given tag value is used by forward to determine the name of the file on which the
tape was written. If the tape file does not exist, forward assumes that the relevant tape is
still in core and reads from the buffers. The procedure forward can be used to evaluate the
vector function F at arguments x other than the point at which the tape was generated,
provided there are no user defined quadratures and all comparisons involving adoubles
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yield the same result. The last condition implies that the control flow is unaltered by the
change of the independent variable values. Therefore, this sufficient condition is tested by
forward and if it is not met the routine indicates this contingency through its return value.
Currently, there are six return values, see Table 1.

+3 The function is locally analytic.

+2

The function is locally analytic but the sparsity structure (compared to the sit-
uation at the taping point) may have changed, e.g. while at taping arguments
fmax(a,b) returned a we get b at the argument currently used in forward or
reverse routines.

+1
At least one of the functions fmin, fmax or fabs is evaluated at a tie or zero,
respectively. Hence, F is Lipschitz-continuous but possibly non-differentiable.

0
Some arithmetic comparison involving adoubles yields a tie. Hence, F may be
discontinuous.

-1
An adouble comparison yields different results from the evaluation point at which
the tape was generated.

-2
The argument of a user-defined quadrature has changed from the evaluation point
at which the tape was generated.

Table 1: Description of return values

2

Taping point
3

0

-1

1

Figure 5: Return values around the taping point

In Figure 5 these return values are illustrated. If the user finds the return value to be
negative he may simply repeat the taping process, by executing the active section again.
When there are user-defined quadratures this is necessary at each new point. If there are
only branches conditioned on adouble comparisons one may hope that re-taping becomes
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unnecessary when the points settle down in some small neighborhood, as one would expect
for example in an iterative equation solver. The return values of the other forward variants
and some of the drivers discussed below have exactly the same meaning.

After the execution of an active section with keep = 1 or a call to forward with any
keep ≤ d + 1, one may call the function reverse with d = keep − 1 and the same tape
identifier tag. When u is a vector and Z an n×(d+1) matrix as in (6), reverse is executed
in the scalar mode by the following calling sequence:

int reverse(tag,m,n,d,u,Z)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int d; // highest derivative degree d
double u[m]; // weighting vector u
double Z[n][d+1]; // resulting adjoints Z as in (6)

6.2 The Vector Case

When U is a matrix as in (7), reverse is executed in the vector mode by the following
calling sequence:

int reverse(tag,m,n,d,q,U,Z,nz)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int d; // highest derivative degree d
int q; // number of weight vectors q
double U[q][m]; // domain weight vector U
double Z[q][n][d+1]; // resulting adjoints Z as in (7)
short nz[q][n]; // nonzero pattern of Z

The last argument can be omitted. Otherwise each short nz[i][j] has a value that character-
izes the functional relation between the i-th component of UF ′(x) and the j-th independent
value xj as:

0 trivial
1 linear

2 polynomial
3 rational

4 transcendental
5 non-smooth

Here, “trivial” means that there is no dependence at all and “linear” means that the partial
derivative is a constant that does not dependent on other variables either. “Non-smooth”



30 6 FORWARD AND REVERSE CALLS

means that one of the functions on the path between xi and yj was evaluated at a point
where it is not differentiable. All positive labels 1, 2, 3, 4, 5 are pessimistic in that the actual
functional relation may in fact be simpler, for example due to exact cancellations. When
the arguments p and U are omitted, they default to m and the identity matrix of order m,
respectively.

The return values of reverse calls are interpreted according to Table 1, but negative
return values are not valid. The reason is the corresponding forward sweep would have
stopped without completing the necessary taylor file. The return value of reverse may be
higher than that of the preceding forward call because some operations that were evaluated
at a critical argument during the forward sweep were found not to impact the dependents
during the reverse sweep.

In both scalar and vector mode, the degree d must agree with keep − 1 for the most
recent call to forward, or it must be equal to zero if reverse directly follows the taping
of an active section. Otherwise, reverse will return control with a suitable error message.
In order to avoid possible confusion, the first four arguments must always be present in the
calling sequence. However, if m or d attain their trivial values 1 and 0, respectively, then
corresponding dimensions of the arrays X, Y, u, U, or Z can be omitted, thus eliminating
one level of indirection. For example, we may call reverse(tag,1,n,0,1.0,g) after declaring
double g[n] to calculate a gradient of a scalar-valued function.

Sometimes it may be useful to perform a forward sweep for families of Taylor series with
the same leading term. This vector version of forward can be called in the form

int forward(tag,m,n,d,p,x,X,y,Y)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int d; // highest derivative degree d
int p; // number of Taylor series p
double x[n]; // values of independent variables x0

double X[n][p][d]; // Taylor coefficients X of independent variables
double y[m]; // values of dependent variables y0

double Y[m][p][d]; // Taylor coefficients Y of dependent variables

where X and Y hold the Taylor coefficients of first and higher degree and x, y the common
Taylor coefficients of degree 0. There is no option to keep the values of active variables
that are going out of scope or that are overwritten. Therefore this function cannot prepare
a subsequent reverse sweep. The return integer serves as a flag to indicate quadratures or
altered comparisons as described for the scalar version of forward at the beginning of this
section.
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Since the calculation of Jacobians is probably the most important automatic differentia-
tion task, we have provided a specialization of vector forward to the case where d = 1.
This version can be called in the form

int forward(tag,m,n,p,x,X,y,Y)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int p; // number of partial derivatives p
double x[n]; // values of independent variables x0

double X[n][p]; // seed derivatives of independent variables X
double y[m]; // values of dependent variables y0

double Y[m][p]; // first derivatives of dependent variables Y

When this routine is called with p = n and X the identity matrix, the resulting Y is simply
the Jacobian F ′(x0). In general, one obtains the m× p matrix Y = F ′(x0) X for the chosen
initialization of X. In a workstation environment a value of p somewhere between 10 and
50 appears to be fairly optimal. For smaller p the interpretive overhead is not appropriately
amortized, and for larger p the p-fold increase in storage causes too many page faults.
Therefore, large Jacobians that cannot be compressed via column coloring (as was done
for example in [1]) should be “strip-mined” in the sense that the above first-order-vector
version of forward is called repeatedly with the successive n × p matrices X forming a
partition of the identity matrix of order n.

6.3 Propagation of Bit Patterns

Suppose, one wants to analyze the dependences between dependent and independent vari-
ables or even to determine the whole sparsity structure of the Jacobian of a function given
as a tape with the identifier tag. Then one may call the bit pattern forward routine

int forward(tag,m,n,p,x,X,y,Y)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int p; // number of integers propagated p
double x[n]; // values of independent variables x0

unsigned long int X[n][p]; // dependence structure X
double y[m]; // values of dependent variables y0

unsigned long int Y[m][p]; // dependence structure Y according to (13)
char mode; // 0 : safe mode (default), 1 : tight mode
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to obtain the dependence structure Y for a given dependence structure X as described in
Section 5.4. The dependence structures are represented as arrays of unsigned long int
the entries of which are interpreted as bit patterns. Thus p ∗ 8∗sizeof(unsigned long int)
Boolean vectors packed into integer matrices are propagated by forward. For example, for
n = 3 the identity matrix I3 should be passed with p = 1 as the 3 × 1 array

X =







10000000 00000000 00000000 000000002

01000000 00000000 00000000 000000002

00100000 00000000 00000000 000000002







in the 4-byte long integer format. The parameter mode will be explained below.

A call to the corresponding bit pattern reverse routine

int reverse(tag,m,n,q,U,Z)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int q; // number of integers propagated q
unsigned long int U[q][m]; // dependence structure U
unsigned long int Z[q][n]; // dependence structure Z according to (13)
char mode; // 0 : safe mode (default), 1 : tight mode

yields the dependence structure Z for a given dependence structure U as explained in Section
5.4. Here reverse propagates the q ∗8∗sizeof(unsigned long int) Boolean vectors packed
into integer matrices backwards.

The return values of the bit pattern forward and reverse routines correspond to those
described in Table 1. Both routines can be run in one of the two modes safe and tight.
The first, more conservative option is the default. It accounts for all dependences that
might occur for any value of the independent variables. For example, the intermediate
c = max(a,b) is always assumed to depend on all independent variables that a or b
dependent on, i.e. the bit pattern associated with c is set to the logical OR of those
associated with a and b. In contrast the tight option gives this result only in the unlikely
event of an exact tie a = b. Otherwise it sets the bit pattern associated with c either to
that of a or to that of b, depending on whether c = a or c = b locally. Obviously, the
sparsity pattern obtained with the tight option may contain more zeros than that obtained
with the safe option. On the other hand, it will only be valid at points where the return
value of forward and reverse remains 3. The safe versions do not require any reevaluation
of the function and may thus be a little faster. Note that only the tight version can handle
the active subscripts properly.

The sparsity pattern of Jacobians may vary as a function of the independent variable
vector x for one of three reasons. First, numerical values may be incidentally zero, second the
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control flow may be completely changed, and finally fabs, fmin, fmax or other conditional
assignments may flip to a different branch. In contrast to other automatic differentiation
tools our bit pattern routines propagate generic dependences and disregard incidental zeros,
which may be due to cancellations or special values of the independents. When sparsity
pattern might be altered due to changes in the control flow the return values of all forward
and reverse routines indicate this fact as described above. Then these routines must be
rerun, possibly with the old sparsity pattern providing a warm start. Thus we are left with
the third possibility, namely conditional assignments.

One can control the storage growth by the factor p through “strip-mining” – calling
forward or reverse with successive groups of columns or respectively rows at a time,
i.e. partitioning X or U appropriately as described for the computation of Jacobians in
Section 6.2.

7 Easy To Use Drivers

For convenience one may use instead of (subsequent) calls to forward and reverse one
of the following driver routines. These drivers are all C functions and therefore can be
used within C and C++ programs. Some Fortran-callable companions can be found in the
appropriate header files.

7.1 Drivers for Optimization and Nonlinear Equations

The drivers provided for solving optimization problems and nonlinear equations are proto-
typed in the header file DRIVERS/drivers.h, which is included automatically by the global
header file adolc.h (see Section 8.3).

The routine function allows to evaluate the desired function from the tape instead of
executing the corresponding source code:

int function(tag,m,n,x,y)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
double x[n]; // independent vector x0

double y[m]; // dependent vector y0 = F (x0)

If the original evaluation program is available this should be used to compute the function
value in order to avoid the interpretative overhead.
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For the calculation of whole derivative vectors and matrices up to order 2 there are the
following procedures:

int gradient(tag,n,x,g)
short int tag; // tape identification
int n; // number of independent variables n
double x[n]; // independent vector x0

double g[n]; // resulting gradient ∇f(x0)

int jacobian(tag,m,n,x,J)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
double x[n]; // independent vector x0

double J[m][n]; // resulting Jacobian F ′(x0)

int hessian(tag,n,x,H)
short int tag; // tape identification
int n; // number of independent variables n
double x[n]; // independent vector x0

double H[n][n]; // resulting Hessian matrix ∇2f(x0)

The driver routine hessian computes only the lower half of ∇2f(x0) so that all values
H[i][j] with j > i of H allocated as a square array remain untouched during the call of
hessian. Hence only i + 1 doubles need to be allocated starting at the position H[i].

To use the full capability of automatic differentiation when the product of derivatives
with certain weight vectors or directions are needed, ADOL-C offers the following four
drivers:

int vec jac(tag,m,n,repeat,x,u,z)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int repeat; // indicate repeated call at same argument
double x[n]; // independent vector x0

double u[m]; // range weight vector u
double z[n]; // result z0 as in (8)
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int jac vec(tag,m,n,x,v,z)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
double x[n]; // independent vector x0

double v[n]; // tangent vector x1

double z[m]; // result y1 as in (9)

int hess vec(tag,n,x,v,z)
short int tag; // tape identification
int n; // number of independent variables n
double x[n]; // independent vector x0

double v[n]; // tangent vector x1

double z[n]; // result z1 as in (10)

int lagra hess vec(tag,m,n,x,v,u,h)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
double x[n]; // independent vector x0

double v[n]; // tangent vector x1

double u[m]; // range weight vector u
double h[n]; // result z1 as in (6)

If a nonzero value of the parameter repeat indicates that the routine vec jac has been
called at the same argument immediately before, the internal forward call will be skipped
and only reverse with the corresponding arguments is executed.

The next procedure allows the user to perform Newton steps only having the corre-
sponding tape at hand:

jac solv(tag,n,x,b,sparse,mode)
short int tag; // tape identification
int n; // number of independent variables n
double x[n]; // independent vector x0 as in (1)
double b[n]; // in: right-hand side b, out: result w as in (11)
int sparse; // option to use sparsity
int mode; // option to choose different solvers

On entry, parameter b of the routine jac solv contains the right-hand side of (11). On exit,
b equals the solution w of this equation. Currently, the parameter sparse is not used, but
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will be subject of further developments of ADOL-C in the future. It is planed to provide a
sparse version of jac solv. If mode = 1 only the Jacobian of the function given by the tape
labeled with tag is provided internally. The LU-factorization of this Jacobian is computed
for mode = 2. The solution of the equation is calculated if mode = 2. Hence, it is possible
to compute the LU-factorization only once. Then the equation can be solved for several
right-hand sides b without calculating the Jacobian and its factorization again.

If the original evaluation code of a function contains neither quadratures nor branches,
all drivers described above can be used to evaluate derivatives at any argument in its domain.
the same still applies if there are no user defined quadratures and all comparisons involving
adoubles have the same result as during taping. If this assumption is falsely made all
drivers while internally calling forward will return the value -1 or -2 as already specified in
Section 6.

7.2 Drivers for Ordinary Differential Equations

The ODE-drivers described below are prototyped in the header file DRIVERS/odedrivers.h.
The global header file adolc.h includes this file automatically (see Section 8.3).

Given the basis point x0, we can obtain the matrix X = (xj)j≤d of the Taylor coefficient
defined by an autonomous right-hand side recorded on the tape by a call to the following
routine:

int forode(tag,n,tau,dol,deg,X)
short int tag; // tape identification
int n; // number of state variables n
double tau; // scaling parameter
int dol; // degree on previous call
int deg; // degree on current call
double X[n][deg+1]; // Taylor coefficient vector X

If dol is positive, it is assumed that forode has been called before at the same point so
that all Taylor coefficient vectors up to the dol-th are already correct. Subsequently one
may call

hov reverse(tag,n,n,deg-1,n,I,Z,nz);

to compute the family of square matrices Z[n][n][deg] defined in (7) of Section 5.1. Here
double** I must be the identity matrix of order n. To compute the total derivatives
B = (Bj)0≤j<d defined in (12), one may finally use the following routine:
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int accode(n,tau,deg,Z,B,nz)
int n; // number of state variables n
double tau; // scaling parameter
int deg; // degree on current call
double Z[n][n][deg]; // partials of coefficient vectors
double B[n][n][deg]; // result B as defined in (12)
short nz[n][n]; // optional nonzero pattern

Naturally, nz can be used by accode only if it has been set in the call to reverse above.
The non-positive entries of nz are changed by accode so that upon return

B[i][j][k] ≡ 0 if k ≤ −nz[i][j] .

In other words, the matrices Bk = B[ ][ ][k] have a sparsity pattern that fills in as k grows.

7.3 Higher Derivative Tensors

The special drivers provided for efficient calculation of higher order derivatives are pro-
totyped in the header file DRIVERS/taylor.h, which is included by the global header file
adolc.h automatically (see Section 8.3).

Many applications in scientific computing need second- and higher-order derivatives. Of-
ten, one does not require full derivative tensors but only the derivatives in certain directions
si ∈ IRn. Suppose a collection of p directions si ∈ IRn is given, which form a matrix

S = [s1, s2, . . . , sp] ∈ IRn×p.

One possible choice is S = In with p = n, which leads to full tensors being evaluated.
ADOL-C provides the function tensor eval to calculate the derivative tensors

∇k
S F (x0) =

∂k

∂zk
F (x0 + Sz)

∣

∣

∣

∣

∣

z=0

∈ IRpk

for k = 0, . . . , d (14)

simultaneously. The function tensor eval has the following calling sequence and parame-
ters:

void tensor eval(tag,m,n,d,p,x,tensor,S)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
int d; // highest derivative degree d
int p; // number of directions p
double x[n]; // values of independent variables x0

double tensor[m][size]; // result as defined in (14) in composed form
double S[n][p]; // seed matrix S
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Using the symmetry of the tensors defined by (14), the memory requirement can be reduced
enormously. The collection of tensors up to order d comprises

(p+d
d

)

distinct elements.

Hence, the second dimension of tensor must be greater or equal to
(p+d

d

)

. To compute

the derivatives, tensor eval propagates internally univariate Taylor series along
(n+d−1

d

)

directions. Then the desired values are interpolated. This approach is described in the
article [12].

The access of individual entries in symmetric tensors of higher order is a little tricky.
We always store the derivative values in the two dimensional array tensor and provide two
different ways of accessing them. The leading dimension of the tensor array ranges over the
component index i of Fi+1 for i = 0, . . . , m − 1. The sub-arrays pointed to by tensor[i]
have identical structure for all i. Each of them represents the symmetric tensors up to order
d of the scalar function Fi+1 in p variables. The

(p+d
d

)

mixed partial derivatives in each of
the m tensors are linearly ordered according to the tetrahedral scheme described by Knuth
[15]. In the familiar quadratic case d = 2 the derivative with respect to zj and zk with z
as in (14) and j ≤ k is stored at tensor[i][l] with l = k ∗ (k + 1)/2 + j. At j = 0 = k and
hence l = 0 we find the function value Fi+1 itself and the gradient ∇Fi+1 = ∂Fi+1/∂xk is
stored at l = k(k + 1)/2 with j = 0 for k = 1, . . . , p.

For general d we combine the variable indices to a multi-index j = (j1, j2, . . . , jd), where
jk indicates differentiation with respect to variable xjk

with jk ∈ {0, 1, . . . , p}. The value
jk = 0 indicates no differentiation so that all lower derivatives are also contained in the
same data structure as described above for the quadratic case. The location of the partial
derivative specified by j is computed by the function

int address(d, j)
int d; // highest derivative degree d
int j[d]; // multi-index j

and it may thus be referenced as

tensor[i][address(d, j)] .

Notice that the address computation does depend on the degree d but not on the number of
directions p, which could theoretically be enlarged without the need to reallocate the original
tensor. Also, the components of j need to be non-increasing. To some C programmers it
may appear more natural to access tensor entries by successive dereferencing in the form

tensorentry[i][ j1 ][ j2 ]. . .[ jd ] .

We have also provided this mode, albeit with the restriction that the indices j1, j2, . . . , jd

are non-increasing. In the second order case this means that the Hessian entries must
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be specified in or below the diagonal. If this restriction is violated the values are almost
certain to be wrong and array bounds may be violated. We emphasize that subscripting
is not overloaded but that tensorentry is a conventional and thus moderately efficient C
pointer structure. Such a pointer structure can be allocated and set up completely by the
function

void** tensorsetup(m,p,d,tensor)
int m; // number of dependent variables n
int p; // number of directions p
int d; // highest derivative degree d
double tensor[m][size]; // pointer to two dimensional array

Here, tensor is the array of m pointers pointing to arrays of size ≥
(p+d

d

)

allocated by the
user before. During the execution of tensorsetup, d − 1 layers of pointers are set up so
that the return value allows the direct dereferencing of individual tensor elements.

For example, suppose some active section involving m ≥ 5 dependents and n ≥ 2
independents has been executed and taped. We may select p = 2, d = 3 and initialize the
n × 2 seed matrix S with two columns s1 and s2. Then we are able to execute the code
segment

double**** tensorentry = (double****) tensorsetup(m,p,d,tensor);
tensor eval(tag,m,n,d,p,x,tensor,S);

This way, we evaluated all tensors defined in (14) up to degree 3 in both directions s1 and
s2 at some argument x. To allow the access of tensor entries by dereferencing the pointer
structure tensorentry has been created. Now, the value of the mixed partial

∂3F5(x + s1z1 + s2z2)

∂z2
1∂z2

∣

∣

∣

∣

∣

z1=0=z2

can be recovered as

tensorentry[4][2][1][1] or tensor[4][address(d, j)],

where the integer array j may equal (1,1,2), (1,2,1) or (2,1,1). Analogously, the entry

tensorentry[2][1][0][0] or tensor[2][address(d, j)]

with j = (1,0,0) contains the first derivative of the third dependent variable F3 with respect
to the first differentiation parameter z1.
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Note, that the pointer structure tensorentry has to be set up only once. Changing the
values of the array tensor, e.g. by a further call of tensor eval, directly effects the values
accessed by tensorentry. When no more derivative evaluations are desired the pointer
structure tensorentry can be deallocated by a call to the function

int freetensor(m,p,d, (double **) tensorentry)
int m; // number of dependent variables m
int p; // number of independent variables p
int d; // highest derivative degree d
double* tensorentry[m]; // return value of tensorsetup

that does not deallocate the array tensor.

Example codes using the above procedures can be found in the files taylorexam.C and
accessexam.C contained in the directory <ADOLC18_DIR>/EXA/TAYLOR.

7.4 Derivatives of Implicit and Inverse Functions

The described drivers are also prototyped in the header file DRIVERS/taylor.h. As indi-
cated before this header is included by the global header file adolc.h automatically (see
Section 8.3).

In many applications, one needs the derivatives of variables y ∈ IRm that are implicitly
defined as functions of some variables x ∈ IRn−m by an algebraic system of equations

G(z) = 0 ∈ IRm with z = (y, x) ∈ IRn.

Naturally, the n arguments of G need not be partitioned in this regular fashion and we wish
to provide flexibility for a convenient selection of the n − m truly independent variables.
Let P ∈ IR(n−m)×n be a 0 − 1 matrix that picks out these variables so that it is a column
permutation of the matrix [0, In−m] ∈ IR(n−m)×n. Then the nonlinear system

G(z) = 0, Pz = x,

has a regular Jacobian, wherever the implicit function theorem yields y as a function of x.
Hence, we may also write

F (z) =

(

G(z)
Pz

)

≡

(

0
Pz

)

≡ S x, (15)

where S = [0, Ip]
T ∈ IRn×p with p = n − m. Now, we have rewritten the original implicit

functional relation between x and y as an inverse relation F (z) = Sx. In practice, we may
implement the projection P simply by marking n−m of the independents also dependent.
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Given any F : IRn 7→ IRn that is locally invertible and an arbitrary seed matrix S ∈ IRn×p

we may evaluate all derivatives of z ∈ IRn with respect to x ∈ IRp by calling the following
routine:

void inverse tensor eval(tag,n,d,p,z,tensor,S)
short int tag; // tape identification
int n; // number of variables n
int d; // highest derivative degree d
int p; // number of directions p
double z[n]; // values of independent variables z
double tensor[n][size]; // partials of z with respect to x
double S[n][p]; // seed matrix S

The results obtained in tensor are exactly the same as if we had called tensor eval with
tag pointing to a tape for the evaluation of the inverse function z = F−1(y) for which
naturally n = m. Note that the columns of S belong to the domain of that function.
Individual derivative components can be accessed in tensor exactly as in the explicit case
described above.

It must be understood that inverse tensor eval actually computes the derivatives of
z with respect to x that is defined by the equation F (z) = F (z0) + S x. In other words the
base point at which the inverse function differentiated is given by F (z0). The routine has
no capability for inverting F itself as solving systems of nonlinear equations F (z) = 0 in
the first place is not just a differentiation task. However, the routine jac solv described in
Section 7.1 may certainly be very useful for that purpose.

As an example consider the following two nonlinear expressions

G1(z1, z2, z3, z4) = z2
1 + z2

2 − z2
3

G2(z1, z2, z3, z4) = cos(z4) − z1/z3 .

The equations G(z) = 0 describe the relation between the Cartesian coordinates (z1, z2) and
the polar coordinates (z3, z4) in the plane. No suppose we are interested in the derivatives
of the second Cartesian y1 = z2 and the second (angular) polar coordinate y2 = z4 with
respect to the other two variables x1 = z1 and x2 = z3. Then the active section could look
simply like

for (j=1; j < 5; j++) z[j] �= zp[j];
g[1] = z[1]*z[1]+z[2]*z[2]-z[3]*z[3];
g[2] = cos(z[4]) - z[1]/z[3];
g[1] �= gp[1]; g[2] �= gp[2];
z[1] �= zd[1]; z[3] �= zd[2];
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where zd[1] and zd[2] are dummy arguments. In the last line the two independent variables
z[1] and z[3] are made simultaneously dependent thus generating a square system that can
be inverted (at most arguments). The corresponding projection and seed matrix are

P =

(

1 0 0 0
0 0 1 0

)

and ST =

(

0 0 1 0
0 0 0 1

)

.

Provided the vector zp is consistent in that its Cartesian and polar components describe the
same point in the plane the resulting tuple gp must vanish. The call to inverse tensor eval
with n = 4, p = 2 and d as desired will yield the implicit derivatives, provided tensor has
been allocated appropriately of course and S has the value given above. The example is
untypical in that the implicit function could also be obtained explicitly by symbolic mani-
pulations. It is typical in that the subset of z components that are to be considered as truly
independent can be selected and altered with next to no effort at all.

The provided example programs inversexam.C, coordinates.C and trigger.C in the
directory <ADOLC18_DIR>/EXA/TAYLOR show the application of the procedures described
here.

7.5 Detection of Sparsity in Jacobian Matrices

The driver routine described below is prototyped in the header file SPARSE/sparse.h, which
is included automatically by the global header file adolc.h (see Section 8.3).

ADOL-C offers a convenient way of determining the Jacobian sparsity structure. The
routine jac pat is based on bit pattern propagation, but yields the sparsity structure in
a comprehensive compressed row format. Moreover, it allows certain independent and/or
dependent variables (e.g. vectors) to be bound together as a block, building a block sparsity
pattern:

int jac pat(tag, m, n, x, rb, cb, crs, options)
short int tag; // tape identification
int m; // number of dependent variables m
int n; // number of independent variables n
double x[n]; // independent variables x0

unsigned int rb[1+m]; // description of the blocks of dependents
unsigned int cb[1+n]; // description of the blocks of independents
unsigned int crs[rb[0]][1+(non-zero ind. blocks w.r.t. current dep. block)];

// row compressed sparsity structure
int options[2]; // array of control parameters

The information how separate variables are bound together as blocks of variables is stored
in the arrays rb and cb. rb[0] is the number of blocks of dependent variables and cb[0] is
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the number of blocks of independent variables. The number of the column group to which
the variable x[j] belongs is represented by the integer cb[j+1] < cb[0]. Correspondingly
rb[i+1] < rb[0] represents the number of the row group to which the variable y[i] belongs.
The derivative of y[i] with respect to x[j] may be nonzero only if the block with index
(rb[i],cb[j]) as a whole is nonzero. The latter fact is represented in a customary compressed
row format stored in the array crs, where each row corresponds to a block of dependent
variables. crs[][0] is always the number of blocks of independent variables on which the
current block of dependent variables depends. The components crs[][i], i > 0 store the
indeces of these blocks of independent variables (see Figure 6). Natural applications of this
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Figure 6: Jacobian (block) sparsity pattern

variable grouping are for example simulations in physical space, where the three components
of position or velocity vectors naturally occur together or not at all in various relations.
When rb is equal to zero on entry all dependent variables are treated separately as a
singleton block. The same applies to the independent variables when cb equals zero on
entry.

0 mode selection (default)
options[0] 1 forward mode

2 reverse mode

0 safe mode (default)
options[1]

1 tight mode

Table 2: jac pat parameter options

The elements of the array options control the action of jac pat according to Table 2.
The value of options[0] selects the direction of bit pattern propagation. Depending on the
number of independent and of dependent variables, one would prefer the forward mode if
n ≤ m and would otherwise use the reverse mode. The component options[1] determines
the usage of the safe or tight mode of bit pattern propagation, both explained in Section
6.3. In the safe mode one does not need to supply the base point x0. The return values of
jac pat are explained in Table 1 in Section 6.3.
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The routine jac pat uses “strip-mining” to cope with large matrix dimensions. If
the system happens to run out of memory, one may reduce the value of the constant
PQ STRIPMINE MAX following the instructions in SPARSE/jacutils.h.

The example code jacpatexam.C contained in directory <ADOLC18_DIR>/EXA/SPARSE

demonstrates the driver routine jac pat.

8 Installing and Using ADOL-C

The ADOL-C package Version 1.8 consists of the following files separated into five subdi-
rectories:

• subdirectory <ADOLC18_DIR>/INS (installation scripts):

makefile

aix_comp gnu_comp sgi_comp sun_comp

xxx_comp

README.INS README.BUGS

and makefile components:

makefile.<subdir>.head makefile.<subdir>.tail

• subdirectory <ADOLC18_DIR>/SRC (library sources):

adalloc.h adolc.h adouble.h adutils.h

adutilsc.h avector.h convolut.h dvlparms.h

fortutils.h interfaces.h oplate.h taputil.h

tayutil.h usrparms.h

adallocc.c adallocC.C adouble.C avector.C

convolut.c fo_rev.c fortutils.c ho_rev.c

interfacesc.c interfacesC.C interfacesf.c taputilc.c

taputilC.C tayutilc.c tayutilC.C uni5_for.c

DRIVERS/drivers.h DRIVERS/odedrivers.h DRIVERS/taylor.h

DRIVERS/driversc.c DRIVERS/driversf.c DRIVERS/odedriversc.c

DRIVERS/odedriversC.C DRIVERS/odedriversf.c DRIVERS/taylor.c

SPARSE/jacutils.h SPARSE/sparse.h

SPARSE/int_for.c SPARSE/int_rev.c SPARSE/jacutils.c
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SPARSE/sparsec.c SPARSE/sparseC.C

README.SRC

and the tape documentation utility destined for ADOL-C developers:

TAPEDOC/tapedoc.h

TAPEDOC/tapedoc.c

• subdirectory <ADOLC18_DIR>/DEX (documented examples):

detexam.C gaussexam.C odexam.C powexam.C

speelpenning.C

README.DEX

• subdirectory <ADOLC18_DIR>/EXA (more examples):

There are about 30 example programs partially placed in the subdirectories

ODE SPARSE TAYLOR TIMING

CLOCK

Some of them demonstrate how to make use of the capabilities of ADOL-C. Others
allow to check computed derivatives for correctness or to perform run time measure-
ments. Detailed information can be found in the file

README.EXA

• subdirectory <ADOLC18_DIR>/DOC (this documentation):

adolc18.tex adolc18.ps blocks.eps tap_point.eps

8.1 Generating the ADOL-C Library libad.a

All source files needed to generate the ADOL-C library libad.a are placed in the source
directory <ADOLC18_DIR>/SRC. The necessary makefile can be provided by the command
make <operating_system>install from installation directory <ADOLC18_DIR>/INS. Be-
fore doing so appropriate changes in <operating_system>_comp (e.g. the choice of a diffe-
rent compiler and/or machine dependent options) allow best fit to the given operating sys-
tem. Details and known problems can be found in the files README.INS and README.BUGS.
Furthermore the user may modify the header file usrparms.h in order to tailor the ADOL-C
package to his needs in the particular system environment as discussed in Section 4.2. Af-
ter all calling make from the source directory generates the library libad.a that will be
placed in the same directory. All object files and other intermediately generated files can
be removed by the call make clean. See file README.SRC for further information.
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8.2 Compiling and Linking the Example Programs

The installation procedure described in Section 8.1 also provides the particular makefiles
necessary to compile the example programs placed in the directories <ADOLC18_DIR>/DEX

and <ADOLC18_DIR>/EXA. As described in the files README.DEX and README.EXA, respec-
tively, the command make <example_name> compiles and links a particular example pro-
gram. Just calling make generates all examples of a directory. The examples placed in the
directory <ADOLC18_DIR>/DEX are documented in Section 9. Detailed information about
the examples in the directory <ADOLC18_DIR>/EXA can be found in the file README.EXA.

8.3 Description of Important Header Files

The application of the facilities of ADOL-C requires the user source code (program or
module) to include appropriate header files where the desired data types and routines are
prototyped. The new hierarchy of header files enables the user to take one of two possible
ways to access the right interfaces. The first and easy way is recommended to beginners:
As indicated in Table 3 the provided global header file adolc.h can be included by any
user code to support all capabilities of ADOL-C depending on the particular programming
language of the source. Note, that the two header files adutils.h and adutilsc.h kept
for compatibility reasons to ADOL-C Version 1.7, so that existing applications do not have
to be changed.

adolc.h

→ global header file available for easy use of ADOL-C;
• includes all ADOL-C header files depending on whether the

users source is C++ or C code.

adutils.h

→ global C++ header file kept for compatibility to ADOL-C
Version 1.7;

• includes the global header adolc.h only.

adutilsc.h

→ global C header file kept for compatibility to ADOL-C Ver-
sion 1.7;

• includes the global header adolc.h only.

usrparms.h

→ user customization of ADOL-C package (see Section 4.2);
• after a change of user options the ADOL-C library libad.a

has to be rebuilt (see Section 8.1);
• is included by all ADOL-C header files and thus by all user

programs.

Table 3: Global header files

The second way is meant for the more advanced ADOL-C user: Some source code in-
cludes only those interfaces used by the particular application. The respectively needed
header files are indicated throughout the manual. Existing application determined depen-
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dences between the provided ADOL-C routines are realized by automatic includes of headers
in order to maintain easy use. The header files important to the user are described in the
Tables 4 and 5.

adouble.h

→ provides the interface to the basic active scalar data type
of ADOL-C: class adouble (see Section 2);

• includes the headers avector.h and taputil.h.

avector.h

→ provides the interface to the active vector and matrix data
types of ADOL-C: class adoublev and class adoublem,
respectively (see Section 3);

• is included by the header adouble.h.

taputil.h

→ provides functions to start/stop the tracing of active sec-
tions (see Sections 2.2) as well as utilities to obtain tape
statistics (see Sections 4.1);

• is included by the header adouble.h.

Table 4: Important header files: tracing/taping

interfaces.h

→ provides interfaces to the forward and reverse routines as
basic versions of derivative evaluation (see Section 6);

• comprises C++, C, and Fortran-callable versions;
• includes the header SPARSE/sparse.h;
• is included by the header DRIVERS/odedrivers.h.

DRIVERS/drivers.h

→ provides “easy to use” drivers for solving optimization prob-
lems and nonlinear equations (see Section 7.1);

• comprises C and Fortran-callable versions.

DRIVERS/odedrivers.h

→ provides “easy to use” drivers for numerical solution of or-
dinary differential equations (see Section 7.2);

• comprises C++, C, and Fortran-callable versions;
• includes the header interfaces.h.

DRIVERS/taylor.h

→ provides “easy to use” drivers for evaluation of higher or-
der derivative tensors (see Section 7.3) and inverse/implicit
function differentiation (see Section 7.4);

• comprises C++ and C-callable versions.

adalloc.h
→ provides C++ and C functions for allocation of vectors,

matrices and three dimensional arrays of doubles.

Table 5: Important header files: evaluation of derivatives

The integration of tools for the exploration and the subsequent exploitation of the
sparsity structure of Jacobians is subject of the current ADOL-C development. Presently
available ADOL-C routines for the exploration of sparsity are prototyped in the header files
described in Table 6.
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SPARSE/sparse.h

→ provides interfaces to C++-callable versions of forward
and reverse routines propagating bit patterns (see Section
6.3);

→ provides the “easy to use” driver jac pat for the explo-
ration of the sparsity structure of Jacobians (see Section
7.5);

• is included by the header interfaces.h.

SPARSE/jacutils.h
→ provides interfaces to the underlying C-callable versions of

forward and reverse routines propagating bit patterns.

Table 6: Header files for exploration of Jacobian sparsity

8.4 Compiling and Linking C/C++ Programs

To compile a C/C++ program or single module using ADOL-C data types and routines
one must make sure that all necessary header files according to Section 8.3 are included.
All modules involving active data types as adouble, adoublev and adoublem have to
be compiled as C++. Modules that make use of a previously generated tape to evaluate
derivatives can either be programmed in ANSI-C (while avoiding all C++ interfaces) or in
C++. Depending on the chosen programming language the header files provide the right
ADOL-C prototypes. For linking the resulting object codes the library libad.a must be
used (see Section 8.1).

8.5 Adding Quadratures as Special Functions

Suppose an integral

f(x) =

x
∫

0

g(t)dt

is evaluated numerically by a user-supplied function

double myintegral(double& x);

Similarly, let us suppose that the integrand itself is evaluated by a user-supplied block of C
code integrand, which computes a variable with the fixed name val from a variable with
the fixed name arg. In many cases of interest, integrand will simply be of the form

{ val = expression(arg) } .

In general, the final assignment to val may be preceded by several intermediate calculations,
possibly involving local active variables of type adouble, but no external or static variables
of that type. However, integrand may involve local or global variables of type double
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or int, provided they do not depend on the value of arg. The variables arg and val are
declared automatically; and as integrand is a block rather than a function, integrand
should have no header line.

Now the function myintegral can be overloaded for adouble arguments and thus
included in the library of elementary functions by the following modifications:

1. At the end of the file adouble.C, include the full code defining
double myintegral(double& x), and add the line

extend quad(myintegral, integrand);

This macro is extended to the definition of adouble myintegral(adouble& arg).
Then remake the library libad.a (see Section 8.1).

2. In the definition of the class adouble in adouble.h, add the statement

friend adouble myintegral(adouble&).

In the first modification, myintegral represents the name of the double function, whereas
integrand represents the actual block of C code.

For example, in case of the inverse hyperbolic cosine, we have myintegral = acosh.
Then integrand can be written as

{ val = sqrt(arg*arg-1); }

so that the line

extend quad(acosh,val = sqrt(arg*arg-1));

can be added to the file adouble.C. A mathematically equivalent but longer representation
of integrand is

{ adouble temp = arg;
temp = temp*temp;
val = sqrt(temp-1); }

The code block integrand may call on any elementary function that has already been
defined in file adouble.C, so that one may also introduce iterated integrals.
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9 Example Codes

The following listings are all simplified versions of codes that are contained in the example
subdirectory <ADOLC_DIR>/DEX of ADOL-C. In particular, we have left out timings, which
are included in the complete codes.

9.1 Speelpenning’s Example (speelpenning.C)

The first example evaluates the gradient and the Hessian of the function

y = f(x) =
n−1
∏

i=0

xi

using the appropriate drivers gradient and hessian.

#include "adouble.h" // use of active doubles and taping

#include "DRIVERS/drivers.h" // use of "Easy to Use" drivers

// gradient(.) and hessian(.)

...

int main() {

int n,i,j,tape_stats[11];

cout << "SPEELPENNINGS PRODUCT (ADOL-C Documented Example) \n";

cout << "number of independent variables = ? \n";

cin >> n;

double* xp = new double[n];

double yp = 0.0;

adouble* x = new adouble[n]; // or: adoublev x(n);

adouble y = 1;

for(i=0;i<n;i++)

xp[i] = (i+1.0)/(2.0+i); // some initialization

trace_on(1); // tag =1, keep=0 by default

for(i=0;i<n;i++) {

x[i] <<= xp[i]; // or x<<= xp outside the loop

y *= x[i]; } // end for

y >>= yp;

delete[] x; // not needed if x adoublev

trace_off();

tapestats(1,tape_stats); // reading of tape statistics

cout<<"maxlive "<<tape_stats[2]<<"\n";

// ..... print other tape stats

double* g = new double[n]; // or: doublev g(n);

gradient(1,n,xp,g); // gradient evaluation
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double** H=(double**)malloc(n*sizeof(double*));

for(i=0;i<n;i++)

H[i]=(double*)malloc((i+1)*sizeof(double));

hessian(1,n,xp,H); // H equals (n-1)g since g is

double errg = 0; // homogeneous of degree n-1.

double errh = 0;

for(i=0;i<n;i++)

errg += fabs(g[i]-yp/xp[i]); // vanishes analytically.

for(i=0;i<n;i++) {

for(j=0;j<n;j++) {

if (i>j) // lower half of hessian

errh += fabs(H[i][j]-g[i]/xp[j]);

} // end for

} // end for

cout << yp-1/(1.0+n) << " error in function \n";

cout << errg <<" error in gradient \n";

cout << errh <<" consistency check \n";

return 1;

} // end main

9.2 Power Example (powexam.C)

The second example function evaluates the n-th power of a real variable x in log2 n multipli-
cations by recursive halving of the exponent. Since there is only one independent variable,
the scalar derivative can be computed by using both forward and reverse, and the results
are subsequently compared.

#include "adolc.h" // use of ALL ADOL-C interfaces

adouble power(adouble x, int n) {

adouble z=1;

if (n>0) { // recursion and branches

int nh =n/2; // that do not depend on

z = power(x,nh); // adoubles are fine !!!!

z *= z;

if (2*nh != n)

z *= x;

return z; } // end if

else {

if (n==0) // the local adouble z dies

return z; // as it goes out of scope.



52 9 EXAMPLE CODES

else

return 1/power(x,-n); } // end else

} // end power

The function power above was obtained from the original undifferentiated version by simply
changing the type of all doubles including the return variable to adoubles. The new version
can now be called from within any active section, as in the following main program.

#include ... // as above

int main() {

int i,n,tag=1;

cout <<"COMPUTATION OF N-TH POWER (ADOL-C Documented Example)\n\n";

cout<<"monomial degree=? \n"; // input the desired degree

cin >> n;

// allocations and initializations

double* Y[1];

*Y = new double[n+2];

double* X[1]; // allocate passive variables with

*X = new double[n+4]; // extra dimension for derivatives

X[0][0] = 0.5; // function value = 0. coefficient

X[0][1] = 1.0; // first derivative = 1. coefficient

for(i=0;i<n+2;i++)

X[0][i+2]=0; // further coefficients

double* Z[1]; // used for checking consistency

*Z = new double[n+2]; // between forward and reverse

adouble y,x; // declare active variables

// beginning of active section

trace_on(1); // tag = 1 and keep = 0

x <<= X[0][0]; // only one independent var

y = power(x,n); // actual function call

y >>= Y[0][0]; // only one dependent adouble

trace_off(); // no global adouble has died

// end of active section

double u[1]; // weighting vector

u[0]=1; // for reverse call

for(i=0;i<n+2;i++) { // note that keep = i+1 in call

forward(tag,1,1,i,i+1,X,Y); // evaluate the i-the derivative

if (i==0)

cout << Y[0][i] << " - " << value(y) << " = " << Y[0][i]-value(y)

<< " (should be 0)\n";

else

cout << Y[0][i] << " - " << Z[0][i] << " = " << Y[0][i]-Z[0][i]



9.3 Determinant Example (detexam.C) 53

<< " (should be 0)\n";

reverse(tag,1,1,i,u,Z); // evaluate the (i+1)-st derivative

Z[0][i+1]=Z[0][i]/(i+1); } // scale derivative to Taylorcoeff.

return 1;

} // end main

Since this example has only one independent and one dependent variable, forward and
reverse have the same complexity and calculate the same scalar derivatives, albeit with a
slightly different scaling. By replacing the function power with any other univariate test
function, one can check that forward and reverse are at least consistent. In the following
example the number of independents is much larger than the number of dependents, which
makes the reverse mode preferable.

9.3 Determinant Example (detexam.C)

Now let us consider an exponentially expensive calculation, namely, the evaluation of a
determinant by recursive expansion along rows. The gradient of the determinant with
respect to the matrix elements is simply the adjoint, i.e. the matrix of cofactors. Hence the
correctness of the numerical result is easily checked by matrix-vector multiplication. The
example illustrates the use of adouble arrays and pointers.

#include "adouble.h" // use of active doubles and taping

#include "interfaces.h" // use of basic forward/reverse

// interfaces of ADOL-C

adouble** A; // A is an n x n matrix

int i,n; // k <= n is the order

adouble det(int k, int m) { // of the sub-matrix

if (m == 0) return 1.0 ; // its column indices

else { // are encoded in m

adouble* pt = A[k-1];

adouble t = zero; // zero is predefined

int s, p =1;

if (k%2) s = 1; else s = -1;

for(i=0;i<n;i++) {

int p1 = 2*p;

if (m%p1 >= p) {

if (m == p) {

if (s>0) t += *pt; else t -= *pt; }

else {

if (s>0)

t += *pt*det(k-1,m-p); // recursive call to det
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else

t -= *pt*det(k-1,m-p); } // recursive call to det

s = -s;}

++pt;

p = p1;}

return t; }

} // end det

As one can see, the overloading mechanism has no problem with pointers and looks exactly
the same as the original undifferentiated function except for the change of type from double
to adouble. If the type of the temporary t or the pointer pt had not been changed, a
compile time error would have resulted. Now consider a corresponding calling program.

#include ... // as above

int main() {

int i,j, m=1,tag=1,keep=1;

cout << "COMPUTATION OF DETERMINANTS (ADOL-C Documented Example)\n\n";

cout << "order of matrix = ? \n"; // select matrix size

cin >> n;

A = new adouble*[n];

trace_on(tag,keep); // tag=1=keep

double detout=0.0, diag = 1.0; // here keep the intermediates for

for(i=0;i<n;i++) { // the subsequent call to reverse

m *=2;

A[i] = new adouble[n]; // not needed for adoublem

adouble* pt = A[i];

for(j=0;j<n;j++)

A[i][j] <<= j/(1.0+i); // make all elements of A independent

diag += value(A[i][i]); // value(adouble) converts to double

A[i][i] += 1.0; }

det(n,m-1) >>= detout; // actual function call

printf("\n %f - %f = %f (should be 0)\n",detout,diag,detout-diag);

trace_off();

double u[1];

u[0] = 1.0;

double* B = new double[n*n];

reverse(tag,1,n*n,1,u,B);

cout <<" \n first base? : ";

for (i=0;i<n;i++) {

adouble sum = 0;

for (j=0;j<n;j++) // the matrix A times the first n

sum += A[i][j]*B[j]; // components of the gradient B
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cout<<value(sum)<<" "; } // must be a Cartesian basis vector

return 1;

} // end main

The variable diag should be mathematically equal to the determinant, because the matrix
A is defined as a rank 1 perturbation of the identity.

9.4 Ordinary Differential Equation Example (odexam.C)

Here, we consider a nonlinear ordinary differential equation that is a slight modification of
the Robertson test problem given in Hairer and Wanner’s book on the numerical solution
of ODEs [13]. The following source code computes the corresponding values of y ′ ∈ IR3:

#include "adouble.h" // use of active doubles and taping

#include "DRIVERS/odedrivers.h" // use of "Easy To use" ODE drivers

#inlude "adalloc.h" // use of ADOL-C allocation utilities

void tracerhs(short int tag, double* py, double* pyprime) {

adoublev y(3); // this time we left the parameters

adoublev yprime(3); // passive and use the vector types

trace_on(tag);

y <<= py; // initialize and mark independents

yprime[0] = -sin(y[2]) + 1e8*y[2]*(1-1/y[0]);

yprime[1] = -10*y[0] + 3e7*y[2]*(1-y[1]);

yprime[2] = -yprime[0] - yprime[1];

yprime >>= pyprime; // mark and pass dependents

trace_off(tag);

} // end tracerhs

The Jacobian of the right-hand side has large negative eigenvalues, which make the ODE
quite stiff. We have added some numerically benign transcendentals to make the differen-
tiation more interesting. The following main program uses forode to calculate the Taylor
series defined by the ODE at the given point y0 and reverse as well as accode to compute
the Jacobians of the coefficient vectors with respect to x0.

#include ....... // as above

int main() {

int i,j,deg;

int n=3;

double py[3];

double pyp[3];
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cout << "MODIFIED ROBERTSON TEST PROBLEM (ADOL-C Documented Example)\n";

cout << "degree of Taylor series =?\n";

cin >> deg;

double **X;

X=(double**)malloc(n*sizeof(double*));

for(i=0;i<n;i++)

X[i]=(double*)malloc((deg+1)*sizeof(double));

double*** Z=new double**[n];

double*** B=new double**[n];

short** nz = new short*[n];

for(i=0;i<n;i++) {

Z[i]=new double*[n];

B[i]=new double*[n];

for(j=0;j<n;j++) {

Z[i][j]=new double[deg];

B[i][j]=new double[deg]; } // end for

} // end for

for(i=0;i<n;i++) {

py[i] = (i == 0) ? 1.0 : 0.0; // initialize the base point

X[i][0] = py[i]; // and the Taylor coefficient;

nz[i] = new short[n]; } // set up sparsity array

tracerhs(1,py,pyp); // trace RHS with tag = 1

forode(1,n,deg,X); // compute deg coefficients

reverse(1,n,n,deg-1,Z,nz); // U defaults to the identity

accode(n,deg-1,Z,B,nz);

cout << "nonzero pattern:\n";

for(i=0;i<n;i++) {

for(j=0;j<n;j++)

cout << nz[i][j]<<"\t";

cout <<"\n"; } // end for

return 1;

} // end main

The pattern nz returned by accode is

3 -1 4

1 2 2

3 2 4

The original pattern nz returned by reverse is the same except that the negative entry −1
was zero.
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9.5 Gaussian Elimination Example (gaussexam.C)

The following example uses conditional assignments as well as active subscripts to show
the usage of a once produced tape for evaluation at new arguments. The elimination is
performed with column pivoting.

#include "adolc.h" // use of ALL ADOL-C interfaces

void gausselim(int n, adoublem& A, adoublev& bv) {

along i; // active integer declaration

adoublev temp(n); // active vector declaration

adouble r,rj,temps;

int j,k;

for(k=0;k<n;k++) { // elimination loop

i = k;

r = fabs(A[k][k]); // initial pivot size

for(j=k+1;j<n;j++) {

rj = fabs(A[j][k]);

condassign(i,rj-r,j); // look for a larger element in the same

condassign(r,rj-r,rj); } // column with conditional assignments

temp = A[i]; // switch rows using active subscripting

A[i] = A[k]; // necessary even if i happens to equal

A[k] = temp; // k during taping

temps = bv[i];

bv[i]=bv[k];

bv[k]=temps;

if (!value(A[k][k])) // passive subscripting

exit(1); // matrix singular!

temps= A[k][k];

A[k] /= temps;

bv[k] /= temps;

for(j=k+1;j<n;j++) {

temps= A[j][k];

A[j] -= temps*A[k]; // vector operations

bv[j] -= temps*bv[k]; } // endfor

} // end elimination loop

temp=0.0;

for(k=n-1;k>=0;k--) // backsubstitution

temp[k] = (bv[k]-(A[k]*temp))/A[k][k];

bv=temp;

} // end gausselim
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This function can be called from any program that suitably initializes the components of
A and bv as independents. The resulting tape can be used to solve any nonsingular linear
system of the same size and to get the sensitivities of the solution with respect to the system
matrix and the right hand side.

Acknowledgements

Parts of the ADOL-C source were developed by Jay Srinivasan, Chuck Tyner, and Duane
Yoder. We are also indebted to George Corliss, Tom Epperly, Bruce Christianson, David
Gay, Brad Karp, Koichi Kubota, Bob Olson, Marcela Rosemblun, and Dima Shiriaev for
helping in various ways with the development and documentation of ADOL-C. Links to
updated versions of the ADOL-C source code and this manual can be found on web page
http://www.math.tu-dresden.de/~adol-c.

References
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