
Package ‘surveillance’
May 26, 2010

Title Modeling and monitoring discrete response time series

Version 1.2-1

Date 2010-05-25

Author M. Höhle with contributions from T. Correa, M. Hofmann, C. Lang, M. Paul, A. Riebler, S.
Steiner and V. Wimmer

Depends methods,utils,xtable,spc,sp,maptools,vcd,msm,Matrix

Suggests RUnit,digest,coda,gamlss,splancs

Description A package implementing statistical methods for the modeling and change-point detection
in time series of counts, proportions and categorical data. Focus is on outbreak detection in count
data time series originating from public health surveillance of infectious diseases, but
applications could just as well originate from environmetrics, reliability engineering,
econometrics or social sciences. Currently the package contains implementations typical
outbreak detection procedures such as Stroup et. al (1989), Farrington et al, (1996), Rossi et al.
(1999), Rogerson and Yamada (2001), a Bayesian approach, negative binomial CUSUM
methods and a detector based on generalized likelihood ratios. Furthermore, inference methods
for the retrospective infectious disease model in Held et al. (2005), Held et al. (2006) and Paul et
al. (2008) are provided. A novel CUSUM approach combining logistic and multinomial logistic
modelling is also included. The package contains several real-world datasets, the ability to
simulate outbreak data, visualize the results of the monitoring in temporal, spatial or
spatio-temporal fashion.

Maintainer Michael Höhle <hoehle@stat.uni-muenchen.de>

License GPL-2

URL http://surveillance.r-forge.r-project.org/

ZipData no

Encoding latin1

R topics documented:
surveillance-package . 3
abattoir . 4
aggregate-methods . 5
aggregate.disProg . 6

1

http://surveillance.r-forge.r-project.org/

2 R topics documented:

algo.bayes . 6
algo.call . 8
algo.cdc . 9
algo.compare . 11
algo.cusum . 12
algo.farrington . 14
algo.farrington.assign.weights . 16
algo.farrington.fitGLM . 16
algo.farrington.threshold . 17
algo.glrnb . 18
algo.glrpois . 20
algo.hhh . 22
algo.hhh.grid . 25
algo.hmm . 27
algo.outbreakP . 30
algo.quality . 32
algo.rki . 33
algo.rogerson . 34
algo.summary . 36
algo.twins . 37
anscombe.residuals . 39
arlCusum . 40
bestCombination . 41
categoricalCUSUM . 41
CIdata . 44
compMatrix.writeTable . 44
correct53to52 . 45
create.disProg . 46
create.grid . 47
deleval . 48
display-methods . 49
disProg2sts . 51
enlargeData . 52
estimateGLRNbHook . 53
estimateGLRPoisHook . 54
find.kh . 55
findH . 56
findK . 57
ha . 58
hepatitisA . 58
influMen . 59
loglikelihood . 59
LRCUSUM.runlength . 60
m1 . 62
magic.dim . 63
make.design . 64
makePlot . 65
meanResponse . 66
measles.weser . 67
meningo.age . 68
momo . 68
observed-methods . 69

surveillance-package 3

obsinyear-methods . 70
pairedbinCUSUM . 70
plot.atwins . 73
plot.disProg . 74
plot.survRes . 76
predict.ah . 78
primeFactors . 78
print.algoQV . 79
readData . 79
refvalIdxByDate . 80
residuals.ah . 81
salmonella.agona . 82
shadar . 82
sim.pointSource . 83
sim.seasonalNoise . 84
simHHH . 85
stcd . 87
sts-class . 88
sumNeighbours . 90
test . 90
testSim . 91
toFileDisProg . 92
wrap.algo . 93
xtable.algoQV . 94
year-methods . 95
[-methods . 95

Index 96

surveillance-package
Outbreak detection algorithms for surveillance data

Description

A package implementing statistical methods for the modeling and change-point detection in time
series of counts, proportions and categorical data. Focus is on outbreak detection in count data time
series originating from public health surveillance of infectious diseases, but applications could just
as well originate from environmetrics, reliability engineering, econometrics or social sciences.

Details

Package: surveillance
Type: Package
Version: 1.1-0
Date: 2009-10-14
License: GPL version 2 (http://www.gnu.org/licenses/gpl.html)

surveillance is an R package implementing statistical methods for the retrospective modeling
and prospective change-point detection in time series of counts, proportions and categorical data.

4 abattoir

The main application is in the detection of aberrations in routine collected public health data seen
as univariate and multivariate time series of counts, but applications could just as well originate
from environmetrics, econometrics or social sciences. As many methods rely on statistical process
control methodology, the package is thus also relevant to quality control and reliability engineering.

The fundamental data structure of the package is an S4 class sts wrapping observations, moni-
toring results and date handling for multivariate time series. Currently the package contains im-
plementations typical outbreak detection procedures such as Stroup et al. (1989), Farrington et al.,
(1996), Rossi et al. (1999), Rogerson and Yamada (2001), a Bayesian approach (Höhle, 2007), neg-
ative binomial CUSUM methods (Höhle and Mazick, 2009), and a detector based on generalized
likelihood ratios (Höhle and Paul, 2008). However, also CUSUMs for the prospective change-point
detection in binomial, beta-binomial and multinomial time series is covered based on generalized
linear modelling. This includes e.g. paired binary CUSUM described by Steiner et al. (1999) or
paired comparison Bradley-Terry modelling described in Höhle (2010). The package contains sev-
eral real-world datasets, the ability to simulate outbreak data, visualize the results of the monitoring
in temporal, spatial or spatio-temporal fashion.

Furthermore, inference methods for the retrospective infectious disease model in Held et al. (2005)
and Paul et al. (2008) handling multivariate time series of counts. Finally, the fully Bayesian
approach for univariate time series of counts from Held et al. (2006) is also implemented.

Author(s)

Author: M. Höhle with contributions from T. Correa, M. Hofmann, C. Lang, M. Paul, A. Riebler,
S. Steiner and V. Wimmer

Maintainer: Michael Höhle «hoehle@stat.uni-muenchen.de»

References

surveillance: An R package for the surveillance of infectious diseases (2007), M. Höhle, Computa-
tional Statistics, 22(4), pp. 571—582.

Examples

#Code from an early survey article about the package: Hoehle (2007)
#available from http://surveillance.r-forge.r-project.org/
Not run: demo(cost)
#Code from a more recent book chapter about using the package for the
#monitoring of Danish mortality data (Hoehle, 2009).
Not run: demo(biosurvbook)

abattoir Abattoir Data

Description

A synthetic dataset from the Danish meat inspection – useful for illustrating the beta-binomial
CUSUM.

Usage

data(abattoir)

aggregate-methods 5

Details

The object of class sts contains an artificial data set inspired by meat inspection data used by
Danish Pig Production, Denmark. For each week the number of pigs with positive audit reports is
recorded together with the total number of audits made that week.

References

Höhle, M. (2010), Changepoint detection in categorical time series, Book chapter to appear in T.
Kneib and G. Tutz (Eds.), Statistical Modelling and Regression Structures, Springer.

See Also

categoricalCUSUM

Examples

data("abattoir")
plot(abattoir,legend.opts=NULL)
population(abattoir)

aggregate-methods Aggregate the the series of an sts object

Description

Method to aggregate the matrix slots of an sts object. Either the time series is aggregated so a new
sampling frequency of nfreq units per time slot is obtained – i.e as in aggregate.ts. The
other option is to aggregate over all ncol units.

Note: The function is not 100% consistent with what the generic function aggregate does.

Details

Warning: In case the aggregation is by unit the upperbound slot is set to NA. Furthermore the MAP
object is left as is, but the object cannot be plotted anymore.

Methods

x = "sts", by="time", nfreq="all",... x an object of class sts
by a string being either "time" or "unit"
nfreq new sampling frequency if by=="time". If nfreq=="all" then all time instances

are summed.
... not used
returns an object of class sts

See Also

aggregate

6 algo.bayes

Examples

data(ha)
has4 <- disProg2sts(ha)
dim(has4)
dim(aggregate(has4,by="unit"))
dim(aggregate(has4,nfreq=13))

aggregate.disProg Aggregate the observed counts

Description

Aggregates the observed counts for a multivariate disProgObj over the units. Future versions of
surveillance will also allow for time aggregations etc.

Usage

S3 method for class 'disProg':
aggregate(x,...)

Arguments

x Object of class disProg

... not used at the moment

Value

x univariate disProg object with aggregated counts and respective states for
each time point.

Examples

data(ha)
plot(aggregate(ha))

algo.bayes The Bayes System

Description

Evaluation of timepoints with the Bayes subsystem 1,2 or 3 or a self defined Bayes subsystem.

Usage

algo.bayesLatestTimepoint(disProgObj, timePoint = NULL,
control = list(b = 0, w = 6, actY = TRUE,alpha=0.05))

algo.bayes(disProgObj, control = list(range = range,
b = 0, w = 6, actY = TRUE,alpha=0.05))

algo.bayes1(disProgObj, control = list(range = range))
algo.bayes2(disProgObj, control = list(range = range))
algo.bayes3(disProgObj, control = list(range = range))

algo.bayes 7

Arguments

disProgObj object of class disProg (including the observed and the state chain)

timePoint time point which shoud be evaluated in algo.rkiLatestTimepoint. The
default is to use the latest timepoint

control control object: range determines the desired timepoints which should be eval-
uated, b describes the number of years to go back for the reference values, w
is the half window width for the reference values around the appropriate time-
point and actY is a boolean to decide if the year of timePoint also spend w
reference values of the past. The parameter alpha is the 1− α-quantile to use
in order to calculate the upper threshold. As default b, w, actY are set for the
Bayes 1 system with alpha=0.05.

Details

Using the reference values for calculating an upper limit (threshold) via the negative binomial distri-
bution, alarm is given if the actual value is bigger or equal than this threshold. algo.bayes calls
algo.bayesLatestTimepoint for the values specified in range and for the system specified
in control. algo.bayes1, algo.bayes2, algo.bayes3 call algo.bayesLatestTimepoint
for the values specified in range for the Bayes 1 system, Bayes 2 system or Bayes 3 system.

• "Bayes 1" reference values from 6 weeks ago and alpha=0.05 fixed.

• "Bayes 2" reference values from 6 weeks ago and 13 weeks of the year ago (symmetrical
around the comparable week). Alpha is fixed at 0.05.

• "Bayes 3" 18 reference values. 9 from the year ago and 9 from two years ago (also sym-
metrical around the comparable week). Alpha is fixed at 0.05.

The procedure is now able to handle NA’s in the reference values. In the summation and when
counting the number of observed reference values these are simply not counted.

Value

survRes algo.bayesLatestTimepoint returns a list of class survRes (surveil-
lance result), which includes the alarm value for recognizing an outbreak (1 for
alarm, 0 for no alarm), the threshold value for recognizing the alarm and the in-
put object of class disProg. algo.bayes gives a list of class survRes which
includes the vector of alarm values for every timepoint in range and the vector
of threshold values for every timepoint in range for the system specified by b,
w and actY, the range and the input object of class disProg. algo.bayes1
returns the same for the Bayes 1 system, algo.bayes2 for the Bayes 2 system
and algo.bayes3 for the Bayes 3 system.

Author(s)

M. Höhle, A. Riebler, C. Lang

Source

Riebler, A. (2004), Empirischer Vergleich von statistischen Methoden zur Ausbruchserkennung bei
Surveillance Daten, Bachelor’s thesis.

See Also

algo.call, algo.rkiLatestTimepoint and algo.rki for the RKI system.

8 algo.call

Examples

disProg <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1,
alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

Test for bayes 1 the latest timepoint
algo.bayesLatestTimepoint(disProg)

Test week 200 to 208 for outbreaks with a selfdefined bayes
algo.bayes(disProg, control = list(range = 200:208, b = 1,

w = 5, actY = TRUE,alpha=0.05))
The same for bayes 1 to bayes 3
algo.bayes1(disProg, control = list(range = 200:208,alpha=0.05))
algo.bayes2(disProg, control = list(range = 200:208,alpha=0.05))
algo.bayes3(disProg, control = list(range = 200:208,alpha=0.05))

algo.call Query Transmission to Specified Surveillance Systems

Description

Transmission of a object of class disProg to the specified surveillance systems.

Usage

algo.call(disProgObj, control = list(
list(funcName = "rki1", range = range),
list(funcName = "rki", range = range,

b = 2, w = 4, actY = TRUE),
list(funcName = "rki", range = range,

b = 2, w = 5, actY = TRUE)))

Arguments

disProgObj object of class disProg, which includes the state chain and the observed

control specifies which surveillance systems should be used with their parameters. The
parameter funcName and rangemust be specified where funcNamemust be
the appropriate method function (without ’algo.’). range defines the time-
points to be evaluated by the actual system. If control includes name this
name is used in the survRes Object as name.

Value
list of survRes Objects

generated by the specified surveillance systems

See Also

algo.rki, algo.bayes, algo.farrington

algo.cdc 9

Examples

Create a test object
disProg <- sim.pointSource(p = 0.99, r = 0.5, length = 400, A = 1,

alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

Let this object be tested from any methods in range = 200:400
range <- 200:400
survRes <- algo.call(disProg,

control = list(
list(funcName = "rki1", range = range),
list(funcName = "rki2", range = range),
list(funcName = "rki3", range = range),
list(funcName = "rki", range = range,

b = 3, w = 2, actY = FALSE),
list(funcName = "rki", range = range,

b = 2, w = 9, actY = TRUE),
list(funcName = "bayes1", range = range),
list(funcName = "bayes2", range = range),
list(funcName = "bayes3", range = range),
list(funcName = "bayes", name = "myBayes",

range = range, b = 1, w = 5, actY = TRUE,alpha=0.05)
))

this are some survResObjects
survRes[["rki(6,6,0)"]]
survRes[["bayes(5,5,1)"]]

algo.cdc The CDC Algorithm

Description

Surveillance using the CDC Algorithm

Usage

algo.cdcLatestTimepoint(disProgObj, timePoint = NULL,
control = list(b = 5, m = 1, alpha=0.025))

algo.cdc(disProgObj, control = list(range = range, b= 5, m=1,
alpha = 0.025))

Arguments

disProgObj object of class disProg (including the observed and the state chain).

timePoint time point which shoud be evaluated in algo.cdcLatestTimepoint. The
default is to use the latest timepoint.

control control object: range determines the desired timepoints which should be eval-
uated, b describes the number of years to go back for the reference values, m is
the half window width for the reference values around the appropriate timepoint
(see details). The standard definition is b=5 and m=1.

10 algo.cdc

Details

Using the reference values for calculating an upper limit, alarm is given if the actual value is big-
ger than a computed threshold. algo.cdc calls algo.cdcLatestTimepoint for the values
specified in range and for the system specified in control. The threshold is calculated by the
predictive version, i.e.

mean(x) + zα/2 ∗ sd(x) ∗
√

(1 + 1/k),

which corresponds to Equation 8-1 in the Farrington and Andrews chapter.

Note that an aggregation into 4-week blocks occurs in algo.cdcLatestTimepoint and m
denotes number of 4-week blocks (months) to use as reference values. This function currently does
the same for monthly data (not correct!)

Value

survRes algo.cdcLatestTimepoint returns a list of class survRes (surveillance
result), which includes the alarm value (alarm = 1, no alarm = 0) for recognizing
an outbreak, the threshold value for recognizing the alarm and the input object
of class disProg.
algo.cdc gives a list of class survRes which includes the vector of alarm
values for every timepoint in range, the vector of threshold values for every
timepoint in range for the system specified by b, w, the range and the input
object of class disProg.

Author(s)

M. Höhle

Source

Stroup, D., G. Williamson, J. Herndon, and J. Karon (1989). Detection of aberrations in the oc-
curence of notifiable diseases surveillance data. Statistics in Medicine 8, 323-329.

Farrington, C. and N. Andrews (2003). Monitoring the Health of Populations, Chapter Outbreak
Detection: Application to Infectious Disease Surveillance, pp. 203-231. Oxford University Press.

See Also

algo.rkiLatestTimepoint,algo.bayesLatestTimepoint and algo.bayes for the
Bayes system.

Examples

Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 500,

A = 1,alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

Test week 200 to 208 for outbreaks with a selfdefined cdc
algo.cdc(disProgObj, control = list(range = 400:500,alpha=0.025))

algo.compare 11

algo.compare Comparison of Specified Surveillance Systems using Quality Values

Description

Comparison of specified surveillance systems using quality values.

Usage

algo.compare(survResList)

Arguments

survResList a list of survRes objects to compare via quality values.

Value

matrix Matrix with values from algo.quality, i.e. quality values for every surveil-
lance system found in survResults.

See Also

algo.quality

Examples

Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

Let this object be tested from any methods in range = 200:400
range <- 200:400
survRes <- algo.call(disProgObj,

control = list(
list(funcName = "rki1", range = range),
list(funcName = "rki2", range = range),
list(funcName = "rki3", range = range),
list(funcName = "rki", range = range,

b = 3, w = 2, actY = FALSE),
list(funcName = "rki", range = range,

b = 2, w = 9, actY = TRUE),
list(funcName = "bayes1", range = range),
list(funcName = "bayes2", range = range),
list(funcName = "bayes3", range = range),
list(funcName = "bayes", name = "myBayes",
range = range, b = 1, w = 5, actY = TRUE,alpha=0.05)

))
algo.compare(survRes)

12 algo.cusum

algo.cusum CUSUM method

Description

Approximate one-side CUSUM method for a Poisson variate based on the cumulative sum of the
deviation between a reference value k and the (standardized) observed values. An alarm is raised if
the cumulative sum equals or exceeds a prespecified decision boundary h.

Usage

algo.cusum(disProgObj, control = list(range = range, k = 1.04, h = 2.26,
m = NULL, trans = "standard", alpha = NULL))

Arguments

disProgObj object of class disProg (including the observed and the state chain)

control control object:

range determines the desired time points which should be evaluated
k is the reference value
h the decision boundary
m how to determine the expected number of cases – the following arguments

are possible
numeric a vector of values having the same length as range. If a single

numeric value is specified then this value is replicated length(range)
times.

NULL A single value is estimated by taking the mean of all observations
previous to the first range value.

"glm" A GLM of the form

log(mt) = α+ βt+
S∑
s=1

(γs sin(ωst) + δs cos(ωst)),

where ωs = 2π
52 s are the Fourier frequencies is fitted. Then this model

is used to predict the range values.
trans one of the following transformations (warning: anscombe and negbin

transformations are experimental)
rossi compute standardized variables z3 as proposed by Rossi
standard compute standardized variables z1 (based on asympotic nor-

mality)
anscombe anscombe residuals – experimental
anscombe2nd anscombe residuals as in Pierce and Schafer (1986) based

on 2nd order approximation of E(X) – experimental
pearsonNegBin compute Pearson residuals for NegBin – experimental
anscombeNegBin anscombe residuals for NegBin – experimental
none no transformation

alpha parameter of the negative binomial distribution, s.t. the variance ism+
α ∗m2

algo.cusum 13

Details

This implementation is still experimental

Value

survRes algo.cusum gives a list of class survReswhich includes the vector of alarm
values for every timepoint in range and the vector of cumulative sums for every
timepoint in range for the system specified by k and h, the range and the input
object of class disProg.

The upperbound entry shows for each time instance the number of diseased
individuals it would have taken the cusum to signal. Once the CUSUM sig-
nals no resetting is applied, i.e. signals occurs until the CUSUM statistic again
returns below the threshold.

The control$m.glm entry contains the fitted glm object, if the original argu-
ment was "glm".

Author(s)

M. Paul and M. HÃ¶hle

References

G. Rossi, L. Lampugnani and M. Marchi (1999), An approximate CUSUM procedure for surveil-
lance of health events, Statistics in Medicine, 18, 2111–2122

D. A. Pierce and D. W. Schafer (1986), Residuals in Generalized Linear Models, Journal of the
American Statistical Association, 81, 977–986

Examples

Xi ~ Po(5), i=1,...,500
disProgObj <- create.disProg(week=1:500, observed= rpois(500,lambda=5),

state=rep(0,500))
there should be no alarms as mean doesn't change
res <- algo.cusum(disProgObj, control = list(range = 100:500,trans="anscombe"))
plot(res)

simulated data
disProgObj <- sim.pointSource(p = 1, r = 1, length = 250,

A = 0, alpha = log(5), beta = 0, phi = 10,
frequency = 10, state = NULL, K = 0)

plot(disProgObj)

Test week 200 to 250 for outbreaks
surv <- algo.cusum(disProgObj, control = list(range = 200:250))
plot(surv)

14 algo.farrington

algo.farrington Surveillance for a time series using the Farrington procedure.

Description

The function takes range values of the time series counts and for each uses a GLM to predict
the number of counts according to the procedure by Farrington et. al. This is then compared to the
observed number of counts and in case an exceedance of the confidence interval calculated is seen
an alarm is raised.

Usage

algo.farrington(disProgObj, control=list(range=NULL, b=3, w=3,
reweight=TRUE,verbose=FALSE,alpha=0.01,trend=TRUE,limit54=c(5,4),
powertrans="2/3"))

Arguments

disProgObj object of class disProgObj (including the observed and the state chain)

control Control object

• rangeSpecifies the index of all timepoints which should be tested. If range
is NULL the maximum number of possible weeks is used.

• bhow many years back in time to include when forming the base counts.

• wwindows size, i.e. number of weeks to include before and after the current
week

• reweightBoolean specifying whether to perform reweight step

• trendIf true a trend is included and kept in case the conditions in the
Farrington et. al. paper are met (see the results). If false then NO trend
is fit.

• verboseshow extra debugging information

• plotshows the final GLM model fit graphically (use History|Recording to
see all pictures)

• powertransPower transformation to apply to the data. Use either "2/3" for
skewness correction (Default), "1/2" for variance stabilizing transformation
or "none" for no transformation

• alphaAn approximate (two-sided) (1 − α)%\ prediction interval is calcu-
lated

• limit54To avoid alarms in cases where the time series only has about 0-2
cases the algorithm uses the following heuristic criterion (see Section 3.8 of
the Farrington paper) to protect against low counts: no alarm is sounded if
fewer than cases = 5 reports were received in the past period = 4 weeks.
limit54=c(cases,period) is a vector allowing the user to change
these numbers. Note: As of version 0.9-7 The term "last" period of weeks
includes the current week - otherwise no alarm is sounded for horrible large
numbers if the four weeks before that are too low.

algo.farrington 15

Details

The following steps are perfomed according to the Farrington et. al. paper.

1. fit of the initial model and initial estimation of mean and overdispersion.

2. calculation of the weights omega (correction for past outbreaks)

3. refitting of the model

4. revised estimation of overdispersion

5. rescaled model

6. omission of the trend, if it is not significant

7. repetition of the whole procedure

8. calculation of the threshold value

9. computation of exceedance score

Value

An object of class SurvRes.

Author(s)

M. Höhle

Source

A statistical algorithm for the early detection of outbreaks of infectious disease, Farrington, C.P.,
Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996). , J. R. Statist. Soc. A, 159, 547-563.

See Also

algo.farrington.fitGLM,algo.farrington.threshold

Examples

#Read Salmonella Agona data
data("salmonella.agona")

#Do surveillance for the last 100 weeks.
n <- length(salmonella.agona$observed)
#Set control parameters.
control <- list(b=4,w=3,range=(n-100):n,reweight=TRUE, verbose=FALSE,alpha=0.01)
res <- algo.farrington(salmonella.agona,control=control)
#Plot the result.
plot(res,disease="Salmonella Agona",method="Farrington")

16 algo.farrington.fitGLM

algo.farrington.assign.weights
Assign weights to base counts

Description

Weights are assigned according to the Anscombe residuals

Usage

algo.farrington.assign.weights(s)

Arguments

s Vector of standardized Anscombe residuals

Value

Weights according to the residuals

See Also

See Also as anscombe.residuals

algo.farrington.fitGLM
Fit the Poisson GLM of the Farrington procedure for a single time
point

Description

The function fits a Poisson regression model (GLM) with mean predictor

logµt = α+ βwt

as specified by the Farrington procedure. That way we are able to predict the value c0. If requested
Anscombe residuals are computed based on an initial fit and a 2nd fit is made using weights, where
base counts suspected to be caused by earlier outbreaks are downweighted.

Usage

algo.farrington.fitGLM(response, wtime, timeTrend = TRUE,
reweight = TRUE)

Arguments

response The vector of observed base counts

wtime Vector of week numbers corresponding to response

timeTrend Boolean whether to fit the βt or not

reweight Fit twice – 2nd time with Anscombe residuals

algo.farrington.threshold 17

Details

Compute weights from an initial fit and rescale using Anscombe based residuals as described in the
anscombe.residuals function.

Value

An object of class GLM with additional fields wtime, response and phi. If the glm returns
without convergence NULL is returned.

See Also

anscombe.residuals

algo.farrington.threshold
Threshold computations using a two sided confidence interval

Description

Depending on the current transformation h(y) = {y,√y, y2/3},

V (h(y0)− h(µ0)) = V (h(y0)) + V (h(µ0))

is used to compute a prediction interval. The prediction variance consists of a component due to the
variance of having a single observation and a prediction variance.

Usage

algo.farrington.threshold(pred,phi,alpha=0.01,skewness.transform="none",y)

Arguments

pred A GLM prediction object

phi Current overdispersion (superflous?)

alpha Quantile level in Gaussian based CI, i.e. an (1 − α)% confidence interval is
computed.

skewness.transform
Skewness correction, i.e. one of "none", "1/2", or "2/3".

y Observed number

Value

Vector of length 4 with lower and upper bounds of an (1 − α)% confidence interval (first two
arguments) and corresponding quantile of observation y together with the median of the predictive
distribution.

18 algo.glrnb

algo.glrnb Cound data regression charts

Description

Count data regression charts for the monitoring of surveillance time series.

Usage

algo.glrnb(disProgObj,control = list(range=range,c.ARL=5,
mu0=NULL, alpha=0, Mtilde=1, M=-1, change="intercept",
theta=NULL,dir=c("inc","dec"),ret=c("cases","value")))

Arguments

disProgObj object of class disProg to do surveillance for

control A list controlling the behaviour of the algorithm

range vector of indices in the observed vector to monitor (should be consecu-
tive)

mu0 A vector of in-control values of the mean of the negative binomial dis-
tribution with the same length as range. If NULL the observed values
in 1:(min(range)-1) are used to estimate beta through a generalized
linear model. To fine-tune the model one can instead specify mu0 as a list
with two components:
S number of harmonics to include
trend include a term t in the GLM model

alpha The (known) dispersion parameter of the negative binomial distribu-
tion. If alpha=0 then the negative binomial distribution boils down to the
Poisson distribution and a call of algo.glrnb is equivalent to a call to
algo.glrpois. If alpha=NULL the parameter is calculated as part of
the in-control estimation.

c.ARL threshold in the GLR test, i.e. cγ
Mtilde number of observations needed before we have a full rank the typical

setup for the "intercept" and "epi" charts is Mtilde=1
M number of time instances back in time in the window-limited approach, i.e.

the last value considered is max 1, n−M . To always look back until the
first observation use M=-1.

change a string specifying the type of the alternative. Currently the two
choices are intercept and epi. See the SFB Discussion Paper 500
for details.

theta if NULL then the GLR scheme is used. If not NULL the prespecified
value for κ or λ is used in a recursive LR scheme, which is faster.

dir a string specifying the direction of testing in GLR scheme. With "inc"
only increases in x are considered in the GLR-statistic, with "dec" de-
creases are regarded.

ret a string specifying the type of upperbound-statistic that is returned.
With "cases" the number of cases that would have been necessary to
produce an alarm or with "value" the glr-statistic is computed (see be-
low).

algo.glrnb 19

Details

This function implements the seasonal cound data chart based on generalized likelihood ratio (GLR)
as described in the Hoehle and Paul (2008) paper. A moving-window generalized likelihood ratio
detector is used, i.e. the detector has the form

N = inf

{
n : max

1≤k≤n

[
n∑
t=k

log
{
fθ1(xt|zt)
fθ0(xt|zt)

}]
≥ cγ

}

where instead of 1 ≤ k ≤ n the GLR statistic is computed for all k ∈ {n −M, . . . , n − M̃ + 1}.
To achieve the typical behaviour from 1 ≤ k ≤ n use Mtilde=1 and M=-1.

So N is the time point where the GLR statistic is above the threshold the first time: An alarm
is given and the surveillance is resetted starting from time N + 1. Note that the same c.ARL
as before is used, but if mu0 is different at N + 1, N + 2, . . . compared to time 1, 2, . . . the run
length properties differ. Because c.ARL to obtain a specific ARL can only be obtained my Monte
Carlo simulation there is no good way to update c.ARL automatically at the moment. Also, FIR
GLR-detectors might be worth considering.

At the moment, window limited “intercept” charts have not been extensively tested and are at
the moment not supported. As speed is not an issue here this doesn’t bother too much. Therefore, a
value of M=-1 is always used in the intercept charts.

Value

survRes algo.glrnb returns a list of class survRes (surveillance result), which in-
cludes the alarm value for recognizing an outbreak (1 for alarm, 0 for no alarm),
the threshold value for recognizing the alarm and the input object of class dis-
Prog. The upperbound slot of the object are filled with the current GLR(n)
value or with the number of cases that are necessary to produce an alarm at any
timpoint <= n. Both lead to the same alarm timepoints, but "cases" has an
obvious interpretation.

Author(s)

M. Hoehle

Source

Count data regression charts for the monitoring of surveillance time series (2008), M. HÃ¶hle and
M. Paul, Computational Statistics and Data Analysis, 52(9), pp. 4357–4368.

Poisson regression charts for the monitoring of surveillance time series (2006), HÃ¶hle, M., SFB386
Discussion Paper 500.

See Also

algo.rkiLatestTimepoint

Examples

##Simulate data and apply the algorithm
S <- 1 ; t <- 1:120 ; m <- length(t)
beta <- c(1.5,0.6,0.6)
omega <- 2*pi/52
#log mu_{0,t}

20 algo.glrpois

alpha <- 0.2
base <- beta[1] + beta[2] * cos(omega*t) + beta[3] * sin(omega*t)
#Generate example data with changepoint and tau=tau
tau <- 100
kappa <- 0.4
mu0 <- exp(base)
mu1 <- exp(base + kappa)

#Generate data
set.seed(42)
x <- rnbinom(length(t),mu=mu0*(exp(kappa)^(t>=tau)),size=1/alpha)
s.ts <- create.disProg(week=1:length(t),observed=x,state=(t>=tau))

#Plot the data
plot(s.ts,legend=NULL,xaxis.years=FALSE)

#Run GLR based detection
cntrl = list(range=t,c.ARL=5, Mtilde=1, mu0=mu0, alpha=alpha,

change="intercept",ret="value",dir="inc")
glr.ts <- algo.glrnb(s.ts,control=c(cntrl))
plot(glr.ts,xaxis.years=FALSE)

#CUSUM LR detection with backcalculated number of cases
cntrl2 = list(range=t,c.ARL=5, Mtilde=1, mu0=mu0, alpha=alpha,

change="intercept",ret="cases",dir="inc",theta=1.2)
glr.ts2 <- algo.glrnb(s.ts,control=c(cntrl2))
plot(glr.ts2,xaxis.years=FALSE)

algo.glrpois Poisson regression charts

Description

Poisson regression charts for the monitoring of surveillance time series.

Usage

algo.glrpois(disProgObj,control = list(range=range,c.ARL=5,
mu0=NULL, Mtilde=1, M=-1, change="intercept",theta=NULL,
dir=c("inc","dec"),ret=c("cases","value")))

Arguments

disProgObj object of class disProg to do surveillance for

control A list controlling the behaviour of the algorithm

range vector of indices in the observed vector to monitor (should be consecu-
tive)

mu0 A vector of in-control values of the Poisson distribution with the same
length as range. If NULL the observed values in 1:(min(range)-1)
are used to estimate beta through a generalized linear model. To fine-tune
the model one can instead specify mu0 as a list with two components:

algo.glrpois 21

S number of harmonics to include
trend include a term t in the GLM model

c.ARL threshold in the GLR test, i.e. cγ
Mtilde number of observations needed before we have a full rank the typical

setup for the "intercept" and "epi" charts is Mtilde=1
M number of time instances back in time in the window-limited approach, i.e.

the last value considered is max 1, n−M . To always look back until the
first observation use M=-1.

change a string specifying the type of the alternative. Currently the two
choices are intercept and epi. See the SFB Discussion Paper 500
for details.

theta if NULL then the GLR scheme is used. If not NULL the prespecified
value for κ or λ is used in a recursive LR scheme, which is faster.

dir a string specifying the direction of testing in GLR scheme. With "inc"
only increases in x are considered in the GLR-statistic, with "dec" de-
creases are regarded.

ret a string specifying the type of upperbound-statistic that is returned.
With "cases" the number of cases that would have been necassary to
produce an alarm or with "value" the glr-statistic is computed (see be-
low).

Details

This function implements the seasonal Poisson charts based on generalized likelihood ratio (GLR)
as described in the SFB Discussion Paper 500. A moving-window generalized likelihood ratio
detector is used, i.e. the detector has the form

N = inf

{
n : max

1≤k≤n

[
n∑
t=k

log
{
fθ1(xt|zt)
fθ0(xt|zt)

}]
≥ cγ

}

where instead of 1 ≤ k ≤ n the GLR statistic is computed for all k ∈ {n −M, . . . , n − M̃ + 1}.
To achieve the typical behaviour from 1 ≤ k ≤ n use Mtilde=1 and M=-1.

So N is the time point where the GLR statistic is above the threshold the first time: An alarm
is given and the surveillance is resetted starting from time N + 1. Note that the same c.ARL
as before is used, but if mu0 is different at N + 1, N + 2, . . . compared to time 1, 2, . . . the run
length properties differ. Because c.ARL to obtain a specific ARL can only be obtained my Monte
Carlo simulation there is no good way to update c.ARL automatically at the moment. Also, FIR
GLR-detectors might be worth considering.

At the moment, window limited “intercept” charts have not been extensively tested and are at
the moment not supported. As speed is not an issue here this doesn’t bother too much. Therefore, a
value of M=-1 is always used in the intercept charts.

Value

survRes algo.glrpois returns a list of class survRes (surveillance result), which
includes the alarm value for recognizing an outbreak (1 for alarm, 0 for no
alarm), the threshold value for recognizing the alarm and the input object of
class disProg. The upperbound slot of the object are filled with the cur-
rent GLR(n) value or with the number of cases that are necassary to produce
an alarm at any timpoint <= n. Both lead to the same alarm timepoints, but
"cases" has an obvious interpretation.

22 algo.hhh

Author(s)

M. Hoehle with contributions by V. Wimmer

Source

Poisson regression charts for the monitoring of surveillance time series (2006), HÃ¶hle, M., SFB386
Discussion Paper 500.

See Also

algo.rkiLatestTimepoint

Examples

##Simulate data and apply the algorithm
S <- 1 ; t <- 1:120 ; m <- length(t)
beta <- c(1.5,0.6,0.6)
omega <- 2*pi/52
#log mu_{0,t}
base <- beta[1] + beta[2] * cos(omega*t) + beta[3] * sin(omega*t)
#Generate example data with changepoint and tau=tau
tau <- 100
kappa <- 0.4
mu0 <- exp(base)
mu1 <- exp(base + kappa)

#Generate data
set.seed(42)
x <- rpois(length(t),mu0*(exp(kappa)^(t>=tau)))
s.ts <- create.disProg(week=1:length(t),observed=x,state=(t>=tau))

#Plot the data
plot(s.ts,legend=NULL,xaxis.years=FALSE)

#Run
cntrl = list(range=t,c.ARL=5, Mtilde=1, mu0=mu0,

change="intercept",ret="value",dir="inc")
glr.ts <- algo.glrpois(s.ts,control=c(cntrl))
lr.ts <- algo.glrpois(s.ts,control=c(cntrl,theta=0.4))

plot(glr.ts,xaxis.years=FALSE)
plot(lr.ts,xaxis.years=FALSE)

algo.hhh Model fit based on the Held, Hoehle, Hofman paper

Description

Fits a Poisson/negative binomial model with mean µit (as described in Held/Höhle/Hofmann, 2005)
to a multivariate time series of counts.

algo.hhh 23

Usage

algo.hhh(disProgObj, control=list(lambda=TRUE, neighbours=FALSE,
linear=FALSE, nseason = 0,
negbin=c("none", "single", "multiple"),
proportion=c("none", "single", "multiple"),lag.range=NULL),
thetastart=NULL, verbose=TRUE)

Arguments

disProgObj object of class disProg

control control object:

lambda If TRUE an autoregressive parameter λ is included, if lambda is a
vector of logicals, unit-specific parameters λi are included. By default,
observations yt−lag at the previous time points, i.e. lag = 1, are used for
the autoregression. Other lags can be used by specifying lambda as a
vector of integers, see Examples and meanResponse for details.

neighbours If TRUE an autoregressive parameter for adjacent units φ is in-
cluded, if neighbours is a vector of logicals, unit-specific parameters φi
are included. By default, observations yt−lag at the previous time points,
i.e. lag = 1, are used for the autoregression. Other lags can be used by
specifying neighbours as a vector of integers.

linear a logical (or a vector of logicals) indicating wether a linear trend
β (or a linear trend βi for each unit) is included

nseason Integer number of Fourier frequencies; if nseason is a vector of
integers, each unit i gets its own seasonal parameters

negbin if "single" negative binomial rather than poisson is used, if "multiple"
unit-specific overdispersion parameters are used.

proportion see details in meanResponse
lag.range determines which observations are used to fit the model

thetastart vector with starting values for all parameters specified in the control object (for
optim).

verbose if true information about convergence is printed

Details

Note that for the time being this function is not a surveillance algorithm, but only a modelling
approach as described in the Held et. al (2005) paper.

Value

ahg Returns an object of class ah with elements

• coefficientsestimated parameters
• seestimated standard errors
• covcovariance matrix
• loglikelihoodloglikelihood
• convergencelogical indicating whether optim converged or not
• fitted.valuesfitted mean values µi,t
• controlspecified control object
• disProgObjspecified disProg-object

24 algo.hhh

• lagwhich lag was used for the autoregressive parameters lambda and phi
• nObsnumber of observations used for fitting the model

Author(s)

M. Paul, L. Held, M. Höhle

Source

Held, L., Höhle, M., Hofmann, M. (2005) A statistical framework for the analysis of multivariate
infectious disease surveillance counts. Statistical Modelling, 5, p. 187–199.

See Also

meanResponse

Examples

univariate time series: salmonella agona cases
data(salmonella.agona)
salmonella <- create.disProg(week=1:length(salmonella.agona$observed),

observed=salmonella.agona$observed,
state=salmonella.agona$state)

model1 <- list(lambda=TRUE, linear=TRUE,
nseason=1, negbin="single")

algo.hhh(salmonella, control=model1)

multivariate time series:
measles cases in Lower Saxony, Germany
data(measles.weser)

same model as above
algo.hhh(measles.weser, control=model1)

different starting values for
theta = (lambda, beta, gamma_1, gamma_2, psi)
startValues <- c(0.1, rep(0, 3), 1)
algo.hhh(measles.weser, control=model1,

thetastart=startValues)

include autoregressive parameter phi for adjacent "Kreise"
model2 <- list(lambda=TRUE, neighbours=TRUE,

linear=FALSE, nseason=1,
negbin="single")

algo.hhh(measles.weser, control=model2)

weekly counts of influenza and meningococcal infections
in Germany, 2001-2006
data(influMen)

specify model with two autoregressive parameters lambda_i, overdispersion
parameters psi_i, an autoregressive parameter phi for meningococcal infections
(i.e. nu_flu,t = lambda_flu * y_flu,t-1

algo.hhh.grid 25

and nu_men,t = lambda_men * y_men,t-1 + phi_men*y_flu,t-1)
and S=(3,1) Fourier frequencies
model <- list(lambda=c(TRUE,TRUE), neighbours=c(FALSE,TRUE),

linear=FALSE,nseason=c(3,1),negbin="multiple")

run algo.hhh
algo.hhh(influMen, control=model)

now meningococcal infections in the same week should enter as covariates
(i.e. nu_flu,t = lambda_flu * y_flu,t-1
and nu_men,t = lambda_men * y_men,t-1 + phi_men*y_flu,t)
model2 <- list(lambda=c(1,1), neighbours=c(NA,0),

linear=FALSE,nseason=c(3,1),negbin="multiple")

algo.hhh(influMen, control=model2)

algo.hhh.grid Function to try multiple starting values

Description

Tries multiple starting values in algo.hhh. Starting values are provided in a matrix with gridSize
rows, the grid search is conducted until either all starting values are used or a time limit maxTime
is exceeded. The result with the highest likelihood is returned.

Usage

algo.hhh.grid(disProgObj, control=list(lambda=TRUE, neighbours=FALSE,
linear=FALSE, nseason=0,
negbin=c("none", "single", "multiple"),
proportion=c("none", "single", "multiple"),lag.range=NULL),
thetastartMatrix, maxTime=1800, verbose=FALSE)

Arguments

disProgObj object of class disProg

control control object:

• lambdaIf TRUE an autoregressive parameter λ is included, if lambda is
a vector of logicals, unit-specific parameters λi are included. By default,
observations yt−lag at the previous time points, i.e. lag = 1, are used for
the autoregression. Other lags can be used by specifying lambda as a
vector of integers, see Examples and meanResponse for details.

• neighboursIf TRUE an autoregressive parameter for adjacent units φ is
included, if neighbours is a vector of logicals, unit-specific parameters
φi are included. By default, observations yt−lag at the previous time points,
i.e. lag = 1, are used for the autoregression. Other lags can be used by
specifying neighbours as a vector of integers.

• lineara logical (or a vector of logicals) indicating wether a linear
trend β (or a linear trend βi for each unit) is included

26 algo.hhh.grid

• nseasoninteger number of Fourier frequencies; if nseason is a vector
of integers, each unit i gets its own seasonal parameters

• negbinif "single" negative binomial rather than poisson is used, if
"multiple" unit-specific overdispersion parameters are used.

• proportionsee details in meanResponse
• lag.rangedetermines which observations are used to fit the model

thetastartMatrix
matrix with initial values for all parameters specified in the control object as
rows.

verbose if true progress information is printed

maxTime maximum of time (in seconds) to elapse until algorithm stopps.

Value

ahg Returns an object of class ahg with elements

• bestresult of a call to algo.hhh with highest likelihood
• allLoglikvalues of loglikelihood for all starting values used
• gridSizenumber of different starting values in thetastartMatrix
• gridUsednumber of used starting values
• timeelapsed time
• convergenceif false algo.hhh did not converge for all (used) starting

values

Author(s)

M. Paul, L. Held

Source

Held, L., Höhle, M., Hofmann, M. (2005) A statistical framework for the analysis of multivariate
infectious disease surveillance counts. Statistical Modelling, 5, p. 187–199.

See Also

meanResponse,create.grid,algo.hhh

Examples

Not run:
monthly counts of menigococcal infections in France
data(meningo.age)

specify model for algo.hhh.grid
model1 <- list(lambda=TRUE)

create grid of inital values
grid1 <- create.grid(meningo.age, model1,

params = list(epidemic=c(0.1,0.9,5)))

try multiple starting values, print progress information
algo.hhh.grid(meningo.age, control=model1, thetastartMatrix=grid1,

verbose=TRUE)

algo.hmm 27

specify model
model2 <- list(lambda=TRUE, neighbours=TRUE, negbin="single",

nseason=1)
grid2 <- create.grid(meningo.age, model2,

params = list(epidemic=c(0.1,0.9,3),
endemic=c(-0.5,0.5,3),
negbin = c(0.3, 12, 10)))

run algo.hhh.grid, search time is limited to 30 sec
algo.hhh.grid(meningo.age, control=model2, thetastartMatrix=grid2,

maxTime=30)

weekly counts of influenza and meningococcal infections in Germany, 2001-2006
data(influMen)

specify model with two autoregressive parameters lambda_i, overdispersion
parameters psi_i, an autoregressive parameter phi for meningococcal infections
(i.e. nu_flu,t = lambda_flu * y_flu,t-1
and nu_men,t = lambda_men * y_men,t-1 + phi_men*y_flu,t-1)
and S=(3,1) Fourier frequencies
model <- list(lambda=c(TRUE,TRUE), neighbours=c(FALSE,TRUE),

linear=FALSE, nseason=c(3,1),negbin="multiple")

create grid of initial values
grid <- create.grid(influMen,model, list(epidemic=c(.1,.9,3),

endemic=c(-.5,.5,3), negbin=c(.3,15,10)))
run algo.hhh.grid, search time is limited to 30 sec
algo.hhh.grid(influMen, control=model, thetastartMatrix=grid, maxTime=30)

now meningococcal infections in the same week should enter as covariates
(i.e. nu_flu,t = lambda_flu * y_flu,t-1
and nu_men,t = lambda_men * y_men,t-1 + phi_men*y_flu,t)
model2 <- list(lambda=c(1,1), neighbours=c(NA,0),

linear=FALSE,nseason=c(3,1),negbin="multiple")

algo.hhh.grid(influMen, control=model2, thetastartMatrix=grid, maxTime=30)

End(Not run)

algo.hmm Hidden Markov Model (HMM) method

Description

This function implements on-line HMM detection of outbreaks based on the retrospective procedure
described in Le Strat and Carret (1999). Using the function msm (library msm) a specified HMM
is estimated, the decoding problem, i.e. the most probable state configuration, is found by the
Viterbi algorithm and the most probable state of the last observation is recorded. On-line detection
is performed by sequentally repeating this procedure.

Warning: This function can be very slow - a more efficient implementation would be nice!

28 algo.hmm

Usage

algo.hmm(disProgObj, control = list(range=range, Mtilde=-1,
noStates=2, trend=TRUE, noHarmonics=1,
covEffectEqual=FALSE, saveHMMs = FALSE))

Arguments

disProgObj object of class disProg (including the observed and the state chain)

control control object:

range determines the desired time points which should be evaluated. Note
that opposite to other surveillance methods an initial parameter estimation
occurs in the HMM. Note that range should be high enough to allow for
enough reference values for estimating the HMM

Mtilde number of observations back in time to use for fitting the HMM (in-
cluding current). Reasonable values are a multiple of disProgObj$freq,
the default is Mtilde=-1, which means to use all possible values - for
long series this might take very long time!

noStates number of hidden states in the HMM – the typical choice is 2. The
initial rates are set such that the noState’th state is the one having the
highest rate. I.e. this state is considered the outbreak state.

trend Boolean stating whether a linear time trend exists, i.e. if TRUE (default)
then βj 6= 0

noHarmonics number of harmonic waves to include in the linear predictor.
Default is 1.

covEffectEqual see details
saveHMMs Boolean, if TRUE then the result of the fitted HMMs is saved. With

this option the function can also be used to analyse data retrospectively.
Default option is FALSE

Details

For each time point t the reference values values are extracted. If the number of requested values
is larger than the number of possible values the latter is used. Now the following happens on these
reference values:

A noState-State Hidden Markov Model (HMM) is used based on the Poisson distribution with
linear predictor on the log-link scale. I.e.

Yt|Xt = j ∼ Po(µjt),

where

log(µjt) = αj + βj · t+
nH∑
i=1

γij cos(2iπ/freq · (t− 1)) + δij sin(2iπ/freq · (t− 1))

and nH =noHarmonics and freq = 12, 52 depending on the sampling frequency of the surveil-
lance data. In the above t − 1 is used, because the first week is always saved as t=1, i.e. we want
to ensure that the first observation corresponds to cos(0) and sin(0).

If covEffectEqual then all covariate effects parameters are equal for the states, i.e. βj =
β, γij = γi, δij = δi for all j = 1, ..., noState.

algo.hmm 29

In case more complicated HMM models are to be fitted it is possible to modify the msm code used
in this function. Using e.g. AIC one can select between different models (see the msm package for
further details).

Using the Viterbi algorithms the most probable state configuration is obtained for the reference
values and if the most probable configuration for the last reference value (i.e. time t) equals
control$noOfStates then an alarm is given.

Note: The HMM is re-fitted from scratch every time, sequential updating schemes of the HMM
would increase speed considerably! A major advantage of the approach is that outbreaks in the
reference values are handled automatically.

Value

survRes algo.hmm gives a list of class survRes which includes the vector of alarm
values for every timepoint in range. No upperbound can be specified and is
put equal to zero.
The resulting object contains a slot control$hmm, which contains the msm
object with the fitted HMM.

Author(s)

M. HÃ¶hle

References

Y. Le Strat and F. Carrat, Monitoring Epidemiologic Surveillance Data using Hidden Markov Mod-
els (1999), Statistics in Medicine, 18, 3463–3478

I.L. MacDonald and W. Zucchini, Hidden Markov and Other Models for Discrete-valued Time
Series, (1997), Chapman & Hall, Monographs on Statistics and applied Probability 70

See Also

msm

Examples

Not run:
set.seed(123)
#Simulate outbreak data from HMM
counts <- sim.pointSource(p = 0.98, r = 0.8, length = 3*52,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.5)

#Do surveillance using a two state HMM without trend component and
#the effect of the harmonics being the same in both states. A sliding
#window of two years is used to fit the HMM
surv <- algo.hmm(counts, control=list(range=(2*52):length(counts$observed),

Mtilde=2*52,noStates=2,trend=FALSE,
covEffectsEqual=TRUE))

plot(surv,legend=list(x="topright"))

#Retrospective use of the function, i.e. monitor only the last time point
#but use option saveHMMs to store the output of the HMM fitting
surv <- algo.hmm(counts,control=list(range=length(counts$observed),Mtilde=-1,noStates=2,

trend=FALSE,covEffectsEqual=TRUE, saveHMMs=TRUE))

30 algo.outbreakP

#Compute most probable state using the viterbi algorithm - 1 is "normal", 2 is "outbreak".
viterbi.msm(surv$control$hmm[[1]])$fitted

#How often correct?
tab <- cbind(truth=counts$state + 1 , hmm=viterbi.msm(surv$control$hmm[[1]])$fitted)
table(tab[,1],tab[,2])

End(Not run)

algo.outbreakP Semiparametric surveillance of outbreaks

Description

Frisen and Andersson (2009) method for semiparametric surveillance of outbreaks

Usage

algo.outbreakP(disProgObj, control = list(range = range, k=100,
ret=c("cases","value"),maxUpperboundCases=1e5))

Arguments

disProgObj object of class disProg (including the observed and the state chain).

control A list controlling the behaviour of the algorithm

range determines the desired timepoints which should be monitored. Note
that it is automatically assumed that ALL other values in disProgObj
can be used for the estimatation, i.e. for a specific value i in range all
values from 1 to i are used for estimation.

k The threshold value. Once the outbreak statistic is above this threshold k an
alarm is sounded.

ret a string specifying the type of upperbound-statistic that is returned.
With "cases" the number of cases that would have been necessary to pro-
duce an alarm (NNBA) or with "value" the outbreakP-statistic is com-
puted (see below).

maxUpperboundCases Upperbound when numerically searching for NNBA.
Default is 1e5.

Details

A likelihood ratio test based on the Poisson distribution is implemented where the mean of the
in-control and out-of-control hypothesis are computed by isotonic regression.

OutbreakP (s) =
s∏
t=1

(
µ̂C1(t)
µ̂D(t)

)x(t)
,

where µ̂C1(t) is the estimated mean obtained by unimodal regression under the assumption of one
change-point and µ̂D(t) is the estimated result when there is no change-point (i.e. this is just the

algo.outbreakP 31

mean of all observations). Note that the contrasted hypothesis assume all means are equal until
the change-point, i.e. this detection method is especially suited for detecting a shift from a relative
constant mean. Hence, this is less suited for detection in diseases with strong seasonal endemic
component. Onset of influenza detection is an example where this method works particular well.

In case control$ret == "cases" then a brute force numerical search for the number needed
before alarm (NNBA) is performed. That is, given the past observations, whats the minimum num-
ber which would have caused an alarm? Note: Computing this might take a while because the
search is done by sequentially increasing/decreasing the last observation by one for each time point
in control$range and then calling the workhorse function of the algorithm again. The argu-
ment control$maxUpperboundCases controls the upper limit of this search (default is 1e5).

Value

survRes algo.outbreakP gives a list of class survRes which includes the vector
of alarm values for every timepoint in range, the vector of threshold values for
every timepoint in range.

Author(s)

M. HÃ¶hle – based on Java code by by Frisen and SchiÃ¶ler

Source

The code is an extended R port of the Java code by Marianne FrisÃ©n and Linus SchiÃ¶ler from the
CASE project available under the GNU GPL License v3. See https://smisvn.smi.se/case/ for further
details on the CASE project. A manual on how to use an Excel implementation of the method is
available at http://www.hgu.gu.se/item.aspx?id=16857.

The R code contains e.g. the search for NNBA (see details).

References

FrisÃ©n, Andersson and SchiÃ¶ler (2009), Robust outbreak surveillance of epidemics in Sweden,
Statistics in Medicine, 28(3):476-493.

FrisÃ©n and Andersson (2009) Semiparametric Surveillance of Monotonic Changes, Sequential
Analysis 28(4):434-454.

Examples

#Use data from outbreakP manual (http://www.hgu.gu.se/item.aspx?id=16857)
y <- matrix(c(1,0,3,1,2,3,5,4,7,3,5,8,16,23,33,34,48),ncol=1)

#Generate sts object with these observations
mysts <- new("sts", observed=y, epoch=1:length(y), alarm=y*0,

start=c(2000,1), freq=52)

#Run the algorithm and present results
#Only the value of outbreakP statistic
upperbound(outbreakP(mysts, control=list(range=1:length(y),k=100,

ret="value")))

#Graphical illustration with number-needed-before-alarm (NNBA) upperbound.
res <- outbreakP(mysts, control=list(range=1:length(y),k=100,

ret="cases"))
plot(res,dx.upperbound=0,lwd=c(1,1,3))

http://www.hgu.gu.se/item.aspx?id=16857

32 algo.quality

algo.quality Computation of Quality Values for a Surveillance System Result

Description

Computation of the quality values for a surveillance System output.

Usage

algo.quality(survResObj, penalty = 20)

Arguments

survResObj object of class survRes, which includes the state chain and the computed alarm
chain

penalty the maximal penalty for the lag

Details

The lag is defined as follows: In the state chain just the beginnings of an outbreak chain (outbreaks
directly following each other) are considered. In the alarm chain, the range from the beginning of an
outbreak untilmin(nextoutbreakbeginning,penalty) timepoints is considered. The penalty
timepoints were chosen, to provide an upper bound on the penalty for not discovering an outbreak.
Now the difference between the first alarm by the system and the defined beginning is denoted “the
lag” Additionally outbreaks found by the system are not punished. At the end, the mean of the lags
for every outbreak chain is returned as summary lag.

Value

list of quality values
• TP: Number of correct found outbreaks.

• FP: Number of false found outbreaks.

• TN: Number of correct found non outbreaks.

• FN: Number of false found non outbreaks.

• sens: True positive rate, meaning TP/(FN + TP).

• spec: True negative rate, meaning TN/(TN + FP).

• dist: Euclidean distance between (1-spec, sens) to (0,1).

• lag: Lag of the outbreak recognizing by the system.

See Also

algo.compare

algo.rki 33

Examples

Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 200, A = 1,

alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

Let this object be tested from rki1
survResObj <- algo.rki1(disProgObj, control = list(range = 50:200))

Compute the quality values
algo.quality(survResObj)

algo.rki The system used at the RKI

Description

Evaluation of timepoints with the detection algorithms used by the RKI

Usage

algo.rkiLatestTimepoint(disProgObj, timePoint = NULL,
control = list(b = 2, w = 4, actY = FALSE))

algo.rki(disProgObj, control = list(range = range,
b = 2, w = 4, actY = FALSE))

algo.rki1(disProgObj, control = list(range = range))
algo.rki2(disProgObj, control = list(range = range))
algo.rki3(disProgObj, control = list(range = range))

Arguments

disProgObj object of class disProg (including the observed and the state chain).

timePoint time point which shoud be evaluated in algo.rkiLatestTimepoint. The
default is to use the latest timepoint.

control control object: range determines the desired timepoints which should be eval-
uated, b describes the number of years to go back for the reference values, w
is the half window width for the reference values around the appropriate time-
point and actY is a boolean to decide if the year of timePoint also spend w
reference values of the past. As default b, w, actY are set for the RKI 3 system.

Details

Using the reference values for calculating an upper limit (threshold), alarm is given if the actual
value is bigger than a computed threshold. algo.rki calls algo.rkiLatestTimepoint
for the values specified in range and for the system specified in control. algo.rki1 calls
algo.rkiLatestTimepoint for the values specified in range for the RKI 1 system. algo.rki2
calls algo.rkiLatestTimepoint for the values specified in range for the RKI 2 system.
algo.rki3 calls algo.rkiLatestTimepoint for the values specified in range for the
RKI 3 system.

• "RKI 1" reference values from 6 weeks ago

34 algo.rogerson

• "RKI 2" reference values from 6 weeks ago and 13 weeks of the year ago (symmetrical
around the comparable week).

• "RKI 3" 18 reference values. 9 from the year ago and 9 from two years ago (also symmet-
rical around the comparable week).

Value

survRes algo.rkiLatestTimepoint returns a list of class survRes (surveillance
result), which includes the alarm value (alarm = 1, no alarm = 0) for recognizing
an outbreak, the threshold value for recognizing the alarm and the input object
of class disProg.
algo.rki gives a list of class survRes which includes the vector of alarm
values for every timepoint in range, the vector of threshold values for every
timepoint in range for the system specified by b, w and actY, the range and
the input object of class disProg. algo.rki1 returns the same for the RKI
1 system, algo.rki2 for the RKI 2 system and algo.rki3 for the RKI 3
system.

Author(s)

M. Höhle, A. Riebler, Christian Lang

See Also

algo.bayesLatestTimepoint and algo.bayes for the Bayes system.

Examples

Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208, A = 1,

alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

Test week 200 to 208 for outbreaks with a selfdefined rki
algo.rki(disProgObj, control = list(range = 200:208, b = 1,

w = 5, actY = TRUE))
The same for rki 1 to rki 3
algo.rki1(disProgObj, control = list(range = 200:208))
algo.rki2(disProgObj, control = list(range = 200:208))
algo.rki3(disProgObj, control = list(range = 200:208))

Test for rki 1 the latest timepoint
algo.rkiLatestTimepoint(disProgObj)

algo.rogerson Modified CUSUM method as proposed by Rogerson and Yamada
(2004)

Description

Modified Poisson CUSUM method that allows for a time-varying in-control parameter θ0,t as pro-
posed by Rogerson and Yamada (2004). The same approach can be applied to binomial data if
distribution="binomial" is specified.

algo.rogerson 35

Usage

algo.rogerson(disProgObj, control = list(range = range,
theta0t = NULL, ARL0 = NULL, s = NULL, hValues = NULL,
distribution = c("poisson","binomial"), nt = NULL, FIR=FALSE,
limit = NULL, digits = 1))

Arguments

disProgObj object of class disProg that includes a matrix with the observed number of
counts

control list with elements

range vector of indices in the observed matrix of disProgObj to monitor
theta0t matrix with in-control parameter, must be specified
ARL0 desired average run length γ
s change to detect, see findH for further details
hValues matrix with decision intervals h for a sequence of values θ0,t (in the

range of theta0t)
distribution "poisson" or "binomial"
nt optional matrix with varying sample sizes for the binomial CUSUM

FIR a FIR CUSUM with head start h2 is applied to the data if TRUE, otherwise
no head start is used; see details

limit numeric that determines the procedure after an alarm is given, see details
digits the reference value and decision interval are rounded to digits decimal

places. Defaults to 1 and should correspond to the number of digits used to
compute hValues

Details

The CUSUM for a sequence of Poisson or binomial variates xt is computed as

St = max{0, St−1 + ct(xt − kt)}, t = 1, 2, . . . ,

where S0 = 0 and ct = h
ht

; kt and ht are time-varying reference values and decision intervals. An
alarm is given at time t if St ≥ h.

If FIR=TRUE, the CUSUM starts with a head start value S0 = h
2 at time t = 0. After an alarm is

given, the FIR CUSUM starts again at this head start value.

The procedure after the CUSUM gives an alarm can be determined by limit. Suppose that the
CUSUM signals at time t, i.e. St ≥ h.

For numeric values of limit, the CUSUM is bounded above after an alarm is given, i.e. St is set
to min{limit · h, St}.
Using limit=0 corresponds to resetting St to zero after an alarm as proposed in the original
formulation of the CUSUM. If FIR=TRUE, St is reset to h

2 (i.e. limit=h2). If limit=NULL,
no resetting occurs after an alarm is given.

Value

Returns an object of class survRes with elements

alarm indicates whether the CUSUM signaled at time t or not (1 = alarm, 0 = no alarm)

36 algo.summary

upperbound CUSUM values St

disProgObj disProg object

control list with the alarm threshold h and the specified control object

Note

algo.rogerson is a univariate CUSUM method. If the data are available in several regions (i.e.
observed is a matrix), multiple univariate CUSUMs are applied to each region.

References

Rogerson, P. A. and Yamada, I. Approaches to Syndromic Surveillance When Data Consist of Small
Regional Counts. Morbidity and Mortality Weekly Report, 2004, 53/Supplement, 79-85

See Also

hValues

Examples

simulate data
set.seed(123)
data <- simHHH(control = list(coefs = list(alpha =-0.5, gamma = 0.4,

delta = 0.6)),length=300)

extract mean used to generate the data
lambda <- data$endemic

determine a matrix with h values
hVals <- hValues(theta0 = 10:150/100, ARL0=500, s = 1, distr = "poisson")

apply modified Poisson CUSUM
res <- algo.rogerson(data$data,

control=c(hVals, list(theta0t=lambda,range=1:300)))
plot(res)

algo.summary Summary Table Generation for Several Disease Chains

Description

Summary table generation for several disease chains.

Usage

algo.summary(compMatrices)

Arguments

compMatrices list of matrices constructed by algo.compare.

algo.twins 37

Details

As lag the mean of all single lags is returned. TP values, FN values, TN values and FP values are
summed up. dist, sens and spec are new computed on the basis of the new TP value, FN value,
TN value and FP value.

Value

matrix summing up the singular input matrices

See Also

algo.compare, algo.quality

Examples

Create a test object
disProgObj1 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

disProgObj2 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,
A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 5)

disProgObj3 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,
A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 17)

Let this object be tested from any methods in range = 200:400
range <- 200:400
control <- list(list(funcName = "rki1", range = range),

list(funcName = "rki2", range = range),
list(funcName = "rki3", range = range)

)

compMatrix1 <- algo.compare(algo.call(disProgObj1, control=control))
compMatrix2 <- algo.compare(algo.call(disProgObj2, control=control))
compMatrix3 <- algo.compare(algo.call(disProgObj3, control=control))

algo.summary(list(a=compMatrix1, b=compMatrix2, c=compMatrix3))

algo.twins Model fit based on a two-component epidemic model

Description

Fits a negative binomial model (as described in Held et al. (2006) to an univariate time series of
counts.

Usage

algo.twins(disProgObj, control=list(burnin=1000, filter=10,
sampleSize=2500, noOfHarmonics=1, alpha_xi=10, beta_xi=10,
psiRWSigma=0.25,alpha_psi=1, beta_psi=0.1, nu_trend=FALSE,
logFile="twins.log"))

38 algo.twins

Arguments

disProgObj object of class disProg

control control object:

burnin Number of burn in samples.
filter Thinning parameter. If filter = 10 every 10th sample is after the

burn in is returned.
sampleSize Number of returned samples. Total number of samples = burnin+filter*sampleSize
noOfHarmonics Number of harmonics to use in the modelling, i.e. L in

(2.2) of Held et al (2006).
alpha_xi Parameter αξ of the hyperprior of the epidemic parameter λ
beta_xi Parameter βξ of the hyperprior of the epidemic parameter λ
psiRWSigma Starting value for the tuning of the variance of the random walk

proposal for the overdispersion parameter ψ.
alpha_psi Parameter αψ of the prior of the overdispersion parameter ψ
beta_psi Parameter βψ of the prior of the overdispersion parameter ψ
nu_trend Adjust for a linear trend in the endemic part? (default: FALSE)
logFile Base file name for the output files. The function writes three out-

put files in your current working directory (i.e. getwd()). If logfile =
"twins.log" the results are stored in the three files "twins.log", "twins.log2"
and "twins.log.acc". "twins.log" containes the returned samples of the pa-
rameters ψ, γ0, γ1, γ2, K, ξλ λ1, ..., λn, the predictive distribution of the
number of cases at time n + 1 and the deviance. "twins.log2" containes
the sample means of the variables Xt, Yt, ωt and the relative frequency of a
changepoint at time t for t=1,...,n and the relative frequency of a predicted
changepoint at time n+1. "twins.log.acc" contains the acceptance rates of
ψ, the changepoints and the endemic parameters γ0, γ1, γ2 in the third col-
umn and the variance of the random walk proposal for the update of the
parameter ψ in the second column.

Details

Note that for the time being this function is not a surveillance algorithm, but only a modelling
approach as described in the Held et. al (2006) paper.

Note also that the function writes three logfiles in your current working directory (i.e. getwd()):
twins.log, twins.log.acc and twins.log2 Thus you need to have write permissions in the current
getwd() directory.

Value

Returns an object of class atwins with elements

control specified control object

disProgObj specified disProg-object

logFile containes the returned samples of the parameters ψ, γ0, γ1, γ2, K, ξλ λ1, ..., λn,
the predictive distribution and the deviance.

logFile2 containes the sample means of the variablesXt, Yt, ωt and the relative frequency
of a changepoint at time t for t=1,...,n and the relative frequency of a predicted
changepoint at time n+1.

anscombe.residuals 39

Author(s)

M. Hofmann and M. Höhle and D. Sabanés Bové

References

Held, L., Hofmann, M., Höhle, M. and Schmid V. (2006) A two-component model for counts of
infectious diseases, Biostatistics, 7, pp. 422–437.

Examples

Load the data used in the Held et al. (2006) paper
data("hepatitisA")

Fix seed - this is used for the MCMC samplers in twins
set.seed(123)

Call algorithm and save result.
otwins <- algo.twins(hepatitisA)

This shows the entire output (use ask=TRUE for pause between plots)
plot(otwins, ask=FALSE)

Direct access to MCMC output
hist(otwins$logFile$psi,xlab=expression(psi),main="")
require("coda")
print(summary(mcmc(otwins$logFile[,c("psi","xipsi","K")])))

anscombe.residuals Compute Anscombe residuals

Description

The residuals of m are transformed to form Anscombe residuals. which makes them approximately
standard normal distributed.

Usage

anscombe.residuals(m, phi)

Arguments

m m is a glm object of the fit
phi phi is the current estimated over-dispersion

Value

Standardized Anscombe residuals of m

References

McCullagh & Nelder, Generalized Linear Models, 1989

40 arlCusum

arlCusum Calculation of Average Run Length for discrete CUSUM schemes

Description

Calculates the average run length (ARL) for an upward CUSUM scheme for discrete distributions
(i.e. Poisson and binomial) using the Markov chain approach.

Usage

arlCusum(h=10, k=3, theta=2.4, distr=c("poisson","binomial"),
W=NULL, digits=1, ...)

Arguments

h decision interval

k reference value

theta distribution parameter for the cumulative distribution function (cdf) F , i.e. rate
λ for Poisson variates or probability p for binomial variates

distr "poisson" or "binomial"

W Winsorizing value W for a robust CUSUM, to get a nonrobust CUSUM set W >
k+h. If NULL, a nonrobust CUSUM is used.

digits k and h are rounded to digits decimal places

... further arguments for the distribution function, i.e. number of trials n for bino-
mial cdf

Value

Returns a list with the ARL of the regular (zero-start) and the fast initial response (FIR) CUSUM
scheme with reference value k, decision interval h for X ∼ F (θ), where F is the Poisson or
binomial cdf

ARL one-sided ARL of the regular (zero-start) CUSUM scheme

FIR.ARL one-sided ARL of the FIR CUSUM scheme with head start h2

Source

Based on the FORTRAN code of

Hawkins, D. M. (1992). Evaluation of Average Run Lengths of Cumulative Sum Charts for an
Arbitrary Data Distribution. Communications in Statistics - Simulation and Computation, 21(4), p.
1001-1020.

bestCombination 41

bestCombination Partition of a number into two factors

Description

Given a prime number factorization x, best combination partitions x into two groups, such
that the product of the numbers in group one is as similar as possible to the product of the numbers
of group two. This is useful in magic.dim

Usage

bestCombination(x)

Arguments

x prime number factorization

Value

Returns a vector c(prod(set1),prod(set2))

categoricalCUSUM CUSUM detector for time-varying categorical time series

Description

Function to process sts object by binomial, beta-binomial or multinomial CUSUM. Logistic,
multinomial logistic, proportional odds or Bradley-Terry regression models are used to specify
in-control and out-of-control parameters.

Usage

categoricalCUSUM(stsObj,control = list(range=NULL,h=5,pi0=NULL,
pi1=NULL, dfun=NULL, ret=c("cases","value")),...)

Arguments

stsObj Object of class sts containing the number of counts in each of the k categories
of the response variable. Time varying number of counts nt is found in slot
populationFrac.

control Control object containing several items

• rangeVector of length tmax with indices of the observed slot to moni-
tor.

• hThreshold to use for the monitoring. Once the CUSUM statistics is larger
or equal to h we have an alarm.

• pi0(k − 1) × tmax in-control probability vector for all categories except
the reference category.

• mu1(k−1)×tmax out-of-control probability vector for all categories except
the reference category.

42 categoricalCUSUM

• dfunThe probability mass function or density used to compute the likeli-
hood ratios of the CUSUM. In a negative binomial CUSUM this is dnbinom,
in a binomial CUSUM dbinom and in a multinomial CUSUM dmultinom.
The function must be able to handle the arguments y, size, mu and log.
As a consequence, one in the case of the beta-binomial distribution has to
write a small wrapper function.

• retReturn the necessary proportion to sound an alarm in the slot upperbound
or just the value of the CUSUM statistic. Thus, ret is one of tha values in
c("cases","value").

... Additional arguments to send to dfun.

Details

The function allows the monitoring of categorical time series as described by regression models for
binomial, beta-binomial or multinomial data. The later includes e.g. multinomial logistic regression
models, proportional odds models or Bradley-Terry models for paired comparisons. See the Höhle
(2010) reference for further details about the methodology.

Once an alarm is found the CUSUM scheme is resetted (to zero) and monitoring continues from
there.

Value

An sts object with observed, alarm, etc. slots trimmed to the control$range indices.

Author(s)

M. Höhle

References

Höhle, M. (2010), Changepoint detection in categorical time series, Book chapter to appear in T.
Kneib and G. Tutz (Eds.), Statistical Modelling and Regression Structures, Springer.

See Also

categoricalCUSUM

Examples

###
#Beta-binomial CUSUM for a small example containing the time-varying
#number of positive test out of a time-varying number of total
#test.
#######################################

#Load meat inspection data
data("abattoir")

#Use GAMLSS to fit beta-bin regression model
require("gamlss")
phase1 <- 1:(2*52)
phase2 <- (max(phase1)+1) : nrow(abattoir)

#Fit beta-binomial model using GAMLSS

categoricalCUSUM 43

abattoir.df <- as.data.frame(abattoir)
colnames(abattoir.df) <- c("y","t","state","alarm","n")
m.bbin <- gamlss(cbind(y,n-y) ~ 1 + t +

+ sin(2*pi/52*t) + cos(2*pi/52*t) +
+ sin(4*pi/52*t) + cos(4*pi/52*t), sigma.formula=~1,
family=BB(sigma.link="log"),
data=abattoir.df[phase1,c("n","y","t")])

#CUSUM parameters
R <- 2 #detect a doubling of the odds for a test being positive
h <- 4 #threshold of the cusum

#Compute in-control and out of control mean
pi0 <- predict(m.bbin,newdata=abattoir.df[phase2,c("n","y","t")],type="response")
pi1 <- plogis(qlogis(pi0)+log(R))
#Create matrix with in control and out of control proportions.
#Categories are D=1 and D=0, where the latter is the reference category
pi0m <- rbind(pi0, 1-pi0)
pi1m <- rbind(pi1, 1-pi1)

##
Use the multinomial surveillance function. To this end it is necessary
to create a new abattoir object containing counts and proportion for
each of the k=2 categories. For binomial data this appears a bit
redundant, but generalizes easier to k>2 categories.
##

abattoir2 <- new("sts",epoch=1:nrow(abattoir), start=c(2006,1),freq=52,
observed=cbind(abattoir@observed,abattoir@populationFrac -abattoir@observed),
populationFrac=cbind(abattoir@populationFrac,abattoir@populationFrac),
state=matrix(0,nrow=nrow(abattoir),ncol=2),
multinomialTS=TRUE)

##
#Function to use as dfun in the categoricalCUSUM
#(just a wrapper to the dBB function). Note that from v 3.0-1 the
#first argument of dBB changed its name from "y" to "x"!
##
mydBB.cusum <- function(y, mu, sigma, size, log = FALSE) {
return(dBB(y[1,], mu = mu[1,], sigma = sigma, bd = size, log = log))

}

#Create control object for multinom cusum and use the categoricalCUSUM
#method
control <- list(range=phase2,h=h,pi0=pi0m, pi1=pi1m, ret="cases",

dfun=mydBB.cusum)
surv <- categoricalCUSUM(abattoir2, control=control,

sigma=exp(m.bbin$sigma.coef))

#Show results
plot(surv[,1],legend.opts=NULL,dx.upperbound=0)
lines(pi0,col="green")
lines(pi1,col="red")

#Index of the alarm

44 compMatrix.writeTable

which.max(alarms(surv[,1]))

#ToDo: Compute run length using LRCUSUM.runlength

CIdata Confidence-Interval for the Mean of the Poisson Distribution

Description

In the first column the mean from 0 to 20 is shown, In the second the lower and in the third the
upper value of the 95 percent confidence interval. These intervals are used in the RKI Algorithms.

Usage

data(CIdata)

Format

A data frame with header.

Source

L. Sachs. Angewandte Statistik. Springer Verlag, 7. Auflage, S.446, 1991

See Also

algo.rki

Examples

require(surveillance)
data(CIdata)

compMatrix.writeTable
Latex Table Generation

Description

generates a latex table

Usage

compMatrix.writeTable(compMatrix)

Arguments

compMatrix Matrix which includes quality values for every surveillance system.

Value

xtable Latex table of the entered matrix.

correct53to52 45

Author(s)

M. Höhle, A. Riebler, C. Lang

Examples

First creates some tables

Create a test object
disProgObj1 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

disProgObj2 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,
A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 5)

disProgObj3 <- sim.pointSource(p = 0.99, r = 0.5, length = 400,
A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 17)

Let this object be tested from any methods in range = 200:400
range <- 200:400
control <- list(list(funcName = "rki1", range = range),

list(funcName = "rki2", range = range),
list(funcName = "rki3", range = range)

)

This are single compMatrices
compMatrix1 <- algo.compare(algo.call(disProgObj1, control=control))
compMatrix2 <- algo.compare(algo.call(disProgObj2, control=control))
compMatrix3 <- algo.compare(algo.call(disProgObj3, control=control))

This is a summary compMatrix
sumCompMatrix <- algo.summary(list(a=compMatrix1,

b=compMatrix2, c=compMatrix3))

Now show the latextable from the single compMatrix compMatrix1
compMatrix.writeTable(compMatrix1)

Now show the latextable from the summary compMatrix
compMatrix.writeTable(sumCompMatrix)

correct53to52 Data Correction from 53 to 52 weeks

Description

Correction of data from 53 to 52 weeks a year

Usage

correct53to52(disProgObj, firstweek = 1)

46 create.disProg

Arguments

disProgObj object of class disProg (including the observed and the state chain).

firstweek the number of the first week in a year, default = 1 (if it starts with the beginning
of a year). Necessary, because the infected of week 53 and the infected of week
52 must be added.

Details

readData reads data with 53 weeks a year, but normally one year is said to have 52 weeks.

Value

disProg a object disProg (disease progress) including a list of the observed and the
state chain (corrected to 52 weeks instead of 53 weeks a year)

See Also

readData

Examples

#This call correct53to52 automatically
obj <- readData("k1",week53to52=TRUE)
correct53to52(obj) # first entry is the first week of the year

obj <- readData("n1",week53to52=FALSE)
correct53to52(obj, firstweek = 5) # now it's assumed that the fifth

entry is the first week of the year

create.disProg Creating an object of class disProg

Description

Creates an object of class disProg from a vector with the weeknumber (week) and matrices with
the observed number of counts (observed) and the respective state chains (state), where each col-
umn represents an individual time series. The matrices neighbourhood and populationFrac provide
information about neighbouring units and population proportions.

Usage

create.disProg(week, observed, state, start=c(2001,1), freq=52,
neighbourhood=NULL, populationFrac=NULL, epochAsDate=FALSE)

Arguments

week index in the matrix of observations, typically weeks

observed matrix with parallel time series of counts where rows are time points and columns
are the individual time series for unit/area i, i = 1, . . . ,m

state matrix with corresponding states

create.grid 47

start vector of length two denoting the year and the sample number (week, month,
etc.) of the first observation

freq sampling frequency per year, i.e. 52 for weekly data, 12 for monthly data, 13 if
52 weeks are aggregated into 4 week blocks.

neighbourhood
neighbourhood matrix N of dimension m×m with elements nij = 1 if units i
and j are adjacent and 0 otherwise

populationFrac
matrix with corresponding population proportions

epochAsDate interpret the integers in week as Dates. Default is FALSE

Value

disProg object of class disProg

Author(s)

M. Paul

Examples

create an univariate disProg object for the salmonella.agona data
data(salmonella.agona)
week <- 1:length(salmonella.agona$observed)
salmonellaDisProg <- create.disProg(week=week, observed=salmonella.agona$observed,
state=salmonella.agona$state)

plot salmonella cases
title <- "Salmonella Agona cases in the UK"
plot(salmonellaDisProg, title = title, xaxis.years=TRUE, legend.opts=NULL,

startyear = 1990, firstweek = 1)

create.grid Computes a matrix of initial values

Description

For a given model and a list of parameters specified as param = c(lower,upper,length),
create.grid creates a grid of initial values for algo.hhh.grid. The resulting matrix con-
tains all combinations of the supplied parameters which each are a sequence of length length
from lower to upper. Note that the autoregressive parameters λ, φ and the overdispersion pa-
rameter ψ must be positive. Only one sequence of initial values is considered for the autregressive,
endemic and overdispersion parameters to create the grid, e.g.\ initial values are the same for each
one of the seasonal and trend parameters.

Usage

create.grid(disProgObj, control, params = list(epidemic = c(0.1, 0.9, 5),
endemic=c(-0.5,0.5,3), negbin = c(0.3, 12, 10)))

48 deleval

Arguments

disProgObj object of class disProg

control specified model

params list of parameters: param=c(lower,upper,length)

• epidemicautoregressive parameters λ and φ.
• endemictrend and seasonal parameters β, γj .
• negbinoverdispersion parameter for negative binomial model ψ.

Value

matrix matrix with gridSize starting values as rows

Author(s)

M. Paul

See Also

algo.hhh.grid

Examples

simulate data
set.seed(123)
disProgObj <- simHHH(control = list(coefs = list(alpha =-0.5, gamma = 0.4,

delta = 0.6)),length=300)$data

consider the model specified in a control object for algo.hhh.grid
cntrl1 <- list(lambda=TRUE, neighbours=TRUE,

linear=TRUE, nseason=1)
cntrl2 <- list(lambda=TRUE, negbin="single")

create a grid of initial values for respective parameters
grid1 <- create.grid(disProgObj, cntrl1, params = list(epidemic=c(0.1,0.9,3),

endemic=c(-1,1,3)))
grid2 <- create.grid(disProgObj, cntrl2, params = list(epidemic=c(0.1,0.9,5),

negbin=c(0.3,12,10)))

deleval Surgical failures data

Description

The dataset from Steiner et al. (1999) on A synthetic dataset from the Danish meat inspection –
useful for illustrating the beta-binomial CUSUM.

Usage

data(abattoir)

display-methods 49

Details

Steiner et al. (1999) use data from de Leval et al. (1994) to illustrate monitoring of failure rates of
a surgical procedure for a bivariate outcome.

Over a period of six years an arterial switch operation was performed on 104 newborn babies. Since
the death rate from this surgery was relatively low the idea of surgical "near miss" was introduced.
It is defined as the need to reinstitute cardiopulmonary bypass after a trial period of weaning. The
object of class sts contains the recordings of near misses and deaths from the surgery for the 104
newborn babies of the study.

The data could also be handled by a multinomial CUSUM model.

References

Steiner, S. H., Cook, R. J., and Farewell, V. T. (1999), Monitoring paired binary surgical outcomes
using cumulative sum charts, Statistics in Medicine, 18, pp. 69–86.

De Leval, Marc R., Franiois, K., Bull, C., Brawn, W. B. and Spiegelhalter, D. (1994), Analysis of a
cluster of surgical failures, Journal of Thoracic and Cardiovascular Surgery, March, pp. 914–924.

See Also

pairedbinCUSUM

Examples

data("deleval")
plot(deleval, xaxis.years=FALSE,ylab="Response",xlab="Patient number")

display-methods Display Methods for Surveillance Time-Series Objects

Description

Display methods for objects of class "sts".

Details

The plotting of time-series plots relies on two internal functions with plot.sts.time.one
being the work-horse. Its arguments are (almost) similiar to plot.survRes. k is the column to
plot.

plot.sts.time(x,
type,method=x@control$name,disease=x@control$data,same.scale=TRUE,
par.list=list(mfrow=magic.dim(nAreas),mar=par()$mar),...)

plot.sts.time.one <- function(x, k=1,
domany=FALSE,ylim=NULL,xaxis.years=TRUE, xaxis.units=TRUE,
epochsAsDate=x@epochAsDate, xlab="time", ylab="No. infected",
main=NULL, type="s",lty=c(1,1,2),col=c(NA,1,4),lwd=c(1,1,1),
outbreak.symbol = list(pch=3, col=3, cex=1),alarm.symbol=list(pch=24,
col=2, cex=1),cex=1,legend.opts=list(x="top",
legend=NULL,lty=NULL,pch=NULL,col=NULL),dx.upperbound=0.5,
hookFunc=function() {},...)

50 display-methods

Note that the hookFunc is called after all the basic plotting has be done, i.e. it is not possible to
control formatting with this function.

For spacetime plots the following internal function does all the work:

plot.sts.spacetime(x,type,legend=NULL,opts.col=NULL,
labels=TRUE,wait.ms=250,cex.lab=0.7,verbose=FALSE,
dev.printer=NULL,...)

Alarmplot

plot.sts.alarm <- function(x, lvl=rep(1,nrow(x)),
ylim=NULL,xaxis.years=TRUE, xaxis.units=TRUE,
epochsAsDate=x@epochAsDate, xlab="time", main=NULL,
type="hhs",lty=c(1,1,2),col=c(1,1,4), outbreak.symbol = list(pch=3,
col=3, cex=1),alarm.symbol=list(pch=24, col=2,
cex=1),cex=1,cex.yaxis=1,...)

print is the method for printing sts objects.

Value

The methods are called for their side-effects.

Usage

plot(x,y,type,...) print(x,...)

Arguments

x an object of class "sts"

y missing

type a formula specifying the plot type, several options are possible:

observed ~ time The observations in x are aggregated over units and the resulting uni-
variate time-series is plotted. The plotting is done by the function plot.time.sts,
which takes the same arguments as the plot.survRes function.

observed ~ time | unit shows dim(x) plots with each showing the time-series of
one observational unit. The actual plotting is done by the function plot.time.sts.one

observed ~ 1 | unit for each unit the counts are aggregated over time and a map
illustrating the counts is shown. The column names of the x@observed object are used
to label the entries of the x@map. Regions with an alarm are shaded.

observed ~ 1 | unit * time an animation consisting of nrow(x) frames is gen-
erated. Each frame contains the number of counts per region for the current row in the
observed matrix. It is possible to redirect the output into files, e.g. to generate an
animated GIF. See the examples.

codealarm ~ time Generates a so called alarmplot for a multivariate sts object. For each
time point and each series it is shown whether there is an alarm. In case of hierarchical
surveillance the user can pass an additional argument lvl, which is a vector of the same
length as rows in x specifying for each time series its level.

. . . further arguments passed to or from other methods: in case of plotting these are passed to
plot, in case of printing these are passed to print.default

disProg2sts 51

See Also

plot.survRes

Examples

data(ha)
shp <- system.file("shapes/berlin.shp",package="surveillance")
has4 <- disProg2sts(ha, map=readShapePoly(shp,IDvar="SNAME"))

print(has4)
plot(has4, type= observed ~ time)
plot(has4, type= observed ~ time | unit)
plot(has4, type= observed ~ 1 | unit)
plot(has4[1:20,1:2], type= observed ~ 1 | unit)
plot(aggregate(has4,nfreq=13), type= observed ~ 1 | unit * time)

Not run:
#Configure a png device printer for the plot command
dev.printer <-
list(device=png,extension=".png",width=640,height=480,name="/tmp/berlin")

#Do the animation
plot(aggregate(has4,nfreq=13), type = observed ~ 1 | unit * time,

dev.printer=dev.printer)

#Use ImageMagick -- replace /sw/bin/convert by your path to convert
system(paste("/sw/bin/convert -delay 50 ",dev.printer$name,

"*.png /tmp/animated.gif",sep=""))

End(Not run)

disProg2sts Convert disProg object to sts and vice versa

Description

A small helper function to convert a disProg object to become an object of the S4 class sts
and vice versa. In the future the sts should replace the disProg class, but for now this function
allows for conversion between the two formats.

Usage

disProg2sts(disProgObj, map=NULL)
sts2disProg(sts)

Arguments

disProgObj object of class disProg

map SpatialPolygonsDataFrame object containing the map visualization

sts Object of class sts to convert

52 enlargeData

Value

an object of class sts or disProg, respectively.

See Also

sts-class

Examples

data(ha)
print(disProg2sts(ha))
class(sts2disProg(disProg2sts(ha)))

enlargeData Data Enlargement

Description

Enlargement of data which is too short for a surveillance method to evaluate.

Usage

enlargeData(disProgObj, range = 1:156, times = 1)

Arguments

disProgObj object of class disProg (including the observed and the state chain).
range range of already existing data (state, observed) which should be used for

enlargement.
times number of times to enlarge.

Details

observed and state are enlarged in the way that the part range of observed and state
is repeated times times in front of observed and state. Sometimes it’s useful to care for the
cyclic property of the timeseries, so as default we enlarge observed and state once with the first
three existing years, assuming a year has 52 weeks.

Value

disProg a object disProg (disease progress) including a list of the observed and the
state chain (extended with cyclic data generation)

See Also

readData

Examples

obj <- readData("k1")

enlargeData(obj) # enlarge once with part 1:156
enlargeData(obj, 33:36, 10) # enlarge 10 times with part 33:36

estimateGLRNbHook 53

estimateGLRNbHook Hook function for in-control mean estimation

Description

Allows the user to specify his own estimation routine for the in-control mean of algo.glrpois
Needs to work for GLRNbHook

Usage

estimateGLRNbHook()

Details

This hook function allows the user to customize the behaviour of the algorithm.

Value

A list

mod resulting model of a call of glm.nb

range vector of length as range containing the predicted values

Author(s)

M. Hoehle

See Also

algo.glrpois

Examples

Not run:
estimateGLRNbHook <- function() {
#Fetch control object from parent
control <- parent.frame()$control
#The period
p <- parent.frame()$disProgObj$freq
#Current range to perform surveillance on
range <- parent.frame()$range

#Define training & test data set (the rest)
train <- 1:(range[1]-1)
test <- range

#Perform an estimation based on all observations before timePoint
#Event better - don't do this at all in the algorithm - force
#user to do it himself - coz its a model selection problem
data <- data.frame(y=parent.frame()$disProgObj$observed[t],t=train)
#Build the model equation
formula <- "y ~ 1 "
if (control$mu0Model$trend) { formula <- paste(formula," + t",sep="") }
for (s in 1:control$mu0Model$S) {

54 estimateGLRPoisHook

formula <- paste(formula,"+cos(2*",s,"*pi/p*t)+ sin(2*",s,"*pi/p*t)",sep="")
}
#Fit the GLM
m <- eval(substitute(glm.nb(form,data=data),

list(form=as.formula(formula))))

#Predict mu_{0,t}
return(as.numeric(predict(m,newdata=data.frame(t=range),type="response")))

}

End(Not run)

estimateGLRPoisHook
Hook function for in-control mean estimation

Description

Allows the user to specify his own estimation routine for the in-control mean of algo.glrpois

Usage

estimateGLRPoisHook()

Details

This hook function allows the user to customize the behaviour of the algorithm.

Value

A vector of length as range containing the predicted values.

Author(s)

M. Hoehle

See Also

algo.glrpois

Examples

Not run:
estimateGLRPoisHook <- function() {
#Fetch control object from parent
control <- parent.frame()$control
#The period
p <- parent.frame()$disProgObj$freq
#Current range to perform surveillance on
range <- parent.frame()$range

#Define training & test data set (the rest)
train <- 1:(range[1]-1)
test <- range

find.kh 55

#Perform an estimation based on all observations before timePoint
#Event better - don't do this at all in the algorithm - force
#user to do it himself - coz its a model selection problem
data <- data.frame(y=parent.frame()$disProgObj$observed[t],t=train)
#Build the model equation
formula <- "y ~ 1 "
if (control$mu0Model$trend) { formula <- paste(formula," + t",sep="") }
for (s in 1:control$mu0Model$S) {
formula <- paste(formula,"+cos(2*",s,"*pi/p*t)+ sin(2*",s,"*pi/p*t)",sep="")

}
#Fit the GLM
m <- eval(substitute(glm(form,family=poisson(),data=data),list(form=as.formula(formula))))

#Predict mu_{0,t}
return(as.numeric(predict(m,newdata=data.frame(t=range),type="response")))

}

End(Not run)

find.kh Determine the k and h values in a standard normal setting

Description

Given a specification of the average run length in the (a)cceptance and (r)ejected setting determine
the k and h values in a standard normal setting.

Usage

find.kh(ARLa = 500, ARLr = 7, sided = "one", method = "BFGS", verbose=FALSE)

Arguments

ARLa average run length in acceptance setting, aka. in control state. Specifies the
number of observations before false alarm.

ARLr average run length in rejection state, aka. out of control state. Specifies the
number of observations before an increase is detected (i.e. detection delay)

sided one-sided cusum scheme

method Which method to use in the function optim. Standard choice is BFGS, but in
some situation Nelder-Mead can be advantageous.

verbose gives extra information about the root finding process

Details

Functions from the spc package are used in a simple univariate root finding problem.

Value

Returns a list with reference value k and decision interval h.

56 findH

Examples

find.kh(ARLa=500,ARLr=7,sided="one")
find.kh(ARLa=500,ARLr=3,sided="one")

findH Find decision interval for given in-control ARL and reference value

Description

Function to find a decision interval h* for given reference value k and desired ARL γ so that the
average run length for a Poisson or Binomial CUSUM with in-control parameter θ0, reference value
k and is approximately γ, i.e.

∣∣∣ARL(h∗)−γ
γ

∣∣∣ < ε, or larger, i.e. ARL(h∗) > γ.

Usage

findH(ARL0, theta0, s = 1, rel.tol = 0.03, roundK = TRUE,
distr = c("poisson", "binomial"), digits = 1, FIR = FALSE, ...)

hValues(theta0, ARL0, rel.tol=0.02, s = 1, roundK = TRUE, digits = 1,
distr = c("poisson", "binomial"), FIR = FALSE, ...)

Arguments

ARL0 desired in-control ARL γ

theta0 in-control parameter θ0
s change to detect, see details

distr "poisson" or "binomial"

rel.tol relative tolerance, i.e. the search for h* is stopped if
∣∣∣ARL(h∗)−γ

γ

∣∣∣ < rel.tol

digits the reference value k and the decision interval h are rounded to digits deci-
mal places

roundK passed to findK

FIR if TRUE, the decision interval that leads to the desired ARL for a FIR CUSUM
with head start h2 is returned

... further arguments for the distribution function, i.e. number of trials n for bino-
mial cdf

Details

The out-of-control parameter used to determine the reference value k is specified as:

θ1 = λ0 + s
√
λ0

for a Poisson variate X ∼ Po(λ)

θ1 =
sπ0

1 + (s− 1)π0

for a Binomial variate X ∼ Bin(n, π)

findK 57

Value

findH returns a vector and hValues returns a matrix with elements

theta0 in-control parameter

h decision interval

k reference value

ARL ARL for a CUSUM with parameters k and h

rel.tol corresponds to
∣∣∣ARL(h)−γ

γ

∣∣∣

findK Find reference value

Description

Calculates the reference value k for a Poisson or binomial CUSUM designed to detect a shift from
θ0 to θ1

Usage

findK(theta0, theta1, distr = c("poisson", "binomial"),
roundK = FALSE, digits = 1, ...)

Arguments

theta0 in-control parameter

theta1 out-of-control parameter

distr "poisson" or "binomial"

digits the reference value k is rounded to digits decimal places

roundK For discrete data and rational reference value there is only a limited set of pos-
sible values that the CUSUM can take (and therefore there is also only a limited
set of ARLs). If roundK=TRUE, integer multiples of 0.5 are avoided when
rounding the reference value k, i.e. the CUSUM can take more values.

... further arguments for the distribution function, i.e. number of trials n for the
binomial cdf.

Value

Returns reference value k.

58 hepatitisA

ha Hepatitis A in Berlin

Description

Number of Hepatitis A cases among adult male (age>18) in Berlin 2001-2006. An increase is seen
during 2006

Usage

data(ha)

Format

A disProg object containing 290 × 12 observations starting from week 1 in 2001 to week 30 in
2006.

Source

Robert Koch-Institut: SurvStat: http://www3.rki.de/SurvStat; Queried on 25 August
2006.

Robert Koch Institut, Epidemiologisches Bulletin 33/2006, p.290.

Examples

data(ha)
plot(aggregate(ha))

hepatitisA Hepatitis A in Germany

Description

Weekly number of reported hepatitis A infections in Germany 2001-2004.

Usage

data(hepatitisA)

Format

A disProg object containing 208 × 1 observations starting from week 1 in 2001 to week 52 in
2004.

Source

Robert Koch-Institut: SurvStat: http://www3.rki.de/SurvStat; Queried on 11 01 2005.

Examples

data(hepatitisA)
plot(hepatitisA)

http://www3.rki.de/SurvStat
http://www3.rki.de/SurvStat

influMen 59

influMen Influenza and meningococcal infections in Germany, 2001-2006

Description

Weekly counts of new influenza and meningococcal infections in Germany 2001-2006.

Usage

data(influMen)

Format

A disProg object containing 312 × 2 observations starting from week 1 in 2001 to week 52 in
2006.

Source

Robert Koch-Institut: SurvStat: http://www3.rki.de/SurvStat. Queried on 25 July 2007.

Examples

data(influMen)
plot(influMen, as.one=FALSE, same.scale=FALSE)

loglikelihood Calculation of the loglikelihood needed in algo.hhh

Description

Calculates the loglikelihood according to the model specified in designRes.

Usage

loglikelihood(theta, designRes)

Arguments

theta vector of parameters

θ = (α1, . . . , αm,λ,φ,β,γ1, . . . ,γm,ψ),

where λ = (λ1, . . . , λm), φ = (φ1, . . . , φm), β = (β1, . . . , βm), γ1 =
(γ11, . . . , γ1,2S1), γm = (γm1, . . . , γm,2Sm

), ψ = (ψ1, . . . , ψm).
If the model specifies less parameters, those components are omitted.

designRes Result of a call to make.design

Value

Returns the loglikelihood

http://www3.rki.de/SurvStat

60 LRCUSUM.runlength

Author(s)

M. Paul, L. Held

See Also

meanResponse

LRCUSUM.runlength Run length computation of a CUSUM detector

Description

Compute run length for a count data or categorical CUSUM. The computations are based on a
Markov representation of the likelihood ratio based CUSUM.

Usage

LRCUSUM.runlength(mu,mu0,mu1,h,dfun, n, g=5,outcomeFun=NULL,...)

Arguments

mu k − 1 × T matrix with true proportions, i.e. equal to mu0 or mu1 if one wants
to compute e.g. ARL0 or ARL1.

mu0 k − 1× T matrix with in-control proportions

mu1 k − 1× T matrix with out-of-control proportion

h The threshold h which is used for the CUSUM.

dfun The probability mass function or density used to compute the likelihood ratios
of the CUSUM. In a negative binomial CUSUM this is dnbinom, in a binomial
CUSUM dbinom and in a multinomial CUSUM dmultinom.

n Vector of length T containing the total number of experiments for each time
point.

g The number of levels to cut the state space into when performing the Markoc
chain approximation. Sometimes also denoted M .

outcomeFun A hook function to compute all possible outcome states to compute the likeli-
hood ratio for. If NULL then the default function outcomeFunStandard(k,n)
is used. This function uses the Cartesian product of 0:n for k components.

... Additional arguments to send to dfun.

Details

Brook and Evans (1972) formulated an approximate approach based on Markov chains to determine
the PMF of the run length of a time-constant CUSUM detector. They describe the dynamics of the
CUSUM statistic by a Markov chain with a discretized state space of size g + 2. This is adopted
to the time varying case in Höhle (2010) and implemented in R using the . . . notation such that it
works for a very large class of distributions.

LRCUSUM.runlength 61

Value

A list with five components

P An array of g+2×g+2 transition matrices of the approximation Markov chain.

pmf Probability mass function (up to length T) of the run length variable.

cdf Cumulative density function (up to length T) of the run length variable.

arl If the model is time homogenous (i.e. if T == 1) then the ARL is computed
based on the stationary distribution of the Markov chain. See the eqns in the
reference for details.

Author(s)

M. Höhle

References

Höhle, M. (2010), Changepoint detection in categorical time series, Book chapter to appear in T.
Kneib and G. Tutz (Eds.), Statistical Modelling and Regression Structures, Springer.

Höhle, M. and Mazick, A. (2009), Aberration detection in R illustrated by Danish mortality mon-
itoring, Book chapter to appear in T. Kass-Hout and X. Zhang (Eds.) Biosurveillance: A Health
Protection Priority, CRCPress.

Brook, D. and Evans, D. A. (1972), An approach to the probability distribution of Cusum run length,
Biometrika, 59:3, pp. 539–549.

See Also

categoricalCUSUM

Examples

##
#Run length of a time constant negative binomial CUSUM
##

#In-control and out of control parameters
mu0 <- 10
alpha <- 1/2
kappa <- 2

#Density for comparison in the negative binomial distribution
dY <- function(y,mu,log=FALSE, alpha, ...) {

dnbinom(y, mu=mu, size=1/alpha, log=log)
}

#In this case "n" is the maximum value to investigate the LLR for
#It is assumed that beyond n the LLR is too unlikely to be worth
#computing.
LRCUSUM.runlength(mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=5,

dfun = dY, n=rep(100,length(mu0)), alpha=alpha)

h.grid <- seq(3,6,by=0.1)
arls <- sapply(h.grid, function(h) {

LRCUSUM.runlength(mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=h,
dfun = dY, n=rep(100,length(mu0)), alpha=alpha,g=20)$arl

62 m1

})
plot(h.grid, arls,type="l",xlab="threshold h",ylab=expression(ARL[0]))

##
#Run length of a time varying negative binomial CUSUM
##

mu0 <- matrix(5*sin(2*pi/52 * 1:200) + 10,ncol=1)

rl <- LRCUSUM.runlength(mu=t(mu0), mu0=t(mu0), mu1=kappa*t(mu0), h=2,
dfun = dY, n=rep(100,length(mu0)), alpha=alpha,g=20)

plot(1:length(mu0),rl$pmf,type="l",xlab="t",ylab="PMF")
plot(1:length(mu0),rl$cdf,type="l",xlab="t",ylab="CDF")

##
Further examples contain the binomial, beta-binomial
and multinomial CUSUMs. Hopefully, these will be added
in the future.
##

m1 RKI SurvStat Data

Description

14 datasets for different diseases beginning in 2001 to the 3rd Quarter of 2004 including their
defined outbreaks.

• m1 ’Masern’ in the ’Landkreis Nordfriesland’ (Germany, Schleswig-Holstein)

• m2 ’Masern’ in the ’Stadt- und Landkreis Coburg’ (Germany, Bayern)

• m3 ’Masern’ in the ’Kreis Leer’ (Germany, Niedersachsen)

• m4 ’Masern’ in the ’Stadt- und Landkreis Aachen’ (Germany, Nordrhein-Westfalen)

• m5 ’Masern’ in the ’Stadt Verden’ (Germany, Niedersachsen)

• q1_nrwh ’Q-Fieber’ in the ’Hochsauerlandkreis’ (Germany, Westfalen) and in the ’Landkreis
Waldeck-Frankenberg’ (Germany, Hessen)

• q2 ’Q-Fieber’ in ’München’ (Germany, Bayern)

• s1 ’Salmonella Oranienburg’ in Germany

• s2 ’Salmonella Agona’ in 12 ’Bundesländern’ of Germany

• s3 ’Salmonella Anatum’ in Germany

• k1 ’Kryptosporidiose’ in Germany, ’Baden-Württemberg’

• n1 ’Norovirus’ in ’Stadtkreis Berlin Mitte’ (Germany, Berlin)

• n2 ’Norovirus’ in ’Torgau-Oschatz’ (Germany, Sachsen)

• h1_nrwrp ’Hepatitis A’ in ’Oberbergischer Kreis, Olpe, Rhein-Sieg-kreis’ (Germany, Nordrhein-
Westfalen) and ’Siegenwittgenstein Altenkirchen’ (Germany, Rheinland-Pfalz)

Usage

data(m1)

magic.dim 63

Format

disProg objects each containing 209 observations (weekly on 52 weeks)

observed Number of counts in the corresponding week

state Boolean whether there was an outbreak.

Source

Robert Koch-Institut: SurvStat: http://www3.rki.de/SurvStat; m1 and m3 were queried
on 10 November 2004. The rest during September 2004.

See Also

readData

Examples

data(k1)
survResObj <- algo.rki1(k1, control=list(range=27:192))
plot(survResObj, "RKI 1", "k1", firstweek=27, startyear=2002)

magic.dim Returns a suitable k1 x k2 for plotting the disProgObj

Description

For a given number k magic.dim provides a vector containing two elements nRows and nCols
which can be used to set the dimension of a single graphic device so that nRow*nCol plots can be
drawn by row (or by column) on the device.

Usage

magic.dim(k)

Arguments

k an integer

Value

vector with two elements

http://www3.rki.de/SurvStat

64 make.design

make.design Create the design matrices

Description

Creates the design matrices needed for meanResponse

Usage

make.design(disProgObj, control=list(lambda=TRUE, neighbours=FALSE,
linear=FALSE, nseason=0,
negbin=c("none", "single", "multiple"),
proportion=c("none", "single", "multiple"),lag.range=NULL))

Arguments

disProgObj object of class disProg

control control object:

lambda If TRUE an autoregressive parameter λ is included, if lambda is a
vector of logicals, unit-specific parameters λi are included. By default,
observations yt−lag at the previous time points, i.e. lag = 1, are used for
the autoregression. Other lags can be used by specifying lambda as a
vector of integers, see Examples and meanResponse for details.

neighbours If TRUE an autoregressive parameter for adjacent units φ is in-
cluded, if neighbours is a vector of logicals, unit-specific parameters φi
are included. By default, observations yt−lag at the previous time points,
i.e. lag = 1, are used for the autoregression. Other lags can be used by
specifying neighbours as a vector of integers.

linear a logical (or a vector of logicals) indicating wether a linear trend
β (or a linear trend βi for each unit) is included

nseason Integer number of Fourier frequencies; if nseason is a vector of
integers, each unit i gets its own seasonal parameters

negbin if "single" negative binomial rather than poisson is used, if "multiple"
unit-specific overdispersion parameters are used.

proportion see details in meanResponse
lag.range determines which observations are used to fit the model

Value

list • Ymatrix with number of cases yit in unit i at time t as elements, i.e. data
without the first time point.

• Ym1matrix with previous number of cases yi,t−1, i.e data without the last
time point.

• Ym1.neighboursmatrix with weighted sum of earlier counts of adjacent
units

∑
j∼imjiyj,t−1

• nOfNeighboursvector with number of neighbours for each unit i
• X.trendSeasondesign matrix for linear trend and seasonal components
• populationFracmatrix with corresponding population proportions
• dimThetalist with number of parameters used in model

makePlot 65

• controlcontrol object
• disProgObjObject of class disProg
• lagwhich lag is used for the autoregressive parameters lambda and phi
• nObsnumber of observations

Author(s)

M.Paul, L. Held

makePlot Plot Generation

Description

Just a test method.

Usage

makePlot(outputpath, data = "k1", method = "rki1",
name, disease, range = 157:339)

Arguments

outputpath path for the storage

data abbreviation of the disease-file

method method to be called

name name of the method

disease disease name

range range to plot

Details

makePlot reads the data given in data using the function readData, and the data are corrected
to 52 weeks, enlarged using enlargeData and sendt to the surveillance system given in method.
The system result is plotted and stored in outputpath.

Author(s)

M. Höhle, A. Riebler, C. Lang

See Also

readData, correct53to52, enlargeData, algo.call, plot.survRes

Examples

makePlot("./", "k1", "rki2", "RKI 2", "Kryptosporidiose")

66 meanResponse

meanResponse Calculate mean response needed in algo.hhh

Description

Calculates the mean response for the model specified in designRes according to equations (1.2) and
(1.1) in Held et al., 2005 for univariate time series and equations (3.3) and (3.2) (with extensions)
for multivariate time series. See details.

Usage

meanResponse(theta, designRes)

Arguments

theta vector of parameters
θ = (α1, . . . , αm,λ,φ,β,γ1, . . . ,γm,ψ),
where λ = (λ1, . . . , λm), φ = (φ1, . . . , φm), β = (β1, . . . , βm), γ1 =
(γ11, . . . , γ1,2S1), γm = (γm1, . . . , γm,2Sm), ψ = (ψ1, . . . , ψm).
If the model specifies less parameters, those components are omitted.

designRes Result of a call to make.design

Details

Calculates the mean response for a Poisson or a negative binomial model with mean

µt = λyt−lag + νt

where

log(νt) = α+ βt+
S∑
j=1

(γ2j−1 sin(ωjt) + γ2j cos(ωjt))

and ωj = 2πj/period are Fourier frequencies with known period, e.g. period=52 for weekly
data, for a univariate time series.

Per default, the number of cases at time point t− 1, i.e. lag = 1, enter as autoregressive covariates
into the model. Other lags can also be considered.

The seasonal terms in the predictor can also be expressed as γs sin(ωst)+δs cos(ωst) = As sin(ωst+
εs) with amplitude As =

√
γ2
s + delta2

s and phase difference tan(εs) = δs/γs. The amplitude and
phase shift can be obtained from a fitted model by specifying amplitudeShift=TRUE in the
coef method.

For multivariate time series the mean structure is

µit = λiyi,t−lag + φi
∑
j∼i

wjiyj,t−lag + nitνit

where

log(νit) = αi + βit+
Si∑
j=1

(γi,2j−1 sin(ωjt) + γi,2j cos(ωjt))

and nit are standardized population counts. The weights wji are specified in the columns of the
neighbourhood matrix disProgObj$neighbourhood.

measles.weser 67

Alternatively, the mean can be specified as

µit = λiπiyi,t−1 +
∑
j∼i

λj(1− πj)/|k ∼ j|yj,t−1 + nitνit

if proportion="single" ("multiple") in designRes$control. Note that this model specifi-
cation is still experimental.

Value

Returns a list with elements

mean matrix of dimension n × m with the calculated mean response for each time
point and unit, where n is the number of time points and m is the number of
units.

epidemic matrix with the epidemic part λiyi,t−1 + φi
∑
j∼i yj,t−1

endemic matrix with the endemic part of the mean nitνit
epi.own matrix with λiyi,t−1

epi.neighbours
matrix with φi

∑
j∼i yj,t−1

Author(s)

M. Paul, L. Held

Source

Held, L., Höhle, M., Hofmann, M. (2005) A statistical framework for the analysis of multivariate
infectious disease surveillance counts. Statistical Modelling, 5, p. 187–199.

measles.weser Measles epidemics in Lower Saxony in 2001-2002

Description

Weekly counts of new measles cases for each "Kreis" of the administrative district "Weser-Ems"
in Lower Saxony, Germany, in 2001 and 2002. All in all there are 15 "Kreise", two "Kreise" have
been omitted

Usage

data(measles.weser)

Format

An multivariate object of class disProg with 104 observations for each one of the 15 Kreise.

week Number of week.

observed Matrix with number of counts in the corresponding week and Kreis.

state Boolean whether there was an outbreak – dummy not implemented.

neighbourhood Neighbourhood matrix.

populationFrac Population fractions.

68 momo

Examples

data(measles.weser)
plot(measles.weser, as.one=FALSE)

meningo.age Meningococcal infections in France 1985-1995

Description

Monthly counts of meningococcal infections in France 1985-1995. Here, the data is split into 4 age
groups (<1, 1-5, 5-20, >20).

Usage

data(meningo.age)

Format

An multivariate object of class disProg with 156 observations in each one of 4 age groups.

week Number of month

observed Matrix with number of counts in the corresponding month and age group

state Boolean whether there was an outbreak – dummy not implemented

neighbourhood Neighbourhood matrix, all age groups are adjacent

populationFrac Population fractions

Source

??

Examples

data(meningo.age)
plot(meningo.age, title="Meningococcal infections in France 1985-95")
plot(meningo.age, as.one=FALSE)

momo Danish 1994-2008 all cause mortality data for six age groups

Description

Weekly number of all cause mortality from 1994-2008 in each of the six age groups <1, 1-4, 5-14,
15-44, 45-64, 65-74, 75-84 and 85 years.

Usage

data(momo)

observed-methods 69

Details

The object of class sts contains the number of all cause mortality from 1994-2008 in Denmark for
each of the six age groups <1, 1-4, 5-14, 15-44, 45-64, 65-74, 75-84 and 85 years. A special feature
of such EuroMOMO data is that weeks are handled as defined by the ISO 8601 standard, which can
be handled by the sts class.

The population slot of the momo object contains the population size in each of the six age
groups. These are yearly data obtained from the StatBank Denmark.

The aim of the EuroMOMO project is to develop and strengthen real-time monitoring of mortality
across Europe; this will enhance the management of serious public health risks such as pandemic
influenza, heat waves and cold snaps. For further details see the homepage of the EuroMOMO
project.

Source

Department of Epidemiology, Statens Serum Institute, Copenhagen, Denmark StatBank Denmark,
Statistics Denmark, http://www.statistikbanken.dk/

References

HÃ¶hle, M. and A. Mazick, A. (2009) Aberration detection in R illustrated by Danish mortality
monitoring, Book chapter to appear in T. Kass-Hout and X. Zhang (Eds.) Biosurveillance: A
Health Protection Priority, CRC Press.

EuroMOMO project page, http://www.euromomo.eu/, Last accessed: 13 Oct 2010.

Examples

data("momo")
plot(momo,legend.opts=NULL)

observed-methods Methods

Description

Method to extract or set the corresponding slot of an sts object. This documentation is not really
valid yet.

Methods

x = "sts" The slot of x is determined and returned or set.

http://www.statistikbanken.dk/
http://www.euromomo.eu/

70 pairedbinCUSUM

obsinyear-methods ~~ Methods for Function obsinyear ~~

Description

For each time point it gives the corresponding observation number within the year, e.g. the week or
month number.

Methods

x = "sts" See above.

pairedbinCUSUM Paired binary CUSUM and its run-length computation

Description

CUSUM for paired binary data as described in Steiner et al. (1999).

Usage

pairedbinCUSUM(stsObj, control = list(range=NULL,theta0,theta1,
h1,h2,h11,h22))

pairedbinCUSUM.runlength(p,w1,w2,h1,h2,h11,h22, sparse=FALSE)

Arguments

stsObj Object of class sts containing the paired responses for each of the, say n, pa-
tients. The observed slot of stsObj is thus a n× 2 matrix.

control Control object as a list containing several parameters.
• rangeVector of indices in the observed slot to monitor.
• theta0In-control parameters of the paired binary CUSUM.
• theta1Out-of-control parameters of the paired binary CUSUM.
• h1Primary control limit (=threshold) of 1st CUSUM.
• h2Primary control limit (=threshold) of 2nd CUSUM.
• h11Secondary limit for 1st CUSUM.
• h22Secondary limit for 2nd CUSUM.

p Vector giving the probability of the four different possibile states, i.e. c((death=0,near-
miss=0),(death=1,near-miss=0), (death=0,near-miss=1),(death=1,near-miss=1)).

w1 The parameters w1 and w2 are the sample weights vectors for the two CUSUMs,
see eqn. (2) in the paper. We have that w1 is equal to deaths

w2 As for w1
h1 decision barrier for 1st individual cusums
h2 decision barrier for 2nd cusums
h11 together with h22 this makes up the joing decision barriers
h22 together with h11 this makes up the joing decision barriers
sparse Boolean indicating whether to use sparse matrix computations from the Matrix

library (usually much faster!). Default: FALSE.

pairedbinCUSUM 71

Details

For details about the method see the Steiner et al. (1999) reference listed below. Basically, two
individual CUSUMs are run based on a logistic regression model. The combined CUSUM not only
signals if one of its two individual CUSUMs signals, but also if the two CUSUMs simultaneously
cross the secondary limits.

Value

An sts object with observed, alarm, etc. slots trimmed to the control$range indices.

Author(s)

S. Steiner and M. Höhle

References

Steiner, S. H., Cook, R. J., and Farewell, V. T. (1999), Monitoring paired binary surgical outcomes
using cumulative sum charts, Statistics in Medicine, 18, pp. 69–86.

See Also

categoricalCUSUM

Examples

#Set in-control and out-of-control parameters as in paper
theta0 <- c(-2.3,-4.5,2.5)
theta1 <- c(-1.7,-2.9,2.5)

#Small helper function to compute the paired-binary likelihood
#of the length two vector yz when the true parameters are theta
dPBin <- function(yz,theta) {

exp(dbinom(yz[1],size=1,prob=plogis(theta[1]),log=TRUE) +
dbinom(yz[2],size=1,prob=plogis(theta[2]+theta[3]*yz[1]),log=TRUE))

}

#Likelihood ratio for all four possible configurations
p <- c(dPBin(c(0,0), theta=theta0), dPBin(c(0,1), theta=theta0),

dPBin(c(1,0), theta=theta0), dPBin(c(1,1), theta=theta0))

#Compute ARL using non-sparse matrix operations
Not run:
pairedbinCUSUM.runlength(p,w1=c(-1,37,-9,29),w2=c(-1,7),h1=70,h2=32,h11=38,h22=17)

End(Not run)

#Sparse computations don't work on all machines (e.g. the next line
#might lead to an error. If it works this call can be considerably (!) faster
#than the non-sparse call.
Not run:
pairedbinCUSUM.runlength(p,w1=c(-1,37,-9,29),w2=c(-1,7),h1=70,h2=32,

h11=38,h22=17,sparse=TRUE)

End(Not run)

#Use paired binary CUSUM on the De Leval et al. (1994) arterial switch

72 pairedbinCUSUM

#operation data on 104 newborn babies
data("deleval")

#Switch between death and near misses
observed(deleval) <- observed(deleval)[,c(2,1)]

#Run paired-binary CUSUM without generating alarms.
pb.surv <- pairedbinCUSUM(deleval,control=list(theta0=theta0,

theta1=theta1,h1=Inf,h2=Inf,h11=Inf,h22=Inf))

plot(pb.surv, xaxis.years=FALSE)

##
#Scale the plots so they become comparable to the plots in Steiner et
#al. (1999). To this end a small helper function is defined.
##

##
#Log LR for conditional specification of the paired model
##
LLR.pairedbin <- function(yz,theta0, theta1) {

#In control
alphay0 <- theta0[1] ; alphaz0 <- theta0[2] ; beta0 <- theta0[3]
#Out of control
alphay1 <- theta1[1] ; alphaz1 <- theta1[2] ; beta1 <- theta1[3]
#Likelihood ratios
llry <- (alphay1-alphay0)*yz[1]+log(1+exp(alphay0))-log(1+exp(alphay1))
llrz <- (alphaz1-alphaz0)*yz[2]+log(1+exp(alphaz0+beta0*yz[1]))-

log(1+exp(alphaz1+beta1*yz[1]))
return(c(llry=llry,llrz=llrz))

}

val <- expand.grid(0:1,0:1)
table <- t(apply(val,1, LLR.pairedbin, theta0=theta0, theta1=theta1))
w1 <- min(abs(table[,1]))
w2 <- min(abs(table[,2]))
S <- upperbound(pb.surv) / cbind(rep(w1,nrow(observed(pb.surv))),w2)

#Show results
par(mfcol=c(2,1))
plot(1:nrow(deleval),S[,1],type="l",main="Near Miss",xlab="Patient No.",

ylab="CUSUM Statistic")
lines(c(0,1e99), c(32,32),lty=2,col=2)
lines(c(0,1e99), c(17,17),lty=2,col=3)

plot(1:nrow(deleval),S[,2],type="l",main="Death",xlab="Patient No.",
ylab="CUSUM Statistic")

lines(c(0,1e99), c(70,70),lty=2,col=2)
lines(c(0,1e99), c(38,38),lty=2,col=3)

##
Run the CUSUM with thresholds as in Steiner et al. (1999).
After each alarm the CUSUM statistic is set to zero and
monitoring continues from this point. Triangles indicate alarm

plot.atwins 73

in the respective CUSUM (nearmiss or death). If in both
simultaneously then an alarm is caued by the secondary limits.
##
pb.surv2 <- pairedbinCUSUM(deleval,control=list(theta0=theta0,

theta1=theta1,h1=70*w1,h2=32*w2,h11=38*w1,h22=17*w2))

plot(pb.surv2, xaxis.years=FALSE)

plot.atwins Plot results of a twins model fit

Description

Plot results of fitting a twins model using MCMC output. Plots similar to those in the Held et al.
(2006) paper are generated

Usage

S3 method for class 'atwins':
plot(x, which=c(1,4,6,7), ask=TRUE, ...)

Arguments

x An object of class atwins.

which a vector containing the different plot types to show

1 A plot of the observed time series Z is shown together with posterior means
for the number of endemic cases (X) and number of epidemic cases (Y).

2 This plot shows trace plots of the gamma parameters over all MCMC samples.
3 This shows a trace plot of psi, which controls the overdispersion in the model.
4 Autocorrelation functions for K and psi are shown in order to judge whether

the MCMC sampler has converged.
5 Shows a plot of the posterior mean of the seasonal model nu[t] together with

95% credibility intervals based on the quantiles of the posterior.
6 Histograms illustrating the posterior density for K and psi. The first one cor-

responds to Fig. 4(f) in the paper.
7 Histograms illustrating the predictive posterior density for the next observed

number of cases Z[n+1]. Compare with Fig.5 in the paper.

ask Boolean indicating whether to ask for a newline before showing the next plot.

... Additional control for the plots, which are currently ignored.

Details

For details see the plots in the paper. Basically MCMC output is visualized. This function is
together with algo.twins still experimental.

Value

This function does not return anything.

74 plot.disProg

Author(s)

M. Hofmann and M. Höhle

References

Held, L., Hofmann, M., Höhle, M. and Schmid V. (2006) A two-component model for counts of
infectious diseases, Biostatistics, 7, pp. 422–437.

See Also

algo.twins

Examples

Not run:
#Apparently, the algo.atwins can crash on some LINUX systems
#thus for now the example section is commented

#Load the data used in the Held et al. (2006) paper
data("hepatitisA")

#Fix seed - this is used for the MCMC samplers in twins
set.seed(123)

#Call algorithm and save result
otwins <- algo.twins(hepatitisA)

#This shows the entire output
plot(otwins,which=c(1,2),ask=FALSE)

End(Not run)

plot.disProg Plot Generation of the Observed and the defined Outbreak States of a
(multivariate) time series

Description

Plotting of a disProg object.

Usage

S3 method for class 'disProg':
plot(x, title = "", xaxis.years=TRUE, startyear = x$start[1],

firstweek = x$start[2], as.one=TRUE, same.scale=TRUE, ...)
S3 method for class 'disProg.one':

plot(x, title = "", xaxis.years=TRUE, quarters=TRUE,
startyear = x$start[1], firstweek = x$start[2], ylim=NULL, xlab="time",
ylab="No. infected",type="hh",lty=c(1,1),col=c(1,1),
outbreak.symbol = list(pch=3, col=3), legend.opts=list(x="top",
legend=c("Infected", "Outbreak"), lty=NULL,pch=NULL,col=NULL), ...)

plot.disProg 75

Arguments

x object of class disProg

title plot title

xaxis.years if TRUE, the x axis is labeled using years

quarters add quarters to the plot

startyear year to begin the axis labeling (the year where the oldest data come from). This
arguments will be obsolete in sts.

firstweek number of the first week of January in the first year (just for axis labeling
grounds)

as.one if TRUE all individual time series are shown in one plot

same.scale if TRUE all plots have same scale

ylim range of y axis

xlab label of the x-axis

ylab label of the y-axis

type line type of the observed counts (should be hh)

lty line type of the observed counts

col color of the observed count lines
outbreak.symbol

list with entries pch and col specifying the plot symbol

legend.opts a list containing the entries to be sent to the legend function. If no legend is
requested use legend.opts=NULL. Otherwise, the following arguments are
default

x top

legend The names infected and outbreak

lty If NULL the lty argument will be used

pch If NULL the pch argument is used

col If NULL the col argument is used

An further arguments to the legend function are just provided as additional
elements of this list, e.g. horiz=TRUE.

... further arguments for the function matplot

Value

a plot showing the number of infected and the defined alarm status for a time series
created by simulation or given in data either in one single plot or in several plots
for each individual time series.

Author(s)

M. Höhle with contributions by A. Riebler and C. Lang

76 plot.survRes

Examples

Plotting of simulated data
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 5)

plot the simulated disease with the defined outbreaks
plot(disProgObj)
title <- "Number of Infected and Defined Outbreak Positions for Simulated Data"
plot(disProgObj, title = title)
plot(disProgObj, title = title, xaxis.years=TRUE,

startyear = 1999, firstweek = 13)
plot(disProgObj, title = title, xaxis.years=TRUE,

startyear = 1999, firstweek = 14)

Plotting of measles data
data(measles.weser)
one plot
plot(measles.weser, title = "measles cases in the district Weser-Ems",

xaxis.years=TRUE, startyear= 2001, firstweek=1)
plot cases for each "Kreis"
plot(measles.weser, same.scale=TRUE, as.one=FALSE)

plot.survRes Plot a survRes object

Description

Plotting of a (multivariate) survRes object. The function plot.survRes.one is used as a
helper function to plot a univariate time series.

Usage

S3 method for class 'survRes':
plot(x, method=x$control$name, disease=x$control$data,

xaxis.years=TRUE,startyear = 2001, firstweek = 1, same.scale=TRUE,...)
S3 method for class 'survRes.one':

plot(x, method=x$control$name, disease=x$control$data,
domany=FALSE,ylim=NULL,xaxis.years=TRUE,startyear = 2001, firstweek = 1,
xlab="time", ylab="No. infected", main=NULL, type="hhs",
lty=c(1,1,2),col=c(1,1,4),
outbreak.symbol = list(pch=3,col=3),alarm.symbol=list(pch=24,col=2),
legend.opts=list(x="top",
legend=c("Infected", "Upperbound", "Alarm", "Outbreak"),
lty=NULL,col=NULL,pch=NULL), ...)

Arguments

x object of class survRes

method surveillance method to be used in title

disease name of disease in title

xaxis.years Boolean indicating whether to show a year based x-axis for weekly data

plot.survRes 77

domany Boolean telling the function whether it is called for a multivariate (TRUE) or
univariate (FALSE) survRes object. In case of TRUE no titles are drawn.

ylim range of y axis

startyear year to begin the axis labeling (the year where the oldest data come from)

firstweek number of the first week of January in the first year (just for axis labeling rea-
sons)

xlab label of the x-axis

ylab label of the y-axis

main the title of the graphics is generated from the method and disease arguments
if not specified otherwise

same.scale plot all time series with the same ylim? Defaults to true.

type line type of the observed counts (first two elements) and the upper bound (third
element)

lty vector of size 3 speciying the line type of the observed counts (left, right) and
the upperbound line

col vector with three elements: color of left bar and color of top bar, color of right
bar, col of the upperbound line.

outbreak.symbol
list with entries pch and col specifying the plot symbol

alarm.symbol list with entries pch and col specifying the plot symbol

legend.opts a list containing the entries to be sent to the legend function. If no legend is
requested use legend.opts=NULL. Otherwise, the following arguments are
default

x top

legend The names infected and outbreak.
lty If NULL the lty argument will be used
pch If NULL the pch argument is used
col If NULL the col argument is used

Any further arguments to the legend function are just provided as additional
elements of this list, e.g. horiz=TRUE.

... further arguments for the function matplot. If e.g. xlab or main are pro-
vided they overwrite the default values.

Details

The plot.survRes.one is intended for internal use. At the moment none of the surveillance
methods support multivariate survRes objects. New versions of the packages currently under
development will handle this.

Value

none. A plot showing the number of infected, the threshold for recognizing an outbreak, the alarm
status and the outbreak status is generated.

Author(s)

M. Höhle

78 primeFactors

Examples

data(ha)
ctrl <- list(range = 209:290, b = 2, w = 6, alpha = 0.005)
plot(algo.bayes(aggregate(ha), control = ctrl))

predict.ah Predictions from a HHH model

Description

Use a ah or ahg object for prediction.

Usage

S3 method for class 'ah':
predict(object,newdata=NULL,

type=c("response","endemic","epi.own","epi.neighbours"), ...)

Arguments

object object of class ah or ahg

newdata optionally, a disProgObject with which to predict; if omitted, the fitted mean is
returned.

type the type of prediction required. The default is on the scale of the response vari-
able (endemic and epidemic part). The alternative "endemic" returns only the
endemic part (i.e. nitνit), "epi.own" and "epi.neighbours" return the epidemic
part (i.e. λiyi,t and φi

∑
j∼i yj,t−1)

... not really used

Details

this function is still experimental

Value

matrix of values containing the mean µit for each region and time point.

primeFactors Prime number factorization

Description

Computes prime number factorization of an integer x.

Usage

primeFactors(x)

print.algoQV 79

Arguments

x an integer

Value

vector with prime number factorization of x

print.algoQV Print quality value object

Description

Print a single qualitity value object in a nicely formatted way

Usage

S3 method for class 'algoQV':
print(x,...)

Arguments

x Quality Values object generated with quality

... Further arguments (not reall used)

Examples

Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 200, A = 1,

alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

Let this object be tested from rki1
survResObj <- algo.rki1(disProgObj, control = list(range = 50:200))

Compute the quality values in a nice formatted way
algo.quality(survResObj)

readData Reading of Disease Data

Description

Reading of disease data. In the package disease data are saved in a file <abb>.txt containing
three columns – the weeknumber (week), the observed number of counts (observed) and a state
(state). The data are read using read.table(...,header=T), hence the file has to contain a
header.

Usage

readData(abb,week53to52=TRUE,sysPath=TRUE)

80 refvalIdxByDate

Arguments

abb abbreviation of the diseasename.
week53to52 Boolean indicating whether to convert RKI 53 Weeks System to 52 weeks a year
sysPath Boolean, if TRUE then R automatically looks in the data directory of the surveil-

lance package.

Details

This function is only kept for backwards compability. As of 0.9-2 all data should be read with
data.

Value

disProg a object disProg (disease progress) including a list of the observed and the
state chain.

See Also

m1, m2, m3, m4, m5, q1_nrwh, q2, s1, s2, s3, k1, n1, n2, h1_nrwrp

Examples

readData("m5")

#To bring a single vector of counts into a format, which can be
#handled by readData. Assume ``counts'' is a vector of counts.
counts <- rpois(100,20)
counts <- data.frame("week"=1:length(counts),"observed"=counts,

"state"=rep(0,length(counts)))
write(c("week","observed","state"),file="disease.txt",ncol=3)
write(t(as.matrix(counts)),file="disease.txt",ncol=3,append=TRUE)
disease <- readData("disease",week53to52=FALSE,sysPath=FALSE)

refvalIdxByDate Compute indices of reference value using Date class

Description

The reference values are formed base on computatations of seq for Date class arguments.

Usage

refvalIdxByDate(t0, b, w, epochStr, epochs)

Arguments

t0 A Date object describing the time point
b Number of years to go back in time
w Half width of window to include reference values for
epochStr One of "1 month", "1 week" or "1 day"

epochs Vector containing the epoch value of the sts/disProg object

residuals.ah 81

Details

Using the Date class the reference values are formed as follows: Starting from t0 go i, i= 1,...,b
years back in time. For each year, go w epochs back and include from here to w epochs after t0.

In case of weeks we always go back to the closest monday of this date. In case of months we also
go back in time to closest 1st of month.

Value

a vector of indices in epochs which match

residuals.ah Residuals from a HHH model

Description

Extracts model residuals from a ah or ahg object.

Usage

S3 method for class 'ah':
residuals(object, type=c("deviance","pearson"), ...)

Arguments

object object of class ah or ahg

type the type of residuals which should be returned. The alternatives are "deviance"
(default) and "pearson"

... not really used

Details

this function is still experimental

Value

matrix with residuals for each region and time point.

82 shadar

salmonella.agona Salmonella Agona cases in the UK 1990-1995

Description

Reported number of cases of the Salmonella Agona serovar in the UK 1990-1995. Note however
that the counts do not correspond exactly to the ones used by Farrington et. al (1996).

Usage

data(salmonella.agona)

Format

A data frame with 312 observations on the following 2 variables.

week First four digits are the year, last two the week number within that year

observed Number of counts in the corresponding week

state Boolean whether there was an outbreak – dummy not implemented.

Source

A statistical algorithm for the early detection of outbreaks of infectious disease, Farrington, C.P.,
Andrews, N.J, Beale A.D. and Catchpole, M.A. (1996). , J. R. Statist. Soc. A, 159, 547-563.

Examples

data(salmonella.agona)
plot(salmonella.agona$observed,type="l",ylab="counts",xlab="")

shadar Salmonella Hadar cases in Germany 2001-2006

Description

Number of salmonella hadar cases in Germany 2001-2006. An increase is seen during 2006

Usage

data(shadar)

Format

A disProg object containing 295 × 1 observations starting from week 1 in 2001 to week 35 in
2006.

sim.pointSource 83

Source

Robert Koch-Institut: SurvStat: http://www3.rki.de/SurvStat; Queried on September
2006.

Robert Koch Institut, Epidemiologisches Bulletin 31/2006.

Examples

data(shadar)
plot(shadar)

sim.pointSource Generation of Simulated Point Source Epidemy

Description

Simulation of epidemies which were introduced by point sources. The basis of this proagramme is
a combination of a Hidden Markov Modell (to get random timepoints for outbreaks) and a simple
model (compare sim.seasonalNoise) to simulate the epidemy.

Usage

sim.pointSource(p = 0.99, r = 0.01, length = 400, A = 1,
alpha = 1, beta = 0, phi = 0, frequency = 1, state = NULL, K)

Arguments

p probability to get a new epidemy at time i if there was one at time i-1, default
0.99.

r probability to get no new epidemy at time i if there was none at time i-1, default
0.01.

length number of weeks to model, default 400. length is ignored if state is given.
In this case the length of state is used.

A amplitude (range of sinus), default = 1.

alpha parameter to move along the y-axis (negative values not allowed) with alpha >
= A, default = 1.

beta regression coefficient, default = 0.

phi factor to create seasonal moves (moves the curve along the x-axis), default = 0.

frequency factor to determine the oscillation-frequency, default = 1.

state use a state chain to define the status at this timepoint (outbreak or not). If not
given a Markov chain is generated by the programme, default NULL.

K additional weigth for an outbreak which influences the distribution parameter
mu, default = 0.

Value

disProg a object disProg (disease progress) including a list of the observed, the state
chain and nearly all input parameters.

http://www3.rki.de/SurvStat

84 sim.seasonalNoise

Author(s)

M. Höhle, A. Riebler, C. Lang

See Also

sim.seasonalNoise

Examples

Plotting of simulated data
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 208,

A = 1, alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 2)

plot the simulated disease with the defined outbreaks
plot(disProgObj)

state <- rep(c(0,0,0,0,0,0,0,0,1,1), 20)
disProgObj <- sim.pointSource(state = state, K = 1.2)
plot(disProgObj)

sim.seasonalNoise Generation of Background Noise for Simulated Timeseries

Description

Generation of a cyclic model of a Poisson distribution as background data for a simulated timevec-
tor.

The mean of the Poisson distribution is modelled as:

µ = exp(A sin(frequency · ω · (t+ φ)) + α+ β ∗ t+K ∗ state)

Usage

sim.seasonalNoise(A = 1, alpha = 1, beta = 0, phi = 0,
length, frequency = 1, state = NULL, K = 0)

Arguments

A amplitude (range of sinus), default = 1.

alpha parameter to move along the y-axis (negative values not allowed) with alpha >
= A, default = 1.

beta regression coefficient, default = 0.

phi factor to create seasonal moves (moves the curve along the x-axis), default = 0.

length number of weeks to model.

frequency factor to determine the oscillation-frequency, default = 1.

state if a state chain is entered the outbreaks will be additional weighted by K.

K additional weigth for an outbreak which influences the distribution parameter
mu, default = 0.

simHHH 85

Value

seasonNoise Object of class seasonNoise which includes the modelled timevector, the
parameter mu and all input parameters.

Author(s)

M. Höhle, A. Riebler, C. Lang

See Also

sim.pointSource

Examples

season <- sim.seasonalNoise(length = 300)
plot(season$seasonalBackground,type = "l")

use a negative timetrend beta
season <- sim.seasonalNoise(beta = -0.003, length = 300)
plot(season$seasonalBackground,type = "l")

simHHH Simulates data based on the model proposed by Held et. al (2005)

Description

Simulates a multivariate time series of counts based on the Poisson/Negative Binomial model as
described in Held et al. (2005).

Usage

Default S3 method:
simHHH(model=NULL, control = list(coefs = list(alpha=1, gamma = 0, delta = 0,

lambda = 0, phi = NULL, psi = NULL, period = 52),
neighbourhood = NULL, population = NULL, start = NULL),

length)

S3 method for class 'ah':
simHHH(model, control = model$control, length)

Arguments

control list with

coefs list with the following parameters of the model - if not specified, those
parameters are omitted
alpha vector of length m with intercepts for m units or geographic areas

respectively
gamma vector with parameters for the "sine" part of νi,t

86 simHHH

delta vector with parameters for the "cosine" part of νi,t
lambda autoregressive parameter
phi autoregressive parameter for adjacent units
psi overdispersion parameter of the negative binomial model; NULL corre-

sponds to a Poisson model
period period of the seasonal component, defaults to 52 for weekly data

neighbourhood neighbourhood matrix of size m × m with element 1 if two
units are adjacent; the default NULL assumes that there are no neighbours

population matrix with population proportions; the default NULL sets ni,t = 1
start if NULL, the means of the endemic part in the m units is used as initial

values yi,0

model Result of a model fit with algo.hhh, the estimated parameters are used to
simulate data

length number of time points to simulate

Details

Simulates data from a Poisson or a Negative Binomial model with mean

µit = λyi,t−1 + φ
∑
j∼i

yj,t−1 + nitνit

where

log νit = αi +
S∑
s=1

(γssin(ωst) + δscos(ωst))

ωs = 2sπ/period are Fourier frequencies and nit are possibly standardized population sizes.

Value

Returns a list with elements

data disProgObj of simulated data

mean matrix with mean µi,t that was used to simulate the data

endemic matrix with only the endemic part νi,t

coefs list with parameters of the model

Note

The model does not contain a linear trend.

Source

Held, L., Höhle, M., Hofmann, M. (2005). A statistical framework for the analysis of multivariate
infectious disease surveillance counts. Statistical Modelling, 5, p. 187-199.

stcd 87

stcd Spatio-temporal cluster detection

Description

Shiryaev-Roberts based prospective spatio-temporal cluster detection as in Assuncao & Correa
(2009).

Usage

stcd(x, y,t,radius,epsilon,areaA, areaAcapBk, threshold, cusum=FALSE)

Arguments

x Vector containing spatial x coordinate of the events.

y Vector containing spatial y coordinate of the events.

t Vector containing the time points of the events. It is assumed that the vector is
sorted (early->last).

radius Radius of the cluster to detect.

epsilon Relative change of event-intensity within the cluster to detect. See reference
paper for an explicit definition.

areaA ???

areaAcapBk ???

threshold Threshold limit for the alarm and should be equal to the desired Average-Run-
Length (ARL) of the detector.

cusum ???

Details

Shiryaev-Roberts based spatio-temporal cluster detection based on the work in Assuncao and Correa
(2009). The implementation is based on C++ code originally written by Marcos Oliveira Prates,
UMFG, Brazil and provided by Thais Correa, UMFG, Brazil during her research stay in Munich.
This stay was financially supported by the Munich Center of Health Sciences.

Note that the vectors x, y and t need to be of the same length. Furthermore, the vector t needs to
be sorted (to improve speed, the latter is not verified within the function).

The current implementation uses a call to a C++ function to perform the actual computations of
the test statistic. The function is currently experimental – data type and results may be subject to
changes.

Value

A list with three components

R A vector of the same length as the input containing the value of the test statistic
for each observation.

idxFA Index in the x,y,t vector causing a possible alarm. If no cluster was detected,
then a value of -1 is returned here.

idxCC index in the x,y,t vector of the event containing the cluster. If no cluster was
detected, then a value of -1 is returned here.

88 sts-class

Author(s)

M. O. Prates, T. Correa and M. Höhle

References

Assuncao, R. and Correa, T. (2009), Surveillance to detect emerging space-time clusters, Computa-
tional Statistics & Data Analysis, 53(8):2817-2830.

Examples

library("splancs")
data(burkitt)

order the times
burkitt <- burkitt[order(burkitt$t),]

#Parameters for the SR detection
epsilon <- 0.5 # relative change within the cluster
radius <- 20 # radius
threshold <- 161 # threshold limit

res <- stcd(x=burkitt$x,
y=burkitt$y,
t=burkitt$t,
radius=radius,
epsilon=epsilon,
areaA=1,
areaAcapBk=1,
threshold=threshold)

#Index of the event
which.max(res$R >= threshold)

sts-class Class "sts" – surveillance time series

Description

This is a rather leightweight class to implement multivariate time series of count used for public
health surveillance data. The class captures the time series data as well as the spatial layout of the
regions, where the data originate from.

Slots

week: Object of class numeric specifying the week numbers. Actually this is not really used at
the moment.

freq: If weekly data freq corresponds to 52, in case of monthly data freq is 12.

start: vector of length two denoting the year and the sample number (week, month, etc.) of the
first observation

observed: A matrix of size length(week) times the number of regions containing the weekly/monthly
number of counts in each region. The colnames of the matrix should match the ID values of
the shapes in the map slot.

sts-class 89

state: Matrix with the same dimension as observed containing booleans whether at the spe-
cific time point there was an outbreak in the region

alarm: Matrix with the same dimension as observed specifying whether an outbreak detec-
tion algorithm declared a specific time point in the region as having an alarm. If the object
containins just observations then this slot is null.

upperbound: Matrix with upper bound values

neighbourhood: Symmetric matrix of booleans size (numberofregions)2 stating the neigh-
bourhood matrix.

populationFrac: Object of class matrix.

map: Object of class SpatialPolygonsDataFrame providing a shape of the areas which are
monitored.

control: Object of class list, thais is a rather free data type to be returned by the surveillance
algorithms.

epochAsDate: Object of class "logical" stating whether to use a ISO 8601 representation
of the epoch/week slot using the Date class (epochAsDate=TRUE) or just to interpret the
epochs/weeks as numerics (epochAsDate=FALSE).

multinomialTS: Object of class "logical" stating whether to interpret the object as observed
out of population, i.e. a multinomial interpretation instead of a count interpretation.

Methods

nrow signature(x = "sts"): extract number of rows of the observed matrix slot. The
dimension of the other matrix slots is similar.

ncol signature(x = "sts"): extract number of columns of the observed matrix slot.

dim signature(x = "sts"): extract matrix dimensions of observed using dim.

observed signature(x = "sts"): extract the observed slot of an sts object.

population signature(x = "sts"): extract the population slot of an sts object.

alarms signature(x = "sts"): extract the alarm slot of an sts object.

upperbound signature(x = "sts"): extract the upperbound slot of an sts object.

control signature(x = "sts"): extract the control slot of an sts object.

epoch signature(x = "sts"): extract the epoch slot of an sts object. If ISO dates are
used then the returned object is of class Date.

epochInYear signature(x = "sts"): Returns the epoch number within the year of the
epoch slot.

colnames signature(x="sts",do.NULL="missing",prefix="missing"): extract
colnames of the observed matrix.

initialize signature(x="sts"): the internal function init.sts is called, which assigns all
slots.

aggregate signature(x="sts"): see aggregate,sts-method

year signature(x = "sts"): extracts the corresponding year of each observation of x

obsinyear signature(x = "sts"): extracts the corresponding week number within the year
of each observation of x

as.data.frame signature(x = "sts"): converts the observed, week, state and alarm
slots of x into a data frame with column names matching the colnames of the respective slots.
Useful when one wants to fit a model based on the object

90 test

plot signature(x="sts",y="missing",function(x, y, type,...)...): this func-
tion is the successor of the plot.disProg and plot.survRes functions. It takes (more
or less) the same arguments as plot.survRes. The most important difference is the type
of plot, which is specified using type. See show,sts-method for details.

Author(s)

M. Höhle

Examples

data("ha")
shp <- system.file("shapes/berlin.shp",package="surveillance")
ha <- disProg2sts(ha, map=readShapePoly(shp,IDvar="SNAME"))
plot(ha,type=observed ~ 1 | unit)

sumNeighbours Calculates the sum of counts of adjacent areas

Description

Calculates the sum of counts of adjacent units/areas, i.e.
∑
j∼i yj,t for all time points t and each

unit i, t = 1, . . . , n, i = 1, . . . ,m.

Usage

sumNeighbours(disProgObj)

Arguments

disProgObj Object of class disProg

Value

matrix of dimension n×m

test Print xtable for several diseases and the summary

Description

Just a test method

Usage

test(data = c("k1", "m5"), range = 157:339)

testSim 91

Arguments

data vector of abbreviations for the diseases

range timepoints to evaluate

Details

The specified datasets are readed, corrected, enlarged and sent to the RKI 1, RKI 2, RKI 3 and Bayes
system. The quality values are computed and printed for each diesease as latex table. Additonally a
summary latex table for all diseases is printed

Value

xtable printed latex tables

Author(s)

M. Höhle, A. Riebler, C. Lang

Examples

test(c("m1", "m2", "m3", "m4", "m5", "q1_nrwh", "q2", "s1",
"s2", "s3", "k1", "n1", "n2", "h1_nrwrp"))

testSim Print xtable for a Simulated Disease and the Summary

Description

Just a test method.

Usage

testSim(p = 0.99, r = 0.01, length = 400, A = 1, alpha = 1,
beta = 0, phi = 0, frequency = 1, state = NULL, K,
range = 200:400)

Arguments

p probability to get a new epidemy at time i if there was one at time i-1, default
0.99

r probability to get no new epidemy at time i if there was none at time i-1, default
0.01

length number of weeks to model, default 400

A amplitude (range of sinus), default = 1

alpha parameter to move along the y-axis (negative values not allowed) with alpha >
= A, default = 1

beta regression coefficient, default = 0

phi factor to create seasonal moves (moves the curve along the x-axis), default = 0

frequency factor to determine the oscillation-frequency, default = 1

92 toFileDisProg

state use a state chain to define the status at this timepoint (outbreak or not). If not
given a Markov chain is generated by the programme, default NULL

K additional weigth for an outbreak which influences the distribution parameter
mu, default = 0

range range of timepoints to be evaluated by the RKI 1 system, default 200:400.

Details

A pointSource epidemy is generated and sent to the RKI 1 system, the quality values for the result
are computed and shown as a latex table. Additionally a plot of the result is generated.

Value

xtable one printed latex table and a result plot

Author(s)

M. Höhle, A. Riebler, C. Lang

See Also

sim.pointSource, algo.call, algo.compare, plot.survRes, compMatrix.writeTable

Examples

testSim(K = 2)
testSim(r = 0.5, K = 5)

toFileDisProg Writing of Disease Data

Description

Writing of disease data (disProg object) into a file.

Usage

toFileDisProg(disProgObj, toFile)

Arguments

disProgObj The disProgObj to save in file

toFile The path and filename of the file to save

Details

Writing of disProg object into a file as illustrated in the example.

Value

file The file with the disease data

wrap.algo 93

See Also

readData, sim.pointSource

Examples

disProgObj <- sim.pointSource(length=200, K=1)
toFileDisProg(disProgObj, "./simulation.txt")
mydisProgObj <- readData("./simulation",sysPath=FALSE)

wrap.algo Multivariate Surveillance through independent univariate algorithms

Description

This function takes an sts object and applies an univariate surveillance algorithm to the time series
of each observational unit.

Usage

wrap.algo(sts, algo, control,control.hook=function(k)
return(control),verbose=TRUE,...)

farrington(sts, control=list(range=NULL, b=3, w=3,reweight=TRUE,
verbose=FALSE,alpha=0.01),...)

cdc(sts, control= list(range = range,alpha=0.025),...)
bayes(sts, control = list(range = range, b = 0, w = 6,

actY = TRUE,alpha=0.05),...)
rki(sts, control = list(range = range, b = 2, w = 4,

actY = FALSE),...)
cusum(sts, control = list(range=range, k=1.04, h=2.26,

m=NULL, trans="standard",alpha=NULL),...)
glrpois(sts, control = list(range=range,c.ARL=5, S=1,beta=NULL,

Mtilde=1, M=-1, change="intercept",theta=NULL),...)
glrnb(sts, control = list(range=range,c.ARL=5, mu0=NULL, alpha=0,

Mtilde=1, M=-1, change="intercept",
theta=NULL,dir=c("inc","dec"),
ret=c("cases","value")),...)

outbreakP(sts, control=list(range = range, k=100,
ret=c("cases","value"),maxUpperboundCases=1e5))

Arguments

sts Object of class sts
algo Character string giving the function name of the algorithm to call, e.g. "algo.farrington".

Calling is done using do.call.
control Control object as list. Depends on each algorithm.
control.hook This is a function for handling multivariate objects. This argument is a function

function of integer k, which returns the appropriate control object for region k
verbose Boolean, if TRUE then textual information about the process is given
... Additional arguments sent to the algo function.

94 xtable.algoQV

Value

An sts object with the alarm, upperbound, etc. slots filled with the results of independent and
univariate surveillance algorithm.

Author(s)

M. Höhle

See Also

algo.bayes, algo.cdc, algo.rki, algo.farrington, algo.cusum, algo.glrpois,
algo.glrnb, algo.outbreakP for the exact form of the control object.

xtable.algoQV Xtable quality value object

Description

Xtable a single qualitity value object in a nicely formatted way

Usage

S3 method for class 'algoQV':
xtable(x,caption = NULL, label = NULL,

align = NULL, digits = NULL, display = NULL, ...)

Arguments

x Quality Values object generated with quality

caption See xtable

label See xtable

align See xtable

digits See xtable

display See xtable

... Further arguments (see xtable)

See Also

xtable

Examples

Create a test object
disProgObj <- sim.pointSource(p = 0.99, r = 0.5, length = 200, A = 1,

alpha = 1, beta = 0, phi = 0,
frequency = 1, state = NULL, K = 1.7)

Let this object be tested from rki1
survResObj <- algo.rki1(disProgObj, control = list(range = 50:200))

year-methods 95

Compute the quality values in a nice formatted way
library(xtable)
xtable(algo.quality(survResObj))

year-methods Methods for Function year

Description

Method to extract the corresponding year of each observation in an sts object. The year is calcu-
lated based on the start slot.

Methods

x = "sts" For each time point in the x the corresponding year is determined and returned.

[-methods Methods for "[": Extraction or Subsetting in Package ’surveillance’

Description

Methods for "[", i.e., extraction or subsetting of the sts class in package surveillance.

Note that [<--methods methods (i.e. subassigments) are currently not supported.

drop is always FALSE.

Methods

There are more than these:

x = "sts", i = "missing", j = "missing", drop= "ANY" ...

x = "sts", i = "numeric", j = "missing", drop= "missing" ...

x = "sts", i = "missing", j = "numeric", drop= "missing" ...

Examples

data(ha)
#Convert to S4 object
shp <- system.file("shapes/berlin.shp",package="surveillance")
has4 <- aggregate(disProg2sts(ha,map=readShapePoly(shp,IDvar="SNAME")),nfreq=13)

#A suite of of simple tests (inspired by the Matrix package)
stopifnot(identical(has4, has4[]))

plot(has4[, 3]) # Single series
plot(has4[1:30, 3]) # Somewhat shorter

#Counts at time 20
plot(has4[20,],type = observed ~1 |unit)

Index

∗Topic array
[-methods, 94

∗Topic classes
sts-class, 87

∗Topic classif
algo.bayes, 5
algo.call, 7
algo.cdc, 8
algo.compare, 9
algo.cusum, 10
algo.farrington, 12
algo.glrnb, 16
algo.glrpois, 19
algo.hmm, 26
algo.outbreakP, 28
algo.rki, 31
algo.rogerson, 33
wrap.algo, 92

∗Topic cluster
stcd, 86

∗Topic datagen
sim.pointSource, 82
sim.seasonalNoise, 83
simHHH, 84

∗Topic datasets
abattoir, 3
deleval, 47
ha, 57
hepatitisA, 57
influMen, 58
m1, 61
measles.weser, 66
meningo.age, 67
momo, 67
salmonella.agona, 81
shadar, 81

∗Topic data
CIdata, 43

∗Topic file
toFileDisProg, 91

∗Topic hplot
aggregate.disProg, 4
bestCombination, 40

create.disProg, 45
magic.dim, 62
plot.disProg, 73
plot.survRes, 75
primeFactors, 77
sumNeighbours, 89

∗Topic methods
[-methods, 94
aggregate-methods, 4
observed-methods, 68
obsinyear-methods, 69
year-methods, 94

∗Topic misc
algo.hhh.grid, 24
algo.quality, 30
create.grid, 46
make.design, 63
makePlot, 64
readData, 78
test, 89
testSim, 90

∗Topic models
arlCusum, 39
find.kh, 54
findH, 55
findK, 56
loglikelihood, 58
meanResponse, 65
predict.ah, 77
residuals.ah, 80

∗Topic package
surveillance-package, 2

∗Topic print
algo.summary, 35
compMatrix.writeTable, 43
print.algoQV, 78
xtable.algoQV, 93

∗Topic regression
algo.farrington.assign.weights,

14
algo.farrington.fitGLM, 15
algo.farrington.threshold, 16
algo.hhh, 21

96

INDEX 97

algo.twins, 36
anscombe.residuals, 38
categoricalCUSUM, 40
estimateGLRNbHook, 52
estimateGLRPoisHook, 53
LRCUSUM.runlength, 59
pairedbinCUSUM, 69
plot.atwins, 72
refvalIdxByDate, 79

∗Topic ts
algo.hhh, 21
algo.twins, 36
display-methods, 48
plot.atwins, 72

∗Topic utilities
correct53to52, 44
disProg2sts, 50
enlargeData, 51

[,sts,ANY,ANY,ANY-method
([-methods), 94

[,sts-method ([-methods), 94
[-methods, 94

abattoir, 3
aggregate, 4
aggregate,sts,ANY,ANY-method

(aggregate-methods), 4
aggregate,sts-method, 88
aggregate,sts-method

(aggregate-methods), 4
aggregate-methods, 4
aggregate.disProg, 4
aggregate.ts, 4
alarms (observed-methods), 68
alarms,sts-method (sts-class), 87
alarms-methods

(observed-methods), 68
alarms<- (observed-methods), 68
alarms<-,sts-method (sts-class),

87
algo.bayes, 5, 7, 9, 33, 93
algo.bayes1 (algo.bayes), 5
algo.bayes2 (algo.bayes), 5
algo.bayes3 (algo.bayes), 5
algo.bayesLatestTimepoint, 9, 33
algo.bayesLatestTimepoint

(algo.bayes), 5
algo.call, 6, 7, 64, 91
algo.cdc, 8, 93
algo.cdcLatestTimepoint

(algo.cdc), 8
algo.compare, 9, 31, 35, 91
algo.cusum, 10, 93

algo.farrington, 7, 12, 93
algo.farrington.assign.weights,

14
algo.farrington.fitGLM, 14, 15
algo.farrington.threshold, 14, 16
algo.glrnb, 16, 93
algo.glrpois, 19, 52, 53, 93
algo.hhh, 21, 25, 85
algo.hhh.grid, 24, 47
algo.hmm, 26
algo.outbreakP, 28, 93
algo.quality, 10, 30, 35
algo.rki, 6, 7, 31, 43, 93
algo.rki1 (algo.rki), 31
algo.rki2 (algo.rki), 31
algo.rki3 (algo.rki), 31
algo.rkiLatestTimepoint, 6, 9, 18, 20
algo.rkiLatestTimepoint

(algo.rki), 31
algo.rogerson, 33
algo.summary, 35
algo.twins, 36, 73
anscombe.residuals, 14, 15, 38
arlCusum, 39
as.data.frame,sts-method

(sts-class), 87

bayes (wrap.algo), 92
bestCombination, 40

calc.outbreakP.statistic
(algo.outbreakP), 28

catcusum.LLRcompute
(categoricalCUSUM), 40

categoricalCUSUM, 3, 40, 41, 60, 70
cdc (wrap.algo), 92
CIdata, 43
coef.ah (algo.hhh), 21
coef.ahg (algo.hhh.grid), 24
colnames, 88
colnames,sts,missing,missing-method

(sts-class), 87
compMatrix.writeTable, 43, 91
control (observed-methods), 68
control,sts-method (sts-class), 87
control-methods

(observed-methods), 68
control<- (observed-methods), 68
control<-,sts-method (sts-class),

87
correct53to52, 44, 64
create.disProg, 45
create.grid, 25, 46

98 INDEX

cusum (wrap.algo), 92

deleval, 47
dim, 88
dim,sts-method (sts-class), 87
display-methods, 48
disProg2sts, 50

enlargeData, 51, 64
epoch (observed-methods), 68
epoch,sts-method (sts-class), 87
epoch-methods (observed-methods),

68
epoch<- (observed-methods), 68
epoch<-,sts-method (sts-class), 87
epochInYear (observed-methods), 68
epochInYear,sts-method

(sts-class), 87
epochInYear-methods

(observed-methods), 68
epochInYear<- (observed-methods),

68
estimateGLRNbHook, 52
estimateGLRPoisHook, 53

farrington (wrap.algo), 92
find.kh, 54
findH, 33, 55
findK, 56

glrnb (wrap.algo), 92
glrpois (wrap.algo), 92

h1_nrwrp, 79
h1_nrwrp (m1), 61
ha, 57
hepatitisA, 57
hmm (wrap.algo), 92
hValues, 34
hValues (findH), 55

influMen, 58
initialize,sts-method

(sts-class), 87

k1, 79
k1 (m1), 61

legend, 74, 76
LLR.fun (LRCUSUM.runlength), 59
loglikelihood, 58
LRCUSUM.runlength, 59

m1, 61, 79

m2, 79
m2 (m1), 61
m3, 79
m3 (m1), 61
m4, 79
m4 (m1), 61
m5, 79
m5 (m1), 61
magic.dim, 62
make.design, 63
makePlot, 64
meanResponse, 22–25, 59, 63, 65
measles.weser, 66
meningo.age, 67
momo, 67
msm, 28

n1, 79
n1 (m1), 61
n2, 79
n2 (m1), 61
ncol,sts-method (sts-class), 87
nrow,sts-method (sts-class), 87

observed (observed-methods), 68
observed,sts-method (sts-class),

87
observed-methods, 68
observed<- (observed-methods), 68
observed<-,sts-method

(sts-class), 87
obsinyear (obsinyear-methods), 69
obsinyear,sts-method

(obsinyear-methods), 69
obsinyear-methods, 69
optim, 54
outbreakP (wrap.algo), 92
outcomeFunStandard

(LRCUSUM.runlength), 59

pairedbinCUSUM, 48, 69
plot, 49
plot (display-methods), 48
plot,sts,missing-method

(display-methods), 48
plot.atwins, 72
plot.disProg, 73, 89
plot.sts.alarm (display-methods),

48
plot.sts.spacetime

(display-methods), 48
plot.sts.time (display-methods),

48

INDEX 99

plot.survRes, 48–50, 64, 75, 89, 91
population (observed-methods), 68
population,sts-method

(sts-class), 87
population-methods

(observed-methods), 68
population<- (observed-methods),

68
population<-,sts-method

(sts-class), 87
predict.ah, 77
predict.ahg (predict.ah), 77
primeFactors, 77
print.ah (algo.hhh), 21
print.ahg (algo.hhh.grid), 24
print.algoQV, 78
print.default, 49

q1_nrwh, 79
q1_nrwh (m1), 61
q2, 79
q2 (m1), 61

readData, 45, 51, 62, 64, 78, 92
refvalIdxByDate, 79
residuals.ah, 80
residuals.ahg (residuals.ah), 80
rki (wrap.algo), 92
rogerson (wrap.algo), 92

s1, 79
s1 (m1), 61
s2, 79
s2 (m1), 61
s3, 79
s3 (m1), 61
salmonella.agona, 81
shadar, 81
show,sts-method, 89
show,sts-method

(display-methods), 48
sim.pointSource, 82, 84, 91, 92
sim.seasonalNoise, 82, 83, 83
simHHH, 84
stcd, 86
sts-class, 51
sts-class, 87
sts2disProg (disProg2sts), 50
sumNeighbours, 89
surveillance

(surveillance-package), 2
surveillance-package, 2

test, 89

testSim, 90
toFileDisProg, 91

upperbound (observed-methods), 68
upperbound,sts-method

(sts-class), 87
upperbound<- (observed-methods),

68
upperbound<-,sts-method

(sts-class), 87

wrap.algo, 92

xtable, 93
xtable.algoQV, 93

year (year-methods), 94
year,sts-method (year-methods), 94
year-methods, 94

	surveillance-package
	abattoir
	aggregate-methods
	aggregate.disProg
	algo.bayes
	algo.call
	algo.cdc
	algo.compare
	algo.cusum
	algo.farrington
	algo.farrington.assign.weights
	algo.farrington.fitGLM
	algo.farrington.threshold
	algo.glrnb
	algo.glrpois
	algo.hhh
	algo.hhh.grid
	algo.hmm
	algo.outbreakP
	algo.quality
	algo.rki
	algo.rogerson
	algo.summary
	algo.twins
	anscombe.residuals
	arlCusum
	bestCombination
	categoricalCUSUM
	CIdata
	compMatrix.writeTable
	correct53to52
	create.disProg
	create.grid
	deleval
	display-methods
	disProg2sts
	enlargeData
	estimateGLRNbHook
	estimateGLRPoisHook
	find.kh
	findH
	findK
	ha
	hepatitisA
	influMen
	loglikelihood
	LRCUSUM.runlength
	m1
	magic.dim
	make.design
	makePlot
	meanResponse
	measles.weser
	meningo.age
	momo
	observed-methods
	obsinyear-methods
	pairedbinCUSUM
	plot.atwins
	plot.disProg
	plot.survRes
	predict.ah
	primeFactors
	print.algoQV
	readData
	refvalIdxByDate
	residuals.ah
	salmonella.agona
	shadar
	sim.pointSource
	sim.seasonalNoise
	simHHH
	stcd
	sts-class
	sumNeighbours
	test
	testSim
	toFileDisProg
	wrap.algo
	xtable.algoQV
	year-methods
	[-methods
	Index

