next up previous contents
Next: element_group index element_group Up: Input: data part Previous: dof_label unknown_0 unknown_1 ...   Contents

element index element_name node_0 node_1 node_2 ...

Nodal connective of element index. In 1D, element_name is -bar2 (2 noded bar), -bar3, -bar4 or -bar5. In 2D, element_name is -tria3 (3 noded triangle), -quad4 (4 noded quadrilateral), -quad9, -quad16 or -quad25. In 3D, element_name is -tet4 (4 noded tetrahedral), -hex8 (8 noded hexahedral), -hex27, -hex64 or -hex125. Example with 4-noded quadrilateral


element 0 -quad4 1 2 3 4
node 1 0. 0.
node 2 1. 0.
node 3 0. 1.
node 4 1. 1.

\begin{figure}
\centerline{\epsfig{file=ps/quad4.ps,width=3cm}}\end{figure}

Example with 9-noded quadrilateral


element 0 -quad9 1 2 3 4 5 6 7 8 9
node 1 0.0 0.0
node 2 0.5 0.0
node 3 1.0 0.0
node 4 0.0 0.5
node 5 0.5 0.5
node 6 1.0 0.5
node 7 0.0 1.0
node 8 0.5 1.0
node 9 1.0 1.0

\begin{figure}
\centerline{\epsfig{file=ps/quad9.ps,width=3cm}}\end{figure}

Example with hexahedral


element 0 -hex8 1 2 3 4 5 6 7 8
node 1 0. 0. 0.
node 2 1. 0. 0.
node 3 0. 1. 0.
node 4 1. 1. 0.
node 5 0. 0. 1.
node 6 1. 0. 1.
node 7 0. 1. 1.
node 8 1. 1. 1.

\begin{figure}
\centerline{\epsfig{file=ps/hex8.ps,width=4cm}}\end{figure}

As a special option, user supplied elements can be used by specifying -user. See the section on user supplied subroutines.

Except for the -tria3 and -tet4 element, the nodal location is always in lobatto points. See also: group_integration_points.


next up previous contents
Next: element_group index element_group Up: Input: data part Previous: dof_label unknown_0 unknown_1 ...   Contents
root
1998-11-16