
GNU Scientific Library – Reference Manual
Edition 0.4after, for gsl Version 0.4after

Mark Galassi
Cygnus Solutions and Los Alamos National Laboratory
rosalia@nis.lanl.gov

Jim Davies
Space Data Systems Group, Los Alamos National Laboratory and
Department of Computer Science, Georgia Institute of Technology
jimmyd@nis.lanl.gov

James Theiler
Astrophysics and Radiation Measurements Group, Los Alamos National Laboratory
jt@nis.lanl.gov

Brian Gough
Theoretical Particle Physics Group, Los Alamos National Laboratory
bjg@vvv.lanl.gov

Reid Priedhorsky
Mathematical Modeling and Analysis Group, Los Alamos National Laboratory
rp@lanl.gov

Gerard Jungman
Theoretical Particle Physics Group, Los Alamos National Laboratory
jungman@nnn.lanl.gov

Michael Booth
Department of Physics and Astronomy, The Johns Hopkins University
booth@planck.pha.jhu.edu or booth@debian.org

Copyright c© 1996, 1997, 1998 The GSL Project.
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Foundation.

i

Table of Contents

1 Preliminaries . 1

2 Using the library . 2
2.1 Inline functions . 2
2.2 Long double . 2

3 Error handling in GSL . 3
3.1 Error reporting . 3
3.2 Error handlers . 4
3.3 Error streams . 6
3.4 Manipulating the error stream . 6
3.5 Using GSL error reporting in your own functions 7

4 Random number generation 9
4.1 General comments on random numbers 9
4.2 The Random Number Generator Interface 9

4.2.1 Random number generator initialization 9
4.2.2 Sampling from a random number generator 11
4.2.3 Auxiliary random number generator functions . . . 11
4.2.4 Random number environment variables 12
4.2.5 Saving and restoring random number generator state

. 13
4.3 Available random number generator algorithms 13

4.3.1 Simulation quality generators 14
4.3.2 Generators provided for compatibility 16

4.3.2.1 Unix random number generators 16
4.3.2.2 Numerical Recipes generators 17
4.3.2.3 Other random number generators 18

4.4 Performance . 20
4.5 Random Number Distributions . 22

4.5.1 The Gaussian Distribution . 23
4.5.2 The Bivariate Gaussian Distribution 24
4.5.3 The Exponential Distribution 25
4.5.4 The Laplace Distribution . 26
4.5.5 The Exponential Power Distribution 27
4.5.6 The Cauchy Distribution . 28
4.5.7 The Rayleigh Distribution . 29
4.5.8 The Rayleigh Tail Distribution 30
4.5.9 The Symmetric Levy Distribution 31
4.5.10 The Gamma Distribution . 32
4.5.11 The Flat (Uniform) Distribution 33

ii

4.5.12 The Lognormal Distribution 34
4.5.13 The Chi-squared Distribution 35
4.5.14 The F-distribution . 36
4.5.15 The t-distribution . 37
4.5.16 The Beta Distribution . 38
4.5.17 The Logistic Distribution . 39
4.5.18 The Pareto Distribution . 40
4.5.19 The Spherical Distribution (2D & 3D) 41
4.5.20 The Weibull Distribution . 42
4.5.21 The Gumbel Distribution . 43

4.6 Discrete distributions . 44
4.6.1 The Poisson Distribution . 44
4.6.2 The Bernoulli Distribution . 45
4.6.3 The Binomial Distribution . 46
4.6.4 The Negative Binomial Distribution 47
4.6.5 The Geometric Distribution . 49
4.6.6 The Hypergeometric Distribution 50
4.6.7 The Logarithmic Distribution 51

4.7 Shuffling and Sampling . 52
4.8 Random Number References and Further Reading 52
4.9 Random Number Acknowledgements . 53

5 Statistics . 54
5.1 Statistical Concepts . 54
5.2 Mean, Standard Deviation and Variance 55
5.3 Absolute deviation . 57
5.4 Higher moments (skewness and kurtosis) 57
5.5 Maximum and Minimum values . 59
5.6 Median and Percentiles . 59
5.7 Statistical tests . 61
5.8 Example statistical programs . 61
5.9 Statistics References and Further Reading 62

6 Fast Fourier Transforms (FFTs) 63
6.1 Mathematical Definitions . 63
6.2 FFTs of complex data . 64

6.2.1 Radix-2 FFT routines for complex data 65
6.2.2 Example of using radix-2 FFT routines for complex

data . 65
6.2.3 Mixed-radix FFT routines for complex data 67
6.2.4 Example of using mixed-radix FFT routines for

complex data . 70
6.3 FFTs of real data . 71

6.3.1 Radix-2 FFT routines for real data. 72
6.3.2 Mixed-radix FFT routines for real data 73
6.3.3 Example of using mixed-radix FFT routines for real

data . 76
6.4 FFT References and Further Reading . 78

iii

7 Root finding . 80
7.1 Root Finding Overview . 80
7.2 Root Finder Exit Values . 80
7.3 Providing the Function to Search . 81
7.4 Search Bounds and Guesses . 82
7.5 Search Stopping Parameters. 83
7.6 Bisection . 84
7.7 Brent-Dekker Method . 86
7.8 False Position . 87
7.9 Secant Method . 88
7.10 Newtons Method . 89
7.11 Root Finder Error Handling . 90

8 Special Functions . 92
8.1 Airy Functions . 92
8.2 Bessel Functions . 92
8.3 Chebyshev Polynomials . 92
8.4 Coulomb Wave Functions . 92
8.5 Dilogarithm. 93
8.6 Error Function . 93
8.7 Fermi-Dirac Function . 93
8.8 Gamma Function. 93
8.9 Laguerre Functions . 93
8.10 Legendre Functions and Spherical Harmonics 93
8.11 Logarithm (Complex) . 93
8.12 Power Function . 93
8.13 Psi (DiGamma) Function . 93
8.14 Trigonometric Functions (Complex) . 93

9 Series Acceleration . 94
9.1 Acceleration functions . 94
9.2 Example of accelerating a series . 94
9.3 Series Acceleration References . 95

10 Simulated Annealing . 96
10.1 Simulated Annealing algorithm . 96
10.2 Simulated Annealing functions . 96
10.3 Examples with Simulated Annealing . 97

10.3.1 Trivial example . 97
10.3.2 Traveling Salesman Problem 99

iv

11 Vectors and Matrices 102
11.1 The vector struct . 102
11.2 Vector allocation . 102
11.3 Accessing vector elements . 103
11.4 Reading and writing vectors . 104
11.5 Example programs for vectors . 105
11.6 The matrix struct . 106
11.7 Matrix allocation. 107
11.8 Accessing matrix elements . 108
11.9 Reading and writing matrices . 109
11.10 Example programs for matrices . 110

12 Histograms . 113
12.1 The histogram struct . 113
12.2 Histogram allocation . 114
12.3 Updating and accessing histogram elements 115
12.4 Searching histogram ranges . 116
12.5 Reading and writing histograms . 116
12.6 Resampling from histograms . 117
12.7 The histogram probability distribution struct 118
12.8 Example programs for histograms . 119
12.9 Two dimensional histograms . 120
12.10 The 2D histogram struct . 120
12.11 2D Histogram allocation . 121
12.12 Updating and accessing 2D histogram elements 122
12.13 Searching 2D histogram ranges . 123
12.14 Reading and writing 2D histograms 123
12.15 Resampling from 2D histograms . 125
12.16 Example programs for 2D histograms 126

13 Numerical Integration 128
13.1 Numerical integration References and Further Reading . . 128

14 Monte Carlo Integration 129
14.1 Algorithms . 129

14.1.1 PLAIN (or Simple) Monte Carlo 129
14.1.2 MISER . 129
14.1.3 VEGAS. 130

14.2 Interface . 131
14.3 Example . 132
14.4 The Future . 133

15 The IEEE standard for floating-point
arithmetic . 134
15.1 Representation of floating point numbers 134
15.2 Setting up your IEEE environment . 135
15.3 IEEE References and Further Reading 137

v

Appendix A Debugging Numerical Programs
. 138
A.1 Using gdb . 138
A.2 GCC warning options for numerical programs 139

Appendix B Contributors to GSL 143

Appendix C Copying . 144

Concept Index . 145

Function Index . 148

Variable Index . 152

Type Index . 153

Chapter 1: Preliminaries 1

1 Preliminaries

The GNU Scientific Library (GSL) is a collection of routines for numerical analysis.
The routines are written from scratch by the GSL team (see Appendix B [Contributors
to GSL], page 143) in C, and are meant to present a modern Applications Programming
Interface (API) for C programmers, while allowing wrappers to be written for very high
level languages.

Chapter 2: Using the library 2

2 Using the library

This chapter describes how to compile programs that use GSL. The library is written in
ANSI-C and is intended to conform to the standard. The library does not make use of any
extensions in the interface it exports to the user, except where they can be implemented in a
way compatible with pure ANSI C. Thus programs you write using GSL should be portable
to any system with a working ANSI C compiler and system library, and simultaneously
be able to take advantage of compiler extensions on those platforms which support them.
When an ANSI C feature is known to be broken on a particular system the library will
exclude any related functions so that it is impossible to link a program that would use them
and give incorrect results.

2.1 Inline functions

The inline keyword is not part of ANSI C, only C++. Since the library header files
conform to the ANSI standard this prevents the use inline. The library does not export
any inline function definitions by default. However, for many frequently used functions there
are equivalent inline definitions which can be turned on by defining the macro HAVE_INLINE
when compiling an application. If you use autoconf this can be done automatically using
the following test,

AC_C_INLINE

if test "$ac_cv_c_inline" != no ; then
AC_DEFINE(HAVE_INLINE,1)
AC_SUBST(HAVE_INLINE)

fi

and then including ‘config.h’ before including any library headers. If you do not define the
macro HAVE_INLINE then the slower non-inlined versions of the functions are used instead.

2.2 Long double

The extended numerical type long double is part of the ANSI C standard and should
be available in every modern compiler. However, the stdio.h formatted input/output
functions printf and scanf are not always implemented correctly for long double in some
system libraries, perhaps because the long double type is not widely used outside numerical
programming. In order to avoid undefined or incorrect results these functions are tested
during the configure stage of library compilation and certain GSL functions which depend
on them are eliminated if necessary,

checking whether printf/scanf works with long double... no

Consequently if long double formatted input/output does not work on a given system then
it will not be possible to link a program which uses GSL functions relying on long double
formatted i/o.

If it is necessary to work on a system which does not support formatted long double
i/o then the options are to use binary i/o or to convert long double results into double
for reading and writing.

Chapter 3: Error handling in GSL 3

3 Error handling in GSL

This chapter describes the way that GSL functions report and handle errors. By exam-
ining the status information returned by every GSL function you can determine whether it
succeeded or failed, and if it failed you can find out what the precise cause of failure was.
You can also define your own error handling functions to modify the default behavior of the
library.

3.1 Error reporting

GSL follows the thread-safe error reporting conventions of the POSIX Threads library.
Functions in GSL return a non-zero error code to indicate an error and 0 to indicate success.

int status = gsl_function(...)

if (status) { /* an error occurred */
..... /* the value of status specifies the type of error */

}

GSL routines report an error whenever they cannot perform the task requested of them.
For example, a root-finding function would return a non-zero error code if could not converge
to the requested accuracy, or exceeded a limit on the number of iterations. Situations like
this are a normal occurrence when using any mathematical library and you should check
the return status of the GSL functions that you call.

Whenever a GSL routine reports an error the return value specifies the type of error.
The return value is analogous to the value of the variable errno in the C library. However,
the C library’s errno is a global variable, which is not thread-safe (There can be only one
instance of a global variable per program. Different threads of execution may overwrite
errno simultaneously). By returning the error number directly we can avoid this problem
in a simple, portable way. The caller can examine the return code and decide what action
to take, including ignoring the error if it is not considered serious.

The error code numbers are defined in the file ‘gsl_errno.h’. They all have the prefix
GSL_ and expand to non-zero constant integer values. Many of the error codes use the same
base name as a corresponding error code in C library. Here are some of the most common
error codes,

Macroint GSL EDOM
Domain error; used by mathematical functions when an argument value does
not fall into the domain over which the function is defined (like EDOM in the
C library)

Macroint GSL ERANGE
Range error; used by mathematical functions when the result value is not rep-
resentable because of overflow or underflow (like ERANGE in the C library)

Macroint GSL NOMEM
No memory available. The system cannot allocate more virtual memory because
its capacity is full (like ENOMEM in the C library). This error is reported
when a GSL routine encounters problems when trying to allocate memory with
malloc.

Chapter 3: Error handling in GSL 4

Macroint GSL EINVAL
Invalid argument. This is used to indicate various kinds of problems with pass-
ing the wrong argument to a library function (like EINVAL in the C library).

Here is an example of some code which checks the return value of a function where an error
might be reported,

int status = gsl_fft_complex_radix2_forward (data, length);

if (status) {
if (status == GSL_EINVAL) {

fprintf (stderr, "invalid argument, length=%d\n", length);
} else {

fprintf (stderr, "failed, gsl_errno=%d\n", status);
}
exit (-1);

}

The function gsl_fft_complex_radix2 only accepts integer lengths which are a power of
two. If the variable length is not a power of two then the call to the library function will
return GSL_EINVAL, indicating that the length argument is invalid. The else clause catches
any other possible errors.

3.2 Error handlers

In addition to reporting errors the library also provides a simple error handler. The error
handler is called by library functions when they are about to report an error (for example,
just before they return).

The default behavior of the error handler is to print a short message and call abort()
whenever an error is reported by the library. If a library routine reports an error then the
whole program will core-dump. This is a safe default for lazy programmers who do not
check the return status of library routines (we don’t encourage you to write programs this
way). If you turn off the default error handler or provide your own error handler then it is
your responsibility to check the return values of the GSL routines.

All GSL error handlers have the type gsl_error_handler_t, which is defined in
‘gsl_errno.h’,

Data Typevoid gsl error handler t
This is the type of GSL error handler functions. An error handler will be
passed three arguments, specifying the reason for the error, the source file in
which it occurred, and the line number in that file. The source file and line
number are set at compile time using the __FILE__ and __LINE__ directives in
the preprocessor. An error handler function returns type void. Error handler
functions should be defined like this,

void handler (const char * reason, const char * file, int line)

To request the use of your own error handler you need to call the function gsl_set_error_
handler which is also declared in ‘gsl_errno.h’,

Chapter 3: Error handling in GSL 5

Functiongsl_error_handler_t gsl set error handler
(gsl_error_handler_t new handler)

This functions sets a new error handler, new handler, for the GSL library rou-
tines. The previous handler is returned (so that you can restore it later). Note
that the pointer to a user defined error handler function is stored in a static
variable, so there can only be one error handler per program.

old_handler = gsl_set_error_handler (&my_error_handler);

..... /* code uses new handler */

gsl_set_error_handler (old_handler) ; /* restore old handler */

To use the default behavior (abort on error) set the error handler to NULL,
old_handler = gsl_set_error_handler (NULL);

Here is a skeleton outline of a program which defines its own error handler. Imagine that
the program does interactive data analysis – there is a main loop which reads commands
from the user and calls library routines with user-supplied arguments,

#include <setjmp.h>
#include <gsl_errno.h>

jmp_buf main_loop;
void my_error_handler (const char *reason, const char *file, int line);

main ()
{

gsl_set_error_handler (&my_error_handler);

while (1)
{

.... /* read command from user */

if (setjmp (main_loop) == 0)
{

.... /* call GSL routines requested by user */
}

else
{

.... /* my_error_handler bailed out, GSL gave an error */
}

}
}

void
my_error_handler (const char *reason, const char *file, int line)
{

fprintf (stderr, "GSL error: %s\n", reason);
longjmp (main_loop);

}

Chapter 3: Error handling in GSL 6

Before entering the interactive loop the program uses gsl_set_error_handler to provide
its own error handler my_error_handler for GSL error reports. After this point the function
my_error_handler will be invoked whenever an error is reported by GSL. The new error
handler prints the cause of the error (the string reason) and then does a non-local jump
back to the main loop. This would allow the user to fix the command which caused the
error and try again.

3.3 Error streams

GSL supports the concert of an error stream, which is a place where errors are logged
as they occur. An error stream allows the library to report an error message directly to the
user rather than to the calling program. This can sometimes be useful because it reduces
the amount of error checking that the program needs to do.

For example, many mathematical functions compute floating point numbers or other
numerical values. The standard versions of these functions accept a pointer for storing
their numerical result, so that the status can be returned separately. For example, to
compute the first-order Bessel function J1(x) for x = 1.23 and obtain the status we write,

double result;
int status = gsl_sf_bessel_J1_e (1.23, &result);

where gsl_sf_bessel_J1_e is the appropriate function from the special functions (sf)
module. The suffix _e appended to the function name indicates that the return value gives
the error status. This style of function is safe and avoids any confusion about what the
return value means, but requires a lot of error checking.

For many numerical functions it would be more intuitive to write something like y = f(x).
The library provides functions with an alternative interface which allows this,

double result = gsl_sf_bessel_J1 (1.23)

However, in this case there is no way for the calling program to test for an error. Instead
if there are any errors (such as underflow) they are logged to the error stream, and can be
examined by the user at the end of the run. It is up to the programmer to decide which form
is best suited to a given application. For a truly robust program the standard error checking
versions of the functions should be used, since they don’t rely on the user examining the
error stream.

3.4 Manipulating the error stream

By default the error stream is sent to stderr, and you can redirect it to a file on the
command line. There are also two ways to change this within your program. Firstly, the
stream can be redirected to another file by providing a suitable file pointer. Alternatively
you can set up an error stream handler, which is a function that accepts error message
strings. By using an error stream handler function you have complete control over where
the messages are stored.

FunctionFILE * gsl set stream (FILE * new stream)
This function selects the stream used for GSL error messages. After calling
gsl_set_stream any further messages sent to the default stream handler will

Chapter 3: Error handling in GSL 7

be printed on new stream. The previous stream is returned, so that you can
close it or restore it later. Note that the stream is stored in a static variable,
so there can only be one error stream per program.

Data Typevoid gsl stream handler t
This is the type of GSL stream handler functions. A stream handler will be
passed four arguments, specifying a label (such as error or warning), the
source file in which the error occurred, the line number in that file and a de-
scription of the error. The source file and line number are set at compile time
using the __FILE__ and __LINE__ directives in the preprocessor. A stream han-
dler function returns type void. Stream handler functions should be defined
like this,

void handler (const char * label, const char * file,
int line, const char * reason)

To request the use of your own stream handler you need to call the function gsl_set_
stream_handler which is also declared in ‘gsl_errno.h’,

Functiongsl_stream_handler_t gsl set stream handler
(gsl_stream_handler_t new handler)

This functions sets a new stream handler, new handler, for the GSL library
routines. The previous handler is returned (so that you can restore it later).
Note that the pointer to a user defined stream handler function is stored in a
static variable, so there can only be one error handler per program.

old_handler = gsl_set_stream_handler (&my_error_stream);

..... /* code uses new handler */

gsl_set_stream_handler (old_handler) ; /* restore old handler */

To use the default behavior (print the message to stderr) set the stream handler
to NULL,

old_handler = gsl_set_stream_handler (NULL);

3.5 Using GSL error reporting in your own functions

If you are writing numerical functions in program which also uses GSL code you may
find it convenient to adopt the same error reporting conventions as in the library.

To report an error you need to call the function gsl_error with a string describing the
error and then return an appropriate error code from gsl_errno.h, or a special value, such
as NaN. For convenience ‘gsl_errno.h’ defines two macros to carry out these steps:

MacroGSL ERROR (reason, gsl errno)
This macro reports an error using the GSL conventions and returns a status
value of gsl_errno. It expands to the following code fragment,

gsl_error (reason, __FILE__, __LINE__, gsl_errno) ;
return gsl_errno ;

The macro definition in ‘gsl_errno.h’ actually wraps the code in a do { ...
} while (0) block to prevent possible parsing problems.

Chapter 3: Error handling in GSL 8

Here is an example of how the macro could be used to report that a routine did not
achieve a requested tolerance. To report the error the routine needs to return the error
code GSL_ETOL.

if (residual > tolerance)
{
GSL_ERROR("residual exceeds specified tolerance", GSL_ETOL) ;

}

MacroGSL ERROR RETURN (reason, gsl errno, value)
This macro is the same as GSL_ERROR but returns a user-defined status value of
value instead of an error code. It can be used for mathematical functions that
return a floating point value.

Here is an example where a function needs to return a NaN because of a mathematical
singularity,

if (x == 0)
{
GSL_ERROR_RETURN("argument lies on singularity", GSL_ERANGE, NAN) ;

}

Chapter 4: Random number generation 9

4 Random number generation

The GNU Scientific Library provides a large collection of random number generators
which can be accessed through a uniform interface. Environment variables allow you to
select different generators and seeds at runtime, so that you can easily switch between
generators without needing to recompile your program. Each instance of a generator keeps
track of its own state, allowing the generators to be used in multi-threaded programs.
Additional functions are available for transforming uniform random numbers into samples
from continuous or discrete probability distributions such as the gaussian, log-normal or
poisson distributions.

4.1 General comments on random numbers

In 1988, Park and Miller wrote a paper entitled “Random number generators: good ones
are hard to find.” [Commun. ACM, 31, 1192–1201]. Fortunately, some excellent random
number generators are available, though poor ones are still in common use. You may
be happy with the system-supplied random number generator on your computer, but you
should be aware that as computers get faster, requirements on random number generators
increase. Nowadays, a simulation that calls a random number generator millions of times
can often finish before you can make it down the hall to the coffee machine and back.

A very nice review of random number generators was written by Pierre L’Ecuyer, as
Chapter 4 of the book: Handbook on Simulation, Jerry Banks, ed. (Wiley, 1997). The
chapter is available in postscript from from L’Ecuyer’s ftp site (see references). Knuth’s
volume on Seminumerical Algorithms (originally published in 1968) devotes 170 pages to
random number generators, and has recently been updated in its 3rd edition (1997). It
is brilliant, a classic. If you don’t own it, you should stop reading right now, run to the
nearest bookstore, and buy it.

A good random number generator will satisfy both theoretical and statistical properties.
Theoretical properties are often hard to obtain (they require real math!), but one prefers
a random number generator with a long period, low serial correlation, and a tendency not
to “fall mainly on the planes.” Statistical tests are performed with numerical simulations.
Generally, a random number generator is used to estimate some quantity for which the
theory of probability provides an exact answer. Comparison to this exact answer provides
a measure of “randomness”.

4.2 The Random Number Generator Interface

4.2.1 Random number generator initialization

It is important to remember that a random number generator is not a “real” function
like sine or cosine. Unlike real functions, successive calls to a random number generator
yield different return values. Of course that is just what you want for a random number
generator, but to achieve this effect, the generator must keep track of some kind of “state”
variable. Sometimes this state is just an integer (sometimes just the value of the previously
generated random number), but often it is more complicated than that and may involve a

Chapter 4: Random number generation 10

whole array of numbers, possibly with some indices thrown in. To use the random number
generators, you do not need to know the details of what comprises the state, and besides
that varies from algorithm to algorithm.

The random number generator library uses two special structs, gsl_rng_type which
holds static information about each type of generator and gsl_rng which describes an
instance of a generator created from a given gsl_rng_type.

The functions described in this section are declared in the header file ‘gsl_rng.h’.

Randomgsl_rng * gsl rng alloc (gsl_rng_type * T)
This function returns a pointer to a newly-created instance of a random number
generator of type T. For example, the following code creates an instance of the
Tausworthe generator,

gsl_rng * r = gsl_rng_alloc (gsl_rng_taus);

If there is insufficient memory to create the generator then the function returns
a null pointer and the error handler is invoked with an error code of GSL_ENOMEM.

The generator is automatically initialized with the default seed, gsl_rng_
default_seed. This is zero by default but can be changed either directly
or usubf the environment variable GSL_RNG_SEED, see Section 4.2.4 [Random
number environment variables], page 12.

The defined generator types are,

gsl_rng_cmrg, gsl_rng_minstd, gsl_rng_mrg, gsl_rng_mt19937,
gsl_rng_r250, gsl_rng_ran0, gsl_rng_ran1, gsl_rng_ran2,
gsl_rng_ran3, gsl_rng_rand, gsl_rng_rand48,
gsl_rng_random_bsd, gsl_rng_random_glibc2,
gsl_rng_random_libc5, gsl_rng_randu, gsl_rng_ranf,
gsl_rng_ranlux, gsl_rng_ranlux389, gsl_rng_ranmar,
gsl_rng_slatec, gsl_rng_taus, gsl_rng_tds, gsl_rng_tt800,
gsl_rng_uni, gsl_rng_uni32, gsl_rng_vax, gsl_rng_zuf

The details of each generator are given later in this chapter.

Randomvoid gsl rng set (const gsl_rng * r, unsigned long int s)
This function initializes (or ‘seeds’) the random number generator. If the gen-
erator is seeded with the same value of s on two different runs, the same stream
of random numbers will be generated by successive calls to the routines below.
If different values of s are supplied, then the generated streams of random num-
bers should be completely different. If the seed s is zero then the standard seed
from the original implementation is used instead. For example, the original
Fortran source code for the ranlux generator used a seed of 314159265, and so
choosing s equal to zero reproduces this when using gsl_rng_ranlux.

Randomvoid gsl rng free (gsl_rng * r)
This function frees all the memory associated with the generator r.

Chapter 4: Random number generation 11

4.2.2 Sampling from a random number generator

The following functions return uniformly distributed random numbers, either as inte-
gers or double precision floating point numbers. To obtain non-uniform distributions see
Section 4.5 [Random Number Distributions], page 22.

Randomunsigned long int gsl rng get (const gsl_rng * r)
This function returns a random integer from the generator r. All integers in
the range [min,max] are equally likely. The maximum and minimum values,
max and min, depend on the algorithm used. They can determined using the
auxilliary functions gsl_rng_max (r) and gsl_rng_min (r).

Randomdouble gsl rng uniform (const gsl_rng * r)
This function returns a double precision floating point number uniformly dis-
tributed in the range [0,1). The range includes 0.0 but excludes 1.0. The value
is typically obtained by dividing the result of gsl_rng_get(r) by gsl_rng_
max(r) + 1.0 in double precision. Some generators compute this ratio inter-
nally so that they can provide floating point numbers with more than 32 bits
of randomness (the maximum number of bits that can be portably represented
in a single unsigned long int).

Randomdouble gsl rng uniform pos (const gsl_rng * r)
This function returns a positive double precision floating point number uni-
formly distributed in the range (0,1), excluding both 0.0 and 1.0. The number
is obtained by sampling the generator with the algorithm of gsl_rng_uniform
until a non-zero value is obtained. You can use this function if you need to
avoid a singularity at 0.0.

Randomunsigned long int gsl rng uniform int (const gsl_rng * r,
unsigned long int n)

This function returns a random integer from 0 to n-1 inclusive. All integers in
the range [0,n-1] are equally likely, regardless of the generator used. An offset
correction is applied so that zero is always returned with the correct probability,
for any minimum value of the underlying generator.
If n is larger than the range of the generator then the function calls the error
handler with an error code of GSL_EINVAL and returns zero.

4.2.3 Auxiliary random number generator functions

The following functions provide information about an existing generator. You should
use them in preference to hard-coding the generator parameters into your own code.

Randomconst char * gsl rng name (const gsl_rng * r)
This function returns a pointer to the name of the generator. For example,

printf("r is a ’%s’ generator\n", gsl_rng_name (r)) ;

would print something like r is a ’taus’ generator

Randomunsigned long int gsl rng max (const gsl_rng * r)
gsl_rng_max returns the largest value that gsl_rng_get can return.

Chapter 4: Random number generation 12

Randomunsigned long int gsl rng min (const gsl_rng * r)
gsl_rng_min returns the smallest value that gsl_rng_get can return. Usually
this value is zero. There are some generators with algorithms that cannot return
zero, and for these generators the minimum value is 1.

Randomvoid * gsl rng state (const gsl_rng * r)
Randomsize_t gsl rng size (const gsl_rng * r)

These function return a pointer to the state of generator r and its size. You
can use this information to access the state directly. For example, the following
code will write the state of a generator to a stream,

void * state = gsl_rng_state (r);
size_t n = gsl_rng_size (r);
fwrite (state, n, 1, stream);

4.2.4 Random number environment variables

The library allows you to choose a default generator and seed from the environment
variables GSL_RNG_TYPE and GSL_RNG_SEED and the function gsl_rng_env_setup. This
makes it easy try out different generators and seeds without having to recompile your
program.

Functionconst gsl_rng_type * gsl rng env setup (void)
This function reads the environment variables GSL_RNG_TYPE and GSL_RNG_
SEED and uses their values to set the corresponding library variables gsl_rng_
default and gsl_rng_default_seed. These global variables are defined as
follows,

extern const gsl_rng_type *gsl_rng_default
extern unsigned long int gsl_rng_default_seed

The environment variable GSL_RNG_TYPE should be the name of a generator,
such as taus or mt19937. The environment variable GSL_RNG_SEED should
contain the desired seed value. It is converted to an unsigned long int using
the C library function strtoul.
If you don’t specify a generator for GSL_RNG_TYPE then gsl_rng_mt19937 is
used as the default. The initial value of gsl_rng_default_seed is zero.

Here is a short program which shows how to create a global generator using the environment
variables GSL_RNG_TYPE and GSL_RNG_SEED,

#include <stdio.h>
#include <gsl_rng.h>

gsl_rng * r ; /* global generator */

int
main ()
{

gsl_rng_env_setup() ;

Chapter 4: Random number generation 13

r = gsl_rng_alloc (gsl_rng_default);

printf("generator type: %s\n", gsl_rng_name (r));
printf("seed = %u\n", gsl_rng_default_seed);
printf("first value = %u\n", gsl_rng_get (r)) ;

}

Running the program without any environment variables uses the initial defaults, an
mt19937 generator with a seed of 0,

bjg|zeke> ./a.out
generator type: mt19937
seed = 0
first value = 3510405877

By setting the two variables on the command line we can change the default generator and
the seed,

bjg|zeke> GSL_RNG_TYPE="taus" GSL_RNG_SEED=123 ./a.out
GSL_RNG_TYPE=taus
GSL_RNG_SEED=123
generator type: taus
seed = 123
first value = 2720986350

4.2.5 Saving and restoring random number generator state

The above methods ignore the random number ‘state’ which changes from call to call.
It is often useful to be able to save and restore the state. To permit these practices, a few
somewhat more advanced functions are supplied. These include:

Randomgsl_rng * gsl rng cpy (gsl_rng * dest, const gsl_rng * src)
This function copies the random number generator src into the pre-exisiting
generator dest, making dest into an exact copy of src. It returns dest if suc-
cessful and a null pointer if sufficient memory could not be allocated.

Randomgsl_rng * gsl rng clone (const gsl_rng * r)
This function returns a pointer to a newly created generator which is an exact
copy of the generator r.

Randomvoid gsl rng print state (const gsl_rng * r)
This function prints a hex-dump of the state of the generator r to stdout. At
the moment its only use is for debugging.

4.3 Available random number generator algorithms

The functions described above make no reference to the actual algorithm used. This is
deliberate so that you can switch algorithms without having to change any of your appli-
cation source code. The library provides a large number of generators of different types,
including simulation quality generators, generators provided for compatibility with other
libraries and historical generators from the past.

Chapter 4: Random number generation 14

4.3.1 Simulation quality generators

The following generators are recommended for use in simulation. They have extremely
long periods and pass most statistical tests.

Generatorgsl rng mt19937
The MT19937 generator of Makoto Matsumoto and Takuji Nishimura is a vari-
ant of the twisted generalized feedback shift-register algorithm, and is known as
the "Mersenne Twister" generator. It has a Mersenne prime period of 219937−1
(about 106000) and is equi-distributed in 623 dimensions. It has passed the
diehard statistical tests. It uses 624 words of state per generator and is com-
parable in speed to the other generators. The original generator used a default
seed of 4357 and choosing s equal to zero in gsl_rng_set reproduces this.

For more information see,

Makoto Matsumoto and Takuji Nishimura, "Mersenne Twister: A 623-
dimensionally equidistributerd uniform pseudorandom number generator".
ACM Transactions on Modeling and Computer Simulation, Vol. 8, No. 1
(Jan. 1998), Pages 3-30

Generatorgsl rng ranlux
Generatorgsl rng ranlux389

The ranlux generator uses the lagged-fibonacci-with-skipping algorithm of
Luscher to produce "luxury random numbers". It is a 24-bit generator, orig-
inally designed for single-precision IEEE floating point numbers. The period
of the generator is about 10171. The generator is slow, but the algorithm has
mathematically proven properties. It can provide truly decorrelated numbers at
a known level of randomness. The default level of decorrelation recommended
by Luscher is provided by gsl_rng_ranlux, while gsl_rng_ranlux389 gives
the highest level of randomness, with all 24 bits decorrelated. Both types of
generator use 24 words of state per generator.

For more information see,

M. Luscher, "A portable high-quality random number generator for lattice
field theory calculations", Computer Physics Communications, 79 (1994)
100-110.
F. James, "RANLUX: A Fortran implementation of the high-quality
pseudo-random number generator of Luscher", Computer Physics Com-
munications, 79 (1994) 111-114

Generatorgsl rng cmrg
This is a combined multiple recursive generator by L’Ecuyer. Its sequence is,

zn = (xn − yn) mod m1 (4.1)

where the two underlying generators xn and yn are,

xn = (a1xn−1 + a2xn−2 + a3xn−3) mod m1 (4.2)

Chapter 4: Random number generation 15

and
yn = (b1yn−1 + b2yn−2 + b3yn−3) mod m2 (4.3)

with coefficients a1 = 0, a2 = 63308, a3 = −183326, b1 = 86098, b2 = 0,
b3 = −539608, and moduli m1 = 231 − 1 = 2147483647 and m2 = 2145483479.

The period of this generator is 2205 (about 1061). It uses 6 words of state per
generator. For more information see,

P. L’Ecuyer, "Combined Multiple Recursive Random Number Generators,"
Operations Research, 44, 5 (1996), 816–822.

Generatorgsl rng mrg
This is a fifth-order multiple recursive generator by L’Ecuyer, Blouin and
Coutre. Its sequence is,

xn = (a1xn−1 + a5xn−5) mod m (4.4)

with a1 = 107374182, a2 = a3 = a4 = 0, a5 = 104480 and m = 231 − 1.

The period of this generator is about 1046. It uses 5 words of state per generator.
More information can be found in the following paper,

P. L’Ecuyer, F. Blouin, and R. Coutre, "A search for good multiple re-
cursive random number generators", ACM Transactions on Modeling and
Computer Simulation 3, 87-98 (1993).

Generatorgsl rng taus
This is a maximally equidistributed combined Tausworthe generator by L’Ecuyer.
The sequence is,

xn = (s1
n ⊕ s2

n ⊕ s3
n) (4.5)

where,

s1
n+1 = (((s1

n& 4294967294)<< 12)⊕ (((s1
n << 13)⊕ s1

n) >> 19)) (4.6)

s2
n+1 = (((s2

n& 4294967288)<< 4)⊕ (((s2
n << 2)⊕ s2

n) >> 25)) (4.7)

s3
n+1 = (((s3

n& 4294967280)<< 17)⊕ (((s3
n << 3)⊕ s3

n) >> 11)) (4.8)

computed modulo 232. In the formulas above ⊕ denotes “exclusive-or”. Note
that the algorithm relies on the properties of 32-bit unsigned integers and has
been implemented using a bitmask of 0xFFFFFFFF to make it work on 64 bit
machines.

The period of this generator is 288 (about 1026). It uses 3 words of state per
generator. For more information see,

P. L’Ecuyer, "Maximally Equidistributed Combined Tausworthe Genera-
tors", Mathematics of Computation, 65, 213 (1996), 203–213.

Chapter 4: Random number generation 16

4.3.2 Generators provided for compatibility

The generators in this section are provided for compatibility with existing libraries. If
you are converting an existing program to use GSL then you can select these generators to
check your new implementation against the original one, using the same random number
generator. After verifying that your new program reproduces the original results you can
then switch to a higher-quality generator.

Note that most of the generators in this section are based on single linear congruence
relations, which are the least sophisticated type of generator. In particular, linear congru-
ences have poor properties when used with a non-prime modulus, as several of these routines
do (e.g. with a power of two modulus, 231 or 232). This leads to periodicity in the least
significant bits of each number, with only the higher bits having any randomness. Thus if
you want to produce a random bitstream it is best to avoid using the least significant bits.

4.3.2.1 Unix random number generators

The standard Unix random number generators rand, random and rand48 are provided as
part of GSL. Although these generators are widely available individually often they aren’t
all available on the same platform. This makes it difficult to write portable code using them
and so we have included the complete set of Unix generators in GSL for convenience. Note
that these generators don’t produce high-quality randomness and aren’t suitable for work
requiring accurate statistics. However, if you won’t be measuring statistical quantities and
just want to introduce some variation into your program then these generators are quite
acceptable.

Generatorgsl rng rand
This is the BSD rand() generator. Its sequence is

xn+1 = (axn + c) mod m (4.9)

with a = 1103515245, c = 12345 and m = 231. The seed specifies the initial
value, x1. The period of this generator is 231, and it uses 1 word of storage per
generator.

Generatorgsl rng random bsd
Generatorgsl rng random libc5
Generatorgsl rng random glibc2

These generators implement the random() family of functions, a set of linear
feedback shift register generators originally used in BSD Unix. There are several
versions of random() in use today: the original BSD version (e.g. on SunOS4),
a libc5 version (common on existing GNU/Linux systems) and a glibc2 version.
Each version uses a different seeding procedure, and thus produces different
sequences.
The original BSD routines accepted a variable length buffer for the generator
state, with longer buffers providing higher-quality randomness. The random()
function implemented algorithms for buffer lengths of 8, 32, 64, 128 and 256
bytes, and the algorithm with the largest length that would fit into the user-
supplied buffer was used. To support these algorithms additional generators
are available with the following names,

Chapter 4: Random number generation 17

gsl_rng_random8_bsd
gsl_rng_random32_bsd
gsl_rng_random64_bsd
gsl_rng_random128_bsd
gsl_rng_random256_bsd

where the numeric suffix indicates the buffer length. The original BSD random
function used a 128-byte default buffer and so gsl_rng_random_bsd has been
made equivalent to gsl_rng_random128_bsd. Corresponding versions of the
libc5 and glibc2 generators are also avaliable, with the names gsl_rng_
random8_libc5, gsl_rng_random8_glibc2, etc.

Generatorgsl rng rand48
This is the Unix rand48 generator. Its sequence is

xn+1 = (axn + c) mod m (4.10)
defined on 48-bit unsigned integers with a = 25214903917, c = 11 and m = 248.
The seed specifies the upper 32 bits of the initial value, x1, with the lower 16
bits set to 0x330E. The function gsl_rng_get returns the upper 32 bits from
each term of the sequence. This does not have a direct parallel in the original
rand48 functions, but forcing the result to type long int reproduces the output
of mrand48. The function gsl_rng_uniform uses the full 48 bits of internal
state to return the double precision number xn/m, which is equivalent to the
function drand48. Note that some versions of the GNU C Library contained a
bug in mrand48 function which caused it to produce different results (only the
lower 16-bits of the return value were set).

4.3.2.2 Numerical Recipes generators

The following generators are provided for compatibility with Numerical Recipes. Note
that the original Numerical Recipes functions used single precision while we use double
precision. This will lead to minor discrepancies, but only at the level of single-precision
rounding error. If necessary you can force the returned values to single precision by storing
them in a volatile float, which prevents the value being held in a register with double
or extended precision. Apart from this difference the underlying algorithms for the integer
part of the generators are the same.

Generatorgsl rng ran0
Numerical recipes ran0 implements Park and Miller’s minstd algorithm with
a modified seeding procedure.

Generatorgsl rng ran1
Numerical recipes ran1 implements Park and Miller’s minstd algorithm with
a 32-element Bayes-Durham shuffle box.

Generatorgsl rng ran2
Numerical recipes ran2 implements a L’Ecuyer combined recursive generator
with a 32-element Bayes-Durham shuffle-box.

Generatorgsl rng ran3
Numerical recipes ran3 implements Knuth’s portable subtractive generator.

Chapter 4: Random number generation 18

4.3.2.3 Other random number generators

The following generator is provided for compatibility with the CRAY MATHLIB routine
RANF. It produces double precision floating point numbers which should be identical to
those from the original RANF.

Generatorgsl rng ranf
This is the CRAY random number generator RANF. Its sequence is

xn+1 = (axn) mod m (4.11)

defined on 48-bit unsigned integers with a = 44485709377909 and m = 248.
The seed specifies the lower 32 bits of the initial value, x1, with the lowest bit
set to prevent the seed taking an even value. The upper 16 bits of x1 are set
to 0. A consequence of this procedure is that the pairs of seeds 2 and 3, 4 and
5, etc produce the same sequences.
There is a subtlety in the implementation of the seeding. The initial state is
reversed through one step, by multiplying by the modular inverse of a mod m.
This is done for compatibility with the original CRAY implementation.
Note that you can only seed the generator with integers up to 232, while the
original CRAY implementation uses non-portable wide integers which can cover
all 248 states of the generator.
The function gsl_rng_get returns the upper 32 bits from each term of the
sequence. The function gsl_rng_uniform uses the full 48 bits to return the
double precision number xn/m.
The period of this generator is 246.

Generatorgsl rng ranmar
This is the RANMAR lagged-fibonacci generator of Marsaglia, Zaman and
Tsang. It is a 24-bit generator, originally designed for single-precision IEEE
floating point numbers. It was included in the CERNLIB high-energy physics
library.

Generatorgsl rng r250
This is the shift-register generator of Kirkpatrick and Stoll. The sequence is

xn = xn−103 ⊕ xn−250 (4.12)

where ⊕ denote “exclusive-or”, defined on 32-bit words. The period of this
generator is about 2250 and it uses 250 words of state per generator.
For more information see,

S. Kirkpatrick and E. Stoll, "A very fast shift-register sequence random
number generator", Journal of Computational Physics, 40, 517-526 (1981)

Generatorgsl rng tt800
This is an earlier version of the twisted generalized feedback shift-register gen-
erator, and has been superseded by the development of MT19937. However, it
is still an acceptable generator in its own right. It has a period of 2800 and uses
33 words of storage per generator.
For more information see,

Chapter 4: Random number generation 19

From: Makoto Matsumoto and Yoshiharu Kurita, "Twisted GFSR Gener-
ators II", ACM Transactions on Modelling and Computer Simulation, Vol.
4, No. 3, 1994, pages 254-266.

Generatorgsl rng vax
This is the VAX generator MTH$RANDOM. Its sequence is,

xn+1 = (axn + c) mod m (4.13)

with a = 69069, c = 1 and m = 232. The seed specifies the initial value, x1.
The period of this generator is 232 and it uses 1 word of storage per generator.

Generatorgsl rng transputer
This is the random number generator from the INMOS Transputer Development
system. Its sequence is,

xn+1 = (axn) mod m (4.14)

with a = 1664525 and m = 232. The seed specifies the initial value, x1.

Generatorgsl rng randu
This is the IBM RANDU generator. Its sequence is

xn+1 = (axn) mod m (4.15)

with a = 65539 and m = 231. The seed specifies the initial value, x1. The
period of this generator was only 229. It has become a textbook example of a
poor generator.

Generatorgsl rng minstd
This is Park and Miller’s "minimal standard" minstd generator, a simple linear
congruence which takes care to avoid the major pitfalls of such algorithms. Its
sequence is,

xn+1 = (axn) mod m (4.16)

with a = 16807 and m = 231 − 1 = 2147483647. The seed specifies the initial
value, x1. The period of this generator is about 231.
This generator is used in the IMSL Library (subroutine RNUN) and in MAT-
LAB (the RAND function). It is also sometimes known by the acronym "GGL"
(I’m not sure what that stands for).
For more information see,

Park and Miller, "Random Number Generators: Good ones are hard to
find", Communications of the ACM, October 1988, Volume 31, No 10,
pages 1192-1201.

Generatorgsl rng uni
Generatorgsl rng uni32

This is a reimplementation of the 16-bit SLATEC random number generator
RUNIF. A generalisation of the generator to 32 bits is provided by gsl_rng_
uni32. The original source code is available from NETLIB.

Chapter 4: Random number generation 20

Generatorgsl rng slatec
This is the SLATEC random number generator RAND. It is ancient. The
original source code is available from NETLIB.

Generatorgsl rng zuf
This is the ZUFALL lagged Fibonacci series generator of Peterson. Its sequence
is,

t = un−273 + un−607 (4.17)

un = t− floor(t) (4.18)

The original source code is available from NETLIB. For more information see,
W. Petersen, "Lagged Fibonacci Random Number Generators for the NEC
SX-3", International Journal of High Speed Computing (1994).

4.4 Performance

ranlux389 --
ranlux ---

cmrg ----
mrg --------

mt19937 ------------
tt800 ----------------
taus ------------------

ran0 ----------
ran1 -----------
ran2 -----
ran3 -----------------

ranf --------
rand48 ---------

ranmar --------------
zuf --------------

slatec ---------------
r250 --------------------

random --------------------

minstd ------------
uni -----------------

uni32 ------------------
vax -----------------------

transputer -----------------------
rand -------------------------

random8 -------------------------
randu ---------------------------

Chapter 4: Random number generation 21

|---------|---------|---------|
0 1 2 3

Millions of random numbers per second

Chapter 4: Random number generation 22

4.5 Random Number Distributions

Distributions of random numbers can be obtained from any of the generators using the
functions described in this section. In the simplest cases a non-uniform distribution can
be obtained analytically from the uniform distribution with an appropriate transformation.
This method uses one call to the random number generator.

More complicated distributions are created by the acceptance-rejection method, which
compares the desired distribution against a distribution which is similar and known analyt-
ically. This usually requires several samples from the generator.

The functions described in this section are declared in ‘gsl_randist.h’.

Chapter 4: Random number generation 23

4.5.1 The Gaussian Distribution

Randomdouble gsl ran gaussian (const gsl_rng * r, double sigma)
This function returns a gaussian random number, with mean zero and standard
deviation sigma. The probability distribution for gaussian random numbers is,

p(z)dz =
1√

2πσ2
exp(−(z − µ)2/2σ2)dz (4.19)

for x in the range −∞ to +∞. Use the transformation z = µ+x on the numbers
returned by gsl_ran_gaussian to obtain a gaussian distribution with mean µ.

Functiondouble gsl ran gaussian pdf (double x, double sigma)
This function computes the probability density p(x) at x for a gaussian distri-
bution with standard deviation sigma, using the formula given above.

σ = 2
σ = 1

Gaussian Distribution

x

p
(x

)

543210-1-2-3-4-5

0.5

0.4

0.3

0.2

0.1

0

Properties

Mean = µ, Variance = σ2, Skewness = 0, Excess = 0
Cumulants, κ1 = µ, κ2 = σ2, κn = 0 for n > 2
Characteristic function, φ(t) = exp(−iµt− σ2t2/2)
Cumulative distribution function, CDF (x) =

∫ x
−∞ p(x

′)dx′ = 1
2
(1−erf((x−m)/

√
2σ2))

Confidence limits:
p(|x− µ| < σ) = 0.683, p(|x− µ| < 2σ) = 0.954, p(|x− µ| < 3σ) = 0.9973
Useful integral: ∫ +∞

−∞
x2np(x)dx = 2nσ2n+1Γ(n +

1
2

)/
√
π (4.20)

Chapter 4: Random number generation 24

4.5.2 The Bivariate Gaussian Distribution

Randomvoid gsl ran bivariate gaussian (const gsl_rng * r, double
sigma x, double sigma y, double rho, double * x, double * y)

This function generates a pair of correlated gaussian variates, with mean zero,
correlation coefficient rho and standard deviations sigma x and sigma y in the
x and y directions. The probability distribution for bivariate gaussian random
numbers is,

p(x, y)dxdy =
1

2πσxσy
√

1− ρ2
exp(−(x2 + y2 − 2ρxy)/2σ2

xσ
2
y(1− ρ2))dz (4.21)

for x, y in the range −∞ to +∞. The correlation coefficient rho should lie
between 1 and −1.

Functiondouble gsl ran bivariate gaussian pdf (double x, double
y, double sigma x, double sigma y, double rho)

This function computes the probability density p(x, y) at (x,y) for a bivariate
gaussian distribution with standard deviations sigma x, sigma y and correlation
coefficient rho, using the formula given above.

y

2

1

0

-1

-2

x
210-1-2

σx = 1, σy = 1, ρ = 0.9

Bivariate Gaussian Distribution

Chapter 4: Random number generation 25

4.5.3 The Exponential Distribution

Randomdouble gsl ran exponential (const gsl_rng * r, double mu)
This function returns a random number from the exponential distribution with
mean mu.

p(x)dx =
1
µ

exp(−x/µ)dx (4.22)

for x ≥ 0.

Functiondouble gsl ran exponential pdf (double x, double mu)
This function computes the probability density p(x) at x for an exponential
distribution with mean mu, using the formula given above.

µ = 2
µ = 1

Exponential Distribution

x

p
(x

)

3210

1

0.5

0

Properties

Mean = µ, Variance = µ2, Skewness = 2, Excess = 6
Cumulants, κ1 = µ, κn = µnΓ(n), for n > 1
Characteristic function, φ(t) = 1/(1− iµt)
Cumulative distribution function, CDF (x) =

∫ x
0 p(x

′)dx′ = 1− exp(−x/µ)
Confidence limits:
p(x < µ) = 0.632, p(x < 2µ) = 0.865, p(x < 3µ) = 0.950
Useful integral: ∫ ∞

0
xnp(x)dx = n!µn+1 (4.23)

Chapter 4: Random number generation 26

4.5.4 The Laplace Distribution

Randomdouble gsl ran laplace (const gsl_rng * r, double mu)
This function returns a random number from the the Laplace distribution with
width mu. The distribution is,

p(x)dx =
1

2µ
exp(−|x/µ|)dx (4.24)

for −∞ < x <∞.

Functiondouble gsl ran laplace pdf (double x, double mu)
This function computes the probability density p(x) at x for a Laplace distri-
bution with mean mu, using the formula given above.

µ = 2
µ = 1

Laplace Distribution (Two-sided Exponential)

x

p
(x

)

543210-1-2-3-4-5

0.5

0.4

0.3

0.2

0.1

0

Properties

Mean = 0, Variance = 2µ2, Skewness = 0, Excess = 6
Cumulants, κ1 = 0, κ2 = 2µ2, κ2n+1 = 0, κ2n = (2n)!µ2n/n

Characteristic function, φ(t) = 1/(1 + µ2t2

Cumulative distribution function, CDF (x) =
∫ x
0 p(x

′)dx′ = 1
2

exp(−|x|) for x < 0 and
1− 1

2
exp(−|x|) for x > 0.

Confidence limits:
Useful integral:

Chapter 4: Random number generation 27

4.5.5 The Exponential Power Distribution

Randomdouble gsl ran exppow (const gsl_rng * r, double mu,
double a)

This function returns a random number from the exponential power distribution
with scale parameter mu and exponent a.

p(x)dx =
1

2µΓ(1 + 1/a)
exp(−|x/µ|a)dx (4.25)

for x ≥ 0. For a = 1 this reduces to the laplace distribution. For a = 2 it has
the same form as a gaussian distribution, but with µ =

√
2σ.

Functiondouble gsl ran exppow pdf (double x, double mu, double a)

This function computes the probability density p(x) at x for an exponential
power distribution with scale parameter mu and exponent a, using the formula
given above.

µ = 2, a = 0.5
µ = 1, a = 2.5

Exponential Power Distribution

x

p
(x

)

543210-1-2-3-4-5

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Properties

Mean = 0, Variance = µ2Γ(3/a)/Γ(1/a), Skewness = 0, Excess = Γ(5/a)Γ(1/a)/Γ(3/a)2

Cumulants, κ1 = FIXME, κn = FIXME, for n > 1
Characteristic function, φ(t) = FIXME

Cumulative distribution function, CDF (x) =
∫ x
0 p(x

′)dx′ = FIXME

Chapter 4: Random number generation 28

4.5.6 The Cauchy Distribution

Randomdouble gsl ran cauchy (const gsl_rng * r, double mu)
This function returns a random number from the Cauchy distribution with scale
parameter mu. The probability distribution for Cauchy random numbers is,

p(x)dx =
1

µπ(1 + (x/µ)2)
dx (4.26)

for x in the range −∞ to +∞. The Cauchy distribution is also known as the
Lorentz distribution.

Functiondouble gsl ran cauchy pdf (double x, double mu)
This function computes the probability density p(x) at x for an Cauchy distri-
bution with scale parameter mu, using the formula given above.

µ = 2
µ = 1

Cauchy Distribution

x

p
(x

)

543210-1-2-3-4-5
0

Properties

The Cauchy distribution decreases as 1/|x|2 for large x. This makes the variance
infinite. Other higher moments are either infinite or undefined.
Characteristic function, φ(t) = exp(−iαt− β|t|)
Cumulative distribution function, CDF (x) =

∫ x
−∞ p(x

′)dx′ = 1
2

+ 1
π

arctan(x/µ)
Confidence limits:
p(|x| < µ) = 0.5, p(|x| < 2µ) = 0.705, p(|x| < 3µ) = 0.795

Chapter 4: Random number generation 29

4.5.7 The Rayleigh Distribution

Randomdouble gsl ran rayleigh (const gsl_rng * r, double sigma)
This function returns a random number from the Rayleigh distribution with
scale parameter sigma. The probability distribution for Rayleigh random num-
bers is,

p(x)dx =
x

σ2
exp(−x2/(2σ2))dx (4.27)

for x > 0.

Functiondouble gsl ran rayleigh pdf (double x, double sigma)
This function computes the probability density p(x) at x for an Rayleigh dis-
tribution with scale parameter sigma, using the formula given above.

σ = 2
σ = 1

Rayleigh Distribution

x

p
(x

)

543210

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Properties

Cumulative distribution function, CDF (x) =
∫ x
−∞ p(x

′)dx′ = 1− exp(−x2/(2σ2))

Chapter 4: Random number generation 30

4.5.8 The Rayleigh Tail Distribution

Randomdouble gsl ran rayleigh tail (const gsl_rng * r, double a
double sigma)

This function returns a random number from the tail of the Rayleigh distri-
bution with scale parameter sigma and a lower limit of a. The probability
distribution for Rayleigh tail random numbers is,

p(x)dx =
x

σ2
exp((a2 − x2)/(2σ2))dx (4.28)

for x > a.

Functiondouble gsl ran rayleigh tail pdf (double x, double a,
double sigma)

This function computes the probability density p(x) at x for an Rayleigh tail
distribution with scale parameter sigma and lower limit a, using the formula
given above.

a = 0.5, σ = 2
a = 1, σ = 1

Rayleigh Tail Distribution

x

p
(x

)

543210

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Properties

Cumulative distribution function, CDF (x) =
∫ x
−∞ p(x

′)dx′ = 1− exp((a2− x2)/(2σ2))

Chapter 4: Random number generation 31

4.5.9 The Symmetric Levy Distribution

Randomdouble gsl ran levy (const gsl_rng * r, double mu, double a)

This function returns a random number from the symmetric Levy distribution
with scale mu and exponent a. The symmetric Levy probability distribution is
defined by a fourier transform,

p(x) =
1

2π

∫ +∞

−∞
dt exp(it(µ− x)− |t|a) (4.29)

There is no explicit solution for the form of p(x). For a = 1 the distribution
reduces to the Cauchy distribution. For a = 2 it is a Gaussian distribution with
σ =
√

2µ. For a < 1 the tails of the distribution become extremely wide.
The algorithm only works for 0 < a ≤ 2.

Functiondouble gsl ran levy pdf (double x, double mu)
This function computes the probability density p(x) at x for a symmetric Levy
distribution with scale parameter mu and exponent a, using the formula given
above.

µ = 1, a = 2.0
µ = 1, a = 1.0

Levy Distribution

x

p
(x

)

543210-1-2-3-4-5

0.4

0.3

0.2

0.1

0

Properties

Mean = 0, Variance = FIXME, Skewness = 0, Excess = FIXME
Cumulants, κ1 = FIXME, κn = FIXME, for n > 1
Characteristic function, φ(t) = FIXME

Cumulative distribution function, CDF (x) =
∫ x
0 p(x

′)dx′ = FIXME

Chapter 4: Random number generation 32

4.5.10 The Gamma Distribution

Randomdouble gsl ran gamma (const gsl_rng * r, double a, double
b)

This function returns a random number from the gamma distribution. The
distribution function is

p(x)dx =
1

Γ(a)ba
xa−1e−x/bdx (4.30)

Functiondouble gsl ran gamma pdf (double x, double a, double b)
This function computes the probability density p(x) at x for a gamma distri-
bution with parameters a and b, using the formula given above.

a = 3
a = 2
a = 1

Gamma Distribution

x

p
(x

)

543210

1

0.5

0

Properties

Mean = ab, Variance = ab2, Skewness = 2/
√
a, Excess = 6/a

Cumulants, κ1 = ab, κn = aΓ(n)bn, for n > 1
Characteristic function, φ(t) = 1− ibt

Chapter 4: Random number generation 33

4.5.11 The Flat (Uniform) Distribution

Randomdouble gsl ran flat (const gsl_rng * r, double a, double b)
This function returns a random number from the flat (uniform) distribution
from a to b.

p(x)dx =
1

(b− a)
dx (4.31)

if a ≤ x < b and 0 otherwise.

Functiondouble gsl ran flat pdf (double x, double a, double b)
This function computes the probability density p(x) at x for a uniform distri-
bution from a to b, using the formula given above.

a = 1.2, b = 4.8
a = 0.5, b = 2.5

Flat Distribution

x

p
(x

)

543210

1

0.5

0

Properties

Mean = (a+ b)/2, Variance = (b− a)2/12, Skewness = 0, Excess = −6/5
Cumulants, κ1 = (a+ b)/2, κ2n+1 = 0, κ2n = (b− a)2nB2n/(2n),
Characteristic function, φ(t) = (2 sin(ht/2)/(ht)) exp(it(b+ a)/2) where h = (b− a).

Chapter 4: Random number generation 34

4.5.12 The Lognormal Distribution

Randomdouble gsl ran lognormal (const gsl_rng * r, double zeta,
double sigma)

This function returns a random number from the lognormal distribution. The
distribution function is

p(x)dx =
1

x
√

2πσ2
exp(−(ln(x)− ζ)2/2σ2)dx (4.32)

for x > 0

Functiondouble gsl ran lognormal pdf (double x, double zeta,
double sigma)

This function computes the probability density p(x) at x for a lognormal dis-
tribution with parameters zeta and sigma, using the formula given above.

ζ = 1, σ = 1
ζ = 0, σ = 1

Lognormal Distribution

x

p
(x

)

3210

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Properties

Mean = st, Variance = s(s− 1)t2, Skewness = (s + 2)
√
s− 1, Excess = (s− 1)(s3 +

3s2 + 6s+ 6)
where s = exp(σ2) and t = exp(ζ).
The mode (maximum) occurs at x = exp(ζ − σ2).
Cumulative distribution function, CDF (x) =

∫ x
0 p(x

′)dx′ = 1
2erfc((ζ − ln(x))/(

√
2σ))

Chapter 4: Random number generation 35

4.5.13 The Chi-squared Distribution

The chi-squared distribution arises in statistics If Yi are n independent gaussian random
numbers with unit variance then the sum-of-squares,

Xi =
∑
i

Y 2
i (4.33)

has a chi-squared distribution with n degrees of freedom.

Randomdouble gsl ran chisq (const gsl_rng * r, double nu)
This function returns a random number from the chi-squared distribution with
nu degrees of freedom.

p(x)dx =
1

Γ(ν/2)
(x/2)ν/2−1 exp(−x/2)dx (4.34)

for x ≥ 0.

Functiondouble gsl ran chisq pdf (double x, double nu)
This function computes the probability density p(x) at x for a chi-squared
distribution with nu degrees of freedom, using the formula given above.

ν = 3
ν = 2
ν = 1

Chi-squared Distribution

x

p
(x

)

3210

1

0.5

0

Properties

Mean = ν, Variance = 2ν, Skewness = 2
√

2/ν, Excess = 12/ν
Cumulants, κ1 = FIXME, κn = FIXME, for n > 1
Characteristic function, φ(t) = FIXME

Cumulative distribution function, CDF (x) =
∫ x
0 p(x

′)dx′ = FIXME

Confidence limits:
Useful integral:

Chapter 4: Random number generation 36

4.5.14 The F-distribution

The F-distribution arises in statistics. If Y1 and Y2 are chi-squared deviates with ν1 and
ν2 degrees of freedom then the ratio,

X =
(Y1/ν1)
(Y2/ν2)

(4.35)

has an F-distribution F (x; ν1, ν2).

Randomdouble gsl ran fdist (const gsl_rng * r, double nu1, double
nu2)

This function returns a random number from the F-distribution with degrees
of freedom nu1 and nu2.

p(x)dx =
Γ((ν1 + ν2)/2)
Γ(ν1/2)Γ(ν2/2)

ν
ν1/2
1 ν

ν2/2
2 xν1/2−1(ν2 + ν1x)−ν1/2−ν2/2 (4.36)

for x ≥ 0.

Functiondouble gsl ran fdist pdf (double x, double nu1, double nu2)
This function computes the probability density p(x) at x for an F-distribution
with nu1 and nu2 degrees of freedom, using the formula given above.

ν1 = 1, ν2 = 2
ν1 = 1, ν2 = 1

F-Distribution

x

p
(x

)

210

1

0.5

0

Properties

Mean = ν2/(ν2−2) (for ν2 > 2), Variance = 2ν2
2(ν1 +ν2−2)/(ν1(ν2−2)2(ν2−4)) (for

ν2 > 4)

Chapter 4: Random number generation 37

4.5.15 The t-distribution

The t-distribution arises in statistics. If Y1 has a normal distribution and Y2 has a
chi-squared distribution with ν degrees of freedom then the ratio

X =
Y1√
Y2/ν

(4.37)

has a t-distribution t(x; ν) with ν degrees of freedom.

Randomdouble gsl ran tdist (const gsl_rng * r, double nu)
This function returns a random number from the t-distribution. The distribu-
tion is,

p(x)dx =
Γ((ν + 1)/2)√
πνΓ(ν/2)

(1 + x2/ν)−(ν+1)/2dx (4.38)

Functiondouble gsl ran tdist pdf (double x, double nu)
This function computes the probability density p(x) at x for a t-distribution
with nu degrees of freedom, using the formula given above.

ν1 = 5
ν1 = 1

Student’s t distribution

x

p
(x

)

43210

0.4

0.3

0.2

0.1

0

Chapter 4: Random number generation 38

4.5.16 The Beta Distribution

Randomdouble gsl ran beta (const gsl_rng * r, double a, double b)
This function returns a random number from the beta distribution. The distri-
bution function is

p(x)dx =
Γ(a+ b)
Γ(a)Γ(b)

xa−1(1− x)b−1dx (4.39)

Functiondouble gsl ran beta pdf (double x, double a, double b)
This function computes the probability density p(x) at x for a beta distribution
with parameters a and b, using the formula given above.

a = 1, b = 4
a = 4, b = 1
a = 2, b = 2

Beta Distribution

x

p
(x

)

10.750.50.250

4

3

2

1

0

Properties

Mean = a/(a+ b), Variance = ab/((a+ b)2(a+ b+ 1)), Skewness = 2(a− b)/(a+ b+ 2),

Excess =
√

(a+b+1)
ab

(
3(a+b+1)(2(a+b)2+ab(a+b−6))

ab(a+b+2)(a+b+3)
− 3

)
In the symmetric case a = b these results simplify to,
Mean = 1/2, Variance = 1/(4(2a+1)), Skewness = 0, Excess = −6

√
2a+ 1/(a(2a+3))

Chapter 4: Random number generation 39

4.5.17 The Logistic Distribution

Randomdouble gsl ran logistic (const gsl_rng * r, double mu)
This function returns a random number from the logistic distribution. The
distribution function is

p(x)dx =
exp(−x/µ)

µ(1 + exp(−x/µ))2
dx (4.40)

for x > 0

Functiondouble gsl ran logistic pdf (double x, double mu)
This function computes the probability density p(x) at x for a logistic distribu-
tion with scale parameter mu, using the formula given above.

µ = 2
µ = 1

Logistic Distribution

x

p
(x

)

543210-1-2-3-4-5

0.3

0.2

0.1

0

Properties

Mean = 0, Variance = π2µ2/3, Skewness = 0, Excess = 6/5
Cumulative distribution function, CDF (x) =

∫ x
−∞ p(x

′)dx′ = 1/(1 + exp(−x/µ))
Confidence limits:
Useful integral:

Chapter 4: Random number generation 40

4.5.18 The Pareto Distribution

Randomdouble gsl ran pareto (const gsl_rng * r, double a, double
b)

This function returns a random number from the Pareto distribution of order
a. The distribution function is,

p(x)dx = aba/xa+1dx (4.41)

for x ≥ b

Functiondouble gsl ran pareto pdf (double x, double a, double b)
This function computes the probability density p(x) at x for a Pareto distribu-
tion with exponent a and scale b, using the formula given above.

a = 3, b = 2
a = 1, b = 1

Pareto Distribution

x

p
(x

)

543210

2

1.5

1

0.5

0

Properties

Mean = ab/(a−1) (for a > 1), Variance = ab2/((a−2)(a−1)2) (for a > 2, Skewness =
2(a+ 1)

√
(a− 2)/a/(a−3) (for a > 3), Excess = 6(a(a2 +a−6)−2)/(a(a−3)(a−4))

(for a > 4), Mode = b

Cumulants, κ1 = FIXME, κn = FIXME, for n > 1
Characteristic function, φ(t) = FIXME

Cumulative distribution function, CDF (x) =
∫ x
0 p(x

′)dx′ = 1− (b/x)a

Confidence limits:
Useful integral:

Chapter 4: Random number generation 41

4.5.19 The Spherical Distribution (2D & 3D)

The spherical distributions generate random vectors, located on a spherical surface.
They can be used as random directions, for example in the steps of a random walk.

Randomvoid gsl ran dir 2d (const gsl_rng * r, double *x, double
*y)

This function returns a random direction vector v = (x,y) in two dimenions.
The vector is normalized such that |v|2 = x2 + y2 = 1.

Randomvoid gsl ran dir 3d (const gsl_rng * r, double *x, double
*y, double * z)

This function returns a random direction vector v = (x,y,z) in three dimenions.
The vector is normalized such that |v|2 = x2 + y2 + z2 = 1.

The follwing program generates a random walk in two dimensions.
#include <stdio.h>
#include <gsl_rng.h>
#include <gsl_randist.h>

main ()
{

gsl_rng * r = gsl_rng_alloc (gsl_rng_env_setup()) ;
int i ;
double x = 0, y = 0, dx, dy;

printf("%g %g\n", x, y) ;

for (i = 0; i < 10; i++)
{

gsl_ran_dir_2d (r, &dx, &dy) ;
x += dx ; y += dy;
printf("%g %g\n", x, y) ;

}
}

Example output from the program, three 10-step random walks from the origin.

Chapter 4: Random number generation 42

4.5.20 The Weibull Distribution

Randomdouble gsl ran weibull (const gsl_rng * r, double mu,
double a)

This function returns a random number from the Weibull distribution. The
distribution is,

p(x)dx =
a

µa
xa−1 exp(−(x/µ)a)dx (4.42)

for −∞ < x <∞.

Functiondouble gsl ran weibull pdf (double x, double mu, double a)

This function computes the probability density p(x) at x for a Weibull distri-
bution with scale mu and exponent a, using the formula given above.

a = 3
a = 2
a = 1

Weibull Distribution

x

p
(x

)

21.510.50

1.5

1

0.5

0

Properties

Mean = Γ(1 + 1/a)µ, Variance = (Γ(1 + 2/a)− Γ(1 + 1/a))µ2

Cumulative distribution function, CDF (x) =
∫ x
0 p(x

′)dx′ = 1− exp(−(x/µ)a)

Chapter 4: Random number generation 43

4.5.21 The Gumbel Distribution

Randomdouble gsl ran gumbel1 (const gsl_rng * r, double a,
double b)

Randomdouble gsl ran gumbel2 (const gsl_rng * r, double a,
double b)

These functions return random numbers from the Type-1 and Type-2 Gumbel
distributions. The Type-1 Gumbel distribution is,

p(x)dx = ab exp(−(b exp(−ax) + ax))dx (4.43)

for −∞ < x <∞. The Type-2 Gumbel distribution is,

p(x)dx = abx−a−1 exp(−bx−a)dx (4.44)

for 0 < x <∞.

Functiondouble gsl ran gumbel1 pdf (double x, double a, double b)
Functiondouble gsl ran gumbel2 pdf (double x, double a, double b)

These function computes the probability density p(x) at x for a Type-1 or
Type-2 Gumbel distribution with parameters a and b, using the formulas given
above.

Type 2, a = 1, b = 1
Type 1, a = 1, b = 1

Gumbel Distributions

x

p
(x

)

21.510.50-0.5-1-1.5-2

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Properties

Mean = Γ(1 + 1/a)µ, Variance = (Γ(1 + 2/a)− Γ(1 + 1/a))µ2

Cumulative distribution function, CDF (x) =
∫ x
0 p(x

′)dx′ = 1− exp(−(x/µ)a)

Chapter 4: Random number generation 44

4.6 Discrete distributions

4.6.1 The Poisson Distribution

Randomunsigned int gsl ran poisson (const gsl_rng * r, double
mu)

This function returns a random integer from the Poisson distribution with mean
mu. The probability distribution for Poisson random numbers is,

p(k) =
µk

k!
exp(−µ) (4.45)

for k ≥ 0.

Functiondouble gsl ran poisson pdf (unsigned int k, double mu)
This function computes the probability p(k) of obtaining k from a Poisson
distribution with mean mu, using the formula given above.

µ = 2.5

Poisson Distribution

k

p
(k

)

109876543210

0.3

0.2

0.1

0

Properties

Mean = µ, Variance = µ2, Skewness = 1/
√
µ, Excess = 1/µ

Cumulants, κn = m for all n
Characteristic function, φ(t) = exp(m(eit − 1))

Chapter 4: Random number generation 45

4.6.2 The Bernoulli Distribution

Randomunsigned int gsl ran bernoulli (const gsl_rng * r, double
p)

This function returns the result either 0 or 1, the result of a Bernoulli trial with
probability p. The probability distribution for a Bernoulli trial is,

p(0) = 1− p (4.46)

p(1) = p (4.47)

Functiondouble gsl ran bernoulli pdf (unsigned int k, double p)
This function computes the probability p(k) of obtaining k from a Bernoulli
distribution with probability parameter p, using the formula given above.

p = 0.7

Bernoulli Trial

k

p
(k

)

10

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Properties

Mean = p, Variance = p(1− p), Skewness = (1− 2p)/
√
p(1− p), Excess = 1− 6p(1−

p))/(p(1− p))
Cumulants, κn = FIXME for all n
Characteristic function, φ(t) = FIXME

Chapter 4: Random number generation 46

4.6.3 The Binomial Distribution

Randomunsigned int gsl ran binomial (const gsl_rng * r, double
p, unsigned int n)

This function returns a random integer from the binomial distribution, the
number of successes in n independent trials with probability p. The probability
distribution for binomial random numbers is,

p(k) =
n!

k!(n− k)!
pk(1− p)n−k (4.48)

for 0 ≤ k ≤ n.

Functiondouble gsl ran binomial pdf (unsigned int k, double p,
unsigned int n)

This function computes the probability p(k) of obtaining k from a binomial
distribution with parameters p and n, using the formula given above.

p = 0.5, n = 9

Binomial Distribution

k

p
(k

)

109876543210

0.3

0.2

0.1

0

Properties

Mean = np, Variance = np(1 − p), Skewness = (1 − 2p)/
√
np(1− p, Excess = (1 −

6p(1− p))/(np(1− p))
Cumulants, κ1 = np, κr+1 = p(1− p)(dκr/dp), for n > 1
Characteristic function, φ(t) = (1− p+ p exp(it))n

Chapter 4: Random number generation 47

4.6.4 The Negative Binomial Distribution

Randomunsigned int gsl ran negative binomial (const gsl_rng *
r, double p, double n)

This function returns a random integer from the negative binomial distribution,
the number of failures occurring before n successes in independent trials with
probability p of success. The probability distribution for negative binomial
random numbers is,

p(k) =
Γ(n + k)

Γ(k + 1)Γ(n)
pn(1− p)k (4.49)

Note that k is not required to be an integer.

Functiondouble gsl ran nbinomial pdf (unsigned int k, double p,
double n)

This function computes the probability p(k) of obtaining k from a negative
binomial distribution with parameters p and n, using the formula given above.

p = 0.5, n = 3

Negative Binomial Distribution

k

p
(k

)

109876543210

0.3

0.2

0.1

0

Randomunsigned int gsl ran pascal (const gsl_rng * r, double p,
unsigned int k)

This function returns a random integer from the Pascal distribution. The Pascal
distribution is simply a negative binomial distribution with an integer value of
n.

p(k) =
(n+ k − 1)!
k!(n− 1)!

pn(1− p)k (4.50)

Functiondouble gsl ran pascal pdf (unsigned int k, double p,
unsigned int n)

This function computes the probability p(k) of obtaining k from a Pascal dis-
tribution with parameters p and n, using the formula given above.

Chapter 4: Random number generation 48

Properties

Mean = n(1− p)/p, Variance = n(1− p)/p2, Skewness = (2− p)/
√
n(1− p), Excess =

(1/n)(6 + p2

1−p)

Chapter 4: Random number generation 49

4.6.5 The Geometric Distribution

Randomunsigned int gsl ran geometric (const gsl_rng * r, double
p)

This function returns a random integer from the geometric distribution, the
number of independent trials with probability p until the first success. The
probability distribution for geometric random numbers is,

p(k) = p(1− p)k (4.51)

for k ≥ 1.

Functiondouble gsl ran geometric pdf (unsigned int k, double p)
This function computes the probability p(k) of obtaining k from a geometric
distribution with probability parameter p, using the formula given above.

p = 0.5

Geometric Distribution

k

p
(k

)

543210

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Properties

Mean = (1 − p)/p, Variance = (1 − p)/p2, Skewness = (2 − p)/
√

1− p, Excess =
6 + (p2/(1− p))
Cumulants, κ1 = (1− p)/p, κr+1 = −(1− p)(dκr/dp), for r > 1
Characteristic function, φ(t) = p/(1− (1− p) exp(it)

Chapter 4: Random number generation 50

4.6.6 The Hypergeometric Distribution

Randomunsigned int gsl ran hypergeometric (const gsl_rng * r,
unsigned int n1, unsigned int n2, unsigned int t)

This function returns a random integer from the hypergeometric distribution.
The probability distribution for hypergeometric random numbers is,

p(k) = C(n1, k)C(n2, t− k)/C(n1 + n2, k) (4.52)

where C(a, b) = a!/(b!(a−b)!). The domain of k ismax(0, t−n2), ...,max(t, n1).

Functiondouble gsl ran hypergeometric pdf (unsigned int k,
unsigned int n1, unsigned int n2, unsigned int t)

This function computes the probability p(k) of obtaining k from a hypergeo-
metric distribution with parameters n1, n2, n3, using the formula given above.

n1 = 5, n2 = 20, t = 3

Hypergeometric Distribution

k

p
(k

)

109876543210

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Properties

Mean = tn1/N , Variance = tn1n2(N − t)/(N2(N − 1)), Skewness = (n2 − n1)(N −
2t)
√

(N − 1)/(tn1n2(N − t)), where N = n1 + n2.

Chapter 4: Random number generation 51

4.6.7 The Logarithmic Distribution

Randomunsigned int gsl ran logarithmic (const gsl_rng * r,
double p)

This function returns a random integer from the logarithmic distribution. The
probability distribution for logarithmic random numbers is,

p(k) =
−1

log(1− p)

(
pk

k

)
(4.53)

for n ≥ 1.

Functiondouble gsl ran logarithmic pdf (unsigned int k, double p)
This function computes the probability p(k) of obtaining k from a logarithmic
distribution with probability parameter p, using the formula given above.

p = 0.7

Logarithmic Distribution

k

p
(k

)

109876543210

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Properties

Mean = ap/(1− p), Variance = ap(1− ap)/(1− p)2 where a = −1/ log(1− p)

Chapter 4: Random number generation 52

4.7 Shuffling and Sampling

Randomvoid gsl ran shuffle (const gsl_rng * r, void * base, size_t
n, size_t size)

This function randomly shuffles the order of n objects, each of size size, stored
in the array base[0..n-1].
The following code shows how to shuffle the numbers from 0 to 51,

int a[52];

for (i = 0; i < 52; i++)
{
a[i] = i ;

}

gsl_ran_shuffle (r, a, 52, sizeof (int));

Randomvoid * gsl ran choose (const gsl_rng * r, void * dest,
size_t k, void * src, size_t n, size_t size)

This function fills the array dest[k] with k objects taken randomly from the n
elements of the array src[n]. The objects are each of size size. The objects are
sampled without replacement, thus each object can only appear once in dest[k].
It is required that k be less than or equal to n. The objects in dest will be in the
same relative order as those in src. You will need to call gsl_ran_shuffle(r,
dest, n, size) if you want to randomize the order.
The following code shows how to select a random sample of three unique num-
bers from the set 0 to 99,

double a[3], b[100];

for (i = 0; i < 100; i++)
{
b[i] = (double) i ;

}

gsl_ran_choose (r, a, 3, b, 100, sizeof (double));

4.8 Random Number References and Further Reading

ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/handsim.ps.
Donald E. Knuth, The Art of Computer Programming: Seminumerical Algorithms (Vol
2, 3rd Ed, 1997), Addison-Wesley, ISBN 0201896842.

Luc Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, ISBN 0-387-
96305-7.

See the pLab home page (http://random.mat.sbg.ac.at/) for a lot of information on the
state-of-the-art in random number generation, and for numerous links to various "random"
WWW sites.

Chapter 4: Random number generation 53

For physicists the Particle Data Group provides a useful short review of techniques for
generating distributions of random numbers in the "Monte Carlo" section of its Annual
Review of Particle Physics.

Review of Particle Properties R.M. Barnett et al., Physical Review D54, 1 (1996)
http://pdg.lbl.gov/.

The Review of Particle Physics is available online in postscript and pdf format.
The source code for the diehard random number generator tests is also available online.

DIEHARD source code G. Marsaglia http://stat.fsu.edu/pub/diehard/

4.9 Random Number Acknowledgements

Thanks to Makoto Matsumoto, Takuji Nishimura and Yoshiharu Kurita for making the
source code to their generators (MT19937, MM&TN; TT800, MM&YK) available under
the GNU General Public License.

Chapter 5: Statistics 54

5 Statistics

This chapter describes the statistical functions in the library. The basic statistical func-
tions include routines to compute the mean, variance and standard deviation. More ad-
vanced functions allow you to calculate absolute deviations, skewness, and kurtosis as well
as the median and arbitrary percentiles. Statistical tests for comparing different datasets,
such as the t-test, are also included.

All the functions are available in versions for floating-point datasets and integer datasets.
The versions for floating-point data have the prefix gsl_stats and the versions for inte-
ger data have the prefix gsl_stats_int. All the algorithms use a recurrence relation to
compute average quantities in a stable way, without large intermediate values that might
overflow.

5.1 Statistical Concepts

A probability density function tells us the frequency with which a random variable takes
a particular value or lies in a given range,

probability(a < x < b) =
∫ b

a
dx p(x) (5.1)

The ensemble of all possible values generated with the appropriate frequency by the prob-
ability density function is called the population. We can define parameters describing the
probability density function, such as the population mean µ and population variance σ2,

µ =
∫ +∞

−∞
dx xp(x) (5.2)

σ2 =
∫ +∞

−∞
dx (x− µ)2p(x) (5.3)

The parameters cannot be observed directly. In statistical calculations we try to estimate
these parameters from a finite set of observations.

An observed datapoint drawn from a population is called a sample. A statistic is a
function of a set of samples, such as their mean, median or maximum value. An estimator
is a statistic that we use to extract the underlying parameters of the probability density
function.

For example the arithmetic mean of an observed dataset, also known as the sample mean,
can be shown to be a good estimator for the population mean µ. We denote estimators
with a "hat", so the sample mean is written µ̂.

There can be many possible estimators for a parameter, but some will be better than
others. Using probability theory and the probability density function we can calculate
the behavior of any estimator. An estimator is called unbiased if its expectation value in
repeated observations equals the underlying parameter of the probability density function.
An unbiased estimator is desirable. There are also other measures of an estimator properties,
such as precision and efficiency (consult the references for details).

Chapter 5: Statistics 55

5.2 Mean, Standard Deviation and Variance

Statisticsdouble gsl stats mean (const double data[], size_t n)
Statisticsdouble gsl stats int mean (const int data[], size_t n)

The function gsl_stats_mean returns the arithmetic mean of data, a double-
precision array of length n. The function gsl_stats_int_mean returns the
sample mean of an integer array.

The sample mean is an unbiased estimator of the population mean and is de-
noted by µ̂.

µ̂ =
1
N

∑
xi (5.4)

where xi are the elements of the array data.

For a gaussian distribution the variance of µ̂ is σ2/N , so the one standard-
deviation error on the mean is σ/

√
N .

If the underlying distribution has long tails then the mean may be subject to
large fluctations.

Statisticsdouble gsl stats est variance (const double data[], size_t
n)

Statisticsdouble gsl stats int est variance (const int data[], size_t
n)

The function gsl_stats_est_variance returns the estimated variance of
data, a double-precision array of length n. The function gsl_stats_int_est_
variance returns the estimated variance of an integer array.

This is an unbiased estimator of σ2, and is defined by

σ̂2 =
1

(N − 1)

∑
(xi − µ̂)2 (5.5)

where xi are the elements of the array data.

Note that the normalisation factor of 1/(N−1) is chosen to make σ̂2 an unbiased
estimator. (A factor of 1/N produces variances which, on the average, are too
small since correlations between xi and µ̂ tend to reduce the sample variance).

For a gaussian distribution the variance of σ̂2 is 2σ4/N . The one standard-
deviation error on the variance is

√
2σ2/

√
N .

If the underlying distribution has long tails then the variance may be subject
to large fluctations, or may not converge.

Both these functions compute the mean via a call to gsl_stats_mean or gsl_
stats_int_mean. If you have already computed the mean then you can pass
it directly to one of the following two functions, gsl_stats_est_variance_
with_mean and gsl_stats_int_est_variance_with_mean.

Chapter 5: Statistics 56

Statisticsdouble gsl stats est variance with mean (const double
data[], size_t n, double mean)

Statisticsdouble gsl stats int est variance with mean (const int
data[], size_t n, double mean)

The function gsl_stats_est_variance_with_mean returns the sample vari-
ance of data relative to the given value of mean, and gsl_stats_int_est_
variance does the same for an integer array. The functions are computed with
µ̂ replaced by the value of mean that you supply,

σ̂2 =
1

(N − 1)

∑
(xi −mean)2 (5.6)

Statisticsdouble gsl stats est sd (const double data[], size_t n)
Statisticsdouble gsl stats int est sd (const int data[], size_t n)
Statisticsdouble gsl stats est sd with mean (const double data[],

size_t n, double mean)
Statisticsdouble gsl stats int est sd with mean (const int data[],

size_t n, double mean)
The standard deviation is defined as the square root of the variance. These
functions return the square root of the corresponding variance functions above.

Statisticsdouble gsl stats variance (const double data[], size_t n)
Statisticsdouble gsl stats int variance (const int data[], size_t n)
Statisticsdouble gsl stats variance with mean (const double data[],

size_t n, double mean)
Statisticsdouble gsl stats int variance with mean (const int

data[], size_t n, double mean)
These functions compute an unbiased estimate of the variance when the popu-
lation mean of a distribution is known a priori.

In this case the estimator for the variance requires a factor 1/N and the sample
mean µ̂ must be replaced by the known population mean µ,

σ̂2 =
1
N

∑
(xi − µ)2 (5.7)

Statisticsdouble gsl stats sd (const double data[], size_t n)
Statisticsdouble gsl stats int sd (const int data[], size_t n)
Statisticsdouble gsl stats sd with mean (const double data[], size_t

n, double mean)
Statisticsdouble gsl stats int sd with mean (const int data[],

size_t n, double mean)
The functions gsl_stats_sd, gsl_stats_int_sd, gsl_stats_sd_with_mean
and gsl_stats_int_sd_with_mean calculate the standard deviation, which is
simply the square root of the corresponding variance function.

Chapter 5: Statistics 57

5.3 Absolute deviation

Statisticsdouble gsl stats absdev (const double data[], size_t n)
Statisticsdouble gsl stats int absdev (const int data[], size_t n)

The function gsl_stats_absdev computes the absolute deviation from the
mean of data, a double precision array of length n.
The absolute deviation from the mean is defined as

absdev =
1
N

∑
|xi − µ̂| (5.8)

where xi are the elements of the array data.
The absolute deviation from the mean provides a more robust measure of the
width of a distribution than the variance.
Both these functions compute the mean of data via a call to gsl_stats_mean
or gsl_stats_int_mean.

Statisticsdouble gsl stats absdev with mean (const double data[],
size_t n, double mean)

Statisticsdouble gsl stats int absdev with mean (const int data[],
size_t n, double mean)

The functions gsl_stats_absdev_with_mean and gsl_stats_int_absdev_
with_mean compute the absolute deviation of the array data relative to the
given value of mean

absdev =
1
N

∑
|xi −mean| (5.9)

These functions are useful if you have already computed the mean of data
(and want to avoid recomputing it), or wish to calculate the absolute deviation
relative to another value (such as zero, or the median).

5.4 Higher moments (skewness and kurtosis)

Statisticsdouble gsl stats skew (const double data[], size_t n)
Statisticsdouble gsl stats int skew (const int data[], size_t n,

double mean)
The functions gsl_stats_skew and gsl_stats_int_skew compute the skew-
ness of data, an array of length n.
The skewness is defined as

skew =
1
N

∑(
xi − µ̂
σ̂

)3

(5.10)

where xi are the elements of the array data.
The skewness measures the asymmetry of the tails of a distribution.
Both these functions compute the mean and standard deviation of data via
calls to gsl_stats_mean and gsl_stats_est_sd or gsl_stats_int_mean and
gsl_stats_int_est_sd.

Chapter 5: Statistics 58

Statisticsdouble gsl stats skew with mean and sd (const double
data[], size_t n, double mean, double sd)

Statisticsdouble gsl stats int skew with mean and sd (const int
data[], size_t n, double mean, double sd)

The functions gsl_stats_skew_with_mean_and_sd and gsl_stats_int_skew_
with_mean_and_sd compute the skewness of the array data using the given
values of the mean mean and standard deviation sd.

skew =
1
N

∑(
xi −mean

sd

)3

(5.11)

These functions are useful if you have already computed the mean and standard
deviation of data and want to avoid recomputing them.

Statisticsdouble gsl stats kurtosis (const double data[], size_t n)
Statisticsdouble gsl stats int kurtosis (const int data[], size_t n,

double mean)
The functions gsl_stats_kurtosis and gsl_stats_int_kurtosis compute
the kurtosis of data, an array of length n.

The kurtosis is defined as

kurtosis =

(
1
N

∑(
xi − µ̂
σ̂

)4
)
− 3 (5.12)

The kurtosis measures how sharply peaked a distribution is, relative to its
width. The kurtosis is normalised to zero for a gaussian distribution by the -3
in the defintion.

Statisticsdouble gsl stats kurtosis with mean and sd (const
double data[], size_t n, double mean, double sd)

Statisticsdouble gsl stats int kurtosis with mean and sd (const
int data[], size_t n, double mean, double sd)

The functions gsl_stats_kurtosis_with_mean_and_sd and gsl_stats_int_
kurtosis_with_mean_and_sd compute the kurtosis of the array data using the
given values of the mean mean and standard deviation sd.

kurtosis =
1
N

(∑(
xi −mean

sd

)4
)
− 3 (5.13)

These functions are useful if you have already computed the mean and standard
deviation of data and want to avoid recomputing them.

Chapter 5: Statistics 59

5.5 Maximum and Minimum values

Statisticsdouble gsl stats max (const double data[], size_t n)
Statisticsint gsl stats int max (const int data[], size_t n)

The function gsl_stats_max returns the maximum value in data, a double-
precision array of length n. The function gsl_stats_int_stats_max returns
the maximum value of an integer array. The maximum value is defined as the
value of the element xi which satisfies xi >= xj for all j.

If you want instead to find the element with the largest absolute magnitude you
will need to apply fabs or abs to your data before calling this function.

Statisticsdouble gsl stats min (const double data[], size_t n)
Statisticsint gsl stats int min (const int data[], size_t n)

The function gsl_stats_min returns the minimun value in data, a double-
precision array of length n. The function gsl_stats_int_stats_min returns
the minimum value of an integer array. The minimum value is defined as the
value of the element xi which satisfies xi <= xj for all j.

If you want instead to find the element with the smallest absolute magnitude
you will need to apply fabs or abs to your data before calling this function.

Statisticssize_t gsl stats max index (const double data[], size_t n)
Statisticssize_t gsl stats int max index (const int data[], size_t n)

The function gsl_stats_max_index returns the index of the maximum value
in data, a double-precision array of length n. The function gsl_stats_int_
stats_max returns the index of the maximum value of an integer array. The
maximum value is defined as the value of the element xi which satisfies xi >= xj
for all j. When there are several equal maximum elements then the first one is
chosen.

Statisticssize_t gsl stats min index (const double data[], size_t n)
Statisticssize_t gsl stats int min index (const int data[], size_t n)

The function gsl_stats_min_index returns the index of the minimum value
in data, a double-precision array of length n. The function gsl_stats_int_
stats_min returns the index of the minimum value of an integer array. The
minimum value is defined as the value of the element xi which satisfies xi >= xj
for all j. When there are several equal minimum elements then the first one is
chosen.

5.6 Median and Percentiles

The median and percentile functions described in this section operate on sorted data.
For convenience we use quantiles, measured on a scale of 0 to 1, instead of percentiles (which
use a scale of 0 to 100).

Chapter 5: Statistics 60

Statisticsvoid gsl stats sort data (double data[], size_t n)
Statisticsvoid gsl stats int sort data (int data[], size_t n)

The function gsl_stats_sort_data sorts the elements of data, a double-
precision array of length n, into ascending numerical order in-place (i.e. after
sorting, the minimum value of data is in data[0] and the maximum value is in
data[n-1]). The system qsort function is used to perform the sorting.
The function gsl_stats_int_sort_data sorts an integer array.

Statisticsdouble gsl stats median from sorted data (const double
sorted data[], size_t n)

Statisticsdouble gsl stats int median from sorted data (const int
sorted data[], size_t n)

The function gsl_stats_median_from_sorted_data returns the median value
of sorted data, a double-precision array of length n with its elements in ascend-
ing numerical order. There are no checks to see whether the data are sorted,
so the function gsl_stats_sort_data should always be used first.
When the array has an odd number of elements the median is the value of
element (n−1)/2. When the array has an even number of elements the median
is the mean of the two nearest middle values, elements (n− 1)/2 and n/2.
The function gsl_stats_int_median_from_sorted_data returns the median
of an integer array. Since the median may have to be found by interpolation the
function gsl_stats_int_median_from_sorted_data always returns a floating-
point number.

Statisticsdouble gsl stats quantile from sorted data (const double
sorted data[], size_t n, double f)

Statisticsdouble gsl stats int quantile from sorted data (const
int sorted data[], size_t n, double f)

The function gsl_stats_median_from_sorted_data returns a quantile value
of sorted data, a double-precision array of length n with its elements in ascend-
ing numerical order. The quantile is determined by the f, a fraction between 0
and 1. For example, to compute the value of the 75th percentile f should have
the value 0.75.
There are no checks to see whether the data are sorted, so the function gsl_
stats_sort_data should always be used first.
The quantile is found by interpolation, using the formula

quantile = (1− δ)data[i] + δdata[i+ 1] (5.14)
where i is floor((n− 1)f) and δ is (n− 1)f − i.
Thus the minimum value of the array (data[0]) is given by f equal to zero, the
maximum value (data[n-1]) is given by f equal to one and the median value is
given by f equal to 0.5.
The function gsl_stats_int_quantile_from_sorted_data returns a quantile
of an integer array. Since the quantile is found by interpolation the function
gsl_stats_int_quantile_from_sorted_data always returns a floating-point
number.

Chapter 5: Statistics 61

5.7 Statistical tests

FIXME, do more work on the statistical tests

5.8 Example statistical programs

Here is a basic example of how to use the statistical functions:
#include <stdio.h>
#include <gsl_statistics.h>

int main()
{

double data[5] = {17.2, 18.1, 16.5, 18.3, 12.6} ;
double mean, variance, largest, smallest;

mean = gsl_stats_mean(data, 5);
variance = gsl_stats_variance(data, 5);
largest = gsl_stats_max(data, 5);
smallest = gsl_stats_min(data, 5);

printf("The dataset is %g, %g, %g, %g, %g\n",
data[0], data[1], data[2], data[3], data[4]);

printf("The sample mean is %g\n", mean) ;
printf("The estimated variance is %g\n", variance) ;
printf("The largest value is %g\n", largest) ;
printf("The smallest value is %g\n", smallest) ;

}

The program should produce the following output,
The dataset is 17.2, 18.1, 16.5, 18.3, 12.6
The sample mean is 16.54
The estimated variance is 4.2984
The largest value is 18.3
The smallest value is 12.6

Here is an example using sorted data,
#include <stdio.h>
#include <gsl_statistics.h>

int main()
{

double data[5] = {17.2, 18.1, 16.5, 18.3, 12.6} ;
double median, upperq, lowerq;

printf("The original dataset is %g, %g, %g, %g, %g\n",
data[0], data[1], data[2], data[3], data[4]);

gsl_stats_sort_data(data, 5) ;

Chapter 5: Statistics 62

printf("The sorted dataset is %g, %g, %g, %g, %g\n",
data[0], data[1], data[2], data[3], data[4]);

median = gsl_stats_median_from_sorted_data(data, 5);
upperq = gsl_stats_quantile_from_sorted_data(data, 5, 0.75);
lowerq = gsl_stats_quantile_from_sorted_data(data, 5, 0.25);

printf("The median is %g\n", median) ;
printf("The upper quartile is %g\n", upperq) ;
printf("The lower quartile is %g\n", lowerq) ;

}

This program should produce the following output,
The original dataset is 17.2, 18.1, 16.5, 18.3, 12.6
The sorted dataset is 12.6, 16.5, 17.2, 18.1, 18.3
The median is 17.2
The upper quartile is 18.1
The lower quartile is 16.5

5.9 Statistics References and Further Reading

The standard reference for almost any topic in statistics is the multi-volume Advanced
Theory of Statistics by Kendall and Stuart.

Maurice Kendall, Alan Stuart, and J. Keith Ord. The Advanced Theory of Statistics
(multiple volumes) reprinted as Kendall’s Advanced Theory of Statistics. Wiley, ISBN
047023380X.

Many statistical concepts can be more easily understood by a Bayesian approach. The recent
book by Gelman, Carlin, Stern and Rubin gives a comprehensive coverage of the subject,
while Jeffreys’ Theory of Probability gives an older but more pedagogical introduction.

Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin. Bayesian Data
Analysis. Chapman & Hall, ISBN 0412039915.
Sir Harold Jeffreys. Theory of Probability. Clarendon Press, ISBN 0198531931

For physicists the Particle Data Group provides useful reviews of Probability and Statistics
in the "Mathematical Tools" section of its Annual Review of Particle Physics.

Review of Particle Properties R.M. Barnett et al., Physical Review D54, 1 (1996)

The Review of Particle Physics is available online in postscript and pdf format at http://pdg.lbl.gov/.

Chapter 6: Fast Fourier Transforms (FFTs) 63

6 Fast Fourier Transforms (FFTs)

This chapter describes functions for performing Fast Fourier Transforms (FFTs). The
library includes radix-2 routines (for lengths which are a power of two) and mixed-radix
routines (which work for any length). For efficiency there are separate versions of the rou-
tines for real data and for complex data. The mixed-radix routines are a reimplementation
of the FFTPACK library by Paul Swarztrauber. Fortran code for FFTPACK is available
on Netlib (FFTPACK also includes some routines for sine and cosine transforms but these
are currently not available in GSL). For details and derivations of the underlying algorithms
consult the document GSL FFT Algorithms (see Section 6.4 [FFT References and Further
Reading], page 78)

6.1 Mathematical Definitions

Fast Fourier Transforms are efficient algorithms for calculating the discrete fourier trans-
form (DFT),

xj =
N−1∑
k=0

zk exp(−2πijk/N) (6.1)

The DFT usually arises as an approximation to the continuous fourier transform when
functions are sampled at discrete intervals in space or time. The naive evaluation of the
discrete fourier transform is a matrix-vector multiplication W~z. A general matrix-vector
multiplication takes O(N2) operations for N data-points. Fast fourier transform algorithms
use a divide-and-conquer strategy to factorize the matrix W into smaller sub-matrices,
corresponding to the integer factors of the length N . If N can be factorized into a product
of integers f1f2 . . . fn then the DFT can be computed in O(N

∑
fi) operations. For a

radix-2 FFT this gives an operation count of O(N log2N).
All the FFT functions offer three types of transform: forwards, inverse and backwards,

based on the same mathematical definitions. The definition of the forward fourier transform,
x=FFT(z), is,

xj =
N−1∑
k=0

zk exp(−2πijk/N) (6.2)

and the definition of the inverse fourier transform, x=IFFT(z), is,

zj =
1
N

N−1∑
k=0

xk exp(2πijk/N). (6.3)

The factor of 1/N makes this a true inverse. For example, a call to gsl_fft_complex_
forward followed by a call to gsl_fft_complex_inverse should return the original data
(within numerical errors).

In general there are two possible choices for the sign of the exponential in the transform/
inverse-transform pair. GSL follows the same convention as FFTPACK, using a negative

Chapter 6: Fast Fourier Transforms (FFTs) 64

exponential for the forward transform. The advantage of this convention is that the inverse
transform recreates the original function with simple fourier synthesis. Numerical Recipes
uses the opposite convention, a positive exponential in the forward transform.

The backwards FFT is simply our terminology for an unscaled version of the inverse
FFT,

zbackwardsj =
N−1∑
k=0

xk exp(2πijk/N). (6.4)

When the overall scale of the result is unimportant it is often convenient to use the back-
wards FFT instead of the inverse to save unnecessary divisions.

6.2 FFTs of complex data

The inputs and outputs for the radix-2 and mixed-radix complex FFT routines are simply
vectors of complex elements. For example,

gsl_complex data[128] ;

The array indices are the same as those in the definition of the DFT — i.e. there are no
index transformations or permutations of the data. The gsl_complex type is defined as
struct {double real ; double imag}.

For physical applications it is important to remember that the index appearing in the
DFT does not correspond directly to a physical frequency. If the time-step of the DFT is
∆ then the frequency-domain includes both positive and negative frequencies, ranging from
−1/(2∆) through 0 to +1/(2∆). The positive frequencies are stored from the beginning of
the array up to the middle, and the negative frequencies are stored backwards from the end
of the array.

Here is a table which shows the layout of the array data, and the correspondence between
the time-domain data z, and the frequency-domain data x.

index z x = FFT(z)

0 z(t = 0) x(f = 0)
1 z(t = 1) x(f = 1/(N Delta))
2 z(t = 2) x(f = 2/(N Delta))
.
N/2 z(t = N/2) x(f = +1/(2 Delta),-1/(2 Delta))
.
N-3 z(t = N-3) x(f = -3/(N Delta))
N-2 z(t = N-2) x(f = -2/(N Delta))
N-1 z(t = N-1) x(f = -1/(N Delta))

When N is even the location N/2 contains the most positive and negative frequencies
(+1/(2∆),−1/(2∆)) which are equivalent. If N is odd then general structure of the table
above still applies, but N/2 does not appear.

Chapter 6: Fast Fourier Transforms (FFTs) 65

6.2.1 Radix-2 FFT routines for complex data

The radix-2 algorithms described in this section are simple and compact, although not
necessarily the most efficient. They use the Cooley-Tukey algorithm to compute in-place
complex FFTs for lengths which are a power of 2 — no additional storage is required. The
corresponding self-sorting mixed-radix routines offer better performance at the expense of
requiring additional scratch space.

All these functions are declared in the header file ‘gsl_fft_complex.h’.

Functionint gsl fft complex radix2 forward (gsl_complex data[],
size_t n)

Functionint gsl fft complex radix2 backward (gsl_complex data[],
size_t n)

Functionint gsl fft complex radix2 inverse (gsl_complex data[],
size_t n)

These functions compute the forward, backward and inverse FFTs of data, a
complex array of length n, using an in-place radix-2 decimation-in-time algo-
rithm. The length of the data n is restricted to powers of two.
The functions return a value of 0 if no errors were detected, and -1 in the case
of error. The following gsl_errno condition is defined for these functions:

GSL_EDOM The length of the data n is not a power of two.

Functionint gsl fft complex radix2 dif forward (gsl_complex
data[], size_t n)

Functionint gsl fft complex radix2 dif backward (gsl_complex
data[], size_t n)

Functionint gsl fft complex radix2 dif inverse (gsl_complex
data[], size_t n)

These are decimation-in-frequency versions of the radix-2 FFT functions.

6.2.2 Example of using radix-2 FFT routines for complex data

Here is an example program which computes the FFT of a short pulse in a sample of
length 128. To make the resulting fourier transform real the pulse is defined for equal
positive and negative times (−10 . . . 10) (the negative times wrap around the end of the
array).

#include <stdio.h>
#include <math.h>
#include <gsl_errno.h>
#include <gsl_fft_complex.h>

int main ()
{

int i;
gsl_complex data[128];

for (i = 0; i < 128; i++)

Chapter 6: Fast Fourier Transforms (FFTs) 66

{
data[i].real = 0.0;
data[i].imag = 0.0;

}

data[0].real = 1.0;

for (i = 1; i <= 10; i++)
{

data[i].real = data[128-i].real = 1.0;
}

for (i = 0; i < 128; i++)
{

printf ("%d %e %e\n", i, data[i].real, data[i].imag);
}

printf ("\n");

gsl_fft_complex_radix2_forward (data, 128);

for (i = 0; i < 128; i++)
{

printf ("%d %e %e\n", i, data[i].real/sqrt(128),
data[i].imag/sqrt(128));

}

}

Note that have assumed that the program is using the default gsl error handler (which
calls abort for any errors). If you are not using a safe error handler you would need to
check the return status of gsl_fft_complex_radix2_forward.

-0.5

0

0.5

1

1.5

2

0 20 40 60 80 100 120
-0.5

0

0.5

1

1.5

2

0 20 40 60 80 100 120

A pulse (left) and its discrete fourier transform (right), output from the example program.
The transformed data is rescaled by 1/

√
N so that it fits on the same plot as the input.

Only the real part is shown, by the choice of the input data the imaginary part is zero.

Chapter 6: Fast Fourier Transforms (FFTs) 67

Allowing for the wrap-around of negative times at t = 128, and working in units of k/N ,
the DFT approximates the continuum fourier transform of a modulated sin function,∫ +a

−a
e−2πikxdx =

sin(2πka)
πk

.

6.2.3 Mixed-radix FFT routines for complex data

This section describes mixed-radix FFT algorithms for complex data. The mixed-radix
functions work for FFTs of any length. They are a reimplementation of the Fortran FFT-
PACK library by Paul Swarztrauber. The theory is explained in the review article Self-
sorting Mixed-radix FFTs by Clive Temperton. The routines here use the same indexing
scheme and basic algorithms as FFTPACK.

The mixed-radix algorithm is based on sub-transform modules – highly optimized small
length FFTs which are combined to create larger FFTs. There are efficient modules for
factors of 2, 3, 4, 5, 6 and 7. The modules for the composite factors of 4 and 6 are faster
than combining the modules for 2 ∗ 2 and 2 ∗ 3.

For factors which are not implemented as modules there is a fall-back to a general length-
n module which uses Singleton’s method for efficiently computing a DFT. This module is
O(n2), and slower than a dedicated module would be but works for any length n. Of course,
lengths which use the general length-n module will still be factorized as much as possible.
For example, a length of 143 will be factorized into 11 ∗ 13. Large prime factors are the
worst case scenario, e.g. as found in n = 2 ∗ 3 ∗ 99991, and should be avoided because their
O(n2) scaling will dominate the run-time (consult GSL FFT Algorithms for possible ways
around this problem).

The mixed-radix initialization function gsl_fft_complex_init returns the list of factors
chosen by the library for a given length N . It can be used to check how well the length has
been factorized, and estimate the run-time. To a first approximation the run-time scales as
N
∑
fi, where the fi are the factors of N . For programs under user control you may wish to

issue a warning that the transform will be slow when the length is poorly factorized. If you
frequently encounter data lengths which cannot be factorized using the existing small-prime
modules consult GSL FFT Algorithms for details on adding support for other factors.

All these functions are declared in the header file ‘gsl_fft_complex.h’.

Functiongsl_fft_complex_wavetable *
gsl fft complex wavetable alloc (size_t n);

This function allocates space for a gsl_fft_complex_wavetable struct, and a
scratch area and trigonometric lookup table, both of size n complex elements.
The relevant components of the wavetable are initialized to point to the newly
allocated memory.

The function returns a pointer to the newly allocated gsl_fft_complex_
wavetable if no errors were detected, and 0 in the case of error. The following
gsl_errno conditions are defined for this function:

GSL_EDOM The length of the data n is not a positive integer (i.e. n is zero).

Chapter 6: Fast Fourier Transforms (FFTs) 68

GSL_ENOMEM
The requested memory could not be allocated (malloc returned a
null pointer).

Functionint gsl fft complex init (size_t n,
gsl_fft_complex_wavetable * wavetable);

This function initializes wavetable. It selects a factorization of the length n
into the implemented subtransforms, storing the details of the factorization in
wavetable. Using this factorization it then prepares a trigonometric lookup
table in the memory previously allocated by gsl_fft_complex_wavetable_
alloc.

The wavetable is computed using direct calls to sin and cos, for accuracy. It
could be computed faster using recursion relations if necessary. If an application
performs many FFTs of the same length then computing the wavetable is a one-
off overhead which does not affect the final throughput.

The wavetable structure can be used repeatedly for any transform of the same
length. The table is not modified by calls to any of the other FFT functions.
The same wavetable can be used for both forward and backward (or inverse)
transforms of a given length.

The function returns a value of 0 if no errors were detected, and -1 in the case
of error. The following gsl_errno conditions are defined for this function:

GSL_EDOM The length of the data n is not a positive integer (i.e. n is zero).

GSL_EFACTOR
The length n could not be factorized (this shouldn’t happen).

GSL_EFAILED
A failure was detected in the wavetable generation. This could be
caused by an inconsistency in a user-supplied wavetable structure.

Functionvoid gsl fft complex wavetable free
(gsl_fft_complex_wavetable * wavetable);

This function frees the blocks of memory previously allocated by gsl_fft_
complex_wavetable_alloc and pointed to by the components of wavetable.

The wavetable should be freed if no further FFTs of the same length will be
needed.

The functions gsl_fft_complex_init, gsl_fft_wavetable_alloc and gsl_fft_
wavetable_free all operate on a structure gsl_fft_complex_wavetable. This structure
contains internal parameters for the FFT.

It is not necessary to set any of the members directly except for advanced usage. How-
ever, it can useful to examine the wavetable returned by gsl_fft_complex_init. For
example, the factorization chosen by gsl_fft_complex_init is given and can be used to
provide an estimate of the run-time or numerical error.

Here is the wavetable structure. It is declared in the header file ‘gsl_fft_complex.h’.

Chapter 6: Fast Fourier Transforms (FFTs) 69

Data Typestruct gsl fft complex wavetable
This is a structure that holds the factorization and pointers to the scratch area
and trigonometric lookup tables for the mixed radix fft algorithm. It has the
following members:

size_t n This is the number of complex data points

size_t nf This is the number of factors that the length n was decomposed
into.

size_t factor[64]
This is the array of factors. Only the first nf elements are used.

gsl_complex * scratch
This is a pointer to a scratch area of n complex elements, capable
of holding intermediate copies of the original data set.

gsl_complex * trig
This is a pointer to a preallocated trigonometric lookup table of n
complex elements.

gsl_complex * twiddle[64]
This is an array of pointers into trig, giving the twiddle factors
for each pass.

Functionint gsl fft complex forward (gsl_complex data[], size_t n,
const gsl_fft_wavetable * wavetable)

Functionint gsl fft complex inverse (gsl_complex data[], size_t n,
const gsl_fft_complex_wavetable * wavetable)

Functionint gsl fft complex backward (gsl_complex data[], size_t
n, const gsl_fft_complex_wavetable * wavetable)

These functions compute the forward, backward and inverse FFT of data, a
complex array of length n, using a mixed radix decimation-in-frequency algo-
rithm.

The caller must supply a wavetable containing the chosen factorization, trigono-
metric lookup tables and scratch area. The wavetable can be easily prepared
using the functions gsl_fft_complex_init and gsl_fft_complex_alloc.

There is no restriction on the length n. Efficient modules are provided for
subtransforms of length 2, 3, 4, 5, 6 and 7. Any remaining factors are computed
with a slow, O(n2), general-n module.

The functions return a value of 0 if no errors were detected, and -1 in the case
of error. The following gsl_errno conditions are defined for these functions:

GSL_EDOM The length of the data n is not a positive integer (i.e. n is zero).

GSL_EINVAL
The length of the data n and the length used to compute the given
wavetable do not match.

Chapter 6: Fast Fourier Transforms (FFTs) 70

6.2.4 Example of using mixed-radix FFT routines for complex
data

Here is an example program which computes the FFT of a short pulse in a sample of
length 630 (= 2 ∗ 3 ∗ 3 ∗ 5 ∗ 7) using the mixed-radix algorithm.

#include <stdio.h>
#include <math.h>
#include <gsl_errno.h>
#include <gsl_fft_complex.h>

int main ()
{

int i;
const int n = 630 ;
gsl_complex data[n];

gsl_fft_complex_wavetable * wavetable;

for (i = 0; i < n; i++)
{

data[i].real = 0.0 ;
data[i].imag = 0.0 ;

}

data[0].real = 1.0 ;

for (i = 1; i <= 10; i++)
{

data[i].real = data[n-i].real = 1.0 ;
}

for (i = 0; i < n; i++)
{

printf ("%d: %e %e\n", i, data[i].real, data[i].imag);
}

printf ("\n");

wavetable = gsl_fft_complex_wavetable_alloc (n);
gsl_fft_complex_init (n, wavetable);

for (i = 0; i < wavetable->nf; i++)
{

printf("# factor %d: %d\n", i, wavetable->factor[i]);
}

gsl_fft_complex_forward (data, n, wavetable);

for (i = 0; i < n; i++)
{

Chapter 6: Fast Fourier Transforms (FFTs) 71

printf ("%d: %e %e\n", i, data[i].real, data[i].imag);
}

gsl_fft_complex_wavetable_free (wavetable);

}

Note that we have assumed that the program is using the default gsl error handler (which
calls abort for any errors). If you are not using a safe error handler you would need to
check the return status of of all the gsl routines.

6.3 FFTs of real data

The functions for real data are similar to those for complex data. However, there is an
important difference between forward and inverse transforms. The fourier transform of a
real sequence is not real. It is a complex sequence with a special symmetry:

zk = z∗N−k (6.5)

A sequence with this symmetry is called conjugate-complex or half-complex. This different
structure requires different storage-layouts for the forward transform (from real to half-
complex) and inverse transform (from half-complex back to real). As a consequence the
routines are divided into two sets: functions in gsl_fft_real which operate on real se-
quences and functions in gsl_fft_halfcomplex which operate on half-complex sequences.

Functions in gsl_fft_real compute the frequency coefficients of a real sequence. The
half-complex coefficients c of a real sequence x are given by fourier analysis,

ck =
N−1∑
j=0

xk exp(−2πijk/N) (6.6)

Functions in gsl_fft_halfcomplex compute inverse or backwards transforms. They re-
construct real sequences by fourier synthesis from their half-complex frequency coefficients,
c,

xj =
1
N

N−1∑
k=0

ck exp(2πijk/N) (6.7)

The symmetry of the half-complex sequence implies that only half of the complex numbers
in the output need to be stored. The remaining half can be reconstructed using the half-
complex symmetry condition. (This works for all lengths, even and odd. When the length is
even the middle value, where k = N/2, is also real). Thus only N real numbers are required
to store the half-complex sequence, and the transform of a real sequence can be stored in
the same size array as the original data.

The precise storage arrangements depend on the algorithm, and are different for radix-
2 and mixed-radix routines. The radix-2 function operates in-place, which constrain the
locations where each element can be stored. The restriction forces real and imaginary
parts to be stored far apart. The mixed-radix algorithm does not have this restriction, and

Chapter 6: Fast Fourier Transforms (FFTs) 72

it stores the real and imaginary parts of a given term in neighboring locations. This is
desirable for better locality of memory accesses.

6.3.1 Radix-2 FFT routines for real data

This section describes radix-2 FFT algorithms for real data. They use the Cooley-Tukey
algorithm to compute in-place FFTs for lengths which are a power of 2.

The radix-2 FFT functions for real data are declared in the header files ‘gsl_fft_real.h’

Functionint gsl fft real radix2 (double data[], size_t n)
This function computes an in-place radix-2 FFT of data, a real array of length
n. The output is a half-complex sequence, which is stored in-place. The ar-
rangement of the half-complex terms uses the following scheme: for k < N/2
the real part of the k-th term is stored in location k, and the corresponding
imaginary part is stored in location N − k. Terms with k > N/2 can be recon-
structed using the symmetry zk = z∗N−k. The terms for k = 0 and k = N/2
are both purely real, and count as a special case. Their real parts are stored
in locations 0 and N/2 respectively, while their imaginary parts which are zero
are not stored.

The following table shows the correspondence between the output data and the
equivalent results obtained by considering the input data as a complex sequence
with zero imaginary part,

complex[0].real = data[0]
complex[0].imag = 0
complex[1].real = data[1]
complex[1].imag = data[N-1]
...............
complex[k].real = data[k]
complex[k].imag = data[N-k]
...............
complex[N/2].real = data[N/2]
complex[N/2].real = 0
...............
complex[k’].real = data[k] k’ = N - k
complex[k’].imag = -data[N-k]
...............
complex[N-1].real = data[1]
complex[N-1].imag = -data[N-1]

The radix-2 FFT functions for halfcomplex data are declared in the header file ‘gsl_fft_halfcomplex.h’.

Functionint gsl fft halfcomplex radix2 inverse (double data[],
size_t n)

Functionint gsl fft halfcomplex radix2 backwards (double data[],
size_t n)

These functions compute the inverse or backwards in-place radix-2 FFT of the
half-complex sequence data, a real of length n stored according the output

Chapter 6: Fast Fourier Transforms (FFTs) 73

scheme used by gsl_fft_real_radix2. The result is a real array stored in
natural order.

6.3.2 Mixed-radix FFT routines for real data

This section describes mixed-radix FFT algorithms for real data. The mixed-radix func-
tions work for FFTs of any length. They are a reimplementation of the real-FFT routines
in the Fortran FFTPACK library by Paul Swarztrauber. The theory behind the algorithm
is explained in the article Fast Mixed-Radix Real Fourier Transforms by Clive Temperton.
The routines here use the same indexing scheme and basic algorithms as FFTPACK.

The functions use the FFTPACK storage convention for half-complex sequences. In this
convention the half-complex transform of a real sequence is stored in with frequencies in
increasing order, starting at zero, with the real and imaginary parts of each frequency in
neighboring locations. When a value is known to be real the imaginary part is not stored.
The imaginary part of the zero-frequency component is never stored. It is known to be zero
(since the zero frequency component is simply the sum of the input data (all real)). For a
sequence of even length the imaginary part of the frequency n/2 is not stored either, since
the symmetry zk = z∗N−k implies that this is purely real too.

The storage scheme is best shown by some examples. The table below shows the output
for an odd-length sequence, n = 5. The two columns give the correspondence between the
5 values in the half-complex sequence returned by gsl_fft_real, halfcomplex[] and the
values complex[] that would be returned if the same real input sequence were passed to
gsl_fft_complex_backward as a complex sequence (with imaginary parts set to 0),

complex[0].real = halfcomplex[0]
complex[0].imag = 0
complex[1].real = halfcomplex[1]
complex[1].imag = halfcomplex[2]
complex[2].real = halfcomplex[3]
complex[2].imag = halfcomplex[4]
complex[3].real = halfcomplex[3]
complex[3].imag = -halfcomplex[4]
complex[4].real = halfcomplex[1]
complex[4].imag = -halfcomplex[2]

The upper elements of the complex array, complex[3] and complex[4] are filled in using
the symmetry condition. The imaginary part of the zero-frequency term complex[0].imag
is known to be zero by the symmetry.

The next table shows the output for an even-length sequence, n = 5 In the even case
both the there are two values which are purely real,

complex[0].real = halfcomplex[0]
complex[0].imag = 0
complex[1].real = halfcomplex[1]
complex[1].imag = halfcomplex[2]
complex[2].real = halfcomplex[3]
complex[2].imag = halfcomplex[4]
complex[3].real = halfcomplex[5]
complex[3].imag = 0

Chapter 6: Fast Fourier Transforms (FFTs) 74

complex[4].real = halfcomplex[3]
complex[4].imag = -halfcomplex[4]
complex[5].real = halfcomplex[1]
complex[5].imag = -halfcomplex[2]

The upper elements of the complex array, complex[4] and complex[5] are be filled in
using the symmetry condition. Both complex[0].imag and complex[3].imag are known
to be zero.

All these functions are declared in the header files ‘gsl_fft_real.h’ and ‘gsl_fft_halfcomplex.h’.

Functiongsl_fft_real_wavetable * gsl fft real wavetable alloc
(size_t n);

Functiongsl_fft_halfcomplex_wavetable *
gsl fft halfcomplex wavetable alloc (size_t n);

These functions allocate space for a wavetable struct, a scratch area of size n
real elements and a trigonometric lookup table, of size n/2 complex elements.
The relevant components of the wavetable are modified to point to the newly
allocated memory.
These functions return a pointer to the newly allocated struct if no errors were
detected, and 0 in the case of error. The following gsl_errno conditions are
defined for these functions:

GSL_EDOM The length of the data n is not a positive integer (i.e. n is zero).

GSL_ENOMEM
The requested memory could not be allocated (malloc returned a
null pointer).

Functionint gsl fft real init (size_t n, gsl_fft_real_wavetable *
wavetable);

Functionint gsl fft halfcomplex init (size_t n,
gsl_fft_halfcomplex_wavetable * wavetable);

These functions initialize wavetable. They first select a factorization of the
length n into the implemented subtransforms, storing the details of the factor-
ization in wavetable.
Using this factorization they then prepare a trigonometric lookup table in the
memory previously allocated by gsl_fft_real_wavetable_alloc or gsl_fft_
halfcomplex_wavetable_alloc. The wavetable is computed using direct calls
to sin and cos, for accuracy. It could be computed faster using recursion
relations if necessary. If an application performs many FFTs of the same length
then computing the wavetable is a one-off overhead which does not affect the
final throughput.
The wavetable structure can be used repeatedly for any transform of the same
length. The table is not modified by calls to any of the other FFT functions.
The same wavetable can be used for both forward and backward (or inverse)
transforms of a given length.
The functions return a value of 0 if no errors were detected, and -1 in the case
of error. The following gsl_errno conditions are defined for these functions:

Chapter 6: Fast Fourier Transforms (FFTs) 75

GSL_EDOM The length of the data n is not a positive integer (i.e. n is zero).

GSL_EFACTOR
The length n could not be factorized (this shouldn’t happen).

GSL_EFAILED
A failure was detected in the wavetable generation. This could be
caused by an inconsistency in a user-supplied wavetable structure.

Functionvoid gsl fft real wavetable free (gsl_fft_real_wavetable *
wavetable);

Functionvoid gsl fft halfcomplex wavetable free
(gsl_fft_halfcomplex_wavetable * wavetable);

These functions free the blocks of memory previously allocated by gsl_
fft_real_wavetable_alloc or gsl_fft_halfcomplex_wavetable_alloc and
pointed to by the components of wavetable.

The wavetable should be freed if no further FFTs of the same length will be
needed.

Functionint gsl fft real (double data[], size_t n, const
gsl_fft_real_wavetable * wavetable)

Functionint gsl fft halfcomplex (double data[], size_t n, const
gsl_fft_halfcomplex_wavetable * wavetable)

These functions compute the FFT of data, a real or half-complex array of length
n, using a mixed radix decimation-in-frequency algorithm. For gsl_fft_real
data is an array of time-ordered real data. For gsl_fft_halfcomplex data
contains fourier coefficients in the half-complex ordering described above.
The caller must supply a wavetable containing the chosen factorization, trigono-
metric lookup tables and scratch area. The wavetable can be easily prepared
using the functions gsl_fft_real_alloc and gsl_fft_real_init or gsl_fft_
halfcomplex_alloc and gsl_fft_halfcomplex_init.
There is no restriction on the length n. Efficient modules are provided for
subtransforms of length 2, 3, 4 and 5. Any remaining factors are computed
with a slow, O(n2), general-n module.
The functions return a value of 0 if no errors were detected, and -1 in the case
of error. The following gsl_errno conditions are defined for these functions:

GSL_EDOM The length of the data n is not a positive integer (i.e. n is zero).

GSL_EINVAL
The length of the data n and the length used to compute the given
wavetable do not match.

Functionint gsl fft real unpack (const double real coefficient[],
gsl_complex complex coefficient[], size_t n)

This function converts a single real array, real coefficient into an equivalent
complex array, complex coefficient, (with imaginary part set to zero), suitable
for gsl_fft_complex routines. The algorithm for the conversion is simply,

Chapter 6: Fast Fourier Transforms (FFTs) 76

for (i = 0; i < n; i++)
{

complex_coefficient[i].real = real_coefficient[i];
complex_coefficient[i].imag = 0.0;

}

The function returns a value of 0 if no errors were detected, and -1 in the case
of error. There is only one gsl_errno condition defined for this function:

GSL_EDOM The length of the data n is not a positive integer (i.e. n is zero).

Functionint gsl fft halfcomplex unpack (const double
halfcomplex coefficient[], gsl_complex complex coefficient[], size_t n)

This function converts halfcomplex coefficient, an array of half-complex coef-
ficients as returned by gsl_fft_real, into an ordinary complex array, com-
plex coefficient. It fills in the complex array using the symmetry zk = z∗N−k to
reconstruct the redundant elements. The algorithm for the conversion is,

complex_coefficient[0].real = halfcomplex_coefficient[0];
complex_coefficient[0].imag = 0.0;

for (i = 1; i < n - i; i++)
{
const double hc_real = halfcomplex_coefficient[2 * i - 1];
const double hc_imag = halfcomplex_coefficient[2 * i];
complex_coefficient[i].real = hc_real;
complex_coefficient[i].imag = hc_imag;
complex_coefficient[n - i].real = hc_real;
complex_coefficient[n - i].imag = -hc_imag;

}
if (i == n - i)
{
complex_coefficient[i].real = halfcomplex_coefficient[n - 1];
complex_coefficient[i].imag = 0.0;

}

The function returns a value of 0 if no errors were detected, and -1 in the case
of error. There is only one gsl_errno condition defined for this function:

GSL_EDOM The length of the data n is not a positive integer (i.e. n is zero).

6.3.3 Example of using mixed-radix FFT routines for real data

Here is an example program using gsl_fft_real and gsl_fft_halfcomplex. It gen-
erates a real signal in the shape of a square pulse. The pulse is fourier transformed to
frequency space, and all but the lowest ten frequency components are removed from the
array of fourier coefficients returned by gsl_fft_real.

The remaining fourier coefficients are transformed back to the time-domain, to give a
filtered version of the square pulse. Since fourier coefficients are stored using the half-
complex symmetry both positive and negative frequencies are removed and the final filtered
signal is also real.

Chapter 6: Fast Fourier Transforms (FFTs) 77

#include <stdio.h>
#include <math.h>
#include <gsl_errno.h>
#include <gsl_fft_real.h>
#include <gsl_fft_halfcomplex.h>

int main ()
{

int i, n = 100;
double data[n];

gsl_fft_real_wavetable * real_wavetable;
gsl_fft_halfcomplex_wavetable * halfcomplex_wavetable;

for (i = 0; i < n; i++)
{

data[i] = 0.0;
}

for (i = n / 3; i < 2 * n / 3; i++)
{

data[i] = 1.0;
}

for (i = 0; i < n; i++)
{

printf ("%d: %e\n", i, data[i]);
}

printf ("\n");

real_wavetable = gsl_fft_real_wavetable_alloc (n);
gsl_fft_real_init (n, real_wavetable);
gsl_fft_real (data, n, real_wavetable);
gsl_fft_real_wavetable_free (real_wavetable);

for (i = 11; i < n; i++)
{

data[i] = 0;
}

halfcomplex_wavetable = gsl_fft_halfcomplex_wavetable_alloc (n);
gsl_fft_halfcomplex_init (n, halfcomplex_wavetable);
gsl_fft_halfcomplex_inverse (data, n, halfcomplex_wavetable);
gsl_fft_halfcomplex_wavetable_free (halfcomplex_wavetable);

for (i = 0; i < n; i++)
{

printf ("%d: %e\n", i, data[i]);

Chapter 6: Fast Fourier Transforms (FFTs) 78

}
}

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

Low-pass filtered version of a real pulse, output from the example program.

6.4 FFT References and Further Reading

A good starting point for learning more about the FFT is the review article Fast Fourier
Transforms: A Tutorial Review and A State of the Art by Duhamel and Vetterli,

P. Duhamel and M. Vetterli. Fast fourier transforms: A tutorial review and a state of
the art. Signal Processing, 19:259–299, 1990.

To find out about the algorithms used in the GSL routines you may want to consult the
latex document GSL FFT Algorithms (it is included in GSL, as ‘doc/fftalgorithms.tex’).
This has general information on FFTs and explicit derivations of the implementation for
each routine. There are also references to the relevant literature. For convenience some of
the more important references are reproduced below.

There are several introductory books on the FFT with example programs, such as The
Fast Fourier Transform by Brigham and DFT/FFT and Convolution Algorithms by Burrus
and Parks,

E. Oran Brigham. The Fast Fourier Transform. Prentice Hall, 1974.
C. S. Burrus and T. W. Parks. DFT/FFT and Convolution Algorithms. Wiley, 1984.

Both these introductory books cover the radix-2 FFT in some detail. The mixed-radix
algorithm at the heart of the FFTPACK routines is reviewed in Clive Temperton’s paper,

Clive Temperton. Self-sorting mixed-radix fast fourier transforms. Journal of Compu-
tational Physics, 52(1):1–23, 1983.

Chapter 6: Fast Fourier Transforms (FFTs) 79

The derivation of FFTs for real-valued data is explained in the following two articles,
Henrik V. Sorenson, Douglas L. Jones, Michael T. Heideman, and C. Sidney Bur-
rus. Real-valued fast fourier transform algorithms. IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-35(6):849–863, 1987.
Clive Temperton. Fast mixed-radix real fourier transforms. Journal of Computational
Physics, 52:340–350, 1983.

In 1979 the IEEE published a compendium of carefully-reviewed Fortran FFT programs in
Programs for Digital Signal Processing. It is a useful reference for implementations of many
different FFT algorithms,

Digital Signal Processing Committee and IEEE Acoustics, Speech, and Signal Process-
ing Committee, editors. Programs for Digital Signal Processing. IEEE Press, 1979.

There is also an annotated bibliography of papers on the FFT and related topics by Burrus,
C. S. Burrus. Notes on the FFT.

The notes are available from http://www-dsp.rice.edu/res/fft/fftnote.asc.

Chapter 7: Root finding 80

7 Root finding

This chapter describes functions for finding a root of an arbitrary one-dimensional func-
tion which you provide. The header file ‘gsl_roots.h’ contains prototypes for the root
finding functions and related declarations.

7.1 Root Finding Overview

Root finding algorithms can be divided into two classes, those which are guaranteed to
converge and those which converge only if started "close enough" to a root. Algorithms
with guaranteed convergence start with a bounded region known to contain a root. The
size of this bounded region is reduced iteratively until it is reaches a desired tolerance. This
provides a rigorous error estimate for the location of the root.

Algorithms without guaranteed convergence sacrifice rigorous error bounds for speed.
By approximating the behavior of a function in the vicinity of a root they attempt to
find a higher order improvement of an initial guess. This technique is often referred to as
"root polishing". When the behavior of the function is known to be compatible with the
algorithm and a good initial guess is available, perhaps from a systematic approximation,
these algorithms can provide rapid convergence.

Note that root finding functions can only search for one root at a time. When there are
several roots in the search area, the first root to be found will be returned; however it is
difficult to predict which of the roots this will be. In most cases, no error will be reported
if you try to find a root in an area where there is more than one.

Care must be taken when a function may have a root of second-order or higher multi-
plicity (such as f(x) = (x−c)2 or f(x) = (x−c)3). Routines which maintain a strict bound
on the root should not have problems with odd-multiplicity roots (e.g. cubic, quintic, . . .),
since they make use only of the occurrence zero-crossings and not the behavior of the func-
tion. However it is impossible to use these routines for even-multiplicity roots because they
require a bound on the initial root which guarantees a zero-crossing (below zero at one end
of the bound and above zero at the other end). Roots with even-multiplicity do not cross
zero, but only touch it instantaneously. In general these functions need to be approached on
a case-by-case basis using knowledge of the algorithm to be used. Root polishing algorithms
generally work with higher multiplicity roots but with a reduced rate of convergence.

While it is not absolutely required that f have a root within the search region, numerical
root finding functions should not be used haphazardly to check for the existence of roots.
There are better ways to do this! Because it is so easy to create situations where numerical
root finders go awry, it is a bad idea to throw a root finder at a function you do not
know much about. In general it is best to examine the function visually by plotting before
searching for a root.

7.2 Root Finder Exit Values

Since the return value of the root finding functions is reserved for the error status, you
must provide storage for the location of the found root.

Chapter 7: Root finding 81

Function Argumentdouble * root
A pointer to a place for the root finder to store the location of the found root.
This must be a valid pointer; the root finders will not allocate any memory for
you.

If a root finder succeeds, it will return 0 and store the location of the found root in
*root.

If a root finder fails, it will return -1 and set gsl_errno to a diagnostic value. See
Section 7.11 [Root Finder Error Handling], page 90, for a discussion of possible error codes.
Nothing useful will be stored in *root if the function failed.

7.3 Providing the Function to Search

You must provide a continous function of one variable for the root finder(s) to operate
on, and, sometimes, its first derivative.

Recall that when passing pointers to functions, you give the name of the function you
are passing. For example:

foo = i_take_a_function_pointer(my_function);

Function Argumentdouble (* f)(double)
A pointer to the function whose root you are searching for. It is called by the
root finding function many times during its search. It must be continous within
the region of interest.
Here is an example function which you could pass to a root finder:

double
my_f (double x) {

return sin (2 * x) + 2 * cos (x);
}

Function Argumentdouble (* df)(double)
A pointer to the first derivative of the function whose root you are searching
for.
If we were looking for a root of the function in the previous example, this is
what we would use for df:

double
my_df (double x) {

return 2 * cos (2 * x) - 2 * sin (x);
}

Function Argumentvoid (* fdf)(double *, double *, double, int,
int)

A pointer to a function which calculates both the value of the function under
search and the value of its first derivative. Because many terms of a function
and its derivative are the same, it is often faster to use this method as opposed
to providing f(x) and f ′(x) separately. However, it is more complicated.
It stores f(x) in its first argument and f ′(x) in its second.
Here’s an example where f(x) = 2 sin(2x) cos(x):

Chapter 7: Root finding 82

void
my_fdf (double * y, double * yprime, double x,

int y_wanted, int yprime_wanted) {
double sin2x, cosx;

sin2x = sin (2 * x);
cosx = cos (x);

if (y_wanted)
*y = 2 * sin2x * cos (x);

if (yprime_wanted)
*yprime = 2 * sin2x * -sin (x) + 2 * cos (2 * x) * cosx);

}

Low level functions return errors and roots and are provided functions to search in the
same manner as the high level functions; see Section 7.2 [Root Finder Exit Values], page 80,
and Section 7.3 [Providing the Function to Search], page 81, respectively.

7.4 Search Bounds and Guesses

When using low level functions, you can specify and monitor the region being searched
more precisely than you can when using high level functions. You provide either search
bounds or one or two guesses; this section explains how search bounds and guesses work
and how function arguments control them.

Search bounds are the endpoints of the search interval which is iterated smaller and
smaller until the length of the interval is smaller than the requested precision or one of the
endpoints converges; a guess is an x value which is iterated around until the it is within
the desired precision of a root. Two guesses behave similarly to one; there are just two x
values wandering about instead of one.

In low level functions, these arguments are defined as pointers to double rather than
simply doubles for two reasons. First, if the root finding function fails, it is very useful
to have the final values of your iterated variables available to help diagnose why it failed.
Second, it makes it possible to preserve the state of the root finder, enabling it to be restarted
in the same place if needed. A situation where this could be useful is if the function under
search is very costly to evaluate.

Note that these arguments must be valid pointers; the root finders will not allocate any
memory for you.

Low Level Function Argumentdouble * lower bound
Low Level Function Argumentdouble * upper bound

The initial upper and lower bounds of the interval in which to search for a root.
lower_bound must be less than upper_bound.

These arguments are modified during execution of the root finding function; if
you need to preserve their initial values, you must make copies of them. See
the third paragraph of this section for the reasoning behind this behavior.

Chapter 7: Root finding 83

Low Level Function Argumentdouble * guess
Low Level Function Argumentdouble * guess2

One or two initial values for the guess(es) iterated by the root finding function.

These arguments are modified during execution of the root finding function; if
you need to preserve their initial values, you must make copies of them. See
the third paragraph of this section for the reasoning behind this behavior.

7.5 Search Stopping Parameters

The root finding functions (and numerical root finding functions in general) stop when
one of the following conditions is true:

• A root has been found to within the user-specified precision.

• A user-specified maximum number of iterations has executed.

• An error has occured.

Whenever you call a low level root finding function, you must specify precisely absolute
and/or relative tolerances and the maximum number of iterations.

The stopping criterion decides that two values a and b. with relative tolerance R and
absolute tolerance A, are close enough if the following relation is true:

|a− b| ≤ Rmin(|a|, |b|) +A (7.1)

You can set either R or A to zero, but be aware that the library will signal an error if
the search moves into an area where both R and A are meaningless; assuming a and b are
the endpoints of the region of interest, the following must be true an error will be returned:

Rmin(|a|, |b|) +A ≥ 10 max(|a|, |b|)× DBL EPSILON (7.2)

(We introduce a buffer of 10 to protect against roundoff error.)

For the sake of efficient resource use, do not ask for more precision than you need,
especially if your function is costly to evaluate.

Low Level Function Argumentdouble abs epsilon
The maximum permissible absolute error in root finder answers.

The only static limit on abs_epsilon is that it must be positive; see above for
other restrictions, however.

Low Level Function Argumentdouble rel epsilon
The maximum permissible relative error in root finder answers.

rel_epsilonmust be greater than or equal to DBL EPSILON×10 (note the buffer
factor to protect against roundoff error). See above for additional non-static
restrictions.

Chapter 7: Root finding 84

Function Argumentunsigned int max iterations
The maximum number of iterations a root finder is allowed to perform. This
must be greater than or equal to 1, as performing a negative number of iterations
is extremely difficult and not doing any iterations is rather useless.

Do not set max_iterations too large. If there is a problem, you want to know
about it as soon as possible; you don’t want your program chugging away for
many cycles in error.

In addition, the root finding functions which extrapolate (Newton’s Method, (Sec-
tion 7.10 [Newtons Method], page 89, and Secant Method, Section 7.9 [Secant Method],
page 88) accept an additional argument:

Function Argumentdouble max step size
The maximum step size an extrapolating algorithm is allowed to take. This
is to prevents the algorithm from landing on a place where the test function’s
derivative is very small and zooming off to infinity or into a different solution
basin.

FIXME: talk about minimum value for max step size.

For example, if while solving sin(x) = 0, xn of Newton’s Method (see Sec-
tion 7.10 [Newtons Method], page 89) landed on 1.570700000 (π/2 ≈ 1.570796327),
then xn+1 would be approximately −10000, which is definitely not what we
wanted! We want the root finder to recognize this step as “too big” and flag
an error.

The alarm bell will ring if the following relation in true:

| d
dx
f(x)| < | f(x)

max step size
| (7.3)

Note that while Secant Method (see Section 7.9 [Secant Method], page 88) does
not deal with derivatives directly, when extrapolating it approximates them
numerically.

Do not set max_step_size too large; that will defeat its purpose. In the
sin(x) = 0 example, π would be a good value for max_step_size; any step
larger than that would certainly be headed astray. A good understanding of
the problem is especially important for max_step_size.

7.6 Bisection

Bisection is a simple and robust method of finding roots of a function f ; when its
arguments are valid, it cannot fail. However, it is the slowest algorithm provided by the
library, and it cannot find roots of even degree. Its convergence is linear.

One begins the algorithm with an interval which is guaranteed by the Intermediate Value
Theorem to contain a root: where a and b are the endpoints of the interval, f(a) must differ
in sign from f(b). (If you’re a bit fuzzy on the Intermediate Value Theorem, consult any
elementary calculus textbook.)

Chapter 7: Root finding 85

Each iteration, bisection chops its interval in half and discards the interval which does
not contain a root. Once the interval is smaller than the requested epsilon, iteration stops
and the root location is returned.

1 2 3 4 5
- 1

- 0.5

0

0.5

1

a 2

b2

1 2 3 4 5
- 1

- 0.5

0

0.5

1

a 3

b3

1 2 3 4 5
- 1

- 0.5

0

0.5

1
a 0

b0

1 2 3 4 5
- 1

- 0.5

0

0.5

1

a 1

b1

Four iterations of bisection, where an is nth position of the beginning of the
interval and bn is the nth position of the end. The midpoint of each interval is
also indicated.

Functionint gsl root bisection (double * root, double (* f)(double),
double * lower bound, double * upper bound, double rel epsilon,
double abs epsilon, unsigned int max iterations, double max deltay)

Search for a zero of f using bisection. Returns 0 if successful, -1 on error (see
Section 7.11 [Root Finder Error Handling], page 90).
f(*lower_bound) and f(*upper_bound) must differ in sign.
Arguments:

root A place to store the root location once it is found. See Section 7.2
[Root Finder Exit Values], page 80.

f A user defined function to search for a root. See Section 7.3 [Pro-
viding the Function to Search], page 81.

lower_bound, upper_bound
Lower and upper bounds of the interval to search. See Section 7.4
[Search Bounds and Guesses], page 82.

rel_epsilon, abs_epsilon
Maximum permitted relative and absolute error. See Section 7.5
[Search Stopping Parameters], page 83.

Chapter 7: Root finding 86

max_iterations
The maximum allowed number of iterations. See Section 7.5 [Search
Stopping Parameters], page 83.

max_deltay
The maximum allowed difference between f(*lower_bound) and
f(*upper_bound). See Section 7.5 [Search Stopping Parameters],
page 83.

7.7 Brent-Dekker Method

Brent’s method is a simple and robust algorithm of finding roots of a function f ; when
its arguments are valid, it cannot fail.

One begins the algorithm with an interval which is guaranteed by the Intermediate Value
Theorem to contain a root: where a and b are the endpoints of the interval, f(a) must differ
in sign from f(b).

Each iteration, brent’s method chops its interval in half and discards the interval which
does not contain a root. Once the interval is smaller than the requested epsilon, iteration
stops and the root location is returned.

Functionint gsl root brent (double * root, double (* f)(double),
double * lower bound, double * upper bound, double rel epsilon,
double abs epsilon, unsigned int max iterations)

Search for a zero of f using Brent’s method. Returns 0 if successful, -1 on error
(see Section 7.11 [Root Finder Error Handling], page 90).

f(*lower_bound) and f(*upper_bound) must differ in sign.

Arguments:

root A place to store the root location once it is found. See Section 7.2
[Root Finder Exit Values], page 80.

f A user defined function to search for a root. See Section 7.3 [Pro-
viding the Function to Search], page 81.

lower_bound, upper_bound
Lower and upper bounds of the interval to search. See Section 7.4
[Search Bounds and Guesses], page 82.

rel_epsilon, abs_epsilon
Maximum permitted relative and absolute error. See Section 7.5
[Search Stopping Parameters], page 83.

max_iterations
The maximum allowed number of iterations. See Section 7.5 [Search
Stopping Parameters], page 83.

Chapter 7: Root finding 87

7.8 False Position

False position is a robust method of finding roots of a function f ; if its arguments are
valid, it cannot fail. However, it cannot find roots of even degree. Its convergence is linear,
but it is usually faster than bisection.

One begins the algorithm with an interval which is guaranteed by the Intermediate Value
Theorem to contain a root: where a and b are the endpoints of the interval, f(a) must differ
in sign from f(b). (If you’re a bit fuzzy on the Intermediate Value Theorem, consult any
elementary calculus textbook.)

Each iteration, false position draws a line between f(a) and f(b); the x position where
this line crosses the x axis is where the interval is split. The part of the interval which
contains the root is taken to be the new interval, and the process is repeated until one of
the following is true:

|a− b| ≤ ε (7.4)

an − an−1 = 0 and |bn − bn−1| ≤ ε (7.5)

bn − bn−1 = 0 and |an − an−1| ≤ ε (7.6)

- 2 - 1.5 - 1 - 0.5 0 0.5 1 1.5

- 4

- 2

0

2

4

a 0- 4

b0

b1

b2

b3

b4

Several iterations of false position, where an is nth position of the beginning of
the interval and bn is the nth position of the end.

Chapter 7: Root finding 88

Functionint gsl root falsepos (double * root, double (* f)(double),
double * lower bound, double * upper bound, double rel epsilon,
double abs epsilon, unsigned int max iterations, double max deltay)

Search for a zero of f using false position. Return 0 if successful, -1 on error
(see Section 7.11 [Root Finder Error Handling], page 90.
f(*lower_bound) and f(*upper_bound) must differ in sign.
Arguments:

root A place to store the root location once it is found. See Section 7.2
[Root Finder Exit Values], page 80.

f A user defined function to search for a root. See Section 7.3 [Pro-
viding the Function to Search], page 81.

lower_bound, upper_bound
Lower and upper bounds of the interval to search. See Section 7.4
[Search Bounds and Guesses], page 82.

rel_epsilon, abs_epsilon
Maximum permitted relative and absolute error. See Section 7.5
[Search Stopping Parameters], page 83.

max_iterations
The maximum allowed number of iterations. See Section 7.5 [Search
Stopping Parameters], page 83.

max_deltay
The maximum allowed difference between f(*lower_bound) and
f(*upper_bound). See Section 7.5 [Search Stopping Parameters],
page 83.

7.9 Secant Method

Secant Method is a somewhat fragile method of finding roots. On single roots, its
convergence is of order (1 +

√
5)/2 (approximately 1.62). On multiple roots, converges

linearly.
One begins the algorithm with two guesses for the value of the root, g0 and g1. The root

may be either inside or outside the interval defined by g0 and g1.
Each iteration, Secant Method draws a line through f(gn−1) and f(gn). The x position

where this line crosses the x axis becomes gn+1. gn−1 is discarded, n is incremented, and
the process is repeated until:

|gn − gn−1| ≤ ε (7.7)

Note that gn+1 may be obtained by either interpolation or extrapolation and that Secant
Method cannot fail during interpolation.

Secant Method breaks in the same situations that Newton’s Method does, though it is
somewhat less sensitive. (See Section 7.10 [Newtons Method], page 89.)

Chapter 7: Root finding 89

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-10

0

10

20

30

g0

g1

g2

g3

g4

g5

Several iterations of Secant Method, where gn is the nth guess.

Functionint gsl root secant (double * root, double (* f)(double),
double * guess, double * guess2, double epsilon, unsigned int
max iterations, double max step size)

Search for a zero of f using Secant Method, with *guess and *guess2 being
the guesses.

arguments. See Section 7.11 [Root Finder Error Handling], page 90, for a
discussion of possible error codes.

7.10 Newtons Method

Newton’s Method is a fast but somewhat fragile method of finding roots. On single
roots, it converges quadratically; however, on multiple roots it converges linearly.

One begins the algorithm with one guess g for the value of the root. Each iteration,
Newton’s Method draws a line tangent to f (the function whose root you are searching for);
the x position where this line crosses the x axis becomes the new g. The process is repeated
until:

|gn − gn−1| ≤ ε (7.8)

Chapter 7: Root finding 90

- 3 - 2 - 1 0 1 2 3

- 4

- 2

0

2

4

6

g0

g1

g2

g3

g4

g5

Several iterations of Newton’s Method, where gn is the nth guess.

Functionint gsl root newton (double * root, void (* fdf)(double *,
double *, double, int, int), double * guess, double epsilon,
unsigned int max iterations, double max step size)

Search for a zero of f using Newton’s Method, with *guess being the guess.
See Section 7.11 [Root Finder Error Handling], page 90, for a discussion of
possible error codes.

7.11 Root Finder Error Handling

When successful, the root finding functions return 0; on error, they return -1 and set the
global variable gsl_errno to a diagnostic value. (See Chapter 3 [Error handling in GSL],
page 3, for a general discussion of GSL error handling.)

When using low-level functions, you can examine *guess, *guess2, *lower_bound, or
*upper_bound (see Section 7.4 [Search Bounds and Guesses], page 82) to help determine
why a root finder failed.

The root finders can set gsl_errno to the following macros. Some errors can only be
encountered by low level functions; they are marked by [Low Level Only].

GSL_EINVAL
One or more of the input arguments is invalid because at least one of these
conditions is true:
• [Low Level Only] max_iterations is equal to 0. See Section 7.5 [Search

Stopping Parameters], page 83.
• The lower bound of the search interval is not less than the upper bound.
• You supplied a pointer argument which was null.

Chapter 7: Root finding 91

• f(lower bound) and f(upper bound) do not differ in sign, and the function
that you are using requires that they do.

GSL_EBADFUNC
The function under search (or its derivative) did not return a valid number
when it was called by the the root finder. (Instead, it returned NAN or INF.)

GSL_ERUNAWAY
[Low Level Only] A root finder tried to take a step larger than max_step_size
(see Section 7.5 [Search Stopping Parameters], page 83). This happens when
an extrapolating algorithm lands on a place where the derivative is too small.

GSL_EMAXITER
The number of iterations executed exceeded max_iterations (see Section 7.5
[Search Stopping Parameters], page 83).

GSL_EBADTOL
[Low Level Only] You specified an invalid error tolerance in one or more of the
following ways (see Section 7.5 [Search Stopping Parameters], page 83):
• rel_epsilon was too small.
• rel_epsilon and abs_epsilon were both zero.
• rel_epsilon was zero, and the search converged to a place too far from

zero for abs_epsilon to be useful.
• abs_epsilon was zero, and the search converged to a place too close to

zero for rel_epsilon to be useful.
• FIXME: add stuff for delta.

GSL_EZERODIV
[Low Level Only] A function detected that any further iterations would result
in division by zero. This most often happens when Newton’s Method (see
Section 7.10 [Newtons Method], page 89) or Secant Method (see Section 7.9
[Secant Method], page 88) lands on an extremum.

Chapter 8: Special Functions 92

8 Special Functions

This chapter describes the GSL special function library.

8.1 Airy Functions

The Airy functions Ai(x) and Bi(x) are defined by the integral representations

Ai(x) =
1
π

∫ ∞
0

cos(
1
3
t3 + xt)dt, (8.1)

Bi(x) =
1
π

∫ ∞
0

(e−t
3/3 + sin(

1
3
t3 + xt)dt. (8.2)

They are linearly independent solutions of the equation f(x)′′ = xf(x).
Being functions of a single variable, they are quite easy to evaluate in production code, us-

ing fits to Chebyshev polynomials in various regions. Such fits provide a uniform approxima-
tion over the full domain of the function. The GSL implementation is a re-implementation
of the Airy Chebyshev fits in the SLATEC Fortran library.

Functiondouble gsl sf airy Ai(double x)
Functiondouble gsl sf airy Bi(double x)
Functiondouble gsl sf airy Bi scaled(double x)

8.2 Bessel Functions

8.3 Chebyshev Polynomials

The Chebyshev polynomials Tn(x) = cos(n arccosx) provide an orthogonal basis of poly-
nomials on the interval [−1, 1], with the weight function 1√

1−x2 . The first few such polyno-
mials are

T0(x) = 1, (8.3)

T1(x) = x, (8.4)

T2(x) = 2x2 − 1. (8.5)

By construction, Tn(x) has precisely n zeroes in the interval [−1, 1], located at x(n)
k =

cos(π
n

(k−1/2)). It is the nature of these zeroes and the behaviour of the set of polynomials at
these special points which makes the Chebyshev polynomials especially useful in numerical
approximation of functions.

8.4 Coulomb Wave Functions

Chapter 8: Special Functions 93

8.5 Dilogarithm

8.6 Error Function

8.7 Fermi-Dirac Function

8.8 Gamma Function

8.9 Laguerre Functions

8.10 Legendre Functions and Spherical Harmonics

8.11 Logarithm (Complex)

8.12 Power Function

A common complaint about the standard C library is its lack of a function for calculating
(small) integer powers. GSL provides a simple function to fill this gap.

Functiondouble gsl sf pow int(double x, int n)

#include <gsl_sf_pow_int.h>
double y = gsl_sf_pow_int(3., 12)

8.13 Psi (DiGamma) Function

8.14 Trigonometric Functions (Complex)

Chapter 9: Series Acceleration 94

9 Series Acceleration

The functions described in this chapter accelerate the convergence of a series using the
Levin u-transform. This method takes a small number of terms from the start of a series
and uses a systematic approximation to compute an extrapolated value and an estimate
of its error. The u-transform works for both convergent and divergent series, including
asymptotic series.

These functions are declared in the header file ‘gsl_sum.h’.

9.1 Acceleration functions

Functionint gsl sum levin u (const double * array, size_t array size,
double * q num, double * q den, double * dq num, double * dq den,
double * dsum, double * sum accel, double * sum plain, double *
precision)

This function takes the terms of a series in array of size array size and computes
the extrapolated limit of the series using a Levin u-transform. The extrapo-
lated sum is stored in sum accel, with an estimate of the relative error stored
in precision. The actual term-by-term sum is returned in sum plain. Addi-
tional working space must be provided in the arrays q num, q den, dsum of size
array size elements each and in dq num, dq den of size array size**2. The algo-
rithm estimates both truncation error and round-off error to choose an optimal
number of terms for the extrapolation.

9.2 Example of accelerating a series

The following code calculates an estimate of ζ(2) = π2/6 using the series,

ζ(2) = 1 + 1/22 + 1/32 + 1/42 + . . . (9.1)

After N terms the error in the sum is O(1/N), making direct summation of the series
converge slowly.

#include <stdio.h>
#include <gsl_math.h>
#include <gsl_sum.h>

#define N 20

int
main (void)
{

double t[N], qnum[N], qden[N], dsum[N], dqnum[N * N], dqden[N * N];
double sum_accel, sum_plain, prec;
double sum = 0;
size_t n_used ;
int n;

Chapter 9: Series Acceleration 95

const double zeta_2 = M_PI * M_PI / 6.0;

/* terms for zeta(2) = \sum_{n=0}^{\infty} 1/n^2 */

for (n = 0; n < N; n++)
{

double np1 = n + 1.0;
t[n] = 1.0 / (np1 * np1);
sum += t[n] ;

}

gsl_sum_levin_u_accel (t, N, qnum, qden, dqnum, dqden, dsum,
&sum_accel, &n_used, &sum_plain, &prec);

printf("term-by-term sum = %.16f using %d terms\n", sum, N) ;
printf("term-by-term sum = %.16f using %d terms\n", sum_plain, n_used) ;
printf("accelerated sum = %.16f using %d terms\n", sum_accel, n_used) ;
printf("exact value = %.16f\n", zeta_2) ;
printf("estimated error = %.16f\n", prec * sum_accel) ;
printf("actual error = %.16f\n", sum_accel - zeta_2) ;

return 0;
}

The Levin u-transform is able to obtain an estimate of the sum to 1 part in 1010 using the
first eleven terms of the series. The error estimate returned by the function safely bounds
the correct value and is conservatively large. By comparison a direct summation would
require 1010 terms to achieve the same precision.

bjg|vvv> ./a.out
term-by-term sum = 1.5961632439130233 using 20 terms
term-by-term sum = 1.5649766384209025 using 11 terms
accelerated sum = 1.6449340668936467 using 11 terms
exact value = 1.6449340668482264
estimated error = 0.0000000002517837
actual error = 0.0000000000454203

9.3 Series Acceleration References

The algorithms used by these functions are described in the following papers,
T. Fessler, W.F. Ford, D.A. Smith, hurry: An acceleration algorithm for scalar se-
quences and series ACM Transactions on Mathematical Software, 9(3):346–354, 1983.
and Algorithm 602 9(3):355–357, 1983.

The theory of the u-transform was presented by Levin,
D. Levin, Development of Non-Linear Transformations for Improving Covergence of
Sequences, Intern. J. Computer Math. B3:371–388, 1973

Chapter 10: Simulated Annealing 96

10 Simulated Annealing

Stochastic search techniques are used when the structure of a space is not well understood
or is not smooth, so that techniques like Newton’s method (which requires calculating
Jacobian derivative matrices) cannot be used.

In particular, these techniques are frequently used to solve combinatorial optimization
problems, such as the traveling salesman problem.

The basic problem layout is that we are looking for a point in the space at which a real
valued energy function (or cost function) is minimized.

Simulated annealing is a technique which has given good results in avoiding local minima;
it is based on the idea of taking a random walk through the space at successively lower
temperatures, where the probability of taking a step is given by a Boltzmann distribution.

10.1 Simulated Annealing algorithm

We take random walks through the problem space, looking for points with low energies;
in these random walks, the probability of taking a step is determined by the Boltzmann
distribution

p = e−(Ei+1−Ei)/(kT) (10.1)

if Ei+1 < Ei, and p = 0 when Ei+1 ≥ Ei.
In other words, a step will occur if the new energy is lower. If the new energy is higher,

the transition can still occur, and its likelyhood is proportional to the temperature T and
inversely proportional to the energy difference Ei+1 − Ei.

The temperature T is initially set to a high value, and a random walk is carried out at
that temperature. Then the temperature is lowered very slightly (according to a cooling
schedule) and another random walk is taken.

This slight probability of taking a step that gives higher energy is what allows simulated
annealing to frequently get out of local minima.

An initial guess is supplied. At each step, a point is chosen at a random distance
from the current one, where the random distance r is distributed according to a Boltzmann
distribution r = exp−E/kT . After a few search steps using this distribution, the temperature
T is lowered according to some scheme, for example T → T/µT where mu T is slightly
greater than 1.

10.2 Simulated Annealing functions

Simulated annealinggsl Efunc t
typedef double (*gsl_Efunc_t) (void *xp);

Simulated annealinggsl siman step t
typedef void (*gsl_siman_step_t) (void *xp, double step_size);

Simulated annealinggsl siman metric t
typedef double (*gsl_siman_metric_t) (void *xp, void *yp);

Chapter 10: Simulated Annealing 97

Simulated annealinggsl siman print t
typedef void (*gsl_siman_print_t) (void *xp);

Simulated annealinggsl siman params t
These are the parameters that control a run of gsl_siman_solve.

/* this structure contains all the information needed to structure
the search, beyond the energy function, the step function and the
initial guess. */

struct s_siman_params {
int n_tries; /* how many points to try for each step */
int iters_fixed_T; /* how many iterations at each temperature? */
double step_size; /* max step size in the random walk */
/* the following parameters are for the Boltzmann distribution */
double k, t_initial, mu_t, t_min;

};

typedef struct s_siman_params gsl_siman_params_t;

Simulated annealingvoid gsl siman solve (void *x0 p, gsl_Efunc_t Ef,
gsl_siman_metric_t distance, gsl_siman_print_t print position,
size_t element size, gsl_siman_params_t params)

Does a simulated annealing search through a given space. The space is specified
by providing the functions Ef, distance, print position, element size.

The params structure (described above) controls the run by providing the tem-
perature schedule and other tunable parameters to the algorithm (see Sec-
tion 10.1 [Simulated Annealing algorithm], page 96). p The result (optimal
point in the space) is placed in *x0 p.

If print position is not null, a log will be printed to the screen with the following
columns:

number_of_iterations temperature x x-(*x0_p) Ef(x)

If print position is null, no information is printed to the screen.

10.3 Examples with Simulated Annealing

GSL’s Simulated Annealing package is clumsy, and it has to be because it is written in
C, for C callers, and tries to be polymorphic at the same time. But here we provide some
examples which can be pasted into your application with little change and should make
things easier.

10.3.1 Trivial example

The first example, in one dimensional cartesian space, sets up an energy function which is
a damped sine wave; this has many local minima, but only one global minimum, somewhere
between 1.0 and 1.5. The initial guess given is 15.5, which is several local minima away
from the global minimum.

Chapter 10: Simulated Annealing 98

/* set up parameters for this simulated annealing run */
#define N_TRIES 200 /* how many points do we try before stepping */
#define ITERS_FIXED_T 10 /* how many iterations for each T? */
#define STEP_SIZE 10 /* max step size in random walk */
#define K 1.0 /* Boltzmann constant */
#define T_INITIAL 0.002 /* initial temperature */
#define MU_T 1.005 /* damping factor for temperature */
#define T_MIN 2.0e-6

gsl_siman_params_t params = {N_TRIES, ITERS_FIXED_T, STEP_SIZE,
K, T_INITIAL, MU_T, T_MIN};

/* now some functions to test in one dimension */
double E1(void *xp)
{

double x = * ((double *) xp);

return exp(-square(x-1))*sin(8*x);
}

double M1(void *xp, void *yp)
{

double x = *((double *) xp);
double y = *((double *) yp);

return fabs(x - y);
}

void S1(void *xp, double step_size)
{

double r;
double old_x = *((double *) xp);
double new_x;

r = gsl_ran_uniform();
new_x = r*2*step_size - step_size + old_x;

memcpy(xp, &new_x, sizeof(new_x));
}

void P1(void *xp)
{

printf("%12g", *((double *) xp));
}

int main(int argc, char *argv[])
{

Element x0; /* initial guess for search */

Chapter 10: Simulated Annealing 99

double x_initial = 15.5;

gsl_siman_solve(&x_initial, E1, S1, M1, P1, sizeof(double), params);
return 0;

}

Here are a couple of plots that are generated by running siman_test in the following
way:

./siman_test | grep -v "^#" | xyplot -xyil -y -0.88 -0.83 -d "x...y" | xyps -d > siman

./siman_test | grep -v "^#" | xyplot -xyil -xl "generation" -yl "energy" -d "x..y" | x

0 500 1000 1500 2000 2500 3000
-0.88

-0.87

-0.86

-0.85

-0.84

-0.83

generation

po
si

tio
n

0 500 1000 1500 2000 2500 3000
1.34

1.36

1.38

1.4

generation

en
er

gy

Example of a simulated annealing run: at higher temperatures (early in the plot)

you see that the solution can fluctuate, but at lower temperatures it converges.

10.3.2 Traveling Salesman Problem

The TSP (Traveling Salesman Problem) is the classic combinatorial optimization prob-
lem. I have provided a very simple version of it, based on the coordinates of twelve cities in
the southwestern United States. This should maybe be called the Flying Salesman Problem,
since I am using the great-circle distance between cities, rather than the driving distance.
Also: I assume the earth is a sphere, so I don’t use geoid distances.

The gsl_siman_solve() routine finds a route which is 3490.62 Kilometers long; this is
confirmed by an exhaustive search of all possible routes with the same initial city.

The full code can be found in ‘siman/siman_tsp.c’, but I include here some plots
generated with in the following way:

./siman_tsp > tsp.output
grep -v "^#" tsp.output | xyplot -xyil -d "x................y" -lx "generation" -ly "d
grep initial_city_coord tsp.output | awk ’{print $2, $3, $4, $5}’ | xyplot -xyil -lb0 -
grep final_city_coord tsp.output | awk ’{print $2, $3, $4, $5}’ | xyplot -xyil -lb0 -c

Chapter 10: Simulated Annealing 100

This is the output showing the initial order of the cities; longitude is negative, since it
is west and I want the plot to look like a map.

initial coordinates of cities (longitude and latitude)
###initial_city_coord: -105.95 35.68 Santa Fe
###initial_city_coord: -112.07 33.54 Phoenix
###initial_city_coord: -106.62 35.12 Albuquerque
###initial_city_coord: -103.2 34.41 Clovis
###initial_city_coord: -107.87 37.29 Durango
###initial_city_coord: -96.77 32.79 Dallas
###initial_city_coord: -105.92 35.77 Tesuque
###initial_city_coord: -107.84 35.15 Grants
###initial_city_coord: -106.28 35.89 Los Alamos
###initial_city_coord: -106.76 32.34 Las Cruces
###initial_city_coord: -108.58 37.35 Cortez
###initial_city_coord: -108.74 35.52 Gallup
###initial_city_coord: -105.95 35.68 Santa Fe

The optimal route turns out to be:

final coordinates of cities (longitude and latitude)
###final_city_coord: -105.95 35.68 Santa Fe
###final_city_coord: -106.28 35.89 Los Alamos
###final_city_coord: -106.62 35.12 Albuquerque
###final_city_coord: -107.84 35.15 Grants
###final_city_coord: -107.87 37.29 Durango
###final_city_coord: -108.58 37.35 Cortez
###final_city_coord: -108.74 35.52 Gallup
###final_city_coord: -112.07 33.54 Phoenix
###final_city_coord: -106.76 32.34 Las Cruces
###final_city_coord: -96.77 32.79 Dallas
###final_city_coord: -103.2 34.41 Clovis
###final_city_coord: -105.92 35.77 Tesuque
###final_city_coord: -105.95 35.68 Santa Fe

Chapter 10: Simulated Annealing 101

Santa Fe

Phoenix

Albuquerque

Clovis

Durango

Dallas

Tesuque

Grants

Los Alamos

Las Cruces

Cortez

Gallup
Santa Fe

-110 -105 -100
32

33

34

35

36

37 TSP -- initial-order

longitude (- means west)

la
tit

ud
e

Santa Fe
Tesuque

Los Alamos

AlbuquerqueGrants

DurangoCortez

Gallup

Phoenix

Las Cruces

Dallas

Clovis

Santa Fe

-110 -105 -100
32

33

34

35

36

37 TSP -- final-order

longitude (- means west)

la
tit

ud
e

Initial and final (optimal?) route for the 12 southwestern cities Flying Salesman Problem.

Here’s a plot of the cost function (energy) versus generation (point in the calculation at
which a new temperature is set) for this problem:

0 1000 2000 3000 4000 5000

3500

4000

4500

5000

5500

6000

TSP -- 12 southwest cities

generation

di
st

an
ce

Example of a simulated annealing run for the 12

southwestern cities Flying Salesman Problem.

Chapter 11: Vectors and Matrices 102

11 Vectors and Matrices

The functions described in this chapter provide a simple vector and matrix interface to
ordinary C arrays. By writing your functions in terms of vectors and matrices you can pass
a single structure containing both data and dimensions without needing additional function
arguments.

11.1 The vector struct

Vectors are defined by a gsl_vector structure which contains two members, the size
and a pointer to a block of memory where the elements of the vector are stored. The
gsl_vector structure is very simple and looks like this,

typedef struct
{

size_t size;
double * data;

} gsl_vector ;

The library also defines three other types of vectors, for single-precision floating point
numbers, complex numbers of type gsl_complex and for integers which have the names
gsl_vector_float, gsl_vector_complex and gsl_vector_int.

11.2 Vector allocation

The functions for allocating memory to a vector follow the style of malloc and free. In
addition they also perform their own error checking. If there is insufficient memory available
to allocate a vector then the functions call the GSL error handler (with an error number
of GSL_ENOMEM) in addition to returning a null pointer. Thus if you use the library error
handler to abort your program then it isn’t necessary to check every alloc.

Functiongsl_vector * gsl vector alloc (size_t n)
This function allocates memory for a vector and its n elements, returning a
pointer to a newly initialized vector struct. The elements of the vector are not
initialized and so their values are undefined. Use the function gsl_vector_
calloc if you want to ensure that all the elements are initialized to zero.

A null pointer is returned if insufficient memory is available to store the vector.

Functiongsl_vector * gsl vector calloc (size_t n)
This function allocates memory for a vector and initializes all the elements of
the vector to zero.

Functionvoid gsl vector free (gsl_vector * v)
This function frees the memory used by a vector v previously allocated with
gsl_vector_alloc or gsl_vector_calloc.

The following functions perform the same tasks as the functions above for single-precision
and integer vectors.

Chapter 11: Vectors and Matrices 103

Functiongsl_vector_float * gsl vector float alloc (size_t n)
Functiongsl_vector_float * gsl vector float calloc (size_t n)
Functionvoid gsl vector float free (gsl_vector_float * v)

These functions perform memory management for single-precision floating point
vectors defined with the struct gsl_vector_float.

Functiongsl_vector_complex * gsl vector complex alloc (size_t
n)

Functiongsl_vector_complex * gsl vector complex calloc (size_t
n)

Functionvoid gsl vector complex free (gsl_vector_complex * v)
These functions perform memory management for complex vectors defined with
the struct gsl_vector_complex.

Functiongsl_vector_int * gsl vector int alloc (size_t n)
Functiongsl_vector_int * gsl vector int calloc (size_t n)
Functionvoid gsl vector int free (gsl_vector_int * v)

These functions perform memory management for integer vectors defined with
the struct gsl_vector_int.

11.3 Accessing vector elements

Unlike fortran, the C language does not provide support for range checking of vectors
and matrices. However, the functions gsl_vector_get and gsl_vector_set can perform
range checking for you and report an error if you attempt to access elements outside the
allowed range.

The functions for accessing the elements of a vector or matrix are defined in ‘gsl_vector.h’
and declared extern inline to eliminate function-call overhead. If necessary you can turn
off range checking completely without modifying any source files by recompiling your
program with the preprocessor definition GSL_RANGE_CHECK_OFF. Provided your compiler
supports inline functions the effect of turning off range checking is to replace calls to
gsl_vector_get(v,i) by v->data[i] and and calls to gsl_vector_set(v,i,x) by v-
>data[i] = x. Thus there should be no performance penalty at all for using the library
functions when range checking is turned off.

Functiondouble gsl vector get (const gsl_vector * v, size_t i)
This function returns the ith element of a vector v. If i lies outside the allowed
range of 0 to n-1 then the error handler is invoked and 0 is returned.

Functionvoid gsl vector set (gsl_vector * v, size_t i, double x)
This function sets the value of the ith element of a vector v to x. If i lies outside
the allowed range of 0 to n-1 then the error handler is invoked.

The following functions perform the same tasks for vectors of the type gsl_vector_float
and gsl_vector_int.

Chapter 11: Vectors and Matrices 104

Functionfloat gsl vector float get (const gsl_vector_float * v,
size_t i)

Functionvoid gsl vector float set (gsl_vector_float * v, size_t i,
float x)

These functions access the elements of a single-precision vector.

Functiongsl_complex gsl vector complex get (const
gsl_vector_complex * v, size_t i)

Functionvoid gsl vector complex set (gsl_vector_complex * v,
size_t i, gsl_complex x)

These functions access the elements of a complex vector.

Functionint gsl vector int get (const gsl_vector_int * v, size_t i)
Functionvoid gsl vector int set (gsl_vector_int * v, size_t i, int x)

These functions access the elements of an integer vector.

11.4 Reading and writing vectors

The library provides functions for reading and writing vectors to a file as binary data or
formatted text.

Functionint gsl vector fwrite (FILE * stream, const gsl_vector * v)
This function writes the elements of the vector v to the stream stream in binary
format. The return value is 0 for success and GSL_EFAILED if there was a
problem writing to the file. Since the data is written in the native binary
format it may not be portable between different architectures.

Functionint gsl vector fread (FILE * stream, gsl_vector * v)
This function reads into the vector v from the open stream stream in binary
format. The vector v must be preallocated with the correct length since the
function uses the size of v to determine how many bytes to read. The return
value is 0 for success and GSL_EFAILED if there was a problem reading from the
file. The data is assumed to have been written in the native binary format on
the same architecture.

Functionint gsl vector fprintf (FILE * stream, const gsl_vector * v,
const char * format)

This function writes the elements of the vector v line-by-line to the stream
stream using the format specifier format, which should be one of the %g, %e or
%f formats for floating point numbers and %d for integers. The function returns
0 for success and GSL_EFAILED if there was a problem writing to the file.

Functionint gsl vector fscanf (FILE * stream, gsl_vector * v)
This function reads formatted data from the stream stream into the vector v.
The vector v must be preallocated with the correct length since the function
uses the size of v to determine how many numbers to read. The function returns
0 for success and GSL_EFAILED if there was a problem reading from the file.

Chapter 11: Vectors and Matrices 105

The following functions read and write single-precision and integer vectors with the types
gsl_vector_float and gsl_vector_int.

Functionint gsl vector float fwrite (FILE * stream, const
gsl_vector_float * v)

Functionint gsl vector float fread (FILE * stream, gsl_vector_float
* v)

Functionint gsl vector float fprintf (FILE * stream, const
gsl_vector_float * v, const char * format)

Functionint gsl vector float fscanf (FILE * stream, gsl_vector_float
* v)

These functions read and write single-precision vectors as binary data or for-
matted text.

Functionint gsl vector complex fwrite (FILE * stream, const
gsl_vector_complex * v)

Functionint gsl vector complex fread (FILE * stream,
gsl_vector_complex * v)

Functionint gsl vector complex fprintf (FILE * stream, const
gsl_vector_complex * v, const char * format)

Functionint gsl vector complex fscanf (FILE * stream,
gsl_vector_complex * v)

These functions read and write complex vectors as binary data or formatted
text.

Functionint gsl vector int fwrite (FILE * stream, const
gsl_vector_int * v)

Functionint gsl vector int fread (FILE * stream, gsl_vector_int * v)

Functionint gsl vector int fprintf (FILE * stream, const
gsl_vector_int * v, const char * format)

Functionint gsl vector int fscanf (FILE * stream, gsl_vector_int *
v)

These functions read and write integer vectors as binary data or formatted text.

11.5 Example programs for vectors

This program shows how to allocate, initialize and read from a vector using the functions
gsl_vector_alloc, gsl_vector_set and gsl_vector_get.

#include <stdio.h>
#include <gsl_vector.h>

int main ()
{

int i;
gsl_vector * v = gsl_vector_alloc (3) ;

Chapter 11: Vectors and Matrices 106

for (i = 0; i < 3; i++)
{

gsl_vector_set (v, i, 1.23 + i);
}

for (i = 0; i < 100; i++)
{

printf("v_%d = %g\n", i, gsl_vector_get (v, i));
}

}

Here is the output from the program. The final loop attempts to read outside the range of
the vector v, and the error is trapped by the range-checking code in gsl_vector_get.

v_0 = 1.23
v_1 = 2.23
v_2 = 3.23
gsl: vector_source.c:12: ERROR: index out of range
IOT trap/Abort (core dumped)

The next program shows how to write a vector to a file.

#include <stdio.h>
#include <gsl_vector.h>

int main ()
{

int i;
gsl_vector * v = gsl_vector_calloc (100) ;

for (i = 0; i < 100; i++)
{

gsl_vector_set (v, i, 1.23 + i);
}

{
FILE * f = fopen("test.dat", "w") ;
gsl_vector_fprintf (f, v, "%.5g");
fclose (f);

}
}

After running this program the file ‘test.dat’ should contain the elements of v, written
using the format specifier %.5g. The vector could then be read back in using the function
gsl_vector_fscanf (f, v).

11.6 The matrix struct

Matrices are defined by a gsl_matrix structure which contains three members, the two
dimensions of the matrix and a pointer to a block of memory where the elements of the
matrix are stored. The gsl_matrix structure is very simple and looks like this,

Chapter 11: Vectors and Matrices 107

typedef struct
{

size_t size1;
size_t size2;
double * data;

} gsl_matrix ;

The library also defines three other types of matrices, for single-precision floating point
numbers, complex numbers of type gsl_complex and integers which have the names gsl_
matrix_float, gsl_matrix_complex and gsl_matrix_int.

11.7 Matrix allocation

The functions for allocating memory to a matrix follow the style of malloc and free.
They also perform their own error checking. If there is insufficient memory available to
allocate a vector then the functions call the GSL error handler (with an error number of
GSL_ENOMEM) in addition to returning a null pointer. Thus if you use the library error
handler to abort your program then it isn’t necessary to check every alloc.

Functiongsl_matrix * gsl matrix alloc (size_t n1, size_t n2)
These functions allocate memory for a matrix and its n1 n2 elements, returning
a pointer to a newly initialized matrix struct. The elements of the matrix are
not initialized and so their values are undefined. Use the function gsl_matrix_
calloc if you want to ensure that all the elements are initialized to zero.

A null pointer is returned if insufficient memory is available to store the matrix.

Functiongsl_matrix * gsl matrix calloc (size_t n1, size_t n2)
These functions allocate memory for a matrix and initializes all the elements of
the matrix to zero.

Functionvoid gsl matrix free (gsl_matrix * m)
These functions free a matrix m previously allocated with gsl_matrix_alloc
or gsl_matrix_calloc.

The following functions perform the same tasks as the functions above for single-precision
and integer matrices.

Functiongsl_matrix_float * gsl matrix float alloc (size_t n1,
size_t n2)

Functiongsl_matrix_float * gsl matrix float calloc (size_t n1,
size_t n2)

Functionvoid gsl matrix float free (gsl_matrix_float * m)
These functions perform memory management for single-precision floating point
matrices defined with the struct gsl_matrix_float.

Chapter 11: Vectors and Matrices 108

Functiongsl_matrix_complex * gsl matrix complex alloc (size_t
n1, size_t n2)

Functiongsl_matrix_complex * gsl matrix complex calloc (size_t
n1, size_t n2)

Functionvoid gsl matrix complex free (gsl_matrix_complex * m)
These functions perform memory management for complex matrices defined
with the struct gsl_matrix_complex.

Functiongsl_matrix_int * gsl matrix int alloc (size_t n1, size_t
n2)

Functiongsl_matrix_int * gsl matrix int calloc (size_t n1, size_t
n2)

Functionvoid gsl matrix int free (gsl_matrix_int * m)
These functions perform memory management for integer matrices defined with
the struct gsl_matrix_int.

11.8 Accessing matrix elements

The functions for accessing the elements of a matrix use the same range checking system
as vectors. You turn off range checking by recompiling your program with the preprocessor
definition GSL_RANGE_CHECK_OFF.

The elements of the matrix are stored in "C-order", where the second index moves
continuously through memory. More precisely, the element accessed by the function gsl_
matrix_get(m,i,j) and gsl_matrix_set(m,i,j,x) is

m->data[i * n2 + j]

where n2 is the second dimension of the matrix.

Functiondouble gsl matrix get (const gsl_matrix * m, size_t i,
size_t j)

These functions return the (i,j)th element of a matrix m. If i or j lie outside
the allowed range of 0 to n1-1 and 0 to n2-1 then the error handler is invoked
and 0 is returned.

Functionvoid gsl matrix set (gsl_matrix * m, size_t i, size_t j,
double x)

These functions set the value of the (i,j)th element of a matrix m to x. If i or j
lies outside the allowed range of 0 to n1-1 and 0 to n2-1 then the error handler
is invoked.

The following functions perform the same tasks for matrices of the type gsl_matrix_float
and gsl_matrix_int.

Functionfloat gsl matrix float get (const gsl_matrix_float * m,
size_t i, size_t j)

Functionvoid gsl matrix float set (gsl_matrix_float * m, size_t i,
size_t j, float x)

These functions access the elements of a single-precision matrix.

Chapter 11: Vectors and Matrices 109

Functiongsl_complex gsl matrix complex get (const
gsl_matrix_complex * m, size_t i, size_t j)

Functionvoid gsl matrix complex set (gsl_matrix_complex * m,
size_t i, size_t j, gsl_complex x)

These functions access the elements of a complex matrix.

Functionint gsl matrix int get (const gsl_matrix_int * m, size_t i,
size_t j)

Functionvoid gsl matrix int set (gsl_matrix_int * m, size_t i,
size_t j, int x)

These functions access the elements of an integer matrix.

11.9 Reading and writing matrices

The library provides functions for reading and writing matrices to a file as binary data
or formatted text.

Functionint gsl matrix fwrite (FILE * stream, const gsl_matrix * m)
This function writes the elements of the matrix m to the stream stream in
binary format. The return value is 0 for success and GSL_EFAILED if there was
a problem writing to the file. Since the data is written in the native binary
format it may not be portable between different architectures.

Functionint gsl matrix fread (FILE * stream, gsl_matrix * m)
This function reads into the matrix m from the open stream stream in binary
format. The matrix m must be preallocated with the correct length since the
function uses the size of m to determine how many bytes to read. The return
value is 0 for success and GSL_EFAILED if there was a problem reading from the
file. The data is assumed to have been written in the native binary format on
the same architecture.

Functionint gsl matrix fprintf (FILE * stream, const gsl_matrix *
m, const char * format)

This function writes the elements of the matrix m line-by-line to the stream
stream using the format specifier format, which should be one of the %g, %e or
%f formats for floating point numbers and %d for integers. The function returns
0 for success and GSL_EFAILED if there was a problem writing to the file.

Functionint gsl matrix fscanf (FILE * stream, gsl_matrix * m)
This function reads formatted data from the stream stream into the matrix m.
The matrix m must be preallocated with the correct length since the function
uses the size of m to determine how many numbers to read. The function
returns 0 for success and GSL_EFAILED if there was a problem reading from the
file.

The following functions read and write single-precision and integer matrices with the types
gsl_matrix_float and gsl_matrix_int.

Chapter 11: Vectors and Matrices 110

Functionint gsl matrix float fwrite (FILE * stream, const
gsl_matrix_float * m)

Functionint gsl matrix float fread (FILE * stream, gsl_matrix_float
* m)

Functionint gsl matrix float fprintf (FILE * stream, const
gsl_matrix_float * m, const char * format)

Functionint gsl matrix float fscanf (FILE * stream,
gsl_matrix_float * m)

These functions read and write single-precision matrices as binary data or for-
matted text.

Functionint gsl matrix complex fwrite (FILE * stream, const
gsl_matrix_complex * m)

Functionint gsl matrix complex fread (FILE * stream,
gsl_matrix_complex * m)

Functionint gsl matrix complex fprintf (FILE * stream, const
gsl_matrix_complex * m, const char * format)

Functionint gsl matrix complex fscanf (FILE * stream,
gsl_matrix_complex * m)

These functions read and write complex matrices as binary data or formatted
text.

Functionint gsl matrix int fwrite (FILE * stream, const
gsl_matrix_int * m)

Functionint gsl matrix int fread (FILE * stream, gsl_matrix_int *
m)

Functionint gsl matrix int fprintf (FILE * stream, const
gsl_matrix_int * m, const char * format)

Functionint gsl matrix int fscanf (FILE * stream, gsl_matrix_int *
m)

These functions read and write integer matrices as binary data or formatted
text.

11.10 Example programs for matrices

This program shows how to allocate, initialize and read from a matrix using the functions
gsl_matrix_alloc, gsl_matrix_set and gsl_matrix_get.

#include <stdio.h>
#include <gsl_matrix.h>

int main ()
{

int i, j;
gsl_matrix * m = gsl_matrix_alloc (10,3) ;

for (i = 0; i < 10; i++)
for (j = 0; j < 3; j++)

Chapter 11: Vectors and Matrices 111

gsl_matrix_set (m, i, j, 0.23 + 100*i + j);

for (i = 0; i < 100; i++)
for (j = 0; j < 3; j++)

printf("m_(%d,%d) = %g\n", i, j, gsl_matrix_get (m, i, j));
}

Here is the output from the program. The final loop attempts to read outside the range of
the matrix m, and the error is trapped by the range-checking code in gsl_matrix_get.

m_(0,0) = 0.23
m_(0,1) = 1.23
m_(0,2) = 2.23
m_(1,0) = 100.23
m_(1,1) = 101.23
m_(1,2) = 102.23
...
m_(9,2) = 902.23
gsl: matrix_source.c:13: ERROR: first index out of range
IOT trap/Abort (core dumped)

The next program shows how to write a matrix to a file.
#include <stdio.h>
#include <gsl_matrix.h>

int main ()
{

int i, j, differences = 0;
gsl_matrix * m = gsl_matrix_calloc (100,100) ;
gsl_matrix * a = gsl_matrix_calloc (100,100) ;

for (i = 0; i < 100; i++)
for (j = 0 ; j < 100; j++)

gsl_matrix_set (m, i, j, 0.23 + i + j);

{
FILE * f = fopen("test.dat", "w") ;
gsl_matrix_fwrite (f, m);
fclose (f);

}

{
FILE * f = fopen("test.dat", "r") ;
gsl_matrix_fread (f, a);
fclose (f);

}

for (i = 0; i < 100; i++)
for (j = 0 ; j < 100; j++)

if (gsl_matrix_get(m, i, j) != gsl_matrix_get(a, i, j))
differences ++ ;

Chapter 11: Vectors and Matrices 112

printf("differences = %d (should be zero)\n", differences) ;

}

After running this program the file ‘test.dat’ should contain the elements of m, written
in binary format. The matrix which is read back in using the function gsl_matrix_fread
should be exactly equal to the original matrix.

Chapter 12: Histograms 113

12 Histograms

This chapter describes functions for creating histograms. Histograms provide a conve-
nient way of summarizing the distribution of a set of data. A histogram consists of a set of
bins which count the number of events falling into a given range of a continuous variable
x. In GSL the bins of a histogram contain floating-point numbers, so they can be used
to record both integer and non-integer distributions. The bins can use arbitrary sets of
ranges (uniformly spaced bins are the default). Both one and two-dimensional histograms
are supported.

Once a histogram has been created it can also be converted into a probability distri-
bution function. The library provides efficient routines for selecting random samples from
probability distributions. This can be useful for generating simulations based real data.

12.1 The histogram struct

A histogram is defined by the following struct,

Data Typegsl histogram
size_t n This is the number of histogram bins

double * range
The ranges of the bins are stored in an array of n+1 elements
pointed to by range.

double * bin
The counts for each bin are stored in an array of n elements pointed
to by bin. The bins are floating-point numbers, so you can incre-
ment them by non-integer values if necessary.

The range for bin[i] is given by range[i] to range[i+1]. For n bins there are n + 1 entries
in the array range. Each bin is inclusive at the lower end and exclusive at the upper end.
Mathematically this means that the bins are defined by the following inequality,

bin[i] corresponds to range[i] ≤ x < range[i+ 1]
Here is a diagram of the correspondence between ranges and bins on the number-line for x,

r[0] r[1] r[2] r[3] r[4] r[5]
---|---------|---------|---------|---------|---------|--- x

[bin[0])[bin[1])[bin[2])[bin[3])[bin[5])

In this picture the values of the range array are denoted by r. On the left-hand side of
each bin the square bracket "[" denotes an inclusive lower bound (r ≤ x), and the round
parentheses ")" on the right-hand side denote an exclusive upper bound (x < r). Thus any
samples which fall on the upper end of the histogram are excluded. If you want to include
this value for the last bin you will need to add an extra bin to your histogram.

The gsl_histogram struct and its associated functions are defined in the header file
‘gsl_histogram.h’.

Chapter 12: Histograms 114

12.2 Histogram allocation

The functions for allocating memory to a histogram follow the style of malloc and free.
In addition they also perform their own error checking. If there is insufficient memory
available to allocate a histogram then the functions call the GSL error handler (with an
error number of GSL_ENOMEM) in addition to returning a null pointer. Thus if you use the
library error handler to abort your program then it isn’t necessary to check every histogram
alloc.

Functiongsl_histogram * gsl histogram calloc (size_t n)
This function allocates memory for a histogram with n bins, and returns a
pointer to its newly initialized gsl_histogram struct. The bins are uniformly
spaced with a total range of 0 ≤ x < n, as shown in the table below.

bin[0] corresponds to 0 ≤ x < 1
bin[1] corresponds to 1 ≤ x < 2
......
bin[n-1] corresponds to n− 1 ≤ x < n

The bins are initialized to zero so the histogram is ready for use.
If insufficient memory is available a null pointer is returned and the error handler
is invoked with an error code of GSL_ENOMEM.

Functiongsl_histogram * gsl histogram calloc uniform (size_t n,
double xmin, double xmax)

This function allocates memory for a histogram with n uniformly spaced
bins from xmin to xmax, and returns a pointer to the newly initialized gsl_
histogram struct. The bins are shown in the table below,

bin[0] corresponds to xmin ≤ x < xmin + d
bin[1] corresponds to xmin + d ≤ x < xmin + 2 d
......
bin[n-1] corresponds to xmin + (n− 1)d ≤ x < xmax

where d is the bin spacing, (xmax− xmin)/n. Each bin is initialized to zero.
If insufficient memory is available a null pointer is returned and the error handler
is invoked with an error code of GSL_ENOMEM.

To create a histogram with non-uniform bins you will need to call gsl_histogram_
calloc to prepare a new histogram struct and then modify the range array to use your
desired bin limits. The ranges can be arbitrary, subject to the restriction that they are
monotonically increasing.

For example, the following code fragment shows how to create a histogram with loga-
rithmic bins from 1—10, 10—100 and 100—1000.

gsl_histogram * h = gsl_histogram_calloc (3) ;

h->range[0] = 1.0 ; /* bin[0] covers the range 1 <= x < 10 */
h->range[1] = 10.0 ; /* bin[1] covers the range 10 <= x < 100 */
h->range[2] = 100.0 ; /* bin[2] covers the range 100 <= x < 1000 */
h->range[3] = 1000.0 ;

Chapter 12: Histograms 115

Note that the size of the range array is automatically defined as double range[4] by gsl_
histogram_calloc, and is one element bigger than the array of bins double bin[3]. Thus
the range array safely includes extra space for the final upper value, range[3].

Functionvoid gsl histogram free (gsl_histogram * h)
This function frees the histogram h and all of the memory associated with it.

12.3 Updating and accessing histogram elements

There are two ways to access histogram bins, either by specifying an x coordinate or by
using the bin-index directly. The functions for accessing the histogram through x coordi-
nates use a binary search to identify the bin which covers the appropriate range.

Functionint gsl histogram increment (gsl_histogram * h, double x)

This function updates the histogram h by adding one (1.0) to the bin whose
range contains the coordinate x.

If x lies in the valid range of the histogram then the function returns zero to
indicate success. If x is less than the lower limit of the histogram then the
function returns GSL_EDOM, and none of bins are modified. Similarly, if the
value of x is greater than or equal to the upper limit of the histogram then
the function returns GSL_EDOM, and none of the bins are modified. The error
handler is not called, however, since it is often necessary to compute histogram
for a small range of a larger dataset, ignoring the values outside the range of
interest.

Functionint gsl histogram accumulate (gsl_histogram * h, double
x, double weight)

This function is similar to gsl_histogram_increment but increases the value
of the appropriate bin in the histogram h by the floating-point number weight.

Functiondouble gsl histogram get (const gsl_histogram * h, size_t
i)

This function returns the contents of the ith bin of the histogram h. If i lies
outside the valid range of indices for the histogram then the error handler is
called with an error code of GSL_EDOM and the function returns 0.

Functionint gsl histogram get range (const gsl_histogram * h,
size_t i, double * lower, double * upper)

This function finds the upper and lower range limits of the ith bin of the his-
togram h. If the index i is valid then the corresponding range limits are stored
in lower and upper. The lower limit is inclusive (i.e. events with this coordinate
are included in the bin) and the upper limit is exclusive (i.e. events with the
coordinate of the upper limit are excluded and fall in the neighboring higher
bin, if it exists). The function returns 0 to indicate success. If i lies outside the
valid range of indices for the histogram then the error handler is called and the
function returns an error code of GSL_EDOM.

Chapter 12: Histograms 116

Functiondouble gsl histogram max (const gsl_histogram * h)
Functiondouble gsl histogram min (const gsl_histogram * h)
Functionsize_t gsl histogram bins (const gsl_histogram * h)

These functions return the maximum upper and mimimum lower range limits
and the number of bins of the histogram h. They provide a way of determining
these values without accessing the gsl_histogram struct directly.

Functionvoid gsl histogram reset (gsl_histogram * h)
This function resets all the bins in the histogram h to zero.

12.4 Searching histogram ranges

The following functions are used by the access and update routines to locate the bin
which corresponds to a given x coordinate.

Functionint gsl histogram find impl (size_t n, const double
range[], double x, size_t * i)

This function finds and sets the index i to the offset in the array range of size
n which bounds the value of x, such that range[i] ≤ x < range[i + 1]. The
binary search function bsearch from the system C-library is used to locate the
appropriate range. If a suitable value of i is found then the function returns 0
to indicate success. If x is less than the lower limit the function returns -1, and
if x is greater than or equal to the upper limit it returns +1. The error handler
is not called.

Functionint gsl histogram find (const gsl_histogram * h, double x,
size_t * i)

This function uses gsl_histogram_find_impl to set the index i to the bin
number which covers the coordinate x in the histogram h. If x is found then
the function sets the index i and returns zero to indicate success. If x lies
outside the valid range of the histogram then the function returns GSL_EDOM
and the error handler is invoked.

12.5 Reading and writing histograms

The library provides functions for reading and writing histograms to a file as binary data
or formatted text.

Functionint gsl histogram fwrite (FILE * stream, const
gsl_histogram * h)

This function writes the ranges and bins of the histogram h to the stream stream
in binary format. The return value is 0 for success and GSL_EFAILED if there
was a problem writing to the file. Since the data is written in the native binary
format it may not be portable between different architectures.

Functionint gsl histogram fread (FILE * stream, gsl_histogram * h)
This function reads into the histogram h from the open stream stream in binary
format. The histogram h must be preallocated with the correct size since the

Chapter 12: Histograms 117

function uses the number of bins in h to determine how many bytes to read. The
return value is 0 for success and GSL_EFAILED if there was a problem reading
from the file. The data is assumed to have been written in the native binary
format on the same architecture.

Functionint gsl histogram fprintf (FILE * stream, const
gsl_histogram * h, const char * range format, const char *
bin format)

This function writes the ranges and bins of the histogram h line-by-line to
the stream stream using the format specifiers range format and bin format.
These should be one of the %g, %e or %f formats for floating point numbers.
The function returns 0 for success and GSL_EFAILED if there was a problem
writing to the file. The histogram output is formatted in three columns, and
the columns are separated by spaces, like this,

range[0] range[1] bin[0]
range[1] range[2] bin[1]
range[2] range[3] bin[2]
....
range[n-1] range[n] bin[n-1]

The values of the ranges are formatted using range format and the value of the
bins are formatted using bin format. Each line contains the lower and upper
limit of the range of the bins and the value of the bin itself. Since the upper
limit of one bin is the lower limit of the next there is duplication of these values
between lines but this allows the histogram to be manipulated with line-oriented
tools.

Functionint gsl histogram fscanf (FILE * stream, gsl_histogram * h)

This function reads formatted data from the stream stream into the histogram
h. The data is assumed to be in the three-column format used by gsl_
histogram_fprintf. The histogram h must be preallocated with the correct
length since the function uses the size of h to determine how many numbers
to read. The function returns 0 for success and GSL_EFAILED if there was a
problem reading from the file.

12.6 Resampling from histograms

A histogram made by counting events can be regarded as a measurement of a probability
distribution. Allowing for statistical error, the height of each bin represents the probability
of an event where the value of x falls in the range of that bin. The probability distribution
function has the one-dimensional form p(x)dx where,

p(x) = ni/(Nwi) (12.1)

In this equation ni is the number of events in the bin which contains x, wi is the width of
the bin and N is the total number of events. The distribution of events within each bin is
assumed to be uniform.

Chapter 12: Histograms 118

12.7 The histogram probability distribution struct

The probability distribution function for a histogram consists of a set of bins which
measure the probability of an event falling into a given range of a continuous variable
x. A probability distribution function is defined by the following struct, which actually
stores the cumulative probability distribution function. This is the natural quantity for
generating samples via the inverse transform method, because there is a one-to-one mapping
between the cumulative probability distribution and the range [0,1]. It can be shown that
by taking a uniform random number in this range and finding its corresponding coordinate
in the cumulative probability distribution we obtain samples with the desired probability
distribution.

Data Typegsl histogram pdf
size_t n This is the number of bins used to approximate the probability

distribution function.

double * range
The ranges of the bins are stored in an array of n+1 elements
pointed to by range.

double * sum
The cumulative probability for the bins is stored in an array of n
elements pointed to by sum.

The following functions allow you to create a gsl_histogram_pdf struct which represents
this probability distribution and generate random samples from it.

Functiongsl_histogram_pdf * gsl histogram pdf alloc (const
gsl_histogram * h)

This function allocates memory for a probability distribution calculated from
the histogram h and returns a pointer to a newly initialized gsl_histogram_
pdf struct. If any of the bins of h are negative then a null pointer is returned
and the error handler is invoked with an error code of GSL_EDOM because a
probability distribution cannot contain negative values.
If insufficient memory is available a null pointer is returned and the error handler
is invoked with an error code of GSL_ENOMEM.

Functionvoid gsl histogram pdf free (gsl_histogram_pdf * p)
This function frees the probability distribution function p and all of the memory
associated with it.

Functiondouble gsl histogram pdf sample (const
gsl_histogram_pdf * p, double r)

This function uses r, a uniform random number between zero and one, to com-
pute a single random sample from the probability distribution p. The algorithm
used to compute the sample s is given by the following formula,

s = range[i] + delta ∗ (range[i+ 1]− range[i]) (12.2)
where i is the index which satisfies sum[i] ≤ r < sum[i + 1] and delta is
(r − sum[i])/(sum[i+ 1]− sum[i]).

Chapter 12: Histograms 119

12.8 Example programs for histograms

The following program shows how to make a simple histogram of a column of numerical
data supplied on stdin. The program takes three arguments, specifying the upper and
lower bounds of the histogram and the number of bins. It then reads numbers from stdin,
one line at a time, and adds them to the histogram. When there is no more data to read it
prints out the accumulated histogram using gsl_histogram_fprintf.

#include <stdio.h>
#include <stdlib.h>
#include <gsl_histogram.h>

int
main (int argc, char **argv)
{

double a, b ;
size_t n;

if (argc != 4)
{

printf ("Usage: gsl-histogram xmin xmax n\n"
"Computes a histogram of the data on stdin"
"using n bins from xmin to xmax\n");

exit (0);
}

a = atof (argv[1]);
b = atof (argv[2]);
n = atoi (argv[3]);

{
gsl_histogram * h = gsl_histogram_calloc_uniform (n, a, b) ;
int status ;

do {
double x ;
status = fscanf(stdin, "%lg", &x) ;

gsl_histogram_increment (h, x) ;

} while (status == 1) ;

gsl_histogram_fprintf (stdout, h, "%g", "%g") ;
}

exit (0) ;
}

Chapter 12: Histograms 120

Here is an example of the program in use. We generate 10000 random samples from a
lorentz distribution with a width of 30 and histogram them over the range -100 to 100,
using 200 bins.

gsl-lorentz 30 10000 | gsl-histogram -100 100 200 > histogram.dat

A plot of the resulting histogram shows the familiar shape of the lorentz distribution and
the fluctuations caused by the finite sample size.

gnuplot> plot ’histogram.dat’ using 1:3 with step

0

20

40

60

80

100

120

140

-100 -80 -60 -40 -20 0 20 40 60 80 100

’histogram.dat’ using 1:3

12.9 Two dimensional histograms

A two dimensional histogram consists of a set of bins which count the number of events
falling in a given area of the (x, y) plane. The simplest way to use a two dimensional
histogram is to record two-dimensional position information, n(x, y). Another possibility is
to form a joint distribution by recording related variables. For example a detector might
record both the position of an event (x) and the amount of energy it deposited E. These
could be histogrammed as the joint distribution n(x, E).

12.10 The 2D histogram struct

Two dimensional histograms are defined by the following struct,

Data Typegsl histogram2d
size_t nx, ny

This is the number of histogram bins in the x and y directions.

Chapter 12: Histograms 121

double * xrange
The ranges of the bins in the x-direction are stored in an array of
nx + 1 elements pointed to by xrange.

double * yrange
The ranges of the bins in the y-direction are stored in an array of
ny + 1 pointed to by yrange.

double * bin
The counts for each bin are stored in an array pointed to by bin.
The bins are floating-point numbers, so you can increment them
by non-integer values if necessary. The array bin stores the two
dimensional array of bins in a single block of memory according to
the mapping bin(i,j) = bin[i * ny + j].

The range for bin(i,j) is given by xrange[i] to xrange[i+1] in the x-direction and yrange[j] to
yrange[j+1] in the y-direction. Each bin is inclusive at the lower end and exclusive at the
upper end. Mathematically this means that the bins are defined by the following inequality,

bin(i,j) corresponds to xrange[i] \le x < xrange[i+1]
and yrange[j] \le y < yrange[j+1]

Note that any samples which fall on the upper sides of the histogram are excluded. If
you want to include these values for the side bins you will need to add an extra row or
column to your histogram.

The gsl_histogram2d struct and its associated functions are defined in the header file
‘gsl_histogram2d.h’.

12.11 2D Histogram allocation

The functions for allocating memory to a 2D histogram follow the style of malloc and
free. In addition they also perform their own error checking. If there is insufficient memory
available to allocate a histogram then the functions call the GSL error handler (with an error
number of GSL_ENOMEM) in addition to returning a null pointer. Thus if you use the library
error handler to abort your program then it isn’t necessary to check every 2D histogram
alloc.

Functiongsl_histogram2d * gsl histogram2d calloc (size_t nx,
size_t ny)

This function allocates memory for a two-dimensional histogram with nx bins
in the x direction and ny bins in the y direction. The function returns a pointer
to a newly initialized gsl_histogram2d struct. The bins are uniformly spaced
with a total range of 0 ≤ x < nx in the x-direction and 0 ≤ y < ny in the
y-direction, as shown in the table below.

The bins are initialized to zero so the histogram is ready for use.

If insufficient memory is available a null pointer is returned and the error handler
is invoked with an error code of GSL_ENOMEM.

Chapter 12: Histograms 122

Functiongsl_histogram2d * gsl histogram2d calloc uniform
(size_t nx, size_t ny, double xmin, double xmax, double ymin,
double ymax)

Functionvoid gsl histogram2d free (gsl_histogram2d * h)
This function frees the 2D histogram h and all of the memory associated with
it.

12.12 Updating and accessing 2D histogram elements

You can access the bins of a two-dimensional histogram either by specifying a pair of
(x, y) coordinates or by using the bin indices (i, j) directly. The functions for accessing
the histogram through (x, y) coordinates use binary searches in the x and y directions to
identify the bin which covers the appropriate range.

Functionint gsl histogram2d increment (gsl_histogram2d * h,
double x, double y)

This function updates the histogram h by adding one (1.0) to the bin whose x
and y ranges contain the coordinates (x,y).
If the point (x, y) lies inside the valid ranges of the histogram then the function
returns zero to indicate success. If (x, y) lies outide the limits of the histogram
then the function returns GSL_EDOM, and none of bins are modified. The error
handler is not called, since it is often necessary to compute histogram for a
small range of a larger dataset, ignoring any coordinates outside the range of
interest.

Functionint gsl histogram2d accumulate (gsl_histogram2d * h,
double x, double y, double weight)

This function is similar to gsl_histogram2d_increment but increases the value
of the appropriate bin in the histogram h by the floating-point number weight.

Functiondouble gsl histogram2d get (const gsl_histogram2d * h,
size_t i, size_t j)

This function returns the contents of the (i,j)th bin of the histogram h. If (i,j)
lies outside the valid range of indices for the histogram then the error handler
is called with an error code of GSL_EDOM and the function returns 0.

Functionint gsl histogram2d get xrange (const gsl_histogram2d *
h, size_t i, double * xlower, double * xupper)

Functionint gsl histogram2d get yrange (const gsl_histogram2d *
h, size_t j, double * ylower, double * yupper)

These functions find the upper and lower range limits of the ith and jth bins
in the x and y directions of the histogram h. The range limits are stored in
xlower and xupper or ylower and yupper. The lower limits are inclusive (i.e.
events with these coordinates are included in the bin) and the upper limits are
exclusive (i.e. events with the value of the upper limit are not included and fall
in the neighboring higher bin, if it exists). The functions return 0 to indicate
success. If i or j lies outside the valid range of indices for the histogram then
the error handler is called with an error code of GSL_EDOM.

Chapter 12: Histograms 123

Functiondouble gsl histogram2d xmax (const gsl_histogram2d * h)
Functiondouble gsl histogram2d xmin (const gsl_histogram2d * h)
Functionsize_t gsl histogram2d nx (const gsl_histogram2d * h)
Functiondouble gsl histogram2d ymax (const gsl_histogram2d * h)
Functiondouble gsl histogram2d ymin (const gsl_histogram2d * h)
Functionsize_t gsl histogram2d ny (const gsl_histogram2d * h)

These functions return the maximum upper and mimimum lower range limits
and the number of bins for the x and y directions of the histogram h. They pro-
vide a way of determining these values without accessing the gsl_histogram2d
struct directly.

Functionvoid gsl histogram2d reset (gsl_histogram2d * h)
This function resets all the bins of the histogram h to zero.

12.13 Searching 2D histogram ranges

The following functions are used by the access and update routines to locate the bin
which corresponds to a given (x, y) coordinate.

Functionint gsl histogram2d find impl (const gsl_histogram2d * h,
double x, double y, size_t * i, size_t * j)

This function finds and sets the indices i and j to the offsets in the arrays
xrange and yrange which bound the value of (x, y), such that xrange[i] ≤ x <
xrange[i+ 1] and yrange[j] ≤ y < yrange[j + 1]. The binary search function
bsearch from the system C-library is used to locate the appropriate ranges.
If suitable values of i and j are found then the function returns 0 to indicate
success. If x is less than the lower limit the function returns -1, and if x is
greater than or equal to the upper limit it returns +1. If x is valid then the
same checks are applied to y, with return values of -1 or +1 indicating and error.
The error handler is not called.

Functionint gsl histogram2d find (const gsl_histogram2d * h,
double x, double y, size_t * i, size_t * j)

This function uses gsl_histogram2d_find_impl to set the indices i and j to
the bin which covers the coordinates (x, y) in the histogram h. If (x, y) is found
then the function sets the indices (i,j) and returns zero to indicate success. If
(x, y) lies outside the valid range of the histogram then the function returns
GSL_EDOM and the error handler is invoked.

12.14 Reading and writing 2D histograms

The library provides functions for reading and writing two dimensional histograms to a
file as binary data or formatted text.

Functionint gsl histogram2d fwrite (FILE * stream, const
gsl_histogram2d * h)

This function writes the ranges and bins of the histogram h to the stream stream
in binary format. The return value is 0 for success and GSL_EFAILED if there

Chapter 12: Histograms 124

was a problem writing to the file. Since the data is written in the native binary
format it may not be portable between different architectures.

Functionint gsl histogram2d fread (FILE * stream, gsl_histogram2d
* h)

This function reads into the histogram h from the stream stream in binary
format. The histogram h must be preallocated with the correct size since the
function uses the number of x and y bins in h to determine how many bytes to
read. The return value is 0 for success and GSL_EFAILED if there was a problem
reading from the file. The data is assumed to have been written in the native
binary format on the same architecture.

Functionint gsl histogram2d fprintf (FILE * stream, const
gsl_histogram2d * h, const char * range format, const char *
bin format)

This function writes the ranges and bins of the histogram h line-by-line to the
stream stream using the format specifiers range format and bin format. These
should be one of the %g, %e or %f formats for floating point numbers. The
function returns 0 for success and GSL_EFAILED if there was a problem writing
to the file. The histogram output is formatted in five columns, and the columns
are separated by spaces, like this,

xrange[0] xrange[1] yrange[0] yrange[1] bin(0,0)
xrange[0] xrange[1] yrange[1] yrange[2] bin(0,1)
xrange[0] xrange[1] yrange[2] yrange[3] bin(0,2)
....
xrange[0] xrange[1] yrange[ny-1] yrange[ny] bin(0,ny-1)

xrange[1] xrange[2] yrange[0] yrange[1] bin(1,0)
xrange[1] xrange[2] yrange[1] yrange[2] bin(1,1)
xrange[1] xrange[2] yrange[1] yrange[2] bin(1,2)
....
xrange[1] xrange[2] yrange[ny-1] yrange[ny] bin(1,ny-1)

....

xrange[nx-1] xrange[nx] yrange[0] yrange[1] bin(nx-1,0)
xrange[nx-1] xrange[nx] yrange[1] yrange[2] bin(nx-1,1)
xrange[nx-1] xrange[nx] yrange[1] yrange[2] bin(nx-1,2)
....
xrange[nx-1] xrange[nx] yrange[ny-1] yrange[ny] bin(nx-1,ny-1)

Each line contains the lower and upper limits of the bin and the contents of the
bin. Since the upper limits of the each bin are the lower limits of the neigh-
bouring bins there is duplication of these values but this allows the histogram
to be manipulated with line-oriented tools.

Chapter 12: Histograms 125

Functionint gsl histogram2d fscanf (FILE * stream, gsl_histogram2d
* h)

This function reads formatted data from the stream stream into the his-
togram h. The data is assumed to be in the five-column format used by
gsl_histogram_fprintf. The histogram h must be preallocated with the
correct lengths since the function uses the sizes of h to determine how many
numbers to read. The function returns 0 for success and GSL_EFAILED if there
was a problem reading from the file.

12.15 Resampling from 2D histograms

As in the one-dimensional case, a two-dimensional histogram made by counting events
can be regarded as a measurement of a probability distribution. Allowing for statistical
error, the height of each bin represents the probability of an event where (x,y) falls in the
range of that bin. For a two-dimensional histogram the probability distribution takes the
form p(x, y)dxdy where,

p(x, y) = nij/(NAij) (12.3)

In this equation nij is the number of events in the bin which contains (x, y), Aij is the
area of the bin and N is the total number of events. The distribution of events within each
bin is assumed to be uniform.

Data Typegsl histogram2d pdf
size_t nx, ny

This is the number of histogram bins used to approximate the prob-
ability distribution function in the x and y directions.

double * xrange
The ranges of the bins in the x-direction are stored in an array of
nx + 1 elements pointed to by xrange.

double * yrange
The ranges of the bins in the y-direction are stored in an array of
ny + 1 pointed to by yrange.

double * sum
The cumulative probability for the bins is stored in an array of
nx*ny elements pointed to by sum.

The following functions allow you to create a gsl_histogram2d_pdf struct which represents
a two dimensional probability distribution and generate random samples from it.

Functiongsl_histogram2d_pdf * gsl histogram2d pdf alloc (const
gsl_histogram2d * h)

This function allocates memory for a two-dimensional probability distribution
calculated from the histogram h and returns a pointer to a newly initialized
gsl_histogram2d_pdf struct. If any of the bins of h are negative then a null

Chapter 12: Histograms 126

pointer is returned and the error handler is invoked with an error code of GSL_
EDOM because a probability distribution cannot contain negative values.
If insufficient memory is available a null pointer is returned and the error handler
is invoked with an error code of GSL_ENOMEM.

Functionvoid gsl histogram2d pdf free (gsl_histogram2d_pdf * p)
This function frees the two-dimensional probability distribution function p and
all of the memory associated with it.

Functionint gsl histogram2d pdf sample (const
gsl_histogram2d_pdf * p, double r1, double r2, double * x, double
* y)

This function uses two uniform random numbers between zero and one, r1 and
r2, to compute a single random sample from the two-dimensional probability
distribution p.

12.16 Example programs for 2D histograms

This program demonstrates two features of two-dimensional histograms. First a 10 by
10 2d-histogram is created with x and y running from 0 to 1. Then a few sample points
are added to the histogram, at (0.3,0.3) with a height of 1, at (0.8,0.1) with a height of 5
and at (0.7,0.9) with a height of 0.5. This histogram with three events is used to generate
a random sample of 1000 simulated events, which are printed out.

#include <stdio.h>
#include <gsl_histogram2d.h>

int
main ()
{

gsl_histogram2d * h = gsl_histogram2d_calloc_uniform (10, 10,
0, 1, 0, 1) ;

gsl_histogram2d_accumulate (h, 0.3, 0.3, 1) ;
gsl_histogram2d_accumulate (h, 0.8, 0.1, 5) ;
gsl_histogram2d_accumulate (h, 0.7, 0.9, 0.5) ;

{
int i ;
gsl_histogram2d_pdf * p = gsl_histogram2d_pdf_alloc (h) ;

for (i = 0 ; i < 1000 ; i++) {
double x, y ;
double u = ((double) rand ()) / RAND_MAX;
double v = ((double) rand ()) / RAND_MAX;

int status = gsl_histogram2d_pdf_sample (p, u, v, &x, &y) ;

printf("%g %g\n", x, y) ;

Chapter 12: Histograms 127

}
}

return 0 ;
}

The following plot shows the distribution of the simulated events. Using a higher resolu-
tion grid we can see the original underlying histogram and also the statistical fluctuations
caused by the events being uniformly distributed over the the area of these original bins.

Chapter 13: Numerical Integration 128

13 Numerical Integration

To be written

13.1 Numerical integration References and Further Reading

The complete story of QUADPACK is given in the book of the same name written by
the original developers. It describes the algorithms used in QUADPACK and includes test
programs, examples and useful advice on numerical integration. It also has many references
to the numerical integration literature.

R. Piessens, E. de Doncker-Kapenga, C.W. Uberhuber, D.K. Kahaner. quadpack A
subroutine package for automatic integration Springer Verlag, 1983.

Chapter 14: Monte Carlo Integration 129

14 Monte Carlo Integration

This chapter describes the Monte Carlo integration routines in the library. At the mo-
ment the algorithms implemented are: plain non-adaptive, Monte Carlo, VEGAS (following
Peter Lepage) and MISER (following Numerical recipes). We will dispense with an intro-
duction and simply describe the algorithms and interfaces. Note that the documentation
(as well as the code) is still evolving - the code at a faster rate.

14.1 Algorithms

14.1.1 PLAIN (or Simple) Monte Carlo

We begin by establishing some notation. Let I(f) denote the integral of the function f
(for convenience, we take I(1) = 1) We will write the Monte Carlo estimate of the integral
as E(f ;N) for the

E(f ;N) =
1
N

N∑
i

f(xi). (14.1)

for N randomly distributed points xi Similarly, we will denote the variance of f by

σ2(f) = I(f2)− I(f)2 (14.2)

and the variance of the estimate by

V ar(f ;N) = E(f2;N)− (E(f ;N))2. (14.3)

The fundamental point of Monte Carlo integration is that for large N ,

E(f ;N)− I(f) ≈ σ2(f)
N

(14.4)

and furthermore, by the same argument,

σ2(f) ≈ V ar(f ;N) (14.5)

That’s all there is to simple Monte Carlo.

14.1.2 MISER

The starting point of all stratified sampling techniques is the observation that for two
disjoint regions a and b with Monte Carlo estimates of the integral Ea(f) and Eb(f) of the
integral of f in those regions and variances σ2

a(f) and σ2
b (f), the variance V ar(f) of the

combined estimate E(f) = 1
2
Ea(f) + 1

2
Eb(f) is given by

V ar(f) =
σ2
a(f)
4Na

+
σ2
b(f)
4Nb

(14.6)

Chapter 14: Monte Carlo Integration 130

This variance is minimized (subject to the constrain that Na + Nb is fixed) by choosing
(assuming one can) Na s.t.

Na
Na +Nb

=
σa

σa + σb
(14.7)

For such a choice, the variance is given by

V ar(f) =
(σa + σb)2

4N
(14.8)

In words, the variance of the estimate (and hence the error) is minimized by concentrating
points in regions where the variance of the function f is large.

The most straightforward stratified sampling routine divides a hyper-cubic integration
region into sub-cubes along the coordinate axes. This is simple to do, but gets out of hand
for large numbers of dimensions d because the number of sub-cubes grows like Kd (where
K is the number of sub-divisions along the axis).

What MISER does (and other recursive stratified samplers) is to bisect the hypercube
along one coordinate axis. The direction is chosen by examining all possible bisections (d
of them) and picking the one that gives the best combined variance. The same procedure is
then done for each of the two half-spaces (choosing Na and Nb as described above), and so
on. Since by assumption one does not know the variance V arL(f) in the various sub-regions,
it is estimated using some fraction of the total number of points alloted to the estimate.

14.1.3 VEGAS

Vegas takes another approach to obtaining good results, namely it tries to sample points
from the probability distribution described by the function f . More precisely, suppose we
estimate the integral of f with points distributed according to a probability distribution
described by the function g. If we call the new estimate Eg(f ;N) we have

Eg(f ;N) = E(f/g;N) (14.9)

and similarly
V arg(f ;N) = V ar(f/g;N) (14.10)

It is clear from this that if g = |f |/I(|f |) then the variance Vg(f ;N) vanishes. This it was
what Vegas attempts to do. It makes several passes, histograming f , and each time using
the histogram to define the sampling distribution for the next pass. This basic idea again
has the problem that the number of histogram bins grows like Kd. The compromise that
Vegas (ie, Peter Lepage) adopts is to assume that g factors: g(x1, x2, . . .) = g1(x1)g2(x2) . . .
so that the number of bins required is only d ·K. In this case, it is not hard to show that
the optimal distribution is

g1(x1) = [
∫
dx1 . . . dxn

f2(x1, . . . , xn)
g2(x2) . . . gn(xn)

](1/2) (14.11)

Lepage’s Vegas is actually a bit fancier than this, combining stratified sampling and
importance sampling. The integration region is divided into a number of “boxes”, with each
box getting in fixed number of points (the goal is 2). Each box can then have a fractional
number of bins, but if bins/box is less than two, Vegas switches to a kind variance reduction
(rather than importance sampling).

Chapter 14: Monte Carlo Integration 131

14.2 Interface

All of the integration routines use the same interface. There is an allocator to allocate
memory to hold control variables and workspace, a routine to initialize those control vari-
ables, the integrator itself, and of course a function to free the space when done. For an
integrator algorithm, call it COOL (substitute any of the currently existing algorithms) we
then have

Functiongsl_monte_COOL_state* gsl monte COOL alloc(size t
dim)

Functionint gsl monte COOL init(gsl monte COOL state* s)
Functionint gsl monte COOL free(gsl monte COOL state* s),
Functionint gsl monte COOL validate(gsl monte COOL state*

s,
double *x lower, double *x upper, unsigned long dimension, unsigned

long function calls) int
gsl monte COOL integrate(gsl monte COOL state* s,

double* x lower, double* x upper, unsigned long dimension, unsigned long func-
tion calls, double* result, double* error, ...)

Notice the ellipses in the last argument to the actual integration routine. This is because
the vegas algorithm (and perhaps others in the future) returns extra information – in the
case of vegas, it is the χ2 of the result.

In addition to the common function interface, the routines also share the state variables

Controlgsl_rng* ranf
which determines which random number generator will be used.

and

Controlint verbose
which says whether to print information about the calculation (though the
actual use depends on the algorithm).

In the near future, we expect that there will be a common interface for selecting a “log”
stream for reporting various information about the performance of the particular algorithm.

We describe the algorithm-specific variables.
PLAIN: None
MISER:

Controldouble alpha
alpha controls how the variances for the two sub-regions are combined. The
Numerical Recipes gang argue that for recursive sampling there is no reason to
expect that the variance should scale like 1/N and so they allow the scaling to
depend on α

V ar(f) =
σa
Nα
a

+
σb
Nα
b

(14.12)

Chapter 14: Monte Carlo Integration 132

Controldouble dither
Rather than exactly bisection the integration region, dither allows the user to
introduce a bit of fuzz. This helps in the case when the function to be integrated
has some symmetry, say if it is peaked in the center of the hypercube. If needed,
dither should be around 0.1.

VEGAS:

Controldouble alpha
For Vegas, alpha controls the stiffness of the rebinning algorithm: alpha = 0
means never rebin. It is typically set between one and two.

Controldouble acc
Setting acc allows vegas to terminate when the desired accuracy has been
achieved, rather than after a certain number of function calls. Setting it to
a negative value disables this feature.

Controllong int max it num
The maximum number of iterations to perform.

Controlint stage
Setting this determines the "stage" of the calculation. Normally, stage = 0.
Calling vegas with stage = 1 retains the grid (but not the answers) from the
previous run, so that one can “tune” the grid using a relatively small number of
points and then do a large run with stage = 1 on the optimized grid. Setting
stage = 2 keeps the grid and the answers from the previous run and stage =
3 enters at the main loop, so that nothing is changed – this is like deciding to
change max_it_num during the run.

Controlint mode
The possible choices are GSL_VEGAS_MODE_IMPORTANCE, GSL_VEGAS_MODE_
STRATIFIED, GSL_VEGAS_MODE_IMPORTANCE_ONLY. This determines whether
vegas will use importance sampling or stratified sampling, or whether it can
pick on its own. In low dimensions Vegas uses strict stratified sampling (more
precisely, stratified sampling is chosen if there are fewer than 2 bins per box).

14.3 Example

Here we provide s simple example of using the integration routines. Vegas was chosen
at random.

#include <math.h>
#include <stdio.h>

#include <gsl_math.h>
#include <gsl_monte_vegas.h>

double f1(double x[])
{

Chapter 14: Monte Carlo Integration 133

int i;
double product = 1.0;

for (i = 0; i < 10; i++)
product *= x[i];

return product;
}

main ()
{

double xl[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
double xu[10] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};

double res = 0;
double err = 0;
double chisq = 0;
int status = 0;
unsigned long calls = 10000;
unsigned long dimension = 10;

gsl_monte_vegas_state* s = gsl_monte_vegas_alloc(10);
gsl_monte_plain_init(s);

s->alpha = 1.5; /* default */
s->verbose = 0; /* default, we prefer to remain ignorant! */
s->stage = 0; /* default. Start at the beginning */
s->acc = -1.0 /* default. don’t terminate when accuracy is reached */
s->max_it_num = 5 /* default. Do five iterations before quitting */

status = gsl_monte_vegas_integrate(s, f0, xl, xu, dimension, calls,
&res, &err, &chisq);

if (status)
printf("oops!\n");

else
printf("vegas(f0) = %f +- %f with \"chisq\" %f\n", res, err, chisq);

}

14.4 The Future

In the future, the author of the Monte Carlo routines intends to add more algorithms,
greater control over the current ones, more error handling, and a more consistent interface.
Probably something like the rng interface will evolve, so that something like

integrator = gsl_monte_alloc(gsl_monte_vegas, dimension)

will be possible. The old interface will probably stay around for a while (though, since
this is version < 1, the author does not want to be held to such as statement).

Chapter 15: The IEEE standard for floating-point arithmetic 134

15 The IEEE standard for floating-point
arithmetic

This chapter describes functions for examing the representation of floating point numbers
and controlling the floating point environment of your program.

15.1 Representation of floating point numbers

Functionvoid gsl ieee printf float (const float * x)
Functionvoid gsl ieee printf double (const double * x)

#include <stdio.h>
#include <gsl_ieee_utils.h>

main ()
{

float f = 1.0/3.0 ;
double d = 1.0/3.0 ;

double fd = f ; /* promote from float to double */

printf(" float 1/3 = ") ; gsl_ieee_printf_float(&f) ; printf("\n") ;
printf("promoted float = ") ; gsl_ieee_printf_double(&fd) ; printf("\n") ;
printf(" double 1/3 = ") ; gsl_ieee_printf_double(&d) ; printf("\n") ;

}

float 1/3 = 1.01010101010101010101011*2^-2
promoted float = 1.0101010101010101010101100000000000000000000000000000*2^-2

double 1/3 = 1.01*2^-2

To use these numbers in Calc, precede them by 2# to indicate binary. In bc, work with
the mantissa separately from the exponent.

float vs double vs long double (how many digits are available for each)

importance of using 1.234L in long double calculations
int main (void)
{

long double x = 1.0, y = 1.0 ;

x = x + 0.2 ;
y = y + 0.2L ;

printf(" d %.20Lf\n",x) ;
printf("ld %.20Lf\n",y) ;

return 1;
}

d 1.20000000000000001110
ld 1.20000000000000000004

Chapter 15: The IEEE standard for floating-point arithmetic 135

15.2 Setting up your IEEE environment

The IEEE standard defines several modes for controlling the behavior of floating point
operations. These modes specify the important properties of computer arithmetic: the
direction used for rounding (e.g. whether numbers should be rounded up, down or to the
nearest number), the rouding precision and how the program should handle arithmetic
exceptions, such as division by zero.

Unfortunately there is no universal API for controlling these features – each system
has its own way of accessing them. For example, the Linux kernel provides the function
__setfpucw (set-fpu-control-word) to set IEEE modes, while HP-UX and Solaris use the
functions fpsetround and fpsetmask. To help you write portable programs GSL allows
you to specify modes in a platform-independent using the environment variable GSL_IEEE_
MODE. The library then takes care of all the necessary machine-specific initializations for
you when you call the function gsl_ieee_env_setup.

Functionvoid gsl ieee env setup ()
This function reads the environment variable GSL_IEEE_MODE and attempts to
set up the corresponding specified IEEE modes. The environment variable
should be a list of keywords, separated by semicolons, like this,

GSL_IEEE_MODE = "keyword;keyword;..."
where keyword is one of the following mode-names,

single-precision

double-precision

extended-precision

round-to-nearest

round-down

round-up

round-to-zero

mask-all

mask-invalid

mask-denormalized

mask-division-by-zero

mask-overflow

mask-underflow

trap-inexact

trap-common

If GSL_IEEE_MODE is empty or undefined then the function returns immediately
and no attempt is made to change the system’s IEEE mode. When the modes
from GSL_IEEE_MODE are turned on the function prints a short message showing
the new settings to remind you that the results of the program will be affected.
If the requested modes are not supported by the platform being used then the
function calls the error handler and returns an error code of GSL_EUNSUP.

Chapter 15: The IEEE standard for floating-point arithmetic 136

To demonstrate the effects of different rounding modes consider following the program
computes e, the base of natural logarithms, by summing a rapidly-decreasing series,

e = 1 +
1
2!

+
1
3!

+
1
4!

+ . . . = 2.71828182846... (15.1)

#include <math.h>
#include <stdio.h>
#include <gsl_ieee_utils.h>

int main (void)
{

double x = 1, oldsum = 0, sum = 0;
int i = 0 ;

gsl_ieee_env_setup () ; /* read GSL_IEEE_MODE */

do
{

i++ ;

oldsum = sum ;
sum += x ;
x = x / i ;

printf("i=%2d sum=%.18f error=%g\n",i, sum, sum - M_E) ;
}

while (sum != oldsum) ;

}

Here are the results of running the program in round-to-nearest mode. This is the IEEE
default so it isn’t really necessary to specify it here,

GSL_IEEE_MODE="round-to-nearest" ./a.out
i= 1 sum=1.000000000000000000 error=-1.71828
i= 2 sum=2.000000000000000000 error=-0.718282
....
i=18 sum=2.718281828459045535 error=4.44089e-16
i=19 sum=2.718281828459045535 error=4.44089e-16

After nineteen terms the sum converges to within 4× 10−16 of the correct value. If we now
change the rounding mode to round-down the final result is less accurate,

GSL_IEEE_MODE="round-down" ./a.out
i= 1 sum=1.000000000000000000 error=-1.71828
....
i=19 sum=2.718281828459041094 error=-3.9968e-15

The result is about 4 × 10−15 below the correct value, an order of magnitude worse than
the result obtained in the round-to-nearest mode.

If we change to rounding mode to round-up then the series no longer converges (the
reason is that when we add each term to the sum the final result is always rounded up.

Chapter 15: The IEEE standard for floating-point arithmetic 137

This is guaranteed to increase the sum by at least one tick on each iteration). To avoid
this problem we would need to use a safer converge criterion, such as while (fabs(sum -
oldsum) > epsilon), with a suitably chosen value of epsilon.

Finally we can see the effect of computing the sum using single-precision rounding, in
the default round-to-nearest mode. In this case the program thinks it is still using double
precision numbers but the CPU rounds the result of each floating point operation to single-
precision accuracy. This simulates the effect of writing the program using single-precision
float variables instead of double variables. The iteration stops after about half the number
of iterations and the final result is much less accurate,

GSL_IEEE_MODE="single-precision" ./a.out
....
i=12 sum=2.718281984329223633 error=1.5587e-07

with an error of O(10−7), which corresponds to single precision accuracy (about 1 part in
107). Continuing the iterations further does not decrease the error because all the subse-
quent results are rounded to the same value.

15.3 IEEE References and Further Reading

David Goldberg: What Every Computer Scientist Should Know About Floating-Point
Arithmetic. [Comm ACM ??] Vol. 23, No. 1 (March 1991) pages 5-48

Appendix A: Debugging Numerical Programs 138

Appendix A Debugging Numerical Programs

This chapter describes some tips and tricks for debugging numerical programs which use
GSL.

A.1 Using gdb

Any errors reported by the library are routed through the function gsl_error. By
running your programs under gdb and setting a breakpoint in this function you can auto-
matically catch any library errors. You can add a breakpoint for every session by putting

break gsl_error

into your ‘.gdbinit’ file in the directory where your program is started. If the breakpoint
catches an error then you can use a backtrace (bt) to see the call-tree, and the arguments
which possibly caused the error. By moving into the caller (up, up) you can investigate the
values of variable at that point.

Here is an example from the program fft/test_trap, which contains the following line,
status = gsl_fft_complex_wavetable_alloc (0, &complex_wavetable);

The function gsl_fft_complex_wavetable_alloc takes the length of an FFT as its first
argument. When this line is executed an error will be generated because the length of an
FFT is not allowed to be zero.

To debug this problem we start gdb, using the file ‘.gdbinit’ to define a breakpoint in
gsl_error,

bjg|zeke> gdb test_trap
GDB is free software and you are welcome to distribute copies of it
under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for GDB; type "show warranty" for details.
GDB 4.16 (i586-debian-linux), Copyright 1996 Free Software Foundation, Inc...
Breakpoint 1 at 0x8050b1e: file error.c, line 14.

When we run the program this breakpoint catches the error and shows the reason for it.
(gdb) run
Starting program: /home/bjg/gsl/fft/test_trap

Breakpoint 1, gsl_error (reason=0x8052b0d "length n must be positive integer",
file=0x8052b04 "c_init.c", line=108, gsl_errno=1) at error.c:14

14 if (gsl_error_handler)

The first argument of gsl_error is always a string describing the error. Now we can look
at the backtrace to see what caused the problem,

(gdb) bt
#0 gsl_error (reason=0x8052b0d "length n must be positive integer",

file=0x8052b04 "c_init.c", line=108, gsl_errno=1) at error.c:14
#1 0x8049376 in gsl_fft_complex_wavetable_alloc (n=0, wavetable=0xbffff778)

at c_init.c:108
#2 0x8048a00 in main (argc=1, argv=0xbffff9bc) at test_trap.c:94
#3 0x80488be in ___crt_dummy__ ()

Appendix A: Debugging Numerical Programs 139

We can see that the error was generated in the function gsl_fft_complex_wavetable_
alloc when it was called with an argument of n=0. The original call came from line 94 in
the file ‘test_trap.c’.

By moving up to the level of the original call we can find the line that caused the error,
(gdb) up
#1 0x8049376 in gsl_fft_complex_wavetable_alloc (n=0, wavetable=0xbffff778)

at c_init.c:108
108 GSL_ERROR ("length n must be positive integer", GSL_EDOM);
(gdb) up
#2 0x8048a00 in main (argc=1, argv=0xbffff9bc) at test_trap.c:94
94 status = gsl_fft_complex_wavetable_alloc (0, &complex_wavetable);

Thus we have found the line that caused the problem. From this point we could also print
out the values of other variables such as complex_wavetable.

A.2 GCC warning options for numerical programs

Writing reliable numerical programs in C requires great care. Uninitialized variables,
conversions to and from integers or from signed to unsigned integers can all cause hard-
to-find problems. For many non-numerical programs compiling with gcc’s warning option
-Wall provides a good check against common errors. However, for numerical programs
-Wall is not enough. If you are unconvinced take a look at this program which contains an
error that can occur in numerical code,

#include <math.h>
#include <stdio.h>

double f (int x) ;

int main ()
{

double a = 1.5 ;
double y = f(a) ;
printf("a = %g, sqrt(a) = %g\n", a, y) ;
return 0 ;

}

double f(x) {
return sqrt(x) ;

}

This code compiles cleanly with -Wall but produces some strange output,
bjg|zeke> gcc -Wall tmp.c -lm
bjg|zeke> ./a.out
a = 1.5, sqrt(a) = 1

Note that adding -ansi does not help here, since the program does not contain any invalid
constructs. What is happening is that the prototype for the function f(int x) is not
consistent with the function call f(y), where y is a floating point number. This results in
the argument being silently converted to an integer. This is valid C, but in a numerical

Appendix A: Debugging Numerical Programs 140

program it also likely to be a programming error so we would like to be warned about it. (If
we genuinely wanted to convert y to an integer then we could use an explicit cast, (int)y).

Fortunately GCC provides many additional warnings which can alert you to problems
such as this. You just have to remember to use them. Here is a set of recommended warning
options for numerical programs.

gcc -ansi -pedantic -Werror -Wall -W -Wmissing-prototypes
-Wstrict-prototypes -Wtraditional -Wconversion -Wshadow
-Wpointer-arith -Wcast-qual -Wcast-align -Wwrite-strings
-Waggregate-return -fshort-enums -fno-common -Wnested-externs
-Dinline= -g -O4

It saves time if you to put these options in your ‘Makefile’ (for example, under the target
make strict) or define them as a shell variable or alias. For details of each option consult
the manual Using and porting GCC. The following table gives a brief explanation of what
types of errors these warnings catch.

-ansi -pedantic
Use ANSI C, and reject any non-ANSI extensions. These flags help in writing
portable programs that will compile on other systems.

-Werror Consider warnings to be errors, so that compilation stops. This prevents warn-
ings from scrolling off the top of the screen and being lost. You won’t be able
to compile the program until it is completely warning-free.

-Wall This turns on a set of warnings for common programming problems. You need
-Wall, but it is not enough on its own, as explained above.

-O4 Turn on optimization. The warnings for unitialized variables in -Wall rely on
the optimizer to analyze the code. If there is no optimization then the warnings
aren’t generated.

-W This turns on some extra warnings not included in -Wall, such as missing return
values and comparisons between signed and unsigned integers.

-Wmissing-prototypes -Wstrict-prototypes
Warn if there are any missing or inconsistent prototypes. If your prototypes
are missing then you will never detect problems with incorrect arguments. If
your prototypes are inconsistent then you already have a problem.

-Wtraditional
This warns about certain constructs that behave differently in traditional and
ANSI C. Whether the traditional or ANSI interpretation is used might be un-
predictable on other compilers.

-Wconversion
The main use of this option is to warn about conversions from signed to unsigned
integers. For example, unsigned int x = -1.. If you need to perform such a
conversion you can use an explicit cast.

-Wshadow This warns whenever a local variable shadows another local variable. If two
variables have the same name then it is a potential source of confusion.

Appendix A: Debugging Numerical Programs 141

-Wpointer-arith -Wcast-qual -Wcast-align
These options warn if you try to do pointer arithmetic for types which don’t
have a size, such as void, if you remove a const cast from a pointer, or if you
cast a pointer to a type which has a different size, causing an invalid alignment.

-Wwrite-strings
This option gives string constants a const qualifier so that it will be a compile-
time error to attempt to overwrite them.

-Waggregate-return
Warn if any functions that return structures or unions are defined or called.
Some older compilers might have problems with such a construct.

-fshort-enums
This option makes the type of enum as short as possible. Normally this makes
an enum different from an int. Consequently any attempts to assign a pointer-
to-int to a pointer-to-enum will generate a cast-alignment warning.

-fno-common
This option prevents global variables being simultaneously defined in different
object files (you get an error at link time). Such a variable should be defined
in one file and referred to in other files with an extern declaration.

-Wnested-externs
This warns if an extern declaration is encountered within an function.

-Dinline=
The inline keyword is not part of ANSI C. Thus if you want to use -ansi with
a program which uses inline functions you can use this preprocessor definition
to remove the inline keywords.

-g It always makes sense to put debugging symbols in the executable so that you
can debug it using gdb. The only effect of debugging symbols is to increase the
size of the file, and you can use the strip command to remove them later if
necessary.

For comparison, this is what happens when the test program above is compiled with
these options.

bjg|zeke> gcc -ansi -pedantic -Werror -W -Wall -Wtraditional
-Wconversion -Wshadow -Wpointer-arith -Wcast-qual -Wcast-align
-Wwrite-strings -Waggregate-return -Wstrict-prototypes -fshort-enums
-fno-common -Wmissing-prototypes -Wnested-externs -Dinline=
-g -O4 tmp.c
cc1: warnings being treated as errors
tmp.c:7: warning: function declaration isn’t a prototype
tmp.c: In function ‘main’:
tmp.c:9: warning: passing arg 1 of ‘f’ as integer rather than floating
due to prototype
tmp.c: In function ‘f’:
tmp.c:14: warning: type of ‘x’ defaults to ‘int’
tmp.c:15: warning: passing arg 1 of ‘sqrt’ as floating rather than integer

Appendix A: Debugging Numerical Programs 142

due to prototype
make: *** [tmp] Error 1

The error in the prototype is flagged, plus the fact that we should have defined main as int
main (void) in ANSI C. Clearly there is some work to do before this program is ready to
run.

Appendix B: Contributors to GSL 143

Appendix B Contributors to GSL

Mark Galassi
Conceived GSL (with James Theiler) and wrote the design document. Wrote
the simulated annealing package and the relevant chapter in the manual.

James Theiler
Conceived GSL (with Mark Galassi). Wrote the random number generators
and the relevant chapter in this manual.

Jim Davies
Wrote the statistical routines and the relevant chapter in this manual.

Brian Gough
Wrote the FFT package and the relevant chapter in this manual. Also wrote
the error handling infrastructure.

Reid Priedhorsky
Wrote the root finding package and the relevant chapter in this manual.

Gerry Jungman
Wrote the special function library.

Appendix C: Copying 144

Appendix C Copying

The subroutines and source code in the GNU Scientific Library package are “free”; this
means that everyone is free to use them and free to redistribute them on a free basis. The
GNU Scientific Library-related programs are not in the public domain; they are copyrighted
and there are restrictions on their distribution, but these restrictions are designed to permit
everything that a good cooperating citizen would want to do. What is not allowed is to try
to prevent others from further sharing any version of these programs that they might get
from you.

Specifically, we want to make sure that you have the right to give away copies of the
programs that relate to GNU Scientific Library , that you receive source code or else can
get it if you want it, that you can change these programs or use pieces of them in new free
programs, and that you know you can do these things.

To make sure that everyone has such rights, we have to forbid you to deprive anyone else
of these rights. For example, if you distribute copies of the GNU Scientific Library-related
code, you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must tell them their rights.

Also, for our own protection, we must make certain that everyone finds out that there is
no warranty for the programs that relate to GNU Scientific Library . If these programs are
modified by someone else and passed on, we want their recipients to know that what they
have is not what we distributed, so that any problems introduced by others will not reflect
on our reputation.

The precise conditions of the licenses for the programs currently being distributed that
relate to GNU Scientific Library are found in the General Public Licenses that accompany
them.

Concept Index 145

Concept Index

2
2D histograms . 120

2D random direction vector . 41

3
3D random direction vector . 41

A
acceleration of series . 94

Ai(x) . 92

Airy functions . 92

B
Bernoulli trial, random numbers 45

Bessel functions . 92

Beta distribution random numbers 38

Bi(x) . 92

binning data . 113

Binomial random numbers . 46

bisection algorithm for finding roots. 84

breakpoints . 138

brent’s method for finding roots. 86

BSD random number generator 16

BSD random number generator, rand 16

C
Cauchy random numbers . 28

Chebyshev polynomials . 92

Chi-squared random numbers 35

CMRG, combined multiple recursive random

number generator . 14

combinatorial optimization . 96

combinatorial searches . 96

convergence, accelerating a series 94

cooling schedule . 96

cosine . 93

cost function . 96

Coulomb wave functions . 92

CRAY random number generator, RANF 18

D
debugging numerical programs 138

DFTs, see FFT . 63

digamma function . 93

dilogarithm . 93

direction vector, random 2D 41

direction vector, random 3D 41

Discrete Fourier Transforms, see FFT 63

E
energy function . 96

erf(x). 93

erfc(x). 93

error codes . 3

error function . 93

Error handlers . 4

error handling macros. 7

Errors . 3

estimated standard deviation 54

estimated variance . 54

Exponential power distribution, random numbers

. 27

Exponential random numbers 25

F
F-distribution random numbers 36

false position algorithm for finding roots 87

Fast Fourier Transforms, see FFT 63

Fermi-Dirac function . 93

FFT . 63

FFT mathematical definition 63

FFT of complex data, mixed-radix algorithm . . . 67

FFT of complex data, radix-2 algorithm 65

FFT of real data . 71

FFT of real data, mixed-radix algorithm 73

FFT of real data, radix-2 algorithm 72

FFT, complex data . 64

finding roots . 80

finding zeros . 80

flat distribution random numbers 33

Fourier Transforms, see FFT 63

G
Gamma distribution random numbers 32

gamma function . 93

Gaussian random numbers 23, 24

gcc warning options . 139

gdb . 138

Geometric random numbers 49, 50

Gumbel distribution, random numbers 43

Concept Index 146

H
histograms . 113

I
IEEE floating point. 134

integer powers . 93

L
Laguerre functions . 93

Laplace distribution random numbers 26

Legendre functions . 93

Levin u-transform . 94

Levy distribution, random numbers 31

logarithm. 93

Logarithmic random numbers 51

Logistic random numbers . 39

Lognormal random numbers. 34, 40

M
matrices . 106

matrices, range-checking . 108

max . 54

mean . 54

min . 54

Mixed-radix FFT, complex data 67

Mixed-radix FFT, real data . 73

Monte Carlo integrators . 129

MRG, multiple recursive random number generator

. 15

MT19937 random number generator 14

N
Negative Binomial distribution, random numbers

. 47

Newton’s Method algorithm for finding roots . . . 89

Numerical recipes, random number generators . . 17

O
optimization – combinatorial 96

P
Poisson random numbers . 44

power function . 93

probability distributions, from histograms 117

psi function . 93

R
R250 shift-register random number generator . . 18

Radix-2 FFT for real data . 72

Radix-2 FFT, complex data 65

rand48 random number generator 17

random number distributions 22

random number generators . 9

Random number generators, Numerical recipes

. 17

RANDU random number generator 19

RANF random number generator 18

range . 54

range-checking for matrices 108

range-checking for vectors . 103

RANLUX random number generator 14

RANMAR random number generator. 18, 19

Rayleigh random numbers . 29

Rayleigh Tail random numbers 30

resampling from histograms. 117

root finding . 80

root finding, bisection algorithm 84

root finding, brent’s method 86

root finding, errors . 90

root finding, false position algorithm 87

root finding, guess(es) . 82

root finding, Newton’s Method algorithm 89

root finding, overview . 80

root finding, providing a function to search 81

root finding, search bounds . 82

root finding, Secant Method algorithm 88

root finding, stopping parameters 83

roots . 80

S
sampling from histograms . 117

schedule - cooling . 96

Secant Method algorithm for finding roots 88

series, acceleration . 94

shift-register random number generator 18

simulated annealing . 96

sine . 93

solving a non-linear equation. 80

Special Functions . 92

spherical harmonics . 93

spherical random numbers, 2D 41

spherical random numbers, 3D 41

standard deviation . 54

statistics . 54

summation, acceleration . 94

T
t-distribution random numbers 37

t-test . 54

Concept Index 147

Tausworthe random number generator 15

Traveling Salesman Problem 99

trigonometric functions . 93

TSP . 99

TT800 random number generator 18

two dimensional histograms 120

two-sided exponential random numbers 26

U
u-transform for series . 94

Unix random number generators, rand 16

Unix random number generators, rand48 16

usage, compiling application programs 2

V
variance . 54

VAX random number generator 19

vectors . 102

vectors, range-checking . 103

W
warning options . 139

Weibull distribution random numbers 42

Z
zero finding. 80

Function Index 148

Function Index

G
GSL_EDOM . 3

GSL_EINVAL . 4

GSL_ERANGE . 3

GSL_ERROR . 7

GSL_ERROR_RETURN . 8

gsl_fft_complex_backward 69

gsl_fft_complex_forward . 69

gsl_fft_complex_init . 68

gsl_fft_complex_inverse . 69

gsl_fft_complex_radix2_backward 65

gsl_fft_complex_radix2_dif_backward 65

gsl_fft_complex_radix2_dif_forward 65

gsl_fft_complex_radix2_dif_inverse 65

gsl_fft_complex_radix2_forward 65

gsl_fft_complex_radix2_inverse 65

gsl_fft_complex_wavetable_alloc 67

gsl_fft_complex_wavetable_free 68

gsl_fft_halfcomplex . 75

gsl_fft_halfcomplex_init 74

gsl_fft_halfcomplex_radix2_backwards 72

gsl_fft_halfcomplex_radix2_inverse 72

gsl_fft_halfcomplex_unpack 76

gsl_fft_halfcomplex_wavetable_alloc 74

gsl_fft_halfcomplex_wavetable_free 75

gsl_fft_real . 75

gsl_fft_real_init. 74

gsl_fft_real_radix2 . 72

gsl_fft_real_unpack . 75

gsl_fft_real_wavetable_alloc 74

gsl_fft_real_wavetable_free 75

gsl_histogram_accumulate 115

gsl_histogram_bins . 116

gsl_histogram_calloc . 114

gsl_histogram_calloc_uniform 114

gsl_histogram_find . 116

gsl_histogram_find_impl 116

gsl_histogram_fprintf . 117

gsl_histogram_fread . 116

gsl_histogram_free . 115

gsl_histogram_fscanf . 117

gsl_histogram_fwrite . 116

gsl_histogram_get . 115

gsl_histogram_get_range 115

gsl_histogram_increment 115

gsl_histogram_max . 116

gsl_histogram_min . 116

gsl_histogram_pdf_alloc 118

gsl_histogram_pdf_free . 118

gsl_histogram_pdf_sample 118

gsl_histogram_reset . 116

gsl_histogram2d_accumulate 122

gsl_histogram2d_calloc . 121

gsl_histogram2d_calloc_uniform 122

gsl_histogram2d_find . 123

gsl_histogram2d_find_impl 123

gsl_histogram2d_fprintf 124

gsl_histogram2d_fread . 124

gsl_histogram2d_free . 122

gsl_histogram2d_fscanf . 124

gsl_histogram2d_fwrite . 123

gsl_histogram2d_get . 122

gsl_histogram2d_get_xrange 122

gsl_histogram2d_get_yrange 122

gsl_histogram2d_increment 122

gsl_histogram2d_nx . 123

gsl_histogram2d_ny . 123

gsl_histogram2d_pdf_alloc 125

gsl_histogram2d_pdf_free 126

gsl_histogram2d_pdf_sample 126

gsl_histogram2d_reset . 123

gsl_histogram2d_xmax . 123

gsl_histogram2d_xmin . 123

gsl_histogram2d_ymax . 123

gsl_histogram2d_ymin . 123

gsl_ieee_env_setup . 135

gsl_ieee_printf_double . 134

gsl_ieee_printf_float . 134

gsl_matrix_alloc. 107

gsl_matrix_calloc . 107

gsl_matrix_complex_alloc 107

gsl_matrix_complex_calloc 108

gsl_matrix_complex_fprintf 110

gsl_matrix_complex_fread 110

gsl_matrix_complex_free 108

gsl_matrix_complex_fscanf 110

gsl_matrix_complex_fwrite 110

gsl_matrix_complex_get . 109

gsl_matrix_complex_set . 109

gsl_matrix_float_alloc . 107

gsl_matrix_float_calloc 107

gsl_matrix_float_fprintf 110

gsl_matrix_float_fread . 110

gsl_matrix_float_free . 107

Function Index 149

gsl_matrix_float_fscanf 110

gsl_matrix_float_fwrite 110

gsl_matrix_float_get . 108

gsl_matrix_float_set . 108

gsl_matrix_fprintf . 109

gsl_matrix_fread . 109

gsl_matrix_free . 107

gsl_matrix_fscanf . 109

gsl_matrix_fwrite . 109

gsl_matrix_get . 108

gsl_matrix_int_alloc . 108

gsl_matrix_int_calloc . 108

gsl_matrix_int_fprintf . 110

gsl_matrix_int_fread . 110

gsl_matrix_int_free . 108

gsl_matrix_int_fscanf . 110

gsl_matrix_int_fwrite . 110

gsl_matrix_int_get . 109

gsl_matrix_int_set . 109

gsl_matrix_set . 108

gsl_monte_COOL_alloc(size_t 131

gsl_monte_COOL_free(gsl_monte_COOL_state*

. 131

gsl_monte_COOL_init(gsl_monte_COOL_state*

. 131

gsl_monte_COOL_integrate(gsl_monte_COOL_

state* . 131

gsl_monte_COOL_validate(gsl_monte_COOL_

state* . 131

GSL_NOMEM . 3

gsl_ran_bernoulli. 45

gsl_ran_bernoulli_pdf . 45

gsl_ran_beta . 38

gsl_ran_beta_pdf . 38

gsl_ran_binomial . 46

gsl_ran_binomial_pdf . 46

gsl_ran_bivariate_gaussian 24

gsl_ran_bivariate_gaussian_pdf 24

gsl_ran_cauchy . 28

gsl_ran_cauchy_pdf . 28

gsl_ran_chisq . 35

gsl_ran_chisq_pdf. 35

gsl_ran_choose . 52

gsl_ran_dir_2d . 41

gsl_ran_dir_3d . 41

gsl_ran_exponential . 25

gsl_ran_exponential_pdf . 25

gsl_ran_exppow . 27

gsl_ran_exppow_pdf . 27

gsl_ran_fdist . 36

gsl_ran_fdist_pdf . 36

gsl_ran_flat . 33

gsl_ran_flat_pdf . 33

gsl_ran_gamma . 32

gsl_ran_gamma_pdf . 32

gsl_ran_gaussian . 23

gsl_ran_gaussian_pdf . 23

gsl_ran_geometric . 49

gsl_ran_geometric_pdf . 49

gsl_ran_gumbel1 . 43

gsl_ran_gumbel1_pdf . 43

gsl_ran_gumbel2 . 43

gsl_ran_gumbel2_pdf . 43

gsl_ran_hypergeometric . 50

gsl_ran_hypergeometric_pdf 50

gsl_ran_laplace . 26

gsl_ran_laplace_pdf . 26

gsl_ran_levy . 31

gsl_ran_levy_pdf . 31

gsl_ran_logarithmic . 51

gsl_ran_logarithmic_pdf . 51

gsl_ran_logistic . 39

gsl_ran_logistic_pdf . 39

gsl_ran_lognormal . 34

gsl_ran_lognormal_pdf . 34

gsl_ran_nbinomial_pdf . 47

gsl_ran_negative_binomial 47

gsl_ran_pareto . 40

gsl_ran_pareto_pdf . 40

gsl_ran_pascal . 47

gsl_ran_pascal_pdf . 47

gsl_ran_poisson . 44

gsl_ran_poisson_pdf . 44

gsl_ran_rayleigh . 29

gsl_ran_rayleigh_pdf . 29

gsl_ran_rayleigh_tail . 30

gsl_ran_rayleigh_tail_pdf 30

gsl_ran_shuffle . 52

gsl_ran_tdist . 37

gsl_ran_tdist_pdf . 37

gsl_ran_weibull . 42

gsl_ran_weibull_pdf . 42

gsl_rng_alloc . 10

gsl_rng_clone . 13

gsl_rng_cmrg . 14

gsl_rng_cpy . 13

gsl_rng_env_setup . 12

gsl_rng_free . 10

gsl_rng_get . 11

gsl_rng_max . 11

Function Index 150

gsl_rng_min . 12

gsl_rng_minstd . 19

gsl_rng_mrg . 15

gsl_rng_mt19937 . 14

gsl_rng_name . 11

gsl_rng_print_state . 13

gsl_rng_r250 . 18

gsl_rng_ran0 . 17

gsl_rng_ran1 . 17

gsl_rng_ran2 . 17

gsl_rng_ran3 . 17

gsl_rng_rand . 16

gsl_rng_rand48 . 17

gsl_rng_random_bsd . 16

gsl_rng_random_glibc2 . 16

gsl_rng_random_libc5 . 16

gsl_rng_randu . 19

gsl_rng_ranf . 18

gsl_rng_ranlux . 14

gsl_rng_ranlux389. 14

gsl_rng_ranmar . 18

gsl_rng_set . 10

gsl_rng_size . 12

gsl_rng_slatec . 20

gsl_rng_state . 12

gsl_rng_taus . 15

gsl_rng_transputer . 19

gsl_rng_tt800 . 18

gsl_rng_uni . 19

gsl_rng_uni32 . 19

gsl_rng_uniform . 11

gsl_rng_uniform_int . 11

gsl_rng_uniform_pos . 11

gsl_rng_vax . 19

gsl_rng_zuf . 20

gsl_root_bisection . 85

gsl_root_brent . 86

gsl_root_falsepos. 88

gsl_root_newton . 90

gsl_root_secant . 89

gsl_set_error_handler . 5

gsl_set_stream . 6

gsl_set_stream_handler . 7

gsl_sf_airy_Ai(double . 92

gsl_sf_airy_Bi(double . 92

gsl_sf_airy_Bi_scaled(double 92

gsl_sf_pow_int(double . 93

gsl_siman_solve . 97

gsl_stats_absdev . 57

gsl_stats_absdev_with_mean 57

gsl_stats_est_sd . 56

gsl_stats_est_sd_with_mean 56

gsl_stats_est_variance . 55

gsl_stats_est_variance_with_mean 55

gsl_stats_int_absdev . 57

gsl_stats_int_absdev_with_mean 57

gsl_stats_int_est_sd . 56

gsl_stats_int_est_sd_with_mean 56

gsl_stats_int_est_variance 55

gsl_stats_int_est_variance_with_mean 56

gsl_stats_int_kurtosis . 58

gsl_stats_int_kurtosis_with_mean_and_sd . . 58

gsl_stats_int_max . 59

gsl_stats_int_max_index . 59

gsl_stats_int_mean . 55

gsl_stats_int_median_from_sorted_data 60

gsl_stats_int_min . 59

gsl_stats_int_min_index . 59

gsl_stats_int_quantile_from_sorted_data . . 60

gsl_stats_int_sd . 56

gsl_stats_int_sd_with_mean 56

gsl_stats_int_skew . 57

gsl_stats_int_skew_with_mean_and_sd 58

gsl_stats_int_sort_data . 60

gsl_stats_int_variance . 56

gsl_stats_int_variance_with_mean 56

gsl_stats_kurtosis . 58

gsl_stats_kurtosis_with_mean_and_sd 58

gsl_stats_max . 59

gsl_stats_max_index . 59

gsl_stats_mean . 55

gsl_stats_median_from_sorted_data 60

gsl_stats_min . 59

gsl_stats_min_index . 59

gsl_stats_quantile_from_sorted_data 60

gsl_stats_sd . 56

gsl_stats_sd_with_mean . 56

gsl_stats_skew . 57

gsl_stats_skew_with_mean_and_sd 58

gsl_stats_sort_data . 59

gsl_stats_variance . 56

gsl_stats_variance_with_mean 56

gsl_sum_levin_u . 94

gsl_vector_alloc. 102

gsl_vector_calloc . 102

gsl_vector_complex_alloc 103

gsl_vector_complex_calloc 103

gsl_vector_complex_fprintf 105

gsl_vector_complex_fread 105

gsl_vector_complex_free 103

Function Index 151

gsl_vector_complex_fscanf 105

gsl_vector_complex_fwrite 105

gsl_vector_complex_get . 104

gsl_vector_complex_set . 104

gsl_vector_float_alloc . 103

gsl_vector_float_calloc 103

gsl_vector_float_fprintf 105

gsl_vector_float_fread . 105

gsl_vector_float_free . 103

gsl_vector_float_fscanf 105

gsl_vector_float_fwrite 105

gsl_vector_float_get . 103

gsl_vector_float_set . 104

gsl_vector_fprintf . 104

gsl_vector_fread . 104

gsl_vector_free . 102

gsl_vector_fscanf . 104

gsl_vector_fwrite . 104

gsl_vector_get . 103

gsl_vector_int_alloc . 103

gsl_vector_int_calloc . 103

gsl_vector_int_fprintf . 105

gsl_vector_int_fread . 105

gsl_vector_int_free . 103

gsl_vector_int_fscanf . 105

gsl_vector_int_fwrite . 105

gsl_vector_int_get . 104

gsl_vector_int_set . 104

gsl_vector_set . 103

R
root finding, gsl_root_bisection 85

root finding, gsl_root_falsepos 88

root finding, gsl_root_newton 90

root finding, gsl_root_secant 89

Variable Index 152

Variable Index

(
(* . 81

A
abs_epsilon . 83

acc . 132

alpha . 131, 132

D
dither . 131

G
guess . 83

guess2 . 83

L
lower_bound . 82

M
max_it_num . 132

max_iterations . 84

max_step_size . 84

mode . 132

R
ranf . 131

rel_epsilon . 83

root . 81

root finding, abs_epsilon (low level function

argument) . 83

root finding, df (function argument) 81

root finding, f (function argument) 81

root finding, guess (low level function argument)

. 83

root finding, guess2 (low level function argument)

. 83

root finding, lower_bound (low level function

argument) . 82

root finding, max_iterations (function argument)

. 84

root finding, max_step_size (function argument)

. 84

root finding, rel_epsilon (low level function

argument) . 83

root finding, root (function argument) 81

root finding, upper_bound (low level function

argument) . 82

S
stage . 132

U
upper_bound . 82

V
verbose . 131

Type Index 153

Type Index

G
gsl_Efunc_t . 96

gsl_histogram . 113

gsl_histogram_pdf . 118

gsl_histogram2d . 120

gsl_histogram2d_pdf . 125

gsl_siman_metric_t . 96

gsl_siman_params_t . 97

gsl_siman_print_t . 97

gsl_siman_step_t . 96

S
struct gsl_fft_complex_wavetable 69

V
void . 4, 7

