Python Tutorial

Guido van Rossum
Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA
E-mail: guido@CNRI.Reston.Va.US , guido@python.org

October 25, 1996
Release 1.4



Copyright(© 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The
Netherlands.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation
for any purpose and without fee is hereby granted, provided that the above copy-
right notice appear in all copies and that both that copyright notice and this permis-
sion notice appear in supporting documentation, and that the names of Stichting
Mathematisch Centrum or CWI or Corporation for National Research Initiatives
or CNRI not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission.

While CWI is the initial source for this software, a modified version is made avail-
able by the Corporation for National Research Initiatives (CNRI) at the Internet
address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LI-
ABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLI-
GENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.



Abstract

Python is a simple, yet powerful programming language that bridges the gap be-
tween C and shell programming, and is thus ideally suited for “throw-away pro-
gramming” and rapid prototyping. Its syntax is put together from constructs bor-
rowed from a variety of other languages; most prominent are influences from ABC,
C, Modula-3 and Icon.

The Python interpreter is easily extended with new functions and data types imple-
mented in C. Python is also suitable as an extension language for highly customiz-
able C applications such as editors or window managers.

Python is available for various operating systems, amongst which several flavors
of UNIX, the Apple Macintosh, MS-DOS, Windows (3.1(1), '95 and NT flavors),
0S/2, and others.

This tutorial introduces the reader informally to the basic concepts and features of
the Python language and system. It helps to have a Python interpreter handy for
hands-on experience, but as the examples are self-contained, the tutorial can be
read off-line as well.

For a description of standard objects and modules, seByti®n Library Refer-
encedocument. Théython Reference Manuglves a more formal definition of
the language.



Contents

1 Whetting Your Appetite
1.1 Disclaimer. . . . . . . ... ..
1.2 Introduction . . . . . . ... . .. ...
1.3 WhereFromHere. . . ... ... .. .. ... . ... ... .

2 Using the Python Interpreter
2.1 Invokingthe Interpreter. . . . . . .. ... ... L.
211 ArgumentPassing . .. ... ... ... ... .....
2.1.2 InteractveMode . . . . ... ... ... ...
2.2 The Interpreter and its Environment. . . . . .. .. ... ...
221 ErorHandling . . ... ... ... ... ...
2.2.2 The Module SearchPath. . . . .. ... ........
2.2.3 *“Compiled” Pythonfiles . . . ... ... ........
2.2.4 Executable Pythonscripts. . . .. ... .. ......
2.2.5 Thelnteractive StartupFile . . . . ... .. ... ...
2.3 Interactive Input Editing and History Substitution. . . . . . . .
231 LineEditing. . .. ... ... .. . ... ...
2.3.2 History Substitution. . . . . . ... ...
233 KeyBindings . . ... .. ... oL
234 Commentary . .. ... ... ... ...

3 An Informal Introduction to Python
3.1 Using PythonasaCalculator. . . . . ... ... ........
3.1.1 Numbers . . ... ... ...
3.1.2 Strings. . . . ...
313 Lists. . . .. ..
3.2 First Steps Towards Programming. . . . . . .. .. ... ...

11



More Control Flow Tools 22

41 |IfStatements . . . . . .. ... 22
42 ForStatements . . . . . . . ... o 23
4.3 Therange() Function. . ... ................. 23
4.4 Break and Continue Statements, and Else Clauses on Loops. 24
45 PassStatements . . . . . ... L Lo 25
4.6 DefiningFunctions . . . . ... ... ... oL 26
Odds and Ends 29
5.1 MoreonlLists . . . . ... ... 29
5.2 Thedel statement . . . . ... ... ... ... ... .. 30
5.3 Tuplesand Sequences. . . . . ... .. ... ... ... ... 31
5.4 Dictionaries . . . . . ... 33
5,5 MoreonConditions. . . . ... ... ... L. 34
5.6 Comparing Sequences and Other Types . . . . . . . ... .. 35
Modules 37
6.1 MoreonModules. . . .. ... . ... ... 39
6.2 StandardModules. . . . . ... 40
6.3 Thedir() function. ... ... ... . ... . ...... 41
Output Formatting 43
Errors and Exceptions 47
8.1 SyntaxErrors . . . . ... ... oo 47
8.2 Exceptions. . . . . . ... 48
8.3 HandlingExceptions . . . . .. ... ... . L. 49
8.4 RaisingExceptions. . . . ... ... ... oL 51
8.5 User-defined Exceptions. . . . ... ... ... ........ 51
8.6 DefiningClean-upActions . . . . .. ... ... ........ 52
Classes 54
9.1 Awordaboutterminology. . . . ... ... ... ... 55
9.2 Pythonscopesandnamespaces . . . . . ... ... ..... 55
9.3 Afirstlookatclasses. . . . . . ... ... 57
9.3.1 Classdefinitionsyntax. . . . ... ... .. ...... 57
9.32 Classobjects. . . ... ... ... ... .. .. ..., 58
9.3.3 Instanceobjects . . . . ... ..o 59
9.34 Methodobjects. . . .. ... ... ... ... 60



10

11

9.4 Randomremarks . . . . . . . . . ... 61

9.5 Inheritance. . . . . . ... L 63
9.5.1 Multipleinheritance. . . . . . ... ... ... ... 64
96 Oddsandends ... ... ... ... ... ... ... 65
Recent Additions as of Release 1.1 67
10.1 The Last Printed Expression. . . . . ... ... ... ..... 67
10.2 StringLiterals. . . . . .. .. o 68
10.2.1 DoubleQuotes. . . . . . . . .. ... 68
10.2.2 Continuation Of String Literals. . . . . . .. ... ... 68
10.2.3 Triple-quotedstrings. . . . . . .. ... .. ... .. 68
10.2.4 String Literal Juxtaposition. . . . . .. ... ... ... 69
10.3 The Formatting Operator. . . . . . . ... ... ... ..... 69
10.3.1 BasicUsage . . . ... ... ... . 69
10.3.2 Referencing VariablesBy Name. . . . . . . ... ... 70
10.4 Optional Function Arguments . . . . . .. ... ... ..... 71
10.4.1 Default ArgumentValues. . . . . . . ... ... .... 71
10.4.2 Arbitrary ArgumentlLists. . . . .. ... ... ... 71
10.5 Lambda And Functional Programming Tools. . . . . . . . .. 72
10.5.1 LambdaForms. . . .. ... ... ... ... 72
10.5.2 Map, ReduceandFilter . . . . . ... ... ...... 72
10.6 Continuation Lines Without Backslashes . . . . . . . ... .. 74
10.7 RegularExpressions. . . . . . . .. .. .. oo 75
10.8 Generalized Dictionaries. . . . . . . ... ... ... ..... 75
10.9 Miscellaneous New Built-in Functions. . . . . . .. ... ... 75
10.10Else Clause For Try Statement . . . . .. ... ... ..... 76
10.11New Class FeaturesinRelease1.1. . . . . .. .. ... ... 77
10.11.1 New Operator Overloading . . . . . . ... ... ... 77
10.11.2 Trapping Attribute Access . . . . . . . . . . ... ... 78
10.11.3CallingaClassInstance. . . . . . ... .. ... ... 79
New in Release 1.2 80
111 NewClassFeatures . . . . .. ... ... ... .. ...... 80
11.2 UnixSignalHandling. . . . .. ... ... ... .. ...... 81
11.3 ExceptionsCanBeClasses. . . . . ... ... ... ..... 81
11.4 Object Persistency and Object Copying. . . . . .. ... ... 82
11.4.1 PersistentObjects . . . . . . ... .. ... . 82
11.4.2 CopyingObjects . . . . . . . ... ... ... ... 83
11.5 Documentation Strings. . . . . . . . ... ... ... 83



12

13

11.6 Customizing Importand Built-Ins . . . .. ... ... ..... 86

11.7 Python and the World-WideWeb. . . . . . ... .. ... ... 87
11.8 Miscellaneous. . . . . .. ... ... o 87
New in Release 1.3 89
12.1 Keyword Arguments . . . . . . . ... 89
12.2 Changes to the WWW and Internettools . . . . . . ... ... 92
12.3 OtherLanguageChanges . . . . . . ... ... ... ..... 92
12.4 Changesto Built-inOperations . . . . .. ... ... ..... 93
125 LibraryChanges . . . . . .. . ... 93
12.6 OtherChanges . . . . . . . . . ... . ... 94
New in Release 1.4 96
13.1 LanguageChanges. . . . . . . . . . ... ... ... 96
13.2 Run-timeChanges . . . . ... ... ... ... .. .. ..., 99
13.3 New orUpdatedModules . . . ... ... ... .. ...... 100
13.4 Configuration and Installation . . . . . .. ... ... ..... 102



Chapter 1

Whetting Your Appetite

1.1 Disclaimer

Now that there are several books out on Python, this tutorial has lost its role as the
only introduction to Python for most new users. It takes time to keep a document
like this up to date in the face of additions to the language, and | simply don't
have enough time to do a good job. Therefore, this version of the tutorial is almost
unchanged since the previous release. This doesn't mean that the tutorial is out of
date — all the examples still work exactly as before. There are simply some new
areas of the language that aren't covered.

To make up for this, there are some chapters at the end cover important changes in
recent Python releases, and these are up to date with the current release.

1.2 Introduction

If you ever wrote a large shell script, you probably know this feeling: you'd love to
add yet another feature, butit's already so slow, and so big, and so complicated; or
the feature involves a system call or other function that is only accessible from C
... Usually the problem at hand isn't seriom®eagh to warrant rewriting the script

in C; perhaps because the problem requires variable-length strings or other data
types (like sorted lists of file names) that are easy in the shell but lots of work to
implement in C; or perhaps just because you're not sufficientljlilanwith C.

In such cases, Python may be just the language for you. Python is simple to use,



but it is a real programming language, offering much more structure and support
for large programs than the shell has. On the other hand, it also offers much more
error checking than C, and, beingvary-high-level languagsat has high-level

data types built in, such as flexible arrays and dictionaries that would cost you
days to implement efficiently in C. Because of its more general data types Python
is applicable to a much larger problem domain tiavk or evenPerl, yet many
things are at least as easy in Python as in those languages.

Python allows you to split up your program in modules that can be reused in other
Python programs. It comes with a large collection of standard modules that you
can use as the basis of your programs — or as examples to start learning to program
in Python. There are also built-in modules that provide things like file I/O, system
calls, sockets, and even a generic interface to window systems (STDWIN).

Python is an interpreted language, which can save you considerable time during
program development because no compilation and linking is necessary. The inter-
preter can be used interactively, which makes it easy to experiment with features of
the language, to write throw-away programs, or to test functions during bottom-up
program development. It is also a handy desk calculator.

Python allows writing very compact and readable programs. Programs written in
Python are typically much shorter than equivalent C programs, for several reasons:

¢ the high-level data types allow you to express complex operations in a single
statement;

e statement grouping is done by indentation instead of begin/end brackets;

e no variable or argument declarations are necessary.

Python isextensibleif you know how to program in C itis easy to add a new built-

in function or module to the interpreter, either to perform critical operations at
maximum speed, or to link Python programs to libraries that may only be available
in binary form (such as a vendor-specific graphics library). Once you are really
hooked, you can link the Python interpreter into an application written in C and
use it as an extension or command language for that application.

By the way, the language is named after the BBC show “Monty Python's Flying
Circus” and has nothing to do with nasty reptiles...



1.3 Where From Here

Now that you are all excited about Python, you' Il want to examine it in some more
detail. Since the best way to learn a language is using it, you are invited here to do
So.

In the next chapter, the mechanics of using the interpreter are explained. This is
rather mundane information, but essential for trying out the examples shown later.

The rest of the tutorial introduces various features of the Python language and
system though examples, beginning with simple expressions, statements and data
types, through functions and modules, and finally touching upon advanced con-
cepts like exceptions and user-defined classes.

When you're through with the tutorial (or just getting bored), you should read the
Library Reference, which gives complete (though terse) reference material about
built-in and standard types, functions and modules that can save you a lot of time
when writing Python programs.



Chapter 2

Using the Python Interpreter

2.1 Invoking the Interpreter

The Python interpreter is usually installed fasr/local/bin/python on
those machines where it is available; puttingr/local/bin in your UNIX
shell's search path makes it possible to start it by typing the command

python

to the shell. Since the choice of the directory where the interpreter lives is an
installation option, other places are possible; check with your local Python guru
or system administrator. (E.dgusr/local/python is a popular alternative
location.)

The interpreter operates somewhat like theiXJ shell: when called with stan-

dard input connected to a tty device, it reads and executes commands interactively;
when called with a file name argument or with a file as standard input, it reads and
executes acriptfrom that file.

A third way of starting the interpreter ispython -c command [arg]

", which executes the statement(s)dammand analogous to the shell*s
option. Since Python statements often contain spaces or other characters that are
special to the shell, it is best to qua@mmandin its entirety with double quotes.

Note that there is a difference betweepython file " and “python



<file ”. In the latter case, input requests from the program, such as calls to
input()  andraw _input() , are satisfied fronfile. Since this file has already
been read until the end by the parser before the program starts executing, the pro-
gram will encounter EOF immediately. In the former case (which is usually what
you want) they are satisfied from whatever file or device is connected to standard
input of the Python interpreter.

When a script file is used, it is sometimes useful to be able to run the script and
enter interactive mode afterwards. This can be done by pasisinigefore the
script. (This does not work if the script is read from standard input, for the same
reason as explained in the previous paragraph.)

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments thereafter
are passed to the script in the variables.argv , which is a list of strings. Its
length is at least one; when no script and no arguments are gysaygv[0]

is an empty string. When the script name is giveR'as (meaning standard input),
sys.argv[0] is setto'-' . When-c command is used,sys.argv[0] is
setto'-c' . Options found afterc command are not consumed by the Python
interpreter's option processing but leftiys.argv ~ for the command to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to bedractive
mode In this mode it prompts for the next command with {remary prompt
usually three greater-than sigrs>¢); for continuation lines it prompts with the
secondary prompby default three dots.( ). Typing an EOF character (Control-

D on UNIX, Control-Z on DOS or Windows) at the primary prompt causes the
interpreter to exit with a zero exit status.

The interpreter prints a welcome message stating its version number and a copy-
right notice before printing the first prompt, e.g.:

python
Python 1.4 (Oct 25 1996) [GCC 2.7.2]

Copyright 1991-1996 Stichting Mathematisch Centrum, Amsterdam
>>>



2.2 The Interpreter and its Environment

2.2.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace. In
interactive mode, it then returns to the primary prompt; when input came from a
file, it exits with a nonzero exit status after printing the stack trace. (Exceptions
handled by arexcept clause in dry statement are not errors in this context.)
Some errors are unconditionally fatal and cause an exit with a nonzero exit; this
applies to internal inconsistencies and some cases of running out of memory. All
error messages are written to the standard error stream; normal output from the
executed commands is written to standard output.

Typing the interrupt character (usually Control-C or DEL) to the primary or sec-
ondary prompt cancels the input and returns to the primary préniyping an
interrupt while a command is executing raises Keyboardinterrupt ex-
ception, which may be handled byirgg  statement.

2.2.2 The Module Search Path

When a module namespam is imported, the interpreter searches for a file named
spam.py in the current directory, and then in the list of directories specified
by the environment variableYTHONPATHThis has the same syntax as the
UNIx shell variablePATH i.e., a list of colon-separated directory names. When
PYTHONPATI4$ not set, or when the file is not found there, the search continues in
an installation-dependent default path, usuallysr/local/lib/python

Actually, modules are searched in the list of directories given by the variable
sys.path  which is initialized from the directory containing the input script (or
the current directoryRYTHONPATINd the installation-dependent default. This
allows Python programs that know what they're doing to modify or replace the
module search path. See the section on Standard Modules later.

2.2.3 “Compiled” Python files

As an important speed-up of the start-up time for short programs that use a lot
of standard modules, if a file callespam.pyc exists in the directory where

! A problem with the GNU Readline package may prevent this.



spam.py is found, this is assumed to contain an already-“compiled” version of
the modulespam. The modification time of the version epam.py used to cre-
atespam.pyc is recorded irspam.pyc , and the file is ignored if these don't
match.

Normally, you don't need to do anything to createspam.pyc file. Whenever
spam.py is successfully compiled, an attempt is made to write the compiled ver-
sion tospam.pyc . It is not an error if this attempt fails; if for any reason the

file is not written completely, the resultirmpam.pyc file will be recognized as
invalid and thus ignored later. The contents of §pam.pyc file is platform in-
dependent, so a Python module directory can be shared by machines of different
architectures. (Tip for experts: the modaempileall createspyc files for

all modules.)

2.2.4 Executable Python scripts

On BSD'ish Wix systems, Python scripts can be made directly executable, like
shell scripts, by putting the line

#! /usr/local/bin/python

(assuming that's the name of the interpreter) at the beginning of the script and
giving the file an executable mode. THe must be the first two characters of the
file.

2.2.5 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard
commands executed every time the interpreter is started. You can do this by setting
an environment variable nam&YTHONSTARTU the name of a file containing
your start-up commands. This is similar to tipeofile feature of the UNIX
shells.

Thisfile is only read in interactive sessions, not when Python reads commands from
a script, and not wherdev/tty is given as the explicit source of commands
(which otherwise behaves like an interactive session). It is executed in the same
name space where interactive commands are executed, so that objects that it defines



or imports can be used without qualification in the interactive session. You can also
change the promptys.psl andsys.ps2 in thisfile.

If you want to read an additional start-up file from the current directory, you can
program this in the global start-up file, eexecfile('.pythonrc’) . Ifyou
want to use the startup file in a script, you must write this explicitly in the script,
e.g.import os; execfile(os.environPYTHONSTARTUP')

2.3 Interactive Input Editing and History Substitution

Some versions of the Python interpreter support editing of the current input line
and history substitution, similar to facilities found in the Korn shell and the GNU
Bash shell. This is implemented using {6&lU Readlindibrary, which supports
Emacs-style and vi-style editing. This library has its own documentation which |
won't duplicate here; however, the basics are easily explained.

Perhaps the quickest check to see whether command line editing is supported is
typing Control-P to the first Python prompt you get. If it beeps, you have command
line editing. If nothing appears to happen, oiff is echoed, you can skip the rest

of this section.

2.3.1 Line Editing

If supported, input line editing is active whenever the interpreter prints a primary
or secondary prompt. The current line can be edited using the conventional Emacs
control characters. The most important of these are: C-A (Control-A) moves the
cursor to the beginning of the line, C-E to the end, C-B moves it one position to the
left, C-F to the right. Backspace erases the character to the left of the cursor, C-D
the character to its right. C-K kills (erases) the rest of the line to the right of the
cursor, C-Y yanks back the last killed string. C-underscore undoes the last change
you made; it can be repeated for cumulative effect.

2.3.2 History Substitution

History substitution works as follows. All non-empty input lines issued are saved
in a history buffer, and when a new prompt is given you are positioned on a new
line at the bottom of this buffer. C-P moves one line up (back) in the history buffer,



C-N moves one down. Any line in the history buffer can be edited; an asterisk
appears in front of the prompt to mark a line as modified. Pressing the Return key
passes the current line to the interpreter. C-R starts an incremental reverse search;
C-S starts a forward search.

2.3.3 Key Bindings

The key bindings and some other parameters of the Readline library can be cus-
tomized by placing commands in an initialization file cal&#dOME/.inputrc
Key bindings have the form

key-name: function-name

or

"string™: function-name

and options can be set with

set option-name value

For example:

# | prefer vi-style editing:
set editing-mode vi

# Edit using a single line:
set horizontal-scroll-mode On
# Rebind some keys:
Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding for TAB in Python is to insert a TAB instead of Read-
line's default filename completion function. If you insist, you can override this by



putting

TAB: complete

in your$3HOME/.inputrc . (Of course, this makes it hard to type indented con-
tinuation lines...)

2.3.4 Commentary

This facility is an enormous step forward compared to previous versions of the in-
terpreter; however, some wishes are left: It would be nice if the proper indentation
were suggested on continuation lines (the parser knows if an indent token is re-
quired next). The completion mechanism might use the interpreter's symbol table.
A command to check (or even suggest) matching parentheses, quotes etc. would
also be useful.

10



Chapter 3

An Informal Introduction to
Python

In the following examples, input and output are distinguished by the presence or
absence of prompts$> and... ): to repeat the example, you must type every-
thing after the prompt, when the prompt appears; lines that do not begin with a
prompt are output from the interpreteiNote that a secondary prompt on a line
by itself in an example means you must type a blank line; this is used to end a
multi-line command.

3.1 Using Python as a Calculator

Let's try some simple Python commands. Start the interpreter and wait for the
primary prompt>>>. (It shouldn't take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it
will write the value. Expression syntax is straightforward: the operators, *

and/ work just like in most other languages (e.g., Pascal or C); parentheses can be
used for grouping. For example:

1'd prefer to use different fonts to distinguish input from output, but the amount of LaTeX hack-
ing that would require is currently beyond myiléip.

11



>>> 242

4

>>> # This is a comment

v 242

4

>>> 2+2 # and a comment on the same line as code
4

>>> (50-5*6)/4

5

>>> # Integer division returns the floor:
.. 113

2

>>> 7/-3

-3

>>>

Like in C, the equal sign«) is used to assign a value to a variable. The value of an
assignment is not written:

>>> width = 20
>>> height = 5*9
>>> width * height
900

>>>

A value can be assigned to several variables simultaneously:

>>>
>>>
0
>>> y
0

>>> 7
0

>>>

X =y =2z=0 # Zero x, y and z
X

There is full support for floating point; operators with mixed type operands convert
the integer operand to floating point:

12



>>> 4 * 25/ 3.3
3.0303030303

>>> 70/ 2

35

>>>

3.1.2 Strings

Besides numbers, Python can also manipulate strings, enclosed in single quotes or
double quotes:

>>> 'spam eggs'
'spam eggs'

>>> 'doesn\'t'

"doesn't"

>>> "doesn't"
"doesn't"

>>> "Yes," he said.'
"Yes," he said.'

>>> "\"Yes\" he said."
"Yes," he said.'

>>> "Isn\'t," she said.'
"Isn\'t," she said.'
>>>

Strings are written the same way as they are typed for input: inside quotes and
with quotes and other funny characters escaped by backslashes, to show the precise
value. The string is enclosed in double quotes if the string contains a single quote
and no double quotes, else it's enclosed in single quotes.pfiite statement,
described later, can be used to write strings without quotes or escapes.)

Strings can be concatenated (glued together) witkthperator, and repeated with

* -

13



>>> word = 'Help' + 'A’

>>> word

'HelpA'

>>> '<' + word*s + >
'<HelpAHelpAHelpAHelpAHelpA>'
>>>

Strings can be subscripted (indexed); like in C, the first character of a string has
subscript (index) 0.

There is no separate character type; a character is simply a string of size one. Like
in Icon, substrings can be specified with #iee notation: two indices separated
by a colon.

>>> word[4]
>>> word[0:2]
>>> word[2:4]

‘Ip'
>>>

Slice indices have useful defaults; an omitted first index defaults to zero, an omitted
second index defaults to the size of the string being sliced.

>>> word[:2] # The first two characters

‘He'

>>> word[2:] # All but the first two characters

A"

>>>

Here's a useful invariant of slice operatioggi] + S[i:] equalss.

>>> word[:2] + word[2:]
'HelpA'

>>> word[:3] + word[3:]
'HelpA'

>>>

14



Degenerate slice indices are handled gracefully: an index that is too large is re-
placed by the string size, an upper bound smaller than the lower bound returns an
empty string.

>>> word[1:100]
‘elpA’
>>> word[10:]

>>> word[2:1]

>>>

Indices may be negative numbers, to start counting from the right. For example:

>>> word[-1] # The last character

IAI

>>> word[-2] # The last-but-one character
P
>>> word[-2:] # The last two characters

IpAl

>>> word[:-2] # All but the last two characters
'Hel

>>>

But note that -0 is really the same as 0, so it does not count from the right!
>>> word[-0] # (since -0 equals 0)

|H|
>>>

Out-of-range negative slice indices are truncated, but don't try this for single-
element (non-slice) indices:

15



>>> word[-100:]
'HelpA'
>>> word[-10] # error
Traceback (innermost last):
File "<stdin>", line 1
IndexError: string index out of range
>>>

The best way to remember how slices work is to think of the indices as pointing
betweercharacters, with the left edge of the first character numbered 0. Then the
right edge of the last character of a stringnatharacters has index for example:

S S S S 'S
|Hlell]p]|A]

S S S S S

0 1 2 3 4 5
5 -4 -3 -2 -1

The first row of humbers gives the position of the indicess0in the string; the
second row gives the corresponding negative indices. The slice ftofn consists
of all characters between the edges labéled] , respectively.

For nonnegative indices, the length of a slice is the difference of the indices, if both
are within bounds, e.g., the lengthwbrd[1:3] is 2.

The built-in functionen()  returns the length of a string:

>>> s = 'supercalifragilisticexpialidocious'

>>> len(s)
34

>>>

3.1.3 Lists

Python knows a number afompounddata types, used to group together other
values. The most versatile is thist, which can be written as a list of comma-
separated values (items) between square brackets. List items need not all have the
same type.

16



>>> a = ['spam’, 'eggs’, 100, 1234]
>>> a

[spam’, 'eggs’, 100, 1234]

>>>

Like string indices, list indices start at 0, and lists can be sliced, concatenated and
so on:

>>> ag[0]

'spam'’

>>> g[3]

1234

>>> g[-2]

100

>>> g[l:-1]

[eggs', 100]

>>> g[:2] + [bacon’, 2*2]
[spam’, 'eggs’, 'bacon’, 4]
>>> 3*a[:3] + [Boe!]
[spam’, 'eggs’, 100, 'spam’, 'eggs', 100, 'spam’, 'eggs’, 100, 'Boe!]
>>>

Unlike strings, which aré@mmutable it is possible to change individual elements
of a list:

>>> a
[spam’, 'eggs’, 100, 1234]
>>> a[2] = a[2] + 23
>>> a

[spam’, 'eggs’, 123, 1234]
>>>

Assignment to slices is also possible, and this can even change the size of the list:

17



>>> # Replace some items:
. a[0:2] = [1, 12]

>>> a

[1, 12, 123, 1234]

>>> # Remove some:

. al0:2] =]

>>> a

[123, 1234]

>>> # Insert some:

. a[1:1] = [bletch’, 'xyzzy']

>>> a

[123, 'bletch’, 'xyzzy', 1234]

>>> g[:0] = a # Insert (a copy of) itself at the beginning
>>> a

[123, 'bletch’, 'xyzzy', 1234, 123, 'bletch’, 'xyzzy', 1234]
>>>

The built-in functionen()  also applies to lists:

>>> |en(a)
8
>>>

It is possible to nest lists (create lists containing other lists), for example:

18



>>> g = [2, 3]
>>>p =[1, q 4]
>>> len(p)

3

>>> p[1]

[2, 3]

>>> p[1][0]

2

>>> p[l].append('xtra’) # See section 5.1
>>> p

[1, [2, 3, 'xtra], 4]
>>> (

[2, 3, 'xtra’

>>>

Note that in the last example[1l] andq really refer to the same object! We'll
come back tabject semantickater.

3.2 First Steps Towards Programming

Of course, we can use Python for more complicated tasks than adding two and two
together. For instance, we can write an initial subsequence ditlomacciseries
as follows:

19



>>> # Fibonacci series:

. # the sum of two elements defines the next

.a, b =01
>>> while b < 10:
print b
a, b = b, atb

0 U WN R

>>>

This example introduces several new features.

The first line contains anultiple assignmentthe variablesa andb simul-
taneously get the new values 0 and 1. On the last line this is used again,
demonstrating that the expressions on the right-hand side are all evaluated
first before any of the assignments take place.

Thewhile loop executes as long as the condition (héres 10) remains

true. In Python, like in C, any non-zero integer value is true; zero is false.
The condition may also be a string or list value, in fact any sequence; any-
thing with a non-zero length is true, empty sequences are false. The test used
in the example is a simple comparison. The standard comparison operators
are written the same as in €; >, ==, <=, >= and!=".

The bodyof the loop isindented indentation is Python's way of grouping
statements. Python does not (yet!) provide an intelligent input line editing
facility, so you have to type a tab orape(s) for each indented line. In prac-
tice you will prepare more complicated input for Python with a text editor;
most text editors have an auto-indent facility. When a compound statement
is entered interactively, it must be followed by a blank line to indicate com-
pletion (since the parser cannot guess when you have typed the last line).

Theprint  statement writes the value of the expression(s) it is given. It
differs from just writing the expression you want to write (as we did earlier
in the calculator examples) in the way it handles multiple expressions and

20



strings. Strings are printed without quotes, and a space is inserted between
items, so you can format things nicely, like this:

>>> | = 256*256

>>> print 'The value of i is', i
The value of i is 65536

>>>

A trailing comma avoids the newline after the output:

>>a, b=01

>>> while b < 1000:
print b,
a, b = b, atb

11235813 21 34 55 89 144 233 377 610 987
>>>

Note that the interpreter inserts a newline before it prints the next prompt if
the last line was not completed.

21



Chapter 4

More Control Flow Tools

Besides thavhile statement justintroduced, Python knows the usual control flow
statements known from other languages, with some twists.

4.1 If Statements

Perhaps the most well-known statement type isfthastatement. For example:

>>> if x < O:
x =0
print ‘Negative changed to zero'
. elif x == 0:
print 'Zero'
.elif x == 1:
print 'Single’'
. else:
print 'More'

There can be zero or mosdif  parts, and thelse part is optional. The key-
word ‘elif ' isshortforelse if ', and isusefultoavoid excessive indentation.
An if...elif...elif... sequence is a substitute for theitch or case
statements found in other languages.

22



4.2 For Statements

Thefor statement in Python differs a bit from what you may be used to in C or
Pascal. Rather than always iterating over an arithmetic progression of numbers
(like in Pascal), or leaving the user completely free in the iteration test and step
(as C), Python'for statement iterates over the items of any sequence (e.g., a list
or a string), in the order that they appear in the sequence. For example (no pun
intended):

>>> # Measure some strings:
. a = [cat, 'window', 'defenestrate]
>>> for x in a:
print x, len(x)
cat 3
window 6

defenestrate 12
>>>

It is not safe to modify the sequence being iterated over in the loop (this can only
happen for mutable sequence types, i.e., lists). If you need to modify the list you
are iterating over, e.g., duplicate selected items, you must iterate over a copy. The
slice notation makes this particularly convenient:

>>> for x in a[:]: # make a slice copy of the entire list
if len(x) > 6: a.insert(0, x)

>>> a

[defenestrate’,

>>>

cat', ‘'window', 'defenestrate’]

4.3 Therange() Function

If you do need to iterate over a sequence of numbers, the built-in function
range() comes in handy. It generates lists containing arithmetic progressions,

e.g.

23



>>> range(10)
[0, 1, 2, 3 4,5, 6,7 8, 9]
>>>

The given end point is never part of the generated fesige(10) generates a

list of 10 values, exactly the legal indices for items of a sequence of length 10. Itis
possible to let the range start at another number, or to specify a different increment
(even negative):

>>> range(5, 10)

5, 6, 7, 8, 9]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)
[-10, -40, -70]

>>>

To iterate over the indices of a sequence, combamge() andlen() as fol-
lows:

>>> a = ['Mary', 'had, 'a', 'little’, 'lamb’]
>>> for i in range(len(a)):
print i, a[i]

0 Mary
1 had
2 a
3 little
4 lamb
>>>

4.4 Break and Continue Statements, and Else Clauses on
Loops

The break statement, like in C, breaks out of the smallest enclo$img or
while loop.

24



Thecontinue statement, also borrowed from C, continues with the next iteration
of the loop.

Loop statements may have else clause; it is executed when the loop terminates
through exhaustion of the list (witfor ) or when the condition becomes false
(with while ), but not when the loop is terminated bypeeak statement. This is
exemplified by the following loop, which searches for prime numbers:

>>> for n in range(2, 10):
for x in range(2, n):

if n % x == O:
print n, 'equals’, x, ", n/x
break

else:
print n, 'is a prime number'

is a prime number
is a prime number
equals 2 * 2

is a prime number
equals 2 * 3

is a prime number
equals 2 * 4
equals 3 * 3

>>>

4.5 Pass Statements

The pass statement does nothing. It can be used when a statement is required
syntactically but the program requires no action. For example:

>>> while 1:
pass # Busy-wait for keyboard interrupt

25



4.6 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary boundary:

>>> def fib(n): # write Fibonacci series up to n
a b=20 1
while b < n:
print b,
a, b = b, atb

>>> # Now call the function we just defined:

... fib(2000)

1123581321 3455 89 144 233 377 610 987 1597
>>>

The keyworddef introduces a functiomlefinition It must be followed by the
function name and the parenthesized list of formal parameters. The statements that
form the body of the function starts at the next line, indented by a tab stop.

Theexecutiorof a function introduces a new symbol table used for the local vari-
ables of the function. More precisely, all variable assignments in a function store
the value in the local symbol table; whereas variable references first look in the
local symbol table, then in the global symbol table, and then in the table of built-in
names. Thus, global variables cannot be directly assigned a value within a function
(unless named inglobal statement), although they may be referenced.

The actual parameters (arguments) to a function call are introduced in the local
symbol table of the called function when it is called; thus, arguments are passed
usingcall by value! When a function calls another function, a new local symbol
table is created for that call.

A function definition introduces the function name in the current symbol table.
The value of the function name has a type that is recognized by the interpreter as a
user-defined function. This value can be assigned to another name which can then
also be used as a function. This serves as a general renaming mechanism:

! Actually, call by object referencevould be a better description, since if a mutable object is
passed, the caller will see any changes the callee makes to it (e.g., items inserted into a list).

26



>>> fib

<function object at 10042ed0>
>>> f = fib

>>> (100)
1123581321 34 55 89
>>>

You might object thafib is not a function but a procedure. In Python, like in C,
procedures are just functions that don't return a value. In fact, technically speak-
ing, procedures do return a value, albeit a rather boring one. This value is called
None (it's a built-in name). Writing the valudone is normally suppressed by the
interpreter if it would be the only value written. You can see it if you really want
to:

>>> print fib(0)

None
>>>

It is simple to write a function that returns a list of the numbers of the Fibonacci
series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n

result = ]

a b =20 1

while b < n:
result.append(b) # see below
a, b = b, atb

return result

>>> 100 = fib2(100)  # call it

>>> 100 # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>>

This example, as usual, demonstrates some new Python features:

e Thereturn statement returns with a value from a functiogturn ~ with-
out an expression argument is used to return from the middle of a procedure

27



(falling off the end also returns from a procedure), in which case\ibree
value is returned.

The statementesult.append(b) calls a methodof the list object
result . A method is a function that "belongs' to an object and is named
obj.methodname , whereobj is some object (this may be an expression),
andmethodname is the name of a method that is defined by the object's
type. Different types define different methods. Methods of different types
may have the same name without causing ambiguity. (It is possible to de-
fine your own object types and methods, usifassesas discussed later in
this tutorial.) The methodppend shown in the example, is defined for list
objects; it adds a new element at the end of the list. In this example it is
equivalenttaesult = result + [b] , but more efficient.

28



Chapter 5

Odds and Ends

This chapter describes some things you've learned about already in more detail,
and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of lists
objects:

insert(i, x) Insert an item at a given position. The first argument is the
index of the element before which to insert, adnsert(0, x) in-
serts at the front of the list, amalinsert(len(a), x) is equivalent
to a.append(x)

append(xX) Equivalenttoa.insert(len(a), x)

index(x) Return the index in the list of the first item whose valu&.idt is an
error if there is no such item.

remove(x) Remove the first item from the list whose valuidt is an error if
there is no such item.

sort() Sort the items of the list, in place.

reverse() Reverse the elements of the list, in place.

29



count(x)  Return the number of timesappears in the list.

An example that uses all list methods:

>>> a = [66.6, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.6), a.count('x")
210

>>> a.nsert(2, -1)

>>> a.append(333)

>>> a

[66.6, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)

1

>>> a.remove(333)

>>> a

[66.6, -1, 333, 1, 1234.5, 333]

>>> a.reverse()

>>> a

[333, 12345, 1, 333, -1, 66.6]

>>> a.sort()

>>> a

[-1, 1, 66.6, 333, 333, 1234.5]

>>>

5.2 Thedel statement

There is a way to remove an item from a list given its index instead of its value: the
del statement. This can also be used to remove slices from a list (which we did
earlier by assignment of an empty list to the slice). For example:

30



>>> a

[1, 1, 66.6, 333, 333, 1234.5]
>>> del a[0]

>>> a

[1, 66.6, 333, 333, 1234.5]
>>> del a[2:4]

>>> a

[1, 66.6, 1234.5]
>>>

del can also be used to delete entire variables:

>>> del a
>>>

Referencing the nanmeehereafter is an error (at least until another value is assigned
to it). We'll find other uses fodel later.

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, e.g., indexing and
slicing operations. They are two examplessefjuencelata types. Since Python

is an evolving language, other sequence data types may be added. There is also
another standard sequence data typetupke

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, ‘hello!

>>> {[0]

12345

>>>

(12345, 54321, 'hello!)

>>> # Tuples may be nested:

.u =1t (1, 2, 3, 4 5

>>> U

((12345, 54321, 'hello!), (1, 2, 3, 4, 5)
>>>

31



As you see, on output tuples are alway enclosed in parentheses, so that nested
tuples are interpreted correctly; they may be input with or without surrounding
parentheses, although often parentheses are necessary anyway (if the tuple is part
of a larger expression).

Tuples have many uses, e.g., (X, y) coordinate pairs, employee records from a
database, etc. Tuples, like strings, are immutable: it is not possible to assign to the
individual items of a tuple (you can simulate much of the same effect with slicing
and concatenation, though).

A special problem is the construction of tuples containing 0 or 1 items: the syntax
has some extra quirks to accommodate these. Empty tuples are constructed by an
empty pair of parentheses; a tuple with one itemis constructed by following a value
with a comma (it is not sufficient to enclose a single value in parentheses). Ugly,
but effective. For example:

>>> empty = ()
>>> singleton = 'hello’, # <-- note trailing comma
>>> |en(empty)

0

>>> |en(singleton)

1

>>> singleton

('hello',)

>>>

The statemerit = 12345, 54321, 'hello! is an example ofuple pack-
ing: the valuesl2345, 54321 and'hello! are packed together in a tuple.
The reverse operation is also possible, e.g.:

>>> X, Yy, z =t
>>>

This is called, appropriately enougtuple unpacking Tuple unpacking requires

that the list of variables on the left has the same number of elements as the length
of the tuple. Note that multiple assignment is really just a combination of tuple
packing and tuple unpacking!

Occasionally, the corresponding operation on lists is usk$tilinpacking This is
supported by enclosing the list of variables in square brackets:

32



>>> a = ['spam’, 'eggs’, 100, 1234]
>>> [al, a2, a3, a4] = a
>>>

5.4 Dictionaries

Another useful data type built into Python is tthietionary. Dictionaries are some-
times found in other languages as “associative memories” or “associative arrays”.
Unlike sequences, which are indexed by a range of numbers, dictionaries are in-
dexed bykeys which are strings (the use of non-string values as keys is supported,
but beyond the scope of this tutorial). It is best to think of a dictionary as an
unordered set okey:valuepairs, with the requirement that the keys are unique
(within one dictionary). A pair of braces creates an empty diction@ry:Placing

a comma-separated list of key:value pairs within the braces adis key:value

pairs to the dictionary; this is also the way dictionaries are written on output.

The main operations on a dictionary are storing a value with some key and extract-
ing the value given the key. It is also possible to delete a key:value paideiith

If you store using a key that is already in use, the old value associated with that key
is forgotten. It is an error to extract a value using a non-existent key.

Thekeys() method of a dictionary object returns a list of all the keys used in the
dictionary, in random order (if you want it sorted, just apply soet() method

to the list of keys). To check whether a single key is in the dictionary, use the
has _key() method of the dictionary.

Here is a small example using a dictionary:

33



>>> tel = {jack': 4098, 'sape" 4139}
>>> tel['guido’] = 4127

>>> tel

{'sape" 4139, 'guido: 4127, ‘jack': 4098}
>>> tel[jack’]

4098

>>> del tel['sape’]

>>> tel[irv] = 4127

>>> tel

{'quido": 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()

[quido’, 'irv', ‘jack’]

>>> tel.has_key('guido’)

1

>>>

5.5 More on Conditions

The conditions used iwhile andif statements above can contain other opera-
tors besides comparisons.

The comparison operatons andnot in check whether a value occurs (does
not occur) in a sequence. The operatsrsandis not compare whether two
objects are really the same object; this only matters for mutable objects like lists.
All comparison operators have the same priority, which is lower than that of all
numerical operators.

Comparisons can be chained: egy.< b == c¢ tests whethea is less tharb
and moreoveb equalsc.

Comparisons may be combined by the Boolean operaadsandor , and the
outcome of a comparison (or of any other Boolean expression) may be negated with
not . These all have lower priorities than comparison operators again; between
them, not has the highest priority, anor the lowest, so thaA and not B

or C is equivalentto/A and (not B)) or C . Of course, parentheses can

be used to express the desired composition.

The Boolean operatomnd andor are so-calleghortcutoperators: their argu-
ments are evaluated from left to right, and evaluation stops as soon as the outcome

34



is determined. E.g., R andCare true buB is false,A and B and C does not
evaluate the expression C. In general, the return value of a shortcut operator, when
used as a general value and not as a Boolean, is the last evaluated argument.

It is possible to assign the result of a comparison or other Boolean expression to a
variable. For example,

>>> stringl, string2, string3 = ", 'Trondheim’, 'Hammer Dance'
>>> non_null = stringl or string2 or string3

>>> non_null

"Trondheim'

>>>

Note that in Python, unlike C, assignment cannot occur inside expressions.

5.6 Comparing Sequences and Other Types

Sequence objects may be compared to other objects with the same sequence type.
The comparison usdexicographicalordering: first the first two items are com-
pared, and if they differ this determines the outcome of the comparison; if they
are equal, the next two items are compared, and so on, until either sequence is ex-
hausted. If two items to be compared are themselves sequences of the same type,
the lexicographical comparison is carried out recursively. If all items of two se-
guences compare equal, the sequences are considered equal. If one sequence is
an initial subsequence of the other, the shorted sequence is the smaller one. Lexi-
cographical ordering for strings uses #&cil ordering for individual characters.

Some examples of comparisons between sequences with the same types:

1, 2, 3) < (1, 2, 4

[1, 2, 3] < [1, 2, 4]
'ABC' < 'C' < 'Pascal' < 'Python'

1, 2, 3, 4) < (1, 2, 4

1, 2) < (1, 2, -1)

1, 2, 3) = (1.0, 2.0, 3.0)

1, 2, (aa, 'ab)) < (1, 2, (abc, 'a), 4)

Note that comparing objects of different types is legal. The outcome is determinis-

35



tic but arbitrary: the types are ordered by their name. Thus, a listis always smaller
than a string, a string is always smaller than a tuple, etc. Mixed numeric types are
compared according to their numeric value, so 0 equals 0.0, etc.

'The rules for comparing objects of different types should not be relied upon; they may change
in a future version of the language.

36



Chapter 6

Modules

If you quit from the Python interpreter and enter it again, the definitions you have
made (functions and variables) are lost. Therefore, if you want to write a somewhat
longer program, you are better off using a text editor to prepare the input for the
interpreter and running it with that file as input instead. This is known as creating
ascript As your program gets longer, you may want to split it into several files for
easier maintenance. You may also want to use a handy function that you've written
in several programs without copying its definition irgach program.

To support this, Python has a way to put definitions in a file and use them in a
script or in an interactive instance of the interpreter. Such a file is caleodle
definitions from a module can hieportedinto other modules or into thmain
module (the collection of variables that you have access to in a script executed at
the top level and in calculator mode).

A module is a file containing Python definitions and statements. The file name is
the module name with the suffipy appended. Within a module, the module's
name (as a string) is available as the value of the global variabéene__. For
instance, use your favorite text editor to create a file cdikedpy  in the current
directory with the following contents:

37



# Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b=01
while b < n;
print b,
a, b = b, atb

def fib2(n): # return Fibonacci series up to n

result = ]

a b =0 1

while b < n:
result.append(b)
a, b = b, atb

return result

Now enter the Python interpreter and import this module with the following com-
mand:

>>> import fibo
>>>

This does not enter the names of the functions definédan directly in the cur-
rent symbol table; it only enters the module nafibe there. Using the module
name you can access the functions:

>>> fibo.fib(1000)

11235813 21 3455 89 144 233 377 610 987
>>> fibo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo.__name__

fibo'

>>>

If you intend to use a function often you can assign it to a local name:

38



>>> fib = fibo.fib

>>> fib(500)
11235813 21 3455 89 144 233 377
>>>

6.1 More on Modules

A module can contain executable statements as well as function definitions. These
statements are intended to initialize the module. They are executed orflysthe
time the module is imported somewhére.

Each module has its own private symbol table, which is used as the global symbol
table by all functions defined in the module. Thus, the author of a module can use
global variables in the module without worrying about accidental clashes with a

user's global variables. On the other hand, if you know what you are doing you

can touch a module's global variables with the same notation used to refer to its
functions,modname.itemname .

Modules can import other modules. It is customary but not required to place all
import statements at the beginning of a module (or script, for that matter). The
imported module names are placed in the importing module's global symbol table.

There is a variant of themport statement that imports names from a module
directly into the importing module's symbol table. For example:

>>> from fibo import fib, fib2

>>> fib(500)
112358 13 21 34 55 89 144 233 377
>>>

This does not introduce the module name from which the imports are taken in the
local symbol table (so in the exampfégo is not defined).

There is even a variant to import all names that a module defines:

lIn fact function definitions are also “statements' that are “executed': the execution enters the
function name in the module's global symbol table.

39



>>> from fibo import *

>>> fib(500)
11235813 21 3455 89 144 233 377
>>>

This imports all names except those beginning with an undersgore (

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate document
(Python Library Reference). Some modules are built into the interpreter; these
provide access to operations that are not part of the core of the language but are
nevertheless built in, either for efficiency or to provide access to operating system
primitives such as system calls. The set of such modules is a configuration op-
tion; e.g., theamoeba module is only provided on systems that somehow support
Amoeba primitives. One particular module deserves some attesiien:which is

built into every Python interpreter. The variab®s.psl andsys.ps2 define

the strings used as primary and secondary prompts:

>>> jmport sys

>>> sys.psl

>>>

>>> sys.ps2

>>> sys.psl = 'C> '
C> print "Yuck!
Yuck!

C>

These two variables are only defined if the interpreter is in interactive mode.

The variablesys.path  is a list of strings that determine the interpreter's search
path for modules. It is initialized to a default path taken from the environment
variablePYTHONPATHr from a built-in default iiPYTHONPATI$ not set. You

can modify it using standard list operations, e.g.:

40



>>> import sys
>>> sys.path.append(‘/ufs/guido/lib/python’)
>>>

6.3 Thedir() function

The built-in functiondir is used to find out which names a module defines. It
returns a sorted list of strings:

>>> import fibo, sys

>>> dir(fibo)

[__name__', 'fib', 'fib2]

>>> dir(sys)

[ _name_ ', ‘'argv', 'builtin_module_names', 'copyright’, 'exit’,
'maxint’, 'modules’, 'path’, 'psl’, 'ps2', 'setprofile’, 'settrace’,
'stderr', 'stdin’, 'stdout’, 'version’]

>>>

Without argumentgir()  lists the names you have defined currently:

>>> a =1, 2, 3, 4, 5]

>>> jmport fibo, sys

>>> fib = fibo.fib

>>> dir()

[ name_ ' ‘&, 'fib', fibo', 'sys']
>>>

Note that it lists all types of names: variables, modules, functions, etc.

dir() does not list the names of built-in functions and variables. If you want a
list of those, they are defined in the standard modidailtin -~ __:

41



>>> import __ builtin__

>>> dir(__builtin__)

[AccessError', 'AttributeError', 'ConflictError', 'EOFError', 'lOError,
'ImportError', ‘'IndexError', 'KeyError', 'Keyboardinterrupt',
'MemoryError', 'NameError', 'None', 'OverflowError, 'RuntimeError’,
'SyntaxError', 'SystemError', 'SystemExit, TypeError', 'ValueError',
'ZeroDivisionError', ' _name__', 'abs', 'apply’, 'chr, ‘cmp', 'coerce’
‘compile’, 'dir', 'divmod’, 'eval', 'execfile’, filter', ‘'float’,

'getattr’, ‘hasattr’, ‘hash’, 'hex’, 'id', 'input’, 'int', 'len’, 'long’,

'map', 'max', 'min', 'oct’, 'open’, 'ord', 'pow', 'range', 'raw_input
'reduce’, 'reload’, 'repr, 'round’, 'setattr’, 'str', 'type’, 'xrange']

>>>

42



Chapter 7

Output Formatting

So far we've encountered two ways of writing valuegpression statemerasd
theprint  statement. (A third way is using therite  method of file objects; the
standard output file can be referencedysstdout . See the Library Reference
for more information on this.)

Often you'll want more control over the formatting of your output than simply
printing space-separated values. The key to nice ftimggin Python is to do all

the string handling yourself; using string slicing and concatenation operations you
can create any lay-out you can imagine. The standard matiihg  contains
some useful operations for padding strings to a given column width; these will
be discussed shortly. Finally, tBéoperator (modulo) with a string left argument
interprets this string as a C sprintf format string to be applied to the right argument,
and returns the string resulting from this formatting operation.

One guestion remains, of course: how do you convert values to strings? Luckily,
Python has a way to convert any value to a string: just write the value between
reverse quotes( ). Some examples:

43



>>> X 10 * 3.14

>>> y = 200*200

>>> 5 = 'The value of x is "+ X + ' and y is ' + 'y + ..
>>> print s

The value of x is 31.4, and y is 40000...

>>> # Reverse quotes work on other types besides numbers:
v P =X Y]

>>> ps = p

>>> ps

'[31.4, 40000]

>>> # Converting a string adds string quotes and backslashes:
. hello = 'hello, world\n'

>>> hellos = "hello’

>>> print hellos

'hello, world\012'

>>> # The argument of reverse quotes may be a tuple:

. X, Y, ('spam’, 'eggs')

"(31.4, 40000, (‘spam’, 'eggs’))"

>>>

Here are two ways to write a table of squares and cubes:

44



>>> jmport string

>>> for x in range(1, 11):
print string.rjust("x’, 2), string.rjust("x*x’, 3),
# Note trailing comma on previous line
print string.rjust(x*x*x’, 4)

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000

>>> for x in range(1,11):
print '%2d %3d %4d" % (X, X*X, X*X*X)

1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000
>>>

(Note that one space between each column was added by therimty works:
it always adds spaces between its arguments.)

This example demonstrates the functsmring.rjust() , Which right-justifies
a string in a field of a given width by padding it with spaces on the left. There
are similar functionstring.ljust() andstring.center() . These func-
tions do not write anything, they just return a new string. If the input string is too
long, they don't truncate it, but return it unchanged; this will mess up your column

45



lay-out but that's usually better than the alternative, which would be lying about a
value. (If you really want truncation you can always add a slice operation, as in
string.ljust(x, n)[0:n] )

There is another functiorstring.zfill , which pads a numeric string on the
left with zeros. It understands about plus and minus signs:

>>> string.zfill('12', 5)

'00012'

>>> string.zfill(-3.14", 7)

'-003.14'

>>> string.zfill('3.14159265359", 5)

'3.14159265359'
>>>

46



Chapter 8

Errors and Exceptions

Until now error messages haven't been more than mentioned, but if you have tried
out the examples you have probably seen some. There are (at least) two distin-
guishable kinds of errorsyntax errorandexceptions

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of
complaint you get while you are still learning Python:

>>> while 1 print 'Hello world'
File "<stdin>", line 1
while 1 print 'Hello world'

SyntaxError: invalid syntax
>>>

The parser repeats the offending line and displays a little “arrow' pointing at the
earliest point in the line where the error was detected. The error is caused by (or
at least detected at) the tokprecedingthe arrow: in the example, the error is
detected at the keywomtint , since a colon:() is missing before it. File name

and line number are printed so you know where to look in case the input came from
a script.

47



8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error
when an attempt is made to execute it. Errors detected during execution are called
exceptionsand are not unconditionally fatal: you will soon learn how to handle
them in Python programs. Most exceptions are not handled by programs, however,
and result in error messages as shown here:

>>> 10 * (1/0)
Traceback (innermost last):
File "<stdin>", line 1
ZeroDivisionError: integer division or modulo
>>> 4 + spam*3
Traceback (innermost last):
File "<stdin>", line 1
NameError: spam
>>> 2" + 2
Traceback (innermost last):
File "<stdin>", line 1
TypekError: illegal argument type for built-in operation
>>>

The last line of the error message indicates what happened. Exceptions come in
different types, and the type is printed as part of the message: the types in the
example ar&eroDivisionError , NameError andTypeError . The string
printed as the exception type is the name of the built-in name for the exception that
occurred. This is true for all built-in exceptions, but need not be true for user-
defined exceptions (although it is a useful convention). Standard exception names
are built-in identifiers (not reserved keywords).

The rest of the line is a detail whose interpretation depends on the exception type;
its meaning is dependent on the exception type.

The preceding part of the error message shows the context where the exception
happened, in the form of a stack backtrace. In general it contains a stack backtrace
listing source lines; however, it will not display lines read from standard input.

The Python Library Reference Manual lists the built-in exceptions and their mean-
ings.

48



8.3 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the fol-
lowing example, which prints a table of inverses of some floating point numbers:

>>> numbers = [0.3333, 2.5, 0, 10]
>>> for x in numbers:
print X,
try:
print 1.0 / x
except ZeroDivisionError:
print *** has no inverse ***

0.3333 3.00030003

25 04

0 *** has no inverse ***
10 0.1

>>>

Thetry statement works as follows.

e First, thetry clause(the statement(s) between tirg andexcept key-
words) is executed.

o If no exception occurs, thexcept clausis skipped and execution of thwgy
statement is finished.

¢ Ifan exception occurs during execution of the try clause, the rest of the clause
is skipped. Then if its type matches the exception named aftemttept
keyword, the rest of the try clause is skipped, the except clause is executed,
and then execution continues after the statement.

¢ If an exception occurs which does not match the exception named in the
except clause, it is passed on to outer try statements; if no handler is found,
it is anunhandled exceptioand execution stops with a message as shown
above.

A try statement may have more than one except clause, to specify handlers for
different exceptions. At most one handler will be executed. Handlers only han-
dle exceptions that occur in the corresponding try clause, not in other handlers of

49



the samdry statement. An except clause may name multiple exceptions as a
parenthesized list, e.g.:

. except (RuntimeError, TypeError, NameError):
pass

The last except clause may omit the exception name(s), to serve as a wildcard. Use
this with extreme caution, since it is easy to mask a real programming error in this
way!

When an exception occurs, it may have an associated value, also known as the
exceptions'sargument The presence and type of the argument depend on the
exception type. For exception types which have an argument, the except clause
may specify a variable after the exception name (or list) to receive the argument's
value, as follows:

>>> try:
spam()
. except NameError, Xx:
print 'name’, X, 'undefined'

name spam undefined
>>>

If an exception has an argument, itis printed as the last part ("detail') of the message
for unhandled exceptions.

Exception handlers don't just handle exceptions if they occur immediately in the
try clause, but also if they occur inside functions that are called (even indirectly) in
the try clause. For example:

50



>>> def this_fails():
x = 1/0

>>> try:
this_fails()
. except ZeroDivisionError, detail:
print 'Handling run-time error:', detail

Handling run-time error: integer division or modulo
>>>

8.4 Raising Exceptions

Theraise statement allows the programmer to force a specified exception to
occur. For example:

>>> raise NameError, 'HiThere'

Traceback (innermost last):
File "<stdin>", line 1

NameError: HiThere

>>>

The firstargument taise  names the exception to be raised. The optional second
argument specifies the exception's argument.

8.5 User-defined Exceptions

Programs may name their own exceptions by assigning a string to a variable. For
example:

51



>>> my_exc = 'my_exc'
>>> try:
raise my_exc, 2*2
. except my_exc, val:
print 'My exception occurred, value:', val

My exception occurred, value: 4
>>> raise my_exc, 1
Traceback (innermost last):
File "<stdin>", line 1
my_exc: 1
>>>

Many standard modules use this to report errors that may occur in functions they
define.

8.6 Defining Clean-up Actions

Thetry statement has another optional clause which is intended to define clean-up
actions that must be executed under all circumstances. For example:

>>> tl’y:

raise KeyboardInterrupt

... finally:
print 'Goodbye, world!

Goodbye, world!
Traceback (innermost last):
File "<stdin>", line 2
KeyboardInterrupt

>>>

A finally clause is executed whether or not an exception has occurred in the
try clause. When an exception has occurred, it is re-raised aftdintiky

clause is executed. THmally clause is also executed “on the way out” when
thetry statementis left via break orreturn statement.

A try statement must either have one or mexeept clauses or onénally

52



clause, but not both.

53



Chapter 9

Classes

Python's class mechanism adds classes to the language with a minimum of new
syntax and semantics. It is a mixture of the class mechanisms founttiraad
Modula-3. As is true for modules, classes in Python do not put an absolute barrier
between definition and user, but rather rely on the politeness of the user not to
“break into the definition.” The most important features of classes are retained
with full power, however: the class inheritance mechanism allows multiple base
classes, a derived class can override any methods of its base class(es), a method
can call the method of a base class with the same name. Objects can contain an
arbitrary amount of private data.

In C++ terminology, all class members (including the data memberspaéc,

and all member functions axértual. There are no special constructors or destruc-
tors. As in Modula-3, there are no shorthands for referencing the object's members
from its methods: the method function is declared with an explicit first argument
representing the object, which is provided implicitly by the call. As in Smalltalk,
classes themselves are objects, albeit in the wider sense of the word: in Python,
all data types are objects. This provides semantics for importing and renaming.
But, just like in C++ or Modula-3, built-in types cannot be used as base classes for
extension by the user. Also, like int@ but unlike in Modula-3, most built-in oper-
ators with special syntax (arithmetic operators, subscripting etc.) can be redefined
for class members.

54



9.1 A word about terminology

Lacking universally accepted terminology to talk about classes, I'll make occa-
sional use of Smalltalk andG terms. (I'd use Modula-3 terms, since its object-
oriented semantics are closer to those of Python thith Gut | expect that few
readers have heard of it...)

| also have to warn you that there's a terminological pitfall for object-oriented
readers: the word “object” in Python does not necessarily mean a class instance.
Like C++ and Modula-3, and unlike Smalltalk, not all types in Python are classes:
the basic built-in types like integers and lists aren't, and even somewhat more exotic
types like files aren't. Howeveall Python types share a little bit of common
semantics that is best described by using the word object.

Objects have individuality, and multiple names (in multiple scopes) can be bound
to the same object. This is known as aliasing in other languages. This is usually
not appreciated on a first glance at Python, and can be safely ignored when dealing
with immutable basic types (numbers, strings, tuples). However, aliasing has an
(intended!) effect on the semantics of Python code involving mutable objects such
as lists, dictionaries, and most types representing entities outside the program (files,
windows, etc.). This is usually used to the benefit of the program, since aliases
behave like pointers in some respects. For example, passing an object is cheap
since only a pointer is passed by the implementation; and if a function modifies an
object passed as an argument, the caller will see the change — this obviates the
need for two different argument passing mechanisms as in Pascal.

9.2 Python scopes and name spaces

Before introducing classes, | first have to tell you something about Python's scope
rules. Class definitions play some neat tricks with name spaces, and you need
to know how scopes and name spaces work to fully understand what's going on.
Incidentally, knowledge about this subject is useful for any advanced Python pro-
grammer.

Let's begin with some definitions.

A name spacés a mapping from names to objects. Most name spaces are cur-
rently implemented as Python dictionaries, but that's normally not noticeable in
any way (except for performance), and it may change in the future. Examples of

55



name spaces are: the set oflbin names (functions such as() , and built-in
exception names); the global names in a module; and the local names in a function
invocation. In a sense the set of attributes of an object also form a name space. The
important thing to know about name spaces is that there is absolutely no relation
between names in different name spaces; for instance, two different modules may
both define a function “maximize” without confusion — users of the modules must
prefix it with the module name.

By the way, | use the wordttributefor any name following a dot — for example,

in the expressio.real |, real is an attribute of the objea. Strictly speak-

ing, references to names in modules are attribute references: in the expression
modname.funcname , modnameis a module object anfincname is an at-
tribute of it. In this case there happens to be a straightforward mapping between
the module's attributes and the global names defined in the module: they share the
same name space!

Attributes may be read-only or writable. In the latter case, assignment
to attributes is possible. Module attributes are writable: you can write
modname.the_answer = 42 . Writable attributes may also be deleted with
the del statement, e.del modname.the_answer

Name spaces are created at different moments and have different lifetimes. The
name space containing the built-in names is created when the Python interpreter
starts up, and is never deleted. The global hame space for a module is created
when the module definition is read in; normally, module namacep also last

until the interpreter quits. The statements executed by the top-level invocation of
the interpreter, either read from a script file or interactively, are considered part
of a module called _main__ , so they have their own global name space. (The
built-in names actually also live in a module; this is calledbuiltin__ )

The local name space for a function is created when the function is called, and
deleted when the function returns or raises an exception that is not handled within
the function. (Actually, forgetting would be a better way to describe what actually

happens.) Of course, recursive invocations each have their own local name space.

A scopeis a textual region of a Python program where a name space is directly
accessible. “Directly accessible” here means that an unqualified reference to a
name attempts to find the name in the name space.

'Except for one thing. Module objects have a secret read-only attribute calietd __which
returns the dictionary used to implement the module's name space; the d@rne__is an attribute
but not a global name. Obviously, using this violates the abstraction of name space implementation,
and should be restricted to things like post-mortem debuggers...

56



Although scopes are determined statically, they are used dynamically. At any time
during execution, exactly three nested scopes are in use (i.e., exactly three name
spaces are directly accessible): the innermost scope, which is searched first, con-
tains the local names, the middle scope, searched next, contains the current mod-
ule's global names, and the outermost scope (searched last) is the name space con-
taining built-in names.

Usually, the local scope references the local names of the (textually) current func-
tion. Outside of functions, the local scope references the same name space as the
global scope: the module's name space. Classitiefia place yet another name
space in the local scope.

It is important to realize that scopes are determined textually: the global scope of a
function defined in a module is that module's name space, no matter from where or
by what alias the function is called. On the other hand, the actual search for names
is done dynamically, at run time — however, the language definition is evolving
towards static name resolution, at “compile” time, so don't rely on dynamic hame
resolution! (In fact, local variables are already determined statically.)

A special quirk of Python is that assignments always go into the innermost scope.
Assignments do not copy data — they just bind names to objects. The same is true
for deletions: the statemedél x removes the binding of x from the name space
referenced by the local scope. In fact, all operations that introduce new names use
the local scope: in particular, import statements and function definitions bind the
module or function name in the local scope. (giebal statement can be used

to indicate that particular variables live in the global scope.)

9.3 Afirstlook at classes

Classes introduce a little bit of new syntax, three new object types, and some new
semantics.

9.3.1 Class definition syntax

The simplest form of class definition looks like this:

class ClassName:
<statement-1>

57



<statement-N>

Class definitions, like function definitiondgf statements) must be executed be-
fore they have any effect. (You could conceivably place a class definition in a
branch of arif statement, or inside a function.)

In practice, the statements inside a class definition will usually be function defini-
tions, but other statements are allowed, and sometimes useful — we'll come back
to this later. The function definitions inside a class normally have a peculiar form
of argument list, dictated by the calling conventions for methods — again, this is
explained later.

When a class definition is entered, a new name space is created, and used as the
local scope — thus, all assignments to local variables go into this new name space.
In particular, function definitions bind the name of the new function here.

When a class definition is left normally (via the end}ass objecis created. This

is basically a wrapper around the contents of the name space created by the class
definition; we'll learn more about class objects in the next section. The original
local scope (the one in effect just before the class definitions was entered) is rein-
stated, and the class object is bound here to class name given in the class definition
header (ClassName in the example).

9.3.2 Class objects

Class objects support two kinds of operations: attribute references and instantia-
tion.

Attribute referencesise the standard syntax used for all attribute references in
Python: obj.name . Valid attribute names are all the names that were in the
class's name space when the class object was created. So, if the class definition
looked like this:

class MyClass:
i = 12345
def f(x):
return ‘hello world'

58



thenMyClass.i andMyClass.f are valid attribute references, returning an
integer and a function object, respectively. Class attributes can also be assigned to,
so you can change the valueMyClass.i by assignment.

Classinstantiationuses function notation. Just pretend that the class object is
a parameterless function that returns a new instance of the class. For example,
(assuming the above class):

x = MyClass()

creates a newnstanceof the class and assigns this object to the local variable

9.3.3 Instance objects

Now what can we do with instance objects? The only operations understood by
instance objects are attribute references. There are two kinds of valid attribute
names.

The first I'll call data attributes These correspond to “instance variables” in
Smalltalk, and to “data members” int@. Data attributes need not be declared;
like local variables, they spring into existence when they are first assigned to. For
example, ifx in the instance oMyClass created above, the following piece of
code will print the value 16, without leaving a trace:

x.counter = 1
while x.counter < 10:
x.counter = x.counter * 2
print x.counter
del x.counter

The second kind of attribute references understood by instance objectsti@ds

A method is a function that “belongs to” an object. (In Python, the term method

is not unique to class instances: other object types can have methods as well, e.g.,
list objects have methods called append, insert, remove, sort, and so on. However,
below, we'll use the term method exclusively to mean methods of class instance

objects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class. By definition, all
attributes of a class that are (user-defined) function objects define corresponding

59



methods of its instances. So in our exampl#, is a valid method reference,
sinceMyClass.f is a function, bui.i is not, sinceMyClass.i is not. But
x.f is not the same thing ddyClass.f — itis a method objectnot a function
object.

9.3.4 Method objects

Usually, a method is called immediately, e.g.:

x.0)

In our example, this will return the stririgello world' . However, it is not
necessary to call a method right awayf is a method object, and can be stored
away and called at a later moment, for example:

xf = xf
while 1:
print xf()

will continue to printhello world until the end of time.

What exactly happens when a method is called? You may have noticedffhat

was called without an argument above, even though the function definitidn for
specified an argument. What happened to the argument? Surely Python raises an
exception when a function that requires an argument is called without any — even
if the argument isn't actually used...

Actually, you may have guessed the answer: the special thing about methods is that
the object is passed as the first argument of the function. In our example, the call
x.f()  is exactly equivalent tivlyClass.f(x) . In general, calling a method

with a list of n arguments is equivalent to calling the corresponding function with
an argument list that is created by inserting the method's object before the first
argument.

If you still don't understand how methods work, a look at the implementation can
perhaps clarify matters. When an instance attribute is referenced that isn't a data
attribute, its class is searched. If the name denotes a valid class attribute that is a
function object, a method object is created by packing (pointers to) the instance
object and the function object just found together in an abstract object: this is

60



the method object. When the method object is called with an argument list, it is
unpacked again, a new argument list is constructed from the instance object and
the original argument list, and the function object is called with this new argument
list.

9.4 Random remarks

[These should perhaps be placed more carefilly

Data attributes override method attributes with the same name; to avoid accidental
name conflicts, which may cause hard-to-find bugs in large programs, it is wise to
use some kind of convention that minimizes the chance of conflicts, e.g., capitalize
method names, prefix data attribute names with a small unique string (perhaps just
an underscore), or use verbs for methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary users
(“clients™) of an object. In other words, classes are not usable to implement pure
abstract data types. In fact, nothing in Python makes it possible to enforce data
hiding — it is all based upon convention. (On the other hand, the Python imple-
mentation, written in C, can completely hide implementation details and control
access to an object if necessary; this can be used by extensions to Pyittem wr
inC.)

Clients should use data attributes with care — clients may mess up invariants main-
tained by the methods by stamping on their data attributes. Note that clients may
add data attributes of their own to an instance object without affecting the validity
of the methods, as long as name conflicts are avoided — again, a naming conven-
tion can save a lot of headaches here.

There is no shorthand for referencing data attributes (or other methods!) from
within methods. | find that this actually increases the readability of methods: there
is no chance of confusing local variables and instance variables when glancing
through a method.

Conventionally, the first argument of methods is often cadledél . Thisis nothing
more than a convention: the narself has absolutely no special meaning to
Python. (Note, however, that by not following the convention your code may be
less readable by other Python programmers, and it is also conceivablecthasa
browserprogram be written which relies upon such a convention.)

Any function object that is a class attribute defines a method for instances of that

61



class. It is not necessary that the function definition is textually enclosed in the
class definition: assigning a function object to a local variable in the class is also
ok. For example:

# Function defined outside the class
def fi(self, x, y):
return min(x, Xx+y)

class C:
f=11
def g(self):
return ‘hello world'
h =g

Now f, g andh are all attributes of clas€ that refer to function objects, and
consequently they are all methods of instanceS ef h being exactly equivalent
to g. Note that this practice usually only serves to confuse the reader of a program.

Methods may call other methods by using method attributes afglie argument,
e.g.:

class Bag:

def empty(self):
self.data = []

def add(self, x):
self.data.append(x)

def addtwice(self, x):
self.add(x)
self.add(x)

The instantiation operation (“calling” a class object) creates an empty object. Many
classes like to create objects in a known initial state. Therefore a class may define
a special method named init__ , like this:

def __init_ (self):

self.empty()
When a class defines aninit_ method, class instantiation automatically in-
vokes init__ for the newly-created class instance. So inBag example, a

new and initialized instance can be obtained by:

62



x = Bag()

Of course, the init__ method may have arguments for greater flexibility.
In that case, arguments given to the class instantiation operator are passed on to
__init__ . For example,

>>> class Complex:
def __init_ (self, realpart, imagpart):
self.r = realpart
self.i = imagpart

>>> x = Complex(3.0,-4.5)

>>> X, X
(3.0, -4.5)
>>>

Methods may reference global names in the same way as ordinary functions. The
global scope associated with a method is the module containing the class definition.
(The class itself is never used as a global scope!) While one rarely encounters a
good reason for using global data in a method, there are many legitimate uses of the
global scope: for one thing, functions and modules imported into the global scope
can be used by methods, as well as functions and classes defined in it. Usually, the
class containing the method is itself defined in this global scope, and in the next
section we'll find some good reasons why a method would want to reference its
own class!

9.5 Inheritance

Of course, a language feature would not be worthy of the name “class” without
supporting inheritance. The syntax for a derived class definition looks as follows:

class DerivedClassName(BaseClassName):
<statement-1>

<statement-N>

63



The nameBaseClassName must be defined in a scope containing the derived
class definition. Instead of a base class name, an expression is also allowed. This
is useful when the base class is defined in another module, e.g.,

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition peeds the same as for a base class. When
the class object is constructed, the base class is remembered. This is used for
resolving attribute references: if a requested attribute is not found in the class, itis
searched in the base class. This rule is applied recursively if the base class itself is
derived from some other class.

There's nothing special about instantiation of derived
classes:DerivedClassName() creates a new instance of the class. Method
references are resolved as follows: the corresponding class attribute is searched,
descending down the chain of base classes if necessary, and the method reference
is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods have
no special privileges when calling other methods of the same object, a method of a
base class that calls another method defined in the same base class, may in fact end
up calling a method of a derived class that overrides it. (For @rogrammers: all
methods in Python are “virtual functions”.)

An overriding method in a derived class may in fact want to extend
rather than simply replace the base class method of the same name.
There is a simple way to call the base class method directly: just call
BaseClassName.methodname(self, arguments) . This is occasion-

ally useful to clients as well. (Note that this only works if the base class is defined
or imported directly in the global scope.)

9.5.1 Multiple inheritance

Python supports a limited form of multiple inheritance as well. A class definition
with multiple base classes looks as follows:

class DerivedClassName(Basel, Base2, Base3):
<statement-1>

64



<statement-N>

The only rule necessary to explain the semantics is the resolution rule used for
class attribute references. This is depth-first, left-to-right. Thus, if an attribute is
not found inDerivedClassName , it is searched iBasel, then (recursively)

in the base classes &asel, and only if it is not found there, it is searched in
Base2, and so on.

(To some people breadth first—searchiBgse2 and Base3 before the base
classes oBasel —looks more natural. However, this would require you to know
whether a particular attribute &asel is actually defined ilBasel or in one of

its base classes before you can figure out the consequences of a name conflict with
an attribute oBase2. The depth-first rule makes no differences between direct
and inherited attributes @asel .)

It is clear that indiscriminate use of multiple inheritance is a maintenance night-
mare, given the reliance in Python on conventions to avoid accidental name con-
flicts. A well-known problem with multiple inheritance is a class derived from two
classes that happen to have a common base class. While it is easy enough to figure
out what happens in this case (the instance will have a single copy of “instance
variables” or data attributes used by the common base class), it is not clear that
these semantics are in any way useful.

9.6 0Odds and ends

Sometimes it is useful to have a data type similar to the Pascal “record” or C
“struct”, bundling together a couple of named data items. An empty class defi-
nition will do nicely, e.g.:

class Employee:
pass

john = Employee() # Create an empty employee record

# Fill the fields of the record
john.name = 'John Doe'

65



john.dept = ‘computer lab’
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be
passed a class that emulates the methods of that data type instead. For instance,
if you have a function that formats some data from a file object, you can define a
class with methodsead() andreadline() that gets the data from a string
buffer instead, and pass it as an argument. (Unfortunately, this technigue has its
limitations: a class can't define operations that are accessed by special syntax such
as seqguence subscripting or arithmetic operators, and assigning such a “pseudo-
file” to sys.stdin  will not cause the interpreter to read further input from it.)

Instance method objects have attributes, tmdm_self s the object of which
the method is an instance, amdim_func is the function object corresponding
to the method.

66



Chapter 10

Recent Additions as of Release 1.1

Python is an evolving language. Since this tutorial was last thoroughly revised,
several new features have been added to the language. While ideally | should revise
the tutorial to incorporate them in the mainline of the text, lack of time currently
requires me to take a more modest approach. In this chapter | will briefly list the
most important improvements to the language and how you can use them to your
benefit.

10.1 The Last Printed Expression

In interactive mode, the last printed expression is assigned to the variabhes
means that when you are using Python as a desk calculator, it is somewhat easier
to continue calculations, for example:

>>> tax = 17.5 / 100
>>> price = 3.50
>>> price * tax
0.6125

>>> price + _
4.1125

>>> round(_, 2)

411

>>>

67



For reasons too embarrassing to explain, this variable is implemented as a built-in
(living in the module__builtin ~ __), so it should be treated as read-only by the
user. l.e. don't explicitly assign a value to it — you would create an independent
local variable with the same name masking the built-in variable with its magic
behavior.

10.2 String Literals

10.2.1 Double Quotes

Python can now also use double quotes to surround string literals, e.g.
"this doesn't hurt a bit" . There is no semantic difference between
strings surrounded by single or double quotes.

10.2.2 Continuation Of String Literals
String literals can span multiple lines by escaping newlines with backslashes, e.g.

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\
Note that whitespace at the beginning of the line is\
significant.\n"
print hello

which would print the following:

This is a rather long string containing
several lines of text just as you would do in C.
Note that whitespace at the beginning of the line is significan

10.2.3 Triple-quoted strings

In some cases, when you need to include really long strings (e.g. containing several
paragraphs of informational text), it is annoying that you have to terminate each
line with\n\ , especially if you would like to reformat the text occasionally with a
powerful text editor like Emacs. For such situations, “triple-quoted” strings can be
used, e.g.

68



hello = ™

This string is bounded by triple double quotes (3 times ").
Unescaped newlines in the string are retained, though \
it is still possible\nto use all normal escape sequences.

Whitespace at the beginning of a line is
significant. If you need to include three opening quotes
you have to escape at least one of them, e.g. \"™.

This string ends in a newline.

Triple-quoted strings can be surrounded by three single quotes as well, again with-
out semantic difference.

10.2.4 String Literal Juxtaposition

One final twist: you can juxtapose multiple string literals. Two or moraeeht
string literals (but not arbitrary expressions!) separated only by whitespace will be
concatenated (without intervening whitespace) into a single string object at com-
pile time. This makes it possible to continue a long string on the next line without
sacrificing indentation or performance, unlike the use of the string concatenation
operator+ or the continuation of the literal itself on the next line (since leading
whitespace is significant inside all types of string literals). Note that this feature,
like all string features except triple-quoted strings, is borrowed from Standard C.

10.3 The Formatting Operator

10.3.1 Basic Usage

The chapter on output formatting is really out of date: there is now an almost com-
plete interface to C-style printf formats. This is done by overloading the modulo
operator ¢ for a left operand which is a string, e.g.

>>> import math

69



>>> print 'The value of Pl is approximately %5.3f." % math.pi
The value of Pl is approximately 3.142.
>>>

If there is more than one format in the string you pass a tuple as right operand, e.g.

>>> table = {'Sjoerd: 4127, '‘Jack: 4098, 'Dcab' 8637678}
>>> for name, phone in table.items():
print '%-10s ==> %10d' % (name, phone)

Jack ==> 4098

Dcab ==> 8637678
Sjoerd ==> 4127
>>>

Most formats work exactly as in C and require that you pass the proper type (how-
ever, if you don't you get an exception, not a core dump). %lséormat is more
relaxed: if the corresponding argument is not a string object, it is converted to
string using thestr()  built-in function. Using* to pass the width or precision

in as a separate (integer) argument is supported. The C fotretad%pare not
supported.

10.3.2 Referencing Variables By Name

If you have a really long format string that you don't want to split up, it would
be nice if you could reference the variables to be formatted by name instead of
by position. This can be done by using an extension of C formats using the form
%(name)format , e.g.

>>> table = {'Sjoerd: 4127, '‘Jack: 4098, 'Dcab" 8637678}

>>> print '‘Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dcab)d" % ta
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

>>>

This is particularly useful in combination with the new builtviars()  function,
which returns a dictionary containing all local variables.

70



10.4 Optional Function Arguments

It is now possible to define functions with a variable number of arguments. There
are two forms, which can be combined.

10.4.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments. This
creates a function that can be called with fewer arguments than it is defined, e.g.

def ask_ok(prompt, retries = 4, complaint = 'Yes or no, pleasel):

while 1:
ok = raw_input(prompt)
if ok in (y', 'ye', 'yes'): return 1
if ok in ('n', 'no’', 'nop', 'nope"): return 0
retries = retries - 1
if retries < 0: raise |OError, 'refusenik user'
print complaint
This function can

be called either like thisask_ok('Do you really want to quit?’)
or like this:ask_ok('OK to overwrite the file?', 2)

The default values are evaluated at the point of function definition iméfi@ing
scope, so that e.g.

i=5

def f(arg = i). print arg
i =6

f0

will print 5.

10.4.2 Arbitrary Argument Lists
It is also possible to specify that a function can be called with an arbitrary number

of arguments. These arguments will be wrapped up in a tuple. Before the variable
number of arguments, zero or more normal arguments may occur, e.g.

71



def fprintf(file, format, *args):
file.write(format % args)

This feature may be combined with the previous, e.g.

def but_is_it_useful(required, optional = None, *remains):
print "I don't know"

10.5 Lambda And Functional Programming Tools

10.5.1 Lambda Forms

By popular demand, a few features commonly found in functional programming
languages and Lisp have been added to Python. Witlathlkeda keyword, small
anonymous functions can be created. Here's a function that returns the sum of
its two argumentstambda a, b: a+tb . Lambda forms can be used wherever
function objects are required. They are syntactically restricted to a single expres-
sion. Semantically, they are just syntactic sugar for a normal function definition.
Like nested function definitions, lambda forms cannot reference variables from the
containing scope, but this can be overcome through the judicious use of default
argument values, e.g.

def make_incrementor(n):
return lambda X, incr=n: Xx+incr

10.5.2 Map, Reduce and Filter

Three new built-in functions on sequences are good candidate to pass lambda
forms.

Map.
map(function, sequence) calls function(item) for each of the se-

guence's items and returns a list of the return values. For example, to compute
some cubes:

72



>>> map(lambda x: x*x*x, range(l1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
>>>

More than one sequence may be passed; the function must then have as many
arguments as there are sequences and is called with the corresponding item from
each sequence (&one if some sequence is shorter than another)Ndhe is
passed for the function, a function returning its argument(s) is substituted.

Combining these two special cases, we seerttegt(None, listl, list2)
is a convenient way of turning a pair of lists into a list of pairs. For example:

>>> seq = range(8)
>>> map(None, seq, map(lambda x: x*x, seq))
[0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), (7, 49)

>>>
Filter.
filter(function, sequence) returns a sequence
(of the same type, if possible) consisting of those items from the sequence for
which function(item) is true. For example, to compute some primes:
>>> filter(lambda x: x%2 !'= 0 and x%3 != 0, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]
>>>
Reduce.
reduce(function, sequence) returns a single value constructed by call-

ing the (binary) function on the first two items of the sequence, then on the result
and the next item, and so on. For example, to compute the sum of the numbers 1
through 10:

>>> reduce(lambda x, y: x+y, range(1, 11))
55
>>>

73



If there's only one item in the sequence, its value is returned; if the sequence is
empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case the
starting value is returned for an empty sequence, and the function is first applied to
the starting value and the first sequence item, then to the result and the next item,
and so on. For example,

>>> def sum(seq):
return reduce(lambda x, y: x+y, seq, 0)

>>> sum(range(l, 11))
55

>>> sum(())

0

>>>

10.6 Continuation Lines Without Backslashes

While the general mechanism for continuation of a source line on the next physical
line remains to place a backslash on the end of the line, expressions inside matched
parentheses (or square brackets, or curly braces) can now also be continued without
using a backslash. This is particularly useful for calls to functions with many
arguments, and for initializations of large tables.

For example:

and

month_names = [Januari’, 'Februari’, 'Maart',
‘April’, ‘Mel', ‘Juni’,
‘Juli’, '‘Augustus’, 'September’,
'‘Oktober', 'November', 'December’]

CopylnternalHyperLinks(self.context.hyperlinks,
copy.context.hyperlinks,
uidremap)

74



10.7 Regular Expressions

While C's printf-style output formats, transformed into Python, are adequate for
most output formatting jobs, C's scanf-style input formats are not very powerful.
Instead of scanf-style input, Python offers Emacs-style regular expressions as a
powerful input and scanning mechanism. Read the corresponding section in the
Library Reference for a full description.

10.8 Generalized Dictionaries

The keys of dictionaries are no longer restricted to strings — they can be any im-
mutable basic type including strings, numbers, tuples, or (certain) class instances.
(Lists and dictionaries are not acceptable as dictionary keys, in order to avoid prob-
lems when the object used as a key is modified.)

Dictionaries have two new methodd:values() returns a list of the dictio-
nary's values, and.items() returns a list of the dictionary's (key, value) pairs.
Like d.keys() , these operations are slow for large dictionaries. Examples:

>>> d = {100: 'honderd’, 1000: 'duizend’, 10: 'tien}
>>> d.keys()

[100, 10, 1000]

>>> d.values()

[honderd', 'tien’, 'duizend’]

>>> d.items()

[(100, 'honderd’), (10, 'tien’), (1000, 'duizend)]

>>>

10.9 Miscellaneous New Built-in Functions

The functionvars()  returns a dictionary containing the current local variables.
With a module argument, it returns that module's global variables. The old function
dir(x)  returnsvars(x).keys()

The functionround(x) returns a floating point number rounded to the nearest
integer
(but still expressed as a floating point number). Ergund(3.4) == 3.0

75



andround(3.5) == 4.0 . With a second argument it rounds to the spec-
ified number of digits, e.g. round(math.pi, 4) == 3.1416 or even
round(123.4, -2) == 100.0

The functionhash(x) returns a hash value for an object. All object types ac-
ceptable as dictionary keys have a hash value (and it is this hash value that the
dictionary implementation uses).

The functionid(x) return a unique identifier for an object. For two objects x
and y,id(x) == id(y) ifand only ifx is y . (In fact the object's address is
used.)

The functionhasattr(x, name) returns whether an object has an attribute
with the given name (a string value). The function
getattr(x, name) returns the object's attribute with the given name. The
functionsetattr(x, name, value) assigns a value to an object's attribute
with the given name. These three functions are useful if the attribute names are not
known beforehand. Note thgétattr(x, 'spam’) is equivalent tox.spam ,
andsetattr(x, 'spam’, y) is equivalenttoc.spam = y . By definition,
hasattr(x, name) returns true if and only i§etattr(x, name) returns
without raising an exception.

10.10 Else Clause For Try Statement

The try...except statement now has an optioredse clause, which must
follow all except clauses. It is useful to place code that must be executed if the
try clause does not raise an exception. For example:

for arg in sys.argv:
try:
f = open(arg, 'r')
except IOError:
print '‘cannot open', arg
else:

print arg, 'has', len(f.readlines()), 'lines
f.close()

76



10.11 New Class Featuresin Release 1.1

Some changes have been made to classes: the operator overloading mechanism is
more flexible, providing more support for non-numeric use of operators (including
calling an object as if it were a function), and itis possible to trap attribotesses.

10.11.1 New Operator Overloading

It is no longer necessary to coerce both sides of an operator to the same class or
type. A class may still provide acoerce __method, but this method may return
objects of different types or classes if it feels like it. If nooerce __is defined,

any argument type or class is acceptable.

In order to make it possible to implement binary operators where the right-hand
side is a class instance but the left-hand side is not, without using coercions, right-
hand versions of all binary operators may be defined. These have an 'r' prepended
to their name, e.g._radd __.

For example, here's a very simple class for representing times. Times are ini-
tialized from a number of seconds (like time.time()). Times are printed like this:
Wed Mar 15 12:28:48 1995 . Subtracting two Times gives their difference

in seconds. Adding or subtracting a Time and a number gives a new Time. You
can't add two times, nor can you subtract a Time from a number.

import time

class Time:
def _init_ (self, seconds):
self.seconds = seconds
def _ repr__ (self):
return time.ctime(self.seconds)
def __add_ (self, x):
return Time(self.seconds + X)
_radd = add # support for x+t
def _ sub_ (self, x):
if hasattr(x, 'seconds’): # test if x could be a Time
return self.seconds - x.seconds
else:
return self.seconds - x

77



now = Time(time.time())

tomorrow = 24*3600 + now

yesterday = now - today

print tomorrow - yesterday # prints 172800

10.11.2 Trapping Attribute Access

You can define three new “magic’ methods in a class
now: __getattr __(self, name) , _setattr __(self, name, value)
and__delattr  __(self, name)

The __getattr __ method is called when an attribute access fails, i.e. when an
attribute access would otherwise raise AttributeError — théftisr the instance's
dictionary and its class hierarchy have been searched for the named attribute. Note
that if this method attempts to access any undefined instance attribute it will be
called recursively!

The _setattr __and_delattr __methods are called when assignment to, re-
spectively deletion of an attribute are attempted. They are calkdadof the
normal action (which is to insert or delete the attribute in the instance dictionary).
If either of these methods most set or delete any attribute, they can only do so by
using the instance dictionary directly self. __dict __ — else they would be
called recursively.

For example, here's a near-universal “Wrapper” class that passes all its attribute ac-
cesses to another object. Note howtheit __method inserts the wrapped object
inself. __dict __in orderto avoid endless recursiondetattr __ would call
__getattr  __which would call itself recursively).

class Wrapper:
def __init_ (self, wrapped):
self.__dict__['wrapped’] = wrapped
def _ getattr__(self, name):
return getattr(self.wrapped, name)
def _ setattr (self, name, value):
setattr(self.wrapped, name, value)
def _ delattr__ (self, name):
delattr(self.wrapped, name)

78



import sys
f = Wrapper(sys.stdout)
f.write('hello world\n’) # prints 'hello world'

A simpler example of_getattr ~ __is an attribute that is computed each time (or
the first time) it it accessed. For instance:

from math import pi

class Circle:
def __init_ (self, radius):
self.radius = radius
def _ getattr _(self, name):
if name == 'circumference":
return 2 * pi * self.radius
if name == 'diameter"
return 2 * self.radius
if name == 'area".
return pi * pow(self.radius, 2)
raise AttributeError, name

10.11.3 Calling a Class Instance

If a class defines a methadcall __ it is possible to call its instances as if they
were functions. For example:

class PresetSomeArguments:
def __init_ (self, func, *args):
self.func, self.args = func, args
def _ call_ (self, *args):
return apply(self.func, self.args + args)

f = PresetSomeArguments(pow, 2) # f(i) computes powers of 2
for i in range(10): print f(i), # prints 1 2 4 8 16 32 64 128 256 512
print # append newline

79



Chapter 11

New In Release 1.2

This chapter describes even more recenttémlts to the Python language and li-
brary.

11.1 New Class Features

The semantics of coerce __ have been changed to be more reasonable. As an
example, the new standard mod@emplex implements fairly complete complex
numbers using this. Additional examples of classes with and withoaerce __
methods can be found in tHe@emo/classes subdirectory, moduleRat and
Dates .

If a class defines na.coerce __method, this is equivalent to the following defi-
nition:

def __ coerce__(self, other): return self, other

If _coerce __coerces itselfto an object of a different type, the operation is carried
out using that type — in release 1.1, this would cause an error.

Comparisons involving class instances now invakeoerce __ exactly as if
cmp(X, y) were a binary operator like (except ifx andy are the same ob-
ject).

80



11.2 Unix Signal Handling

On UNIX, Python now supports signal handling. The modsitgal  exports
functionssignal , pause andalarm , which act similar to their ™lix coun-
terparts. The module also exports the conventional names for the various signal
classes (also usable widis.kill() ) andSIG _IGN andSIG _DFL. See the sec-

tion onsignal in the Library Reference Manual for more information.

11.3 Exceptions Can Be Classes

User-defined exceptions are no longer limited to being string objects — they can
be identified by classes as well. Using this mechanism it is possible to create
extensible hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statement:

raise Class, instance

raise instance

In the first form,instance  must be an instance &flass or of a class derived
from it. The second form is a shorthand for

raise instance._class__, instance

An except clause may list classes as well as string objects. A class in an except
clause is compatible with an exception if it is the same class or a base class thereof
(but not the other way around — an except clause listing a derived class is not
compatible with a base class). For example, the following code will print B, C, D

in that order:

class B:
pass

class C(B):
pass

class D(C):
pass

81



for ¢ in [B, C, DI

try:
raise c()
except D:
print "D"
except C:
print "C"
except B:
print "B"

Note that if the except clauses were reversed (witkcept B " first), it would
have printed B, B, B — the first matching except clause is triggered.

When an error message is printed for an unhandled exception which is a class, the
class name is printed, then a colon and a space, and finally the instance converted
to a string using the built-in functiostr()

In this release, the built-in exceptions are still strings.

11.4 Object Persistency and Object Copying

Two new modulespickle andshelve , support storage and retrieval of (almost)
arbitrary Python objects on disk, using ttiiem package. A third modulesopy ,
provides flexible object copying operations. More information on these modules is
provided in the Library Reference Manual.

11.4.1 Persistent Objects

The modulepickle  provides a general framework for objects to disassemble
themselves into a stream of bytes and to reassemble such a stream back into an
object. It copes with reference sharing, recursive objects and instances of user-
defined classes, but not (directly) with objects that have “magical” links into the
operating system such as open files, sockets or windows.

The pickle  module defines a simple protocol whereby user-defined classes
can control how they are disassembled and assembled. The method
__getinitargs --() , if defined, returns the argument list for the constructor to

82



be used at assembly time (by default the constructor is called without arguments).
The methods_getstate __() and__setstate __() are used to pass additional
state from disassembly to assembly; by default the instanatits __is passed

and restored.

Note thatpickle does not open or close any files — it can be used equally well
for moving objects around on a network or store them in a database. For ease of
debugging, and the inevitable occasional manual patch-up, the constructed byte
streams consist of printabkscil characters only (though it's not designed to be

pretty).

The moduleshelve provides a simple model for storing objects on files. The
operatiorshelve.open(filename) returns a “shelf”, which is a simple per-
sistent database with a dictionary-like interface. Database keys are strings, objects
stored in the database can be anything pingitle  will handle.

11.4.2 Copying Objects

The modulecopy exports two functions:copy() and deepcopy() . The
copy() function returns a “shallow” copy of an objeagepcopy() returns

a “deep” copy. The difference between shallow and deep copying is only rele-
vant for compound objects (objects that contain other objects, like lists or class
instances):

e A shallow copy constructs a new compound object and then (to the extent
possible) insertthe same objecisto in that the original contains.

e A deep copy constructs a new compound object and then, recursively, inserts
copiesinto it of the objects found in the original.

Both functions have the same restrictions and use the same protogpit&las
— user-defined classes can control how they are copied by providing methods
named._getinitargs () ,-getstate _() and_setstate _() .

11.5 Documentation Strings

A variety of objects now have a new attributejoc __, which is supposed to con-
tain a documentation string (if no documentation is present, the attribhtmis).

83



New syntax, compatible with the old interpreter, allows for convenient initializa-
tion of the__doc __ attribute of modules, classes and functions by placing a string
literal by itself as the first statement in the suite. It must be a literal — an expres-
sion yielding a string object is not accepted as a documentation string, since future
tools may need to derive documentation from source by parsing.

Here is a hypothetical, amply documented module céfeam

Spam operations.
This module exports two classes, a function and an exception:

class Spam: full Spam functionality --- three can sizes
class SpamLight: limited Spam functionality --- only one can size

def open(filename): open a file and return a corresponding Spam or
SpamLight object

GoneOff: exception raised for errors; should never happen
Note that it is always possible to convert a SpamLight object to a

Spam object by a simple method call, but that the reverse operation is
generally costly and may fail for a number of reasons.

class SpamLight:
""Limited spam functionality.

Supports a single can size, no flavor, and only hard disks.

def __init_ (self, size=12):
""Construct a new SpamLight instance.

Argument is the can size.

# eftc.

# eftc.

84



class Spam(SpamLight):
""Full spam functionality.

Supports three can sizes, two flavor varieties, and all floppy
disk formats still supported by current hardware.

def __init_ (self, sizel=8, size2=12, size3=20):
""Construct a new Spam instance.

Arguments are up to three can sizes.

# eftc.
# eftc.

def open(flename = "/dev/null"):
""Open a can of Spam.

Argument must be an existing file.

# eftc.

class GoneOff:
""Class used for Spam exceptions.

There shouldn't be any.

pass

After executing fmport Spam ", the following expressions return the various
documentation strings from the module:

Spam.__doc___

Spam.SpamLight.  _doc__
Spam.SpamLight. _init . doc
Spam.Spam.__doc___
Spam.Spam.__init_. doc

85



Spam.open.__doc__
Spam.GoneOff. __doc__

There are emerging conventions about the content and formatting of documentation
strings.

The first line should always be a short, concise summary of the object's purpose.
For brevity, it should not explicitly state the object's name or type, since these are
available by other means (except if the name happens to be a verb describing a
function's operation). This line should begin with a capital letter and end with a
period.

If there are more lines in the documentation string, the second line should be blank,
visually separating the summary from the rest of the description. The following
lines should be one of more of paragraphs describing the objects calling conven-
tions, its side effects, etc.

Some people like to copy the Emacs convention of using UPPER CASE for func-
tion parameters — this often saves a few words or lines.

The Python parser does not strip indentation from multi-line string literals in
Python, so tools that process documentation have to strip indentation. This is done
using the following convention. The first non-blank liafter the first line of the

string determines the amount of indentation for the entire documentation string.
(We can't use the first line since it is generally adjacent to the string's opening
guotes so its indentation is not apparent in the string literal.) Whitespace “equiv-
alent” to this indentation is then stripped from the start of all lines of the string.
Lines that are indented less should not occur, but if they occur all their leading
whitespace should be stripped. Equivalence of whitespace should be tested after
expansion of tabs (to 8 spaces, normally).

In this release, few of the built-in or standard functions and modules have docu-
mentation strings.

11.6 Customizing Import and Built-Ins

In preparation for a “restricted execution mode” which will be usable to run code
received from an untrusted source (such as a WWW server or client), the mech-
anism by which modules are imported has been redesigned. It is now possible
to provide your own function_.import __ which is called whenever amport

86



statement is executed. There's a built-in functiemport __ which provides the
default implementation, but more interesting, the various steps it takes are avail-
able separately from the new built-in moduigp . (See the section amp in the
Library Reference Manual for more information on this module — it also contains
a complete example of how to write your owtimport __function.)

When you ddlir()  in afresh interactive interpreter you will see another “secret”
object that's present in every modulebuiltins ~ __. Thisis either a dictionary or

a module containing the set of built-in objects used by functions defined in current
module. Although normally all modules are initialized with a reference to the same
dictionary, itis now possible to use a different set of built-ins on a per-module basis.
Together with the fact that thenport  statement uses theimport __ function

it finds in the importing modules' dictionary of built-ins, this forms the basis for a
future restricted execution mode.

11.7 Python and the World-Wide Web

There is a growing humber of modules available for writing WWW tools. The
previous release already sported modgjegherlib , ftplib , httplib and

urllib  (which unifies the other three) for accessing data through the commonest
WWW protocols. This release also providagg , to ease the writing of server-

side scripts that use the Common Gateway Interface protocol, supported by most
WWW servers. The modularlparse  provides precise parsing of a URL string

into its components (address scheme, network location, path, parameters, query,
and fragment identifier).

A rudimentary, parser for HTML files is available in the modutmllib . It cur-
rently supports a subset of HTML 1.0 (if you bring it up to date, I'd love to receive
your fixes!). Unfortunately Python seems to be too slow for real-time parsing and
formatting of HTML such as required by interactive WWW browsers — but it's
good enough to write a “robot” (an automated WWW browser that searches the
web for information).

11.8 Miscellaneous

e Thesocket module now exports all the needed constants used for socket
operations, such &0BROADCAST

87



e The functiongpopen() andfdopen() intheos module now follow the
pattern of the built-in functiompen() : the default mode argument'is
and the optional third argument specifies the buffer size, whemseans

unbuffered,l means line-buffered, and any larger number means the size of
the buffer in bytes.

88



Chapter 12

New In Release 1.3

This chapter describes yet more recentiidis to the Python language and library.

12.1 Keyword Arguments

Functions and methods written in Python can now be called using keyword argu-
ments of the fornkeyword = value For instance, the following function:

def parrot(voltage, state='a stiff, action="voom’', type='Norwegian Blue’):
print "-- This parrot wouldn't", action,
print "if you put", voltage, "Volts through it."
print "-- Lovely plumage, the", type
print "-- It's", state, "I"

could be called in any of the following ways:

parrot(1000)

parrot(action = 'VOOOOOM', voltage = 1000000)
parrot('a thousand', state = 'pushing up the daisies')
parrot('a million', 'bereft of life’, jJump’)

but the following calls would all be invalid:

89



parrot() # required argument missing
parrot(voltage=5.0, 'dead’) # non-keyword argument following keyword
parrot(110, voltage=220) # duplicate value for argument
parrot(actor="John Cleese’) # unknown keyword

In general, an argument list must have the form: zero or more positional arguments
followed by zero or more keyword arguments, where the keywords must be chosen
from the formal parameter names. It's not important whether a formal parameter
has a default value or not. No argument must receive a value more than once —
formal parameter names corresponding to positional arguments cannot be used as
keywords in the same calls.

Note that no special syntax is required to allow a function to be called with keyword
arguments. The additional costs incurred by keyword arguments are only present
when a call uses them.

(As far as | know, these rules are exactly the same as used by Modula-3, even if
they are enforced by totally different means. This is intentional.)

When a final formal parameter of the forth nameis present, it receives a dic-
tionary containing all keyword arguments whose keyword doesn't correspond to
a formal parameter. This may be combined with a formal parameter of the form
* namewhich receives a tuple containing the gasal arguments beyond the for-
mal parameter list.*(hamemust occur befor&* name) For example, if we define

a function like this:

def cheeseshop(kind, *arguments, **keywords):

print "-- Do you have any", kind, ?'
print "-- I'm sorry, we're all out of", kind
for arg in arguments: print arg

print '-*40

for kw in keywords.keys(): print kw, "', keywords[kw]
It could be called like this:

cheeseshop('Limburger’, "It's very runny, sir.",
"It's really very, VERY runny, sir.",
client="John Cleese',
shopkeeper='"Michael Palin’,
sketch='"Cheese Shop Sketch")

90



and of course it would print:

-- Do you have any Limburger ?

-- I'm sorry, we're all out of Limburger
It's very runny, sir.

It's really very, VERY runny, sir.

client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch

Consequences of this change include:

e The built-in functionapply()  now has an optional third argument, which
is a dictionary specifying any keyword arguments to be passed. For example,

apply(parrot, (), {'voltage" 20, ‘'action: ‘'voomm'})
is equivalent to
parrot(voltage=20, action='voomm)

There is also a mechanism for functions and methods defined in an exten-
sion module (i.e., implemented in C or C++) to receive a dictionary of their
keyword arguments. By default, such functions do not accept keyword argu-
ments, since the argument names are not available to the interpreter.

In the effort of implementing keyword arguments, function and especially

method calls have been sped up significantly — for a method with ten formal
parameters, the call overhead has been cut in half; for a function with one
formal parameters, the overhead has been reduced by a third.

The format of.pyc files has changed (again).

The access statement has been disabled. The syntax is still recognized
but no code is generated for it. (There were some unpleasant interactions
with changes for keyword arguments, and my plan is to get rigcoéss
altogether in favor of a different approach.)

91



12.2 Changes to the WWW and Internet tools

e Thehtmllib  module has been rewritten in an incompatible fashion. The
new version is considerably more complete (HTML 2.0 except forms, but
including all ISO-8859-1 entity definitions), and easy to use. Small changes
tosgmllib  have also been made, to better match the tokenization of HTML
as recognized by other web tools.

¢ Anew modulgormatter  has been added, for use with the rawllib
module.

e Theurllib  andhttplib  modules have been changed somewhat to allow
overriding unknown URL types and to support authentication. They now use
mimetools.Message  instead ofrfc822.Message  to parse headers.
Theendrequest() method has been removed from the HTTP class since
it breaks the interaction with some servers.

e Therfc822.Message class has been changed to allow a flag to be passed
in that says that the file is unseekable.

e Theftplib  module has been fixed to be (hopefully) more robust on Linux.

e Several new operations that are optionally supported by servers have been
added tontplib  : xover , xgtitle  , xpath anddate .

12.3 Other Language Changes

e Theraise statement now takes an optional argument which specifies the
traceback to be used when printing the exception's stack trace. This must be
atraceback object, such as foundys.exc _traceback . When omitted
or given asNone, the old behavior (to generate a stack trace entry for the
current stack frame) is used.

e The tokenizer is now more tolerant of alien whitespace. Control-L in the
leading whitespace of a line resets the column number to zero, while Control-
R just before the end of the line is ignored.

92



12.4 Changes to Built-in Operations

e For file objectsf.read(0) andf.readline(0) now return an empty
string rather than reading an unlimited number of bytes. For the latter, omit
the argument altogether or pass a negative value.

e A new system variablesys.platform , has been added. It specifies the
current platform, e.gsunos5 or linux1

e The built-in functionsinput() and raw _input() now use the GNU
readline library when it has been configured (formerly, only interactive input
to the interpreter itself was read using GNU readline). The GNU readline
library provides elaborate line editing and history. The Python debugger
(pdb) is the first beneficiary of this change.

e Two new built-in functionsglobals() andlocals() , provide access
to dictionaries containming current global and local variables, respectively.
(These augment rather than replaees() , which returns the current local
variables when called without an argument, and a module's global variables
when called with an argument of type module.)

e The built-in functioncompile()  now takes a third possible value for the
kind of code to be compiled: specifyirigingle' generates code for a
single interactive statement, which prints the output of expression statements
that evaluate to something else théone.

12.5 Library Changes

e There are new modulei andihooks that support importing modules
with hierarchical names such &B.C . This is enabled by writing
import ni; ni.ni() at the very top of the main program. These mod-
ules are amply documented in the Python source.

e The modulaexec has been rewritten (incompatibly) to define a class and
to useihooks .

e The string.split() and string.splitfields() functions are
now the same function (the presence or absence of the second argument de-
termines which operation is invoked); similar fsiring.join() and
string.joinfields()

93



e The Tkinter  module and its helpeDialog have been revamped to
use keyword arguments. Tk 4.0 is now the standard. A new module
FileDialog has been added which implements standard file selection di-
alogs.

e The optional built-in moduledbmandgdbm are more coordinated — their
open() functions now take the same values for thiéig argument, and
the flag and modeargument have default values (to open the database for
reading only, and to create the database with nifi® minuse the umask,
respectively). The memory leaks have finally been fixed.

o A new dbm-like modulebsddb , has been added, which uses the BSD DB
package's hash method.

e A portable (though slow) dbm-clone, implemented in Python, has been
added for systems where none of the above is provided. It is aptly dubbed
dumbdbm

e The moduleanydbm provides a unified interface tosddb , gdbm, dbm,
anddumbdbm choosing the first one available.

e A new extension moduldjinascii , provides a variety of operations for
conversion of text-encoded binary data.

e There are three new or rewritten companion modules implemented in Python
that can encode and decode the most common such formatsuencode),
base64 andbinhex .

e A module to handle the MIME encoding quoted-printable has also been
added:quopri

e The parser module (which provides an interface to the Python parser's ab-
stract syntax trees) has been rewritten (incompatibly) by Fred Drake. It now
lets you change the parse tree and compile the result!

e Thesyslog module has been upgraded and documented.

12.6 Other Changes

e The dynamic module loader recognizes the fact that different filenames point
to the same shared library and loads the library only once, so you can have

94



a single shared library that defines multiple modules. (SunOS / SVR4 style
shared libraries only.)

¢ Jim Fulton's “abstract object interface” has been incorporated into the run-
time API. For more detailes, read the filexlude/abstract.h and
Objects/abstract.c

e The Macintosh version is much more robust now.

e Numerous things | have forgotten or that are so obscure no-one will notice
them anyway :-)

95



Chapter 13

New In Release 1.4

This chapter describes the major additions to the Python language and library in
version 1.4. Many minor changes are not listed here; it is recommended to read
the file Misc/NEWS in the Python source distribution for a complete listing of
changes. In particular, changes that only affect C programmers or the build and
installation process are not described in this chapter (the new installation lay-out is
explained below undesys.prefix though).

13.1 Language Changes

e Power operatorx**y is equivalent topow(x, y) . This operator binds
more tightly than*, / or % and binds from right to left when repeated or
combined with unary operators. For exampi&y**z is equivalent to

X¥*(y**z) , and-x**y is-(x**y)

e Complex numbers. Imaginary literals are writen wittj'a suffix (J'
is allowed as well.) Complex numbers with a nonzero real component
are written aq real+imag) . You can also use the new built-in function
complex()  which takes one or two argumentsomplex(x) is equiv-
alent tox + 0j , and complex(x, y) is x + y*0j . For example,
1j**2 vyieldscomplex(-1.0) (which is another way of saying “the real
value 1.0 represented as a complex number.”

Complex numbers are always represented as two floating point numbers, the
real and imaginary part. To extract these parts from a complex number

96



usez.real andz.imag . The conversion functions to floating point and
integer float() ,int() andlong() ) don'twork for complex numbers
—there is no one correct way to convert a complex number to a real number.
Useabs(z) to getits magnitude (as a float) oreal to getits real part.

Module cmath provides versions of all math functions that take complex
arguments and return complex results. (Modulath only supports real
numbers, so thahath.sqrt(-1) still raises avalueError  exception.
Numerical experts agree that this is the way it should be.)

New indexing syntax. It is now possible to use a tuple as an indexing ex-
pression for a mapping object without parenthesizing it, g4. 2, 3]
is equivalent to[(1, 2, 3)]

New slicing syntax. In support of the Numerical Python extension (dis-

tributed independently), slice indices of the foxfio:hi:stride] are
possible, multiple slice indices separated by commas are allowed, and an
index position may be repted by #ipses, as followsx[a, ..., Z] .
There's also a new built-in functioslice(lo, hi, stride) and a

new built-in objectEllipses , which yield the same effect without using
special syntax. None of the standard sequence types support indexing with
slice objects or ellipses yet.

Note that when this new slicing syntax is used, the mapping interface will
be used, not the sequence interface. In particular, when a user-defined class
instance is sliced using this new slicing syntax, itgetitem __method is
invoked — the__getslice  __ method is only invoked when a single old-
style slice is used, i.&]lo:hi] , with possible omission d6 and/orhi .

Some examples:

x[0:10:2] -> glice(0, 10, 2)

X[:2:] -> slice(None, 2, None)

X[::-1] -> slice(None, None, -1)

X[:1] -> slice(None, None, None)

X[1, 2:3] -> (1, slice(2, 3, None))

X[1:2, 3:4] -> (slice(1, 2, None), slice(3, 4, None))

X[1:2, ..., 3:4] -> (slice(1, 2, None), Ellipses,
slice(3, 4, None))

For more help with this you are referred to the matrix-sig.

97



e Theaccess statementis now truly gonaccess is no longer a reserved
word. This saves a few cycles here and there.

¢ Private variables through name mangling. There is now limited support for
class-private identifiers. Any identifier of the fornspam (at least two lead-
ing underscores, at most one trailing underscore) is now textuallgaeg!
with _classname __spam, whereclassname is the current class name
with leading underscore(s) stripped. This mangling is done without regard
of the syntactic position of the identifier, so it can be used to define class-
private instance and class variables, methods, as well as globals, and even
to store instance variables private to this class on instanaethefclasses.
Truncation may occur when the mangled name would be longer than 255
characters. Outside classes, or when the class name consists of only under-
scores, no mangling occurs.

Name mangling is intended to give classes an easy way to define “private”
instance variables and methods, without having to worry about instance vari-
ables defined by derived classes, or mucking with instance variables by code
outside the class. Note that the mangling rules are designed mostly to avoid
accidents; itsll is possible for a determined soul é&cess or modify a vari-

able thatis considered private. This can even be useful, e.g. for the debugger,
and that's one reason why this loophole is not closed. (Buglet: derivation of

a class with the same name as the base class makes use of private variables
of the base class possible.)

Notice that code passedéxec , eval() or evalfile() does not con-
sider the classname of the invoking class to be the current class; this is similar
to the effect of thaglobal statement, the effect of which is likewise re-
stricted to code that is byte-compiled together. The same restriction applies
to getattr() , setattr() anddelattr() , as well as when referenc-

ing __dict __directly.

Here's an example of a class that implements its owetattr __ and
_setattr __ methods and stores all attributes in a private variable, in a
way that works in Python 1.4 as well as in previous versions:

class VirtualAttributes:
__vdict = None

__vdict_name = locals().keys()[0]

def __init__ (self):

98



self.__dict__[self.__vdict name] = {}

def _ getattr_ (self, name):
return self.__vdictiname]

def __ setattr (self, name, value):
self.__vdictijname] = value

Warning: this is an experimental featurdo avoid all potential problems,
refrain from using identifiers starting with double underscore except for pre-
defined uses like_init __. To use private names while maintaining future
compatibility: refrain from using the same private name in classes related via
subclassing; avoid explicit (manual) mangling/unmangling; and assume that
at some point in the future, leading double underscore will revert to being
just a naming convention. Discussion on extensive compile-time declara-
tions are currently underway, and it is impossible to predict what solution
will eventually be chosen for private names. Double leading underscore is
still a candidate, of course — just not the only one. It iggeld in the dis-
tribution in the belief that it is useful, and so that widespread experience
with its use can be gained. It will not be removed without providing a better
solution and a migration path.

13.2 Run-time Changes

e New built-in functionlist() converts any sequence to a new list. Note
that when the argument is a list, the return value is a fresh copy, similar to
what would be returned bg{:]

e Improved syntax error message. Syntax errors detected by the code genera-
tion phase of the Python bytecode compiler now include a line number. The
line number is appended in parentheses. It is suppressed if the error occurs
in line 1 (this usually happens in interactive use).

¢ Different exception raised. Unrecognized keyword arguments now raise a
TypeError  exception rather thakkeyError

e Exceptions in._del __ methods. When a.del __ method raises an excep-
tion, a warning is written teys.stderr and the exception is ignored.

99



Formerly, such exceptions were ignored without warning. (Propagating the
exception is not an option since it it is invoked from an object finalizer, which
cannot return any kind of status or error.) (Buglet: The new behavior, while
needed in order to debug failingdel __ methods, is occasionally annoying,
because if affects the program’'s standard error stream. It honors assignments
tosys.stderr , so it can be redirected from within a program if desired.)

e You can now discover from which file (if any) a module was loaded by in-
specting its_file __ attribute. This attribute is not present for built-in or
frozen modules. It points to the shared library file for dynamically loaded
modules. (Buglet: this may be a relative path and is stored irpyee file
on compilation. If you manipulate the current directory wathchdir()
or move.pyc files around, the value may be incorrect.)

13.3 New or Updated Modules

e New built-in moduleoperator . While undocumented, the concept is
real simply:operator. __add_(x, y) does exactly the same thing as
x+y (for all types — built-in, user-defined, extension-defined). As a conve-
nience operator.add does the same thing, but beware — you can't use
operator.and and a few others where the “natural” nhame for an opera-
tor is a reserved keyword. You can add a single trailing underscore in such
cases.

e New built-in moduleerrno . See the Library Reference Manual.
e Rewrittencgi module. See the Library Reference Manual.

e Improved restricted execution modulexXec ). New moduleBastion
Both are now documented in a new chapter on restricted execution in the
Library Reference Manual.

e New string operations (all described in the Library Reference Man-
ual): Istrip() , rstrip() (strip only the left/right whitespace),
capitalize() (uppercase the first character, lowercase the rest),
capwords() (capitalize each word, delimited a &ring.split() ),
translate() (string transliteration — this existed before but can now also
delete characters by specifying a third argumemidketrans()  (a con-
venience function for creating translation tables fiamslate() and

100



regex.compile() ). The string functiorsplit() has an optional third
argument which specifies the maximum number of separators to split; e.g.
string.split(a=b=c', '=', 1) yields['a', 'b=c] . (Note

that for a long timesplit() andsplitfields() are synonyms.

New regsub operations (see the Library Reference Manual):

regsub.capwords() (like string.capwords() but allows you to
specify the word delimiter as a regular expressioaysub.splitx()
(like regsub.split() but returns the delimiters as well as the words

in the resulting list). The optionahaxsep argument is also supported by
regsub.split()

Module files pdb.py and profile.py can now be invoked as
scripts to debug c.g. profile other scripts easily. For example:
python /usr/local/lib/pythonl.4/profile.py myscript.py

The os module now supports theutenv()  function on systems where
it is provided in the C library (Windows NT and most Unix versions). For
example,os.putenv('PATH', ‘/bin:/usr/bin’) sets the envi-
ronment variabldATHto the string/bin:/usr/bin’ . Such changes
to the environment affect subprocesses started witsystem() ,
os.popen()  or os.fork() and os.execv() . When putenv()

is supported, assignments to items am.environ are automatically
translated into corresponding calls @s.putenv()  ; however, calls to
o0s.putenv() don't updateos.environ , so it is actually preferable
to assign to items ofos.environ . For this purpose, the type of
0s.environ is changed to a subclass OkerDict.UserDict when
os.putenv() is supported. (Buglet:os.execve() still requires a
real dictionary, so it won't accepds.environ as its third argument.
However, you can now uses.execv()  and it will use your changes to
os.environ 1)

More new functions in th@s module: mkfifo , plock , remove (==
unlink ), andftruncate . See the Unix manual (section 2, system calls)
for these function. More functions are also available under NT.

New functions in the fcntl modulelockf() and flock() (don't ask
:-) ). See the Library Reference Manual.

The first item of the module search paflys.path[O] , is the directory
containing the script that was used to invoke the Python interpreter. If the

101



script directory is not available (e.qg. if the interpreter is invoked interactively
or if the script is read from standard inpusys.path[0] is the empty
string, which directs Python to search modules in the current directory first.
Notice that the script directory is insertbdforethe entries inserted as a re-
sult of SPYTHONPATHThere is no longer an entry for the current directory
later in the path (unless explicitly set 8P Y THONPATHbr overridden at
build time).

13.4 Configuration and Installation

e More configuration information is now available to Python programs. The
variable sys.prefix gives the site-specific directory prefix where the
platform independent Python files are installed; by default, this is the string
"fusr/local" . This can be set at build time with therefix argu-
ment to theconfigure  script. The main collection of Python library mod-
ules is installed in the directorgys.prefix+"/lib/pythonl.4"
while the platform independent header files (all exceptfig.h ) are
stored insys.prefix+"/include/pythonl1.4"

Similarly, the variablesys.exec _prefix gives the site-specific direc-
tory prefix where the platforrdependent Python files are installed; by de-
fault, this is alsa'/usr/local" . This can be set at build time with the
--exec-prefix argument to theonfigure  script. Specifically, all
configuration files (e.g. theonfig.h  header file) are installed in the direc-
tory sys.exec _prefix+"/lib/pythonl.4/config" , and shared
library modules are installed in
sys.exec _prefix+"/lib/pythonl.4/sharedmodules”

Include files are asys.prefix+"/include/pythonl.4"

It is not yet decided what the most portable way is to come up with the
version number used in these pathnames. For compatibility with the 1.4beta
releases, sys.version[:3] can be used.

On non-Unix systems, these variables are meaningless.

e While sites are strongly discouraged from modifying the standard
Python library (like adding site-specific modules or functions), there
is now a standard way to invoke site-specific features. The stan-
dard modulesite , when imported, appends two site-specific directo-
ries to the end ofsys.path : $prefix/lib/site-python and

102



$exec _prefix/lib/site-python ,
where$prefix — and $exec _prefix  are the directoriesys.prefix
andsys.exec _prefix mentioned above.

After this path manipulation has been performed, an attempt is made to im-
port the modulesitecustomize . Any ImportError exception raised
by this attempt is silently ignored.

103



