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ABSTRACT

Python is a simple, yet powerful, interpreted programming language that bridges the gap
between C and shell programming, and is thus ideally suited for “throw-away program-
ming” and rapid prototyping. Its syntax is put together from constructs borrowed from
a variety of other languages; most prominent are influences from ABC, C, Modula-3 and
Icon.

The Python interpreter is easily extended with new functions and data types implement-
ed in C. Python is also suitable as an extension language for highly customizable C ap-
plications such as editors or window managers.

Python is available for various systems, amongst which most common flavors of UNIX
(including Linux), the Apple Macintosh, MS-DOS, MS-Windows 3.1(1), Windows 95,
Windows NT, and OS/2.

This reference manual describes the syntax and “core semantics” of the language. It is
terse, but attempts to be exact and complete. The semantics of non-essential built-in ob
ject types and of the built-in functions and modules are described in thePython Library
Reference. For an informal introduction to the language, see thePython Tutorial.
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CHAPTER 1: INTRODUCTION

This reference manual describes the Python programming language. It is not intended as a tu

While I am trying to be as precise as possible, I have chosen to use English rather than forma
fications for everything except syntax and lexical analysis. This should make the document mo
derstandable to the average reader, but will leave room for ambiguities. Consequently, if yo
coming from Mars and tried to re-implement Python from this document alone, you might ha
guess things and in fact you would probably end up implementing quite a different language. 
other hand, if you are using Python and wonder what the precise rules about a particular are
language are, you should definitely be able to find them here. If you would like to see a more 
definitition of the language, maybe you could volunteer your time — or invent a cloning mach

It is dangerous to add too many implementation details to a language reference document —
plementation may change, and other implementations of the same language may work differen
the other hand, there is currently only one Python implementation, and its particular quirks are
times worth being mentioned, especially where the implementation imposes additional limita
Therefore, you’ll find short “implementation notes” sprinkled throughout the text.

Every Python implementation comes with a number of built-in and standard modules. These 
documented here, but in the separatePython Library Reference document. A few built-in modules are
mentioned when they interact in a significant way with the language definition.

1.1 Notation

The descriptions of lexical analysis and syntax use a modified BNF grammar notation. This u
following style of definition:

name:           lc_letter (lc_letter | "_")*
lc_letter:      "a"..."z"

The first line says that aname is an lc_letter  followed by a sequence of zero or mor
lc_letter s and underscores. Anlc_letter  in turn is any of the single characters ‘a’ throug
‘z’. (This rule is actually adhered to for the names used in lexical and grammar rules in this
ment.)

Each rule begins with a name (which is the name defined by the rule) and a colon. A vertical | )
is used to separate alternatives; it is the least binding operator in this notation. A star (* ) means zero
or more repetitions of the preceding item; likewise, a plus (+) means one or more repetitions, and
phrase enclosed in square brackets ([ ] ) means zero or one occurrences (in other words, the encl
phrase is optional). The*  and+ operators bind as tightly as possible; parentheses are used for g
ing. Literal strings are enclosed in quotes. White space is only meaningful to separate tokens
are normally contained on a single line; rules with many alternatives may be formatted altern
with each line after the first beginning with a vertical bar.

In lexical definitions (as in the example above), two more conventions are used: Two literal c
ters separated by three dots mean a choice of any single character in the given (inclusive) r
ASCII characters. A phrase between angular brackets (<...> ) gives an informal description of the
symbol defined; e.g. this could be used to describe the notion of ‘control character’ if needed.
1
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uent
Even though the notation used is almost the same, there is a big difference between the me
lexical and syntactic definitions: a lexical definition operates on the individual characters of the
source, while a syntax definition operates on the stream of tokens generated by the lexical a
All uses of BNF in the next chapter (“Lexical Analysis”) are lexical definitions; uses in subseq
chapters are syntactic definitions.
2
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CHAPTER 2: LEXICAL ANALYSIS

A Python program is read by aparser. Input to the parser is a stream oftokens, generated by thelex-
ical analyzer. This chapter describes how the lexical analyzer breaks a file into tokens.

Python uses the (7-bit) ASCII character set for program text and string literals. 8-bit characte
be used in string literals and comments but their interpretation is platform dependent; the prop
to insert 8-bit characters in string literals is by using octal or hexadecimal escape sequences.

The run-time character set depends on the I/O devices connected to the program but is genera
perset of ASCII.

2.1 Line structure

A Python program is divided in a number oflogical lines.

2.1.1 Logical lines

The end of each logical line is represented by the token NEWLINE. Statements cannot cross
line boundaries except where NEWLINE is allowed by the syntax (e.g. between statements i
pound statements). A logical line is constructed from one or morephysical lines by following the ex-
plicit or implicit line joining rules.

2.1.2 Physical lines

A physical line ends in whatever the current platform’s convention is for terminating lines. On U
this is the ASCII LF (linefeed) character. On DOS/Windows, it is the ASCII sequence CR LF (r
followed by linefeed). On Macintosh, it is the ASCII CR (return) character.

2.1.3 Comments

A comment starts with a hash character (#) that is not part of a string literal, and ends at the end
the physical line. A comment signifies the end of the logical line unless the implicit line joining 
are invoked. Comments are ignored by the syntax­­; they are not tokens.

2.1.4 Explicit line joining

Two or more physical lines may be joined into logical lines using backslash characters (\ ), as follows:
when a physical line ends in a backslash that is not part of a string literal or comment, it is joine
the following forming a single logical line, deleting the backslash and the following end-of-line 
acter. For example:

if 1900 < year < 2100 and 1 <= month <= 12 \
   and 1 <= day <= 31 and 0 <= hour < 24 \
   and 0 <= minute < 60 and 0 <= second < 60:   # Looks like a valid date
        return 1

A line ending in a backslash cannot carry a comment. A backslash does not continue a comm
backslash does not continue a token except for string literals (i.e., tokens other than string litera
not be split across physical lines using a backslash). A backslash is illegal elsewhere on a line
a string literal.
3
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2.1.5 Implicit line joining

Expressions in parentheses, square brackets or curly braces can be split over more than one phy
without using backslashes. For example:

month_names = [’Januari’, ’Februari’, ’Maart’,      # These are the
               ’April’,   ’Mei’,      ’Juni’,       # Dutch names
               ’Juli’,    ’Augustus’, ’September’,  # for the months
               ’Oktober’, ’November’, ’December’]   # of the year

Implicitly continued lines can carry comments. The indentation of the continuation lines is not impo
Blank continuation lines are allowed. There is no NEWLINE token between implicit continuation lines
plicit continued lines can also occur within triple-quoted strings (see below); in that case they canno
comments.

2.1.6 Blank lines

A logical line that contains only spaces, tabs, formfeeds, and possibly a comment, is ignored (i.e., no
LINE token is generated), except that during interactive input of statements, an entirely blank logic
(i.e. one containing not even whitespace or a comment) terminates a multi-line statement.

2.1.7 Indentation

Leading whitespace (spaces and tabs) at the beginning of a logical line is used to compute the ind
level of the line, which in turn is used to determine the grouping of statements.

First, tabs are replaced (from left to right) by one to eight spaces such that the total number of chara
to there is a multiple of eight (this is intended to be the same rule as used by UNIX). The total num
spaces preceding the first non-blank character then determines the line’s indentation. Indentation c
split over multiple physical lines using backslashes; the whitespace up to the first backslash determ
indentation.

A formfeed character may be present at the start of the line; formfeed characters occurring elsewhe
leading whitespace have an undefined effect (for instance, they may reset the space count to zero)

The indentation levels of consecutive lines are used to generate INDENT and DEDENT tokens, u
stack, as follows.

Before the first line of the file is read, a single zero is pushed on the stack; this will never be pop
again. The numbers pushed on the stack will always be strictly increasing from bottom to top. At the
ning of each logical line, the line’s indentation level is compared to the top of the stack. If it is equal
ing happens. If it is larger, it is pushed on the stack, and one INDENT token is generated. If it is sm
must be one of the numbers occurring on the stack; all numbers on the stack that are larger are pop
and for each number popped off a DEDENT token is generated. At the end of the file, a DEDENT to
generated for each number remaining on the stack that is larger than zero.

Here is an example of a correctly (though confusingly) indented piece of Python code:

def perm(l):
        # Compute the list of all permutations of l
    if len(l) <= 1:
                  return [l]
    r = []
    for i in range(len(l)):
4
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             s = l[:i] + l[i+1:]
             p = perm(s)
             for x in p:
              r.append(l[i:i+1] + x)
    return r

The following example shows various indentation errors:

     def perm(l):                       # error: first line indented
    for i in range(len(l)):             # error: not indented
        s = l[:i] + l[i+1:]
            p = perm(l[:i] + l[i+1:])   # error: unexpected indent
            for x in p:
                    r.append(l[i:i+1] + x)
                return r                # error: inconsistent dedent

(Actually, the first three errors are detected by the parser; only the last error is found by the lexi
alyzer — the indentation ofreturn r  does not match a level popped off the stack.)

2.1.8 Whitespace between tokens

Except at the beginning of a logical line or in string literals, the whitespace characters space, 
formfeed can be used interchangeably to separate tokens. Whitespace is needed between tw
only if their concatenation could otherwise be interpreted as a different token (e.g.,ab  is one token,
buta b  is two tokens).

2.2 Other tokens

Besides NEWLINE, INDENT and DEDENT, the following categories of tokens exist:identifiers,
keywords, literals, operators, anddelimiters. Whitespace characters (other than line terminators, 
cussed earlier) are not tokens, but serve to delimit tokens. Where ambiguity exists, a token co
the longest possible string that forms a legal token when read from left to right.

2.3 Identifiers and keywords

Identifiers (also referred to asnames) are described by the following lexical definitions:

identifier:     (letter|"_") (letter|digit|"_")*
letter:         lowercase | uppercase
lowercase:      "a"..."z"
uppercase:      "A"..."Z"
digit:          "0"..."9"

Identifiers are unlimited in length. Case is significant.

2.3.1 Keywords

The following identifiers are used as reserved words, orkeywords of the language, and cannot be us
as ordinary identifiers. They must be spelled exactly as written here:

and        elif       global     not        try
break      else       if         or         while
class      except     import     pass
continue   finally    in         print
5
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def        for        is         raise
del        from       lambda     return

2.3.2 Reserved classes of identifiers

Certain classes of identifiers (besides keywords) have special meanings. These are:

(XXX need section references here.)

2.4 Literals

Literals are notations for constant values of some built-in types

2.4.1 String literals

String literals are described by the following lexical definitions:

stringliteral:   shortstring | longstring
shortstring:     "’" shortstringitem* "’" | ’"’ shortstringitem* ’"’
longstring:      "’’’" longstringitem* "’’’" | ’"""’ longstringitem* ’"""’
shortstringitem: shortstringchar | escapeseq
longstringitem:  longstringchar | escapeseq
shortstringchar: <any ASCII character except "\" or newline or the quote>
longstringchar:  <any ASCII character except "\">
escapeseq:       "\" <any ASCII character>

In plain English: String literals can be enclosed in single quotes (’) or double quotes ("). They can 
enclosed in groups of three single or double quotes (these are generally referred to astriple-quoted strings).
The backslash (\) character is used to escape characters that otherwise have a special meaning, su
line, backslash itself, or the quote character.

In “long strings” (strings surrounded by sets of three quotes), unescaped newlines and quotes are
(and are retained), except that three unescaped quotes in a row terminate the string. (A “quote” is t
acter used to open the string, i.e. either’  or " .)

Table 1: Special Meanings of Identifiers

Form Meaning

  _* Not imported byfrom  moduleimport *

  __*__ System-defined name

  __* Class-private name mangling
6
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Escape sequences in strings are interpreted according to rules similar to those used by Sta
The recognized escape sequences are:

In strict compatibility with Standard C, up to three octal digits are accepted, but an unlimited nu
of hex digits is taken to be part of the hex escape (and then the lower 8 bits of the resulting he
ber are used in all current implementations...).

Unlike Standard C, all unrecognized escape sequences are left in the string unchanged, i.e.,the back-
slash is left in the string. (This behavior is useful when debugging: if an escape sequence is mist
the resulting output is more easily recognized as broken. It also helps a great deal for string
used as regular expressions or otherwise passed to other modules that do their own escape h

2.4.1.1 String literal concatenation

Multiple adjacent string literals (delimited by whitespace), possibly using different quoting con
tions, are allowed, and their meaning is the same as their concatenation. Thus,"hello" ’world’
is equivalent to"helloworld" . This feature can be used to reduce the number of backsla
needed, to split long strings conveniently across long lines, or even to add comments to p
strings, for example:

regex.compile("[A-Za-z_]"       # letter or underscore
              "[A-Za-z0-9_]*"   # letter, digit or underscore
             )

Table 2: Escape Sequences

Escape Sequence Meaning

\ newline  Ignored

\\  Backslash (\ )

\’  Single quote (’ )

\"  Double quote (" )

\a  ASCII Bell (BEL)

\b  ASCII Backspace (BS)

\f  ASCII Formfeed (FF)

\n  ASCII Linefeed (LF)

\r  ASCII Carriage Return (CR)

\t  ASCII Horizontal Tab (TAB)

\v  ASCII Vertical Tab (VT)

\ ooo  ASCII character with octal valueooo

\x xx...  ASCII character with hex valuexx...
7
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Note that this feature is defined at the syntactical level, but implemented at compile time. The ‘
erator must be used to concatenate string expressions at run time.

2.4.2 Numeric literals

There are four types of numeric literals: plain integers, long integers, floating point numbers
imaginary numbers.

2.4.2.1 Integer and long integer literals

Integer and long integer literals are described by the following lexical definitions:

longinteger:    integer ("l"|"L")
integer:        decimalinteger | octinteger | hexinteger
decimalinteger: nonzerodigit digit* | "0"
octinteger:     "0" octdigit+
hexinteger:     "0" ("x"|"X") hexdigit+
nonzerodigit:   "1"..."9"
octdigit:       "0"..."7"
hexdigit:       digit|"a"..."f"|"A"..."F"

Although both lower case ‘l’ and upper case ‘L’ are allowed as suffix for long integers, it is stro
recommended to always use ‘L’, since the letter ‘l’ looks too much like the digit ‘1’.

Plain integer decimal literals must be at most 2147483647 (i.e., the largest positive integer, us
bit arithmetic). Plain octal and hexadecimal literals may be as large as 4294967295, but value
than 2147483647 are converted to a negative value by subtracting 4294967296. There is no 
long integer literals apart from what can be stored in available memory.

Some examples of plain and long integer literals:

7     2147483647                        0177    0x80000000
3L    79228162514264337593543950336L    0377L   0x100000000L

2.4.2.2 Floating point literals

Floating point literals are described by the following lexical definitions:

floatnumber:    pointfloat | exponentfloat
pointfloat:     [intpart] fraction | intpart "."
exponentfloat:  (intpart | pointfloat) exponent
intpart:        digit+
fraction:       "." digit+
exponent:       ("e"|"E") ["+"|"-"] digit+

The allowed range of floating point literals is implementation-dependent.  Some examples of fl
point literals:

3.14    10.     .001    1e100   3.14e-10

2.4.2.3 Imaginary literals

Imaginary literals are described by the following lexical definitions:

imagnumber:     (floatnumber | intpart) ("j"|"J")
8
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An imaginary literals yields a complex number with a real part of 0.0. Complex numbers are 
sented as a pair of floating point numbers and have the same restrictions on their range. To 
complex number with a nonzero real part, add a floating point number to it, e.g.(3+4j).  Some ex-
amples of imaginary literals:

3.14j   10.j    10 j    .001j   1e100j  3.14e-10j

Note that numeric literals do not include a sign; a phrase like-1  is actually an expression compose
of the unary operator ‘- ’ and the literal1.

2.5 Operators

The following tokens are operators:

+       -       *       **      /       %
<<      >>      &       |       ^       ~
<       >       <=      >=      ==      !=      <>

The comparison operators<> and!=  are alternate spellings of the same operator; != is the prefe
spelling,  <> is obsolescent.

2.6 Delimiters

The following tokens serve as delimiters in the grammar:

(       )       [       ]       {       }
,       :       .       ‘       =       ;

The period can also occur in floating-point and imaginary literals. A sequence of three period
special meaning as ellipses in slices.

The following printing ASCII characters have special meaning as part of other tokens or are
wise significant to the lexical analyzer:

’       "       #       \

The following printing ASCII characters are not used in Python. Their occurrence outside stri
erals and comments is an unconditional error:

@       $       ?
9
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CHAPTER 3: DATA MODEL

3.1 Objects, values and types

Objects are Python’s abstraction for data. All data in a Python program is represented by obje
by relations between objects. (In conformance to Von Neumann’s model of a “stored program
puter”, code is also represented by objects.)

Every object has an identity, a type and a value. An object’sidentity never changes once it has bee
created; you may think of it as the object’s address in memory. The ‘is ’ operator compares the iden
tity of two objects; the ‘id() ’ function returns an integer representing its identity (currently imp
mented as its address). An object’stype is also unchangeable. It determines the operations tha
object supports (e.g. “does it have a length?”) and also defines the possible values for objects
type. The ‘type() ’ function returns an object’s type (which is an object itself). Thevalue of some
objects can change. The ‘==’ operator compares the value of two objects. Objects whose value
change are said to bemutable; objects whose value is unchangeable once they are created are 
immutable. An object’s (im)mutability is determined by its type; for instance, numbers, strings
tuples are immutable, while dictionaries and lists are mutable.

Objects are never explicitly destroyed; however, when they become unreachable they may 
bage-collected. An implementation is allowed to postpone garbage collection or omit it altoget
it is a matter of implementation quality how garbage collection is implemented, as long as no o
are collected that are still reachable. (Implementation note: the current implementation uses 
ence-counting scheme which collects most objects as soon as they become unreachable, b
collects garbage containing circular references.)

Note that the use of the implementation’s tracing or debugging facilities may keep objects aliv
would normally be collectable. Also note that catching an exception with a ‘try...except ’ state-
ment may keep objects alive.

Some objects contain references to “external” resources such as open files or windows. It is
stood that these resources are freed when the object is garbage-collected, but since garbage c
is not guaranteed to happen, such objects also provide an explicit way to release the external r
usually aclose()  method. Programs are strongly recommended to always explicitly close suc
jects. The ‘try...finally ’ statement provides a convenient way to do this.

Some objects contain references to other objects; these are calledcontainers. Examples of containers
are tuples, lists and dictionaries. The references are part of a container’s value. In most case
we talk about the value of a container, we imply the values, not the identities of the contained o
however, when we talk about the (im)mutability of a container, only the identities of the immed
contained objects are implied. So, if an immutable container (like a tuple) contains a referen
mutable object, its value changes if that mutable object is changed.

Types affect almost all aspects of object behavior. Even the importance of object identity is a
in some sense: for immutable types, operations that compute new values may actually return
ence to any existing object with the same type and value, while for mutable objects this is 
lowed. E.g. after ‘‘a = 1; b = 1’’, a andb may or may not refer to the same object with the va
one, depending on the implementation, but after ‘‘c = []; d = [] ’’, c  andd are guaranteed to
refer to two different, unique, newly created empty lists. (Note that ‘‘c = d = [] ’’ assigns the
same object to bothc  andd.)
11
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3.2 The standard type hierarchy

Below is a list of the types that are built into Python. Extension modules written in C can defin
ditional types. Future versions of Python may add types to the type hierarchy (e.g. rational nu
efficiently stored arrays of integers, etc.).

Some of the type descriptions below contain a paragraph listing ‘special attributes’. These 
tributes that provide access to the implementation and are not intended for general use. Thei
tion may change in the future. There are also some ‘generic’ special attributes, not listed w
individual objects:__methods__ is a list of the method names of a built-in object, if it has an
__members__  is a list of the data attribute names of a built-in object, if it has any.

None This type has a single value. There is a single object with this value. This object is acc
through the built-in nameNone. It is used to signify the absence of a value in many sit
tions, e.g. it is returned from functions that don’t explicitly return anything. Its truth valu
false.

Ellipsis This type has a single value. There is a single object with this value. This object is acc
through the built-in nameEllipsis . It is used to indicate the presence of the ‘‘...’’ synta
in a slice. Its truth value is true.

NumbersThese are created by numeric literals and returned as results by arithmetic operato
arithmetic built-in functions. Numeric objects are immutable; once created their value n
changes. Python numbers are of course strongly related to mathematical numbers, but
to the limitations of numerical representation in computers.

Python distinguishes between integers and floating point numbers:

IntegersThese represent elements from the mathematical set of whole numbers

There are two types of integers:

Plain integersThese represent numbers in the range -2147483648 through 214748
(The range may be larger on machines with a larger natural word size, bu
smaller.) When the result of an operation falls outside this range, the exce
OverflowError  is raised. For the purpose of shift and mask operations, i
gers are assumed to have a binary, 2’s complement notation using 32 or
bits, and hiding no bits from the user (i.e., all 4294967296 different bit patt
correspond to different values).

Long integersThese represent numbers in an unlimited range, subject to available
tual) memory only. For the purpose of shift and mask operations, a binary r
sentation is assumed, and negative numbers are represented in a variant
complement which gives the illusion of an infinite string of sign bits extend
to the left.

The rules for integer representation are intended to give the most meaningful inter
tion of shift and mask operations involving negative integers and the least surprises
switching between the plain and long integer domains. For any operation except left
if it yields a result in the plain integer domain without causing overflow, it will yield 
same result in the long integer domain or when using mixed operands.

Floating point numbersThese represent machine-level double precision floating point n
bers. You are at the mercy of the underlying machine architecture and C implemen
for the accepted range and handling of overflow. Python does not support single-
sion floating point numbers; the savings in CPU and memory usage that are usua
reason for using these is dwarfed by the overhead of using objects in Python, so t
12
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no reason to complicate the language with two kinds of floating point numbers.

Complex numbersThese represent complex numbers as a pair of machine-level double
cision floating point numbers. The same caveats apply as for floating point numbers
real and imaginary value of a complex numberz  can be retrieved through the attribute
z.real  andz.imag .

SequencesThese represent finite ordered sets indexed by natural numbers. The built-in fun
len()  returns the number of items of a sequence. When the length of a sequence isn, the
index set contains the numbers 0, 1, ...,n. Item i  of sequencea is selected bya[i] .

Sequences also support slicing:a[i:j]  selects all items with indexk  such that
i <= k < j . When used as an expression, a slice is a sequence of the same type 
implies that the index set is renumbered so that it starts at 0 again.

Sequences are distinguished according to their mutability:

Immutable sequencesAn object of an immutable sequence type cannot change once it is
ated. (If the object contains references to other objects, these other objects may be
ble and may be changed; however the array of objects directly referenced b
immutable object cannot change.)

The following types are immutable sequences:

Strings The items of a string are characters. There is no separate character type; 
acter is represented by a string of one item. Characters represent (at leas
bytes. The built-in functionschr()  andord()  convert between characters an
nonnegative integers representing the byte values. Bytes with the values 
usually represent the corresponding ASCII values, but the interpretation of
ues is up to the program. The string data type is also used to represent ar
bytes, e.g. to hold data read from a file.

(What should be done on systems whose native character set is not ASCII

Tuples The items of a tuple are arbitrary Python objects. Tuples of two or more i
are formed by comma-separated lists of expressions. A tuple of one item (a
gleton’) can be formed by affixing a comma to an expression (an expressio
itself does not create a tuple, since parentheses must be usable for group
expressions). An empty tuple can be formed by enclosing ‘nothing’ in paren
ses: ‘‘() ’’.

Mutable sequencesMutable sequences can be changed after they are created. The sub
tion and slicing notations can be used as the target of assignment anddel  (delete) state-
ments.

There is currently a single mutable sequence type:

Lists The items of a list are arbitrary Python objects. Lists are formed by placi
comma-separated list of expressions in square brackets. (Note that there 
special cases needed to form lists of length 0 or 1.)

The optional modulearray  provides an additional example of a mutable sequence t

Mappings These represent finite sets of objects indexed by arbitrary index sets. The subscript n
a[k]  selects the item indexed byk  from the mappinga; this can be used in expressions a
as the target of assignments ordel  statements. The built-in functionlen()  returns the num-
ber of items in a mapping.
13
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There is currently a single intrinsic mapping type:

Dictionaries These represent finite sets of objects indexed by nearly arbitrary values
only types of values not acceptable as keys are values containing lists or dictiona
other mutable types that are compared by value rather than by object identity — th
son being that the efficient implementation of dictionaries requires a key’s value t
main constant. Numeric types used for keys obey the normal rules for num
comparison: if two numbers compare equal (e.g. 1 and 1.0) then they can be used
changeably to index the same dictionary entry.

Dictionaries are mutable; they are created by the{...} notation. (See “Dictionary dis-
plays” on page 28.)

The optional library modulesdbm, gdbm andbsddb  provide additional examples of map
ping types.

Callable typesThese are the types to which the function call operation (for invocation, See “C
on page 31.) is applied:

User-defined functionsA user-defined function object is created by a function definitio
(See “Function definitions” on page 48.)

Special read-only attributes:func_doc  or __doc__  is the function’s documentation
string, orNone if unavailable;func_name  or __name__ is the function’s name;
func_defaults  is a tuple containing default argument values for those argum
that have defaults, orNone if no arguments have a default value;func_code  is the
code object representing the compiled function body;func_globals  is (a reference
to) the dictionary that holds the function’s global variables — it defines the global n
space of the module in which the function was defined. Additional information abo
function’s definition can be retrieved from its code object; see the description of int
types below.

User-defined methodsA user-defined method object (a.k.a.object closure) combines a
class, a class instance (orNone) and a user-defined function.
Special read-only attributes:im_self  is the instance object;im_func  is the function
object;im_class  is the class that defined the method (which may be a base class 
class of whichim_self  is an instance);__doc__  is the method’s documentation
(same as im_func.__doc__ ); __name__ is the method name (same a
im_func.__name__ ).

User-defined method objects are created in two ways: when getting an attribute of a
that is a user-defined function object, or when getting an attributes of a class instan
is a user-defined function object. In the former case (class attribute), theim_self  at-
tribute isNone, and the method object is said to beunbound; in the latter case (instance
attribute),im_self  is the instance, and the method object is said to bebound. For in-
stance, whenC is a class which contains a definition for a functionf , C.f  does not yield
the function objectf ; rather, it yields an unbound method object m wherem.im_class
is C, m.im_function  is f , and m.im_self  is None. Whenx  is aC instance,x.f
yields a bound method objectm wherem.im_class  isC, m.im_function  is f,  and
m.im_self  is x .

When an unbound user-defined method object is called, the underlying fun
(im_func ) is called, with the restriction that the first argument must be an instanc
the proper class (im_class ) or of a derived class thereof.
14
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When a bound user-defined method object is called, the underlying function (im_func )
is called, inserting the class instance (im_self ) in front of the argument list. For in-
stance, whenC is a class which contains a definition for a functionf , andx  is an instance
of C, callingx.f(1)  is equivalent to callingC.f(x, 1) .

Note that the transformation from function object to (unbound or bound) method o
happens each time the attribute is retrieved from the class or instance. In some c
fruitful optimization is to assign the attribute to a local variable and call that local v
able. Also notice that this transformation only happens for user-defined functions; 
callable objects (and all non-callable objects) are retrieved without transformation.

Built-in functions A built-in function object is a wrapper around a C function. Examples
built-in functions arelen  andmath.sin  (math  is a standard built-in module). The
number and type of the arguments are determined by the C function. Special rea
attributes:__doc__  is the function’s documentation string, orNone if unavailable;
__name__ is the function’s name;__self__  is set toNone (but see the next para
graph).

Built-in methods This is really a different disguise of a built-in function, this time contain
an object passed to the C function as an implicit extra argument. An example of a
in method islist.append , assuminglist  is a list object. In this case, the speci
read-only attribute__self__  is set to the object denoted bylist .

ClassesClass objects are described below. When a class object is called, a new class in
(also described below) is created and returned. This implies a call to the c
__init__  method if it has one. Any arguments are passed on to the__init__ meth-
od — if there is no__init__  method, the class must be called without arguments.

Class instancesClass instances are described below. Class instances can be called as
tion only when the class has a__call__  method; in this case,x(arguments)  is a
shorthand forx.__call__(arguments) .

ModulesModules are imported by theimport  statement. (See “The import statement” on page 4
A module object has a name space implemented by a dictionary object (this is the dict
referenced by thefunc_globals  attribute of functions defined in the module). Attribu
references are translated to lookups in this dictionary, e.g.m.x  is equivalent to
m.__dict__["x"] . A module object does not contain the code object used to initia
the module (since it isn’t needed once the initialization is done).

Attribute assignment update the module’s name space dictionary, e.g. ‘‘m.x = 1 ’’ is equiv-
alent to ‘‘m.__dict__["x"] = 1 ’’.

Special read-only attribute:__dict__  is the dictionary object that is the module’s nam
space.

Predefined (writable) attributes:__name__ is the module name;__doc__  is the module’s
documentation string, orNone if unavailable;__file__  is the pathname of the file from
which the module was loaded, if it was loaded from a file. The__file__  attribute is not
present for C modules that are statically linked into the interpreter; for extension mo
loaded dynamically from a shared library, it is the pathname of the shared library file.

ClassesClass objects are created by class definitions (See “Class definitions” on page 49.). A
has a name space implemented by a dictionary object. Class attribute references are tr
to lookups in this dictionary, e.g. ‘‘C.x ’’ is translated to ‘‘C.__dict__["x"] ’’. When
the attribute name is not found there, the attribute search continues in the base class
search is depth-first, left-to-right in the order of their occurrence in the base class list. 
15
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a class attribute reference would yield a user-defined function object, it is transforme
an unbound user-defined method object (see above). Theim_class  attribute of this method
object is the class in which the function object was found, not necessarily the class for 
the attribute reference was initiated.

Class attribute assignments update the class’s dictionary, never the dictionary of a base

A class object can be called as a function (see above) to yield a class instance (see b

Special read-only attributes:__dict__  is the dictionary that is the class’s name spa
__name__ is the class name;__bases__  is a tuple (possibly empty or a singleton) co
taining the base classes, in the order of their occurrence in the base class list.

Predefined (writable) attribute:__doc__  is the class’s documentation string, orNone if un-
defined.

Class instancesA class instance is created by calling a class object as a function (see above). A
instance has a name space implemented as a dictionary, which is the first place wh
stance attributes are searched. When an attribute is not found there, the search continu
the class attributes. If a class attribute is found that is a user-defined function object (
no other case), it is transformed into an unbound user-defined method object (see abov
im_class  attribute of this method object is the class in which the function object 
found, not necessarily the class of the instance for which the attribute reference was in
If no class attribute is found, and the object’s class has a__getattr__  method, that is
called to satisfy the lookup.

Attribute assignments and deletions update the instance’s dictionary, never a class’s 
nary. If the class has a__setattr__  or __delattr__  method, this is called instead o
updating the instance dictionary directly.

Class instances can pretend to be numbers, sequences, mappings, or callable obje
override various other special operations, if they have methods with certain special n
See “Special method names” on page 18.

Special read-only attributes:__dict__  yields the attribute dictionary;__class__  yields
the instance’s class.

Files A file object represents an open file. It is a wrapper around a C standard I/O (stdio) file point-
er. File objects are created by theopen()  built-in function, and also byposix.popen() ,
posix.fdopen()  and themakefile  method of socket objects. The objectssys.st-
din , sys.stdout  andsys.stderr  are initialized to file objects corresponding to the i
terpreter’s standard input, output and error streams. See the Python Library Referen
methods of file objects and other details.

Internal types A few types used internally by the interpreter are exposed to the user. Their defin
may change with future versions of the interpreter, but they are mentioned here for com
ness.

Code objectsCode objects representbyte-compile executable Python code, orbytecode. The
difference between a code object and a function object is that the function object co
an explicit reference to the function’s globals (the name space dictionary of the m
in which it was defined), while a code object contains no context; also the default 
ment values are stored in the function object, not in the code object (because they
sent values calculated at run-time). Unlike function objects, code objects are immu
and contain no references (directly or indirectly) to mutable objects.
16
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Special read-only attributes:co_argcount  is the number of positional arguments (in
cluding arguments with default values);co_nlocals  is the number of local variables
used by the function (including arguments);co_varnames  is a tuple containing the
names of the local variables (starting with the argument names);co_code  is a string
representing the sequence of bytecode instructions;co_consts  is a tuple containing
the literals used by the bytecode;co_names  is a tuple containing the names used by t
bytecode; co_filename  is the filename from which the code was compile
co_flags  is an integer encoding a number of flags for the interpreter. The follow
flag bits are defined: bit 2 is set if the function uses the “*arguments ’’ syntax to accept
an arbitrary number of positional arguments; bit 3 is set if the function uses
‘‘ **keywords ’’ syntax to accept arbitrary keyword arguments; other bits are used
ternally or reserved for future use. The first item inco_consts  is the documentation
string of the function, orNone if undefined. To find out the first line number of a func
tion, you have to disassemble the bytecode instructions; the standard library m
codehack  defines a functiongetlineno()  that returns the first line number of 
code object.

Frame objectsFrame objects represent execution frames. They may occur in tracebac
jects (see below).

Special read-only attributes:f_back  is to the previous stack frame (towards the calle
or None if this is the bottom stack frame;f_code  is the code object being executed 
this frame;f_locals  is the dictionary used to look up locals variables;f_globals
is used for global variables;f_builtins  is used for built-in (intrinsic) names
f_restricted  is a flag indicating whether the function is executing in restricted 
ecution mode;f_owner  is the class or module that defined the code, if any;f_lineno
gives the current line number andf_lasti  gives the precise instruction (this is an inde
into the instruction string of the code object).

Special writable attributes:f_trace , if not None, is a function called at the start o
each source code line (this is used by the debugger).

Traceback objects Traceback objects represent a stack trace of an exception. A trace
object is created when an exception occurs. When the search for an exception hand
winds the execution stack, at each unwound level a traceback object is inserted in
of the current traceback. When an exception handler is entered, (See “Thetry  state-
ment” on page 47.), the stack trace is made available to the program
sys.exc_traceback . When the program contains no suitable handler, the s
trace is written (nicely formatted) to the standard error stream; if the interpreter is 
active, it is also made available to the user assys.last_traceback .

Special read-only attributes:tb_next  is the next level in the stack trace (towards the fra
where the exception occurred), orNone if there is no next level;tb_frame  points to
the execution frame of the current level;tb_lineno  gives the line number where th
exception occurred;tb_lasti  indicates the precise instruction. The line number a
last instruction in the traceback may differ from the line number of its frame object i
exception occurred in atry  statement with no matchingexcept  clause or with a
finally  clause.

Slice objectsSlice objects are used to represent slices whenextended slice syntax is used (this
is a slice using two colons, or multiple slices or ellipses separated by commas
a[i:j:step] , a[i:j, k:l] , or a[..., i:j] ). They are also created by th
built-in slice()  function.
17
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Special read-only attributes:start  is the lowerbound;stop  is the upperbound;step
is the step value; each isNone if omitted. These attributes can have any type.

3.3 Special method names

This section describes how user-defined classes can customize their behavior or emulate the b
of other object types. In the following, if a class defines a particular method, any class derived
it is also understood to define that method (implicitly).

A class can implement certain operations that are invoked by special syntax (such as arithmet
ations or subscripting and slicing) by defining methods with special names. For instance, if a cl
fines a method named__getitem__ , andx  is an instance of this class, thenx[i]  is equivalent to
x.__getitem__(i) . (The reverse is not true; e.g. ifx  is a list object,x.__getitem__(i)  is
not equivalent tox[i] .) Except where mentioned, attempts to execute an operation raise an e
tion when no appropriate method is defined.

3.3.1 Basic customization

__init__(self, [args...]) Called when the instance is created. The arguments are t
that were passed to the class constructor expression. If a base class has an__init__  method
the derived class’s__init__  method must explicitly call it to ensure proper initializatio
of the base class part of the instance, e.g.
‘‘ BaseClass.__init__(self, [args...]) ’’.

__del__(self) Called when the instance is about to be destroyed. If a base class has a__del__
method the derived class’s__del__  method must explicitly call it to ensure proper deletio
of the base class part of the instance. e.g. ‘‘BaseClass.__del__(self) ’’. Note that it
is possible (though not recommended!) for the__del__  method to postpone destruction o
the instance by creating a new reference to it. It may then be called at a later time wh
new reference is deleted. It is not guaranteed that__del__  methods are called for object
that still exist when the interpreter exits.

Note that ‘‘del x ’’ doesn’t directly callx.__del__()  — the former decrements the ref
erence count forx  by one, and the latter is only called when its reference count reaches
Some common situations that may prevent the reference count of an object to go to z
clude: circular references between objects (e.g. a doubly-linked list or a tree data str
with parent and child pointers); a reference to the object on the stack frame of a functio
caught an exception (the traceback stored insys.exc_traceback  keeps the stack frame
alive); or a reference to the object on the stack frame that raised an unhandled excep
interactive mode (the traceback stored insys.last_traceback  keeps the stack frame
alive). The first situation can only be remedied by explicitly breaking the cycles; the l
two situations can be resolved by storingNone in sys.exc_traceback  or
sys.last_traceback .

Warning: due to the precarious circumstances under which__del__  methods are invoked,
exceptions that occur during their execution areignored, and a warning is printed to
sys.stderr  instead. Also, when__del__  is invoked is response to a module being d
leted (e.g. when execution of the program is done), other globals referenced by the__del__
method may already have been deleted. For this reason,__del__  methods should do the ab
solute minimum needed to maintain external invariants.

__repr__(self) Called by therepr()  built-in function and by string conversions (revers
quotes) to compute the “official” string representation of an object. This should norm
18
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look like a valid Python expression that can be used to recreate an object with the same

__str__(self) Called by thestr()  built-in function and by theprint statement compute the
‘‘informal’’ string representation of an object. This differs from__repr__  in that it doesn’t
have to look like a valid Python expression: a more convenient or concise representatio
be used instead.

__cmp__(self, other) Called by all comparison operations. Should return a negative int
if self < other , zero if self == other , a positive integer ifself > other . If no
__cmp__  method is defined, class instances are compared by object identity (“addr
(Implementation note: due to limitations in the interpreter, exceptions raised by compa
areignored, and the outcome will be random in this case.)

__hash__(self) Called for the key object for dictionary operations, and by the built-in func
hash() . Should return a 32-bit integer usable as a hash value for dictionary operation
only required property is that objects which compare equal have the same hash valu
advised to somehow mix together (e.g. using exclusive or) the hash values for the c
nents of the object that also play a part in comparison of objects. If no__hash__  method is
defined, class instances are hashed by object identity (‘‘address’’). If a class does not
a__cmp__  method it should not define a__hash__  method either; if it defines__cmp__
but not__hash__  its instances will not be usable as dictionary keys. If a class defines
table objects and implements a__cmp__  method it should not implement__hash__  since
the dictionary implementation requires that a key’s hash value is immutable (if the ob
hash value changes, it will be in the wrong hash bucket).__nonzero__(self) Called to
implement truth value testing; should return 0 or 1. When this method is not def
__len__  is called, if it is defined (see below). If a class defines neither__len__  nor
__nonzero__ , all its instances are considered true.

3.3.2 Customizing attribute access

The following methods can be defined to customize the meaning of attribute access (use of, 
ment to, or deletion ofx. name) for class instances. For performance reasons, these method
cached in the class object at class definition time; therefore, they cannot be changed after t
definition is executed.

__getattr__(self, name) Called when an attribute lookup has not found the attribute in
usual places (i.e. it is not an instance attribute nor is it found in the class tree forself ). name
is the attribute name. This method should return the (computed) attribute value or ra
AttributeError  exception.

Note that if the attribute is found through the normal mechanism,__getattr__  is not
called. (This is an asymmetry between__getattr__  and__setattr__ .) This is done
both for efficiency reasons and because otherwise__setattr__  would have no way to ac-
cess other attributes of the instance. Note that at least for instance variables, you can fa
control by not inserting any values in the instance attribute dictionary (but instead ins
them in another object).

__setattr__(self, name, value) Called whenever an attribute assignment is attempt
This is called instead of the normal mechanism (i.e. instead of storing the value in the in
dictionary).name is the attribute name,value  is the value to be assigned to it.
19
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If __setattr__  wants to assign to an instance attribute, it shouldnot simply execute
‘‘ self. name = value ’’ — this would cause a recursive call to itself. Instead, it shou
insert the value in the dictionary of instance attributes, e.g.
‘‘ self.__dict__[name] = value ’’.

__delattr__(self, name) Like __setattr__  but for attribute deletion instead of assign
ment.

3.3.3 Emulating callable objects

__call__(self, [args...]) Called when the instance is “called” as a function; if this me
od is defined,x(arg1, arg2, ...)  is a shorthand forx.__call__(arg1, arg2,
...) .

3.3.4 Emulating sequence and mapping types

The following methods can be defined to emulate sequence or mapping objects. The first set o
ods is used either to emulate a sequence or to emulate a mapping; the difference is that for a s
the allowable keys should be the integersk for which 0<= k < N whereN is the length of the se-
quence, and the method__getslice__  (see below) should be defined. It is also recommended 
mappings provide methodskeys , values  anditems  behaving similar to those for Python’s stan
dard dictionary objects; mutable sequences should provide methodsappend , count , index ,
insert , sort , remove  andreverse  like Python standard list objects. Finally, sequence typ
should implement addition (meaning concatenation) and multiplication (meaning repetition) b
fining the methods__add__ , __radd__ , __mul__  and__rmul__  described below; they should
not define__coerce__  or other numerical operators.

__len__(self) Called to implement the built-in functionlen() . Should return the length of the
object, an integer>= 0. Also, an object that doesn’t define a__nonzero__()  method and
whose__len__()  method returns zero is considered to be false in a Boolean context

__getitem__(self, key) Called to implement evaluation ofself[key] . Note that the spe-
cial interpretation of negative keys (if the class wishes to emulate a sequence type) is
the__getitem__  method.

__setitem__(self, key, value) Called to implement assignment toself[key] . Same
note as for__getitem__ .

__delitem__(self, key) Called to implement deletion ofself[key] . Same note as for
__getitem__ .

3.3.4.1 Additional methods for emulation of sequence types

The following methods can be defined to further emulate sequence objects. For immutable seq
methods, only__getslice__  should be defined; for mutable sequences, all three methods sh
be defined.

__getslice__(self, i, j) Called to implement evaluation ofself[i:j] . The returned
object should be of the same type asself . Note that missingi  or j  in the slice expression
are replaced by 0 orlen(self) , respectively, andlen(self)  has been added (once) t
originally negativei  or j  by the time this function is called (unlike for__getitem__ ).

__setslice__(self, i, j, sequence) Called to implement assignment toself[i:j] .
Thesequence  argument can have any type. The return value should beNone. Same notes
for i  andj  as for__getslice__ .
20
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__delslice__(self, i, j) Called to implement deletion ofself[i:j] . Same notes fori
andj  as for__getslice__ .

Notice that these methods are only invoked when a single slice with a single colon is used. F
operations involvingextended slice notation, __getitem__ , __setitem__  or __delitem__
is called.

3.3.5 Emulating numeric types

The following methods can be defined to emulate numeric objects. Methods corresponding to
tions that are not supported by the particular kind of number implemented (e.g., bitwise operati
non-integral numbers) should be left undefined.

__add__(self, right)
__sub__(self, right)
__mul__(self, right)
__div__(self, right)
__mod__(self, right)
__divmod__(self, right)
__pow__(self, right)
__lshift__(self, right)
__rshift__(self, right)
__and__(self, right)
__xor__(self, right)
__or__(self, right)

These functions are called to implement the binary arithmetic operations (+, -, *, /, %
mod(), pow(), <<, >>, &, ^, |). For instance: to evaluate the expression x+y, where x 
instance of a class that has an __add__ method, x.__add__(y) is called.

__radd__(self, left)
__rsub__(self, left)
__rmul__(self, left)
__rdiv__(self, left)
__rmod__(self, left)
__rdivmod__(self, left)
__rpow__(self, left)
__rlshift__(self, left)
__rrshift__(self, left)
__rand__(self, left)
__rxor__(self, left)
__ror__(self, left)  These functions are called to implement the binary arithmetic operat

(+, - , * , / , %, divmod() , pow() , <<, >>, &, ^ , | ) with reversed operands. These functio
are only called if the left operand does not support the corresponding operation (possib
coercion). For instance: to evaluate the expression x+y, where x is an instance of a cla
does not have an__add__  method,y.__radd(x)  is called. If the class defines a
__coerce__ method that coerces its arguments to a common type, these methods wi
be called and thus needn’t be defined. They are useful for classes that implement se
merical data types (types that have some numerical behavior but don’t adhere to all inv
usually assumed about numbers).

__neg__(self)
__pos__(self)
21
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__abs__(self)
__invert__(self)  Called to implement the unary arithmetic operations (- , +, abs()  and~).

__int__(self)
__long__(self)
__float__(self)  Called to implement the built-in functionsint() , long()  andfloat() .

Should return a value of the appropriate type.

__oct__(self)
__hex__(self)  Called to implement the built-in functionsoct()  andhex() . Should return a

string value.

__coerce__(self, other) Called to implement “mixed-mode” numeric arithmetic. Shou
either return a 2-tuple containingself  andother  converted to a common numeric type, o
None if no conversion is possible. When the common type would be the type ofother , it
is sufficient to returnNone, since the interpreter will also ask the other object to attem
coercion (but sometimes, if the implementation of the other type cannot be changed, it 
ful to do the conversion to the other type here).

Coercion rules: to evaluate xop y, the following steps are taken (where__op__  and
__rop__  are the method names corresponding toop, e.g. if op is ‘+’, __add__  and
__radd__  are used). If an exception occurs at any point, the evaluation is abandone
exception handling takes over.

0. If x is a string object andop is the modulo operator (%), the string formatting operation
(see [Ref:XXX]) is invoked and the remaining steps are skipped.

1. If x is a class instance:

1a. If x has a__coerce__  method: replace x and y with the 2-tuple returned 
x.__coerce__(y) ; skip to step 2 if the coercion returnsNone.

1b. If neither x nor y is a class instance after coercion, go to step 3.

1c. If x has a method__op__ , returnx.__op__(y) ; otherwise, restore x and y to
their value before step 1a.

2. If y is a class instance:

2a. If y has a__coerce__  method: replace y and x with the 2-tuple returned 
y.__coerce__(x) ; skip to step 3 if the coercion returns None.

2b. If neither x nor y is a class instance after coercion, go to step 3.

2b. If y has a method__rop__ , returny.__rop__(x) ; otherwise, restore x and
y to their value before step 2a.

3. We only get here if neither x nor y is a class instance.

3a. If op is ‘+’ and x is a sequence, sequence concatenation is invoked.

3b. If op is ‘* ’ and one operand is a sequence and the other an integer, sequenc
etition is invoked.

3c. Otherwise, both operands must be numbers; they are coerced to a commo
if possible, and the numeric operation is invoked for that type.
22
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CHAPTER 4: EXECUTION MODEL

4.1 Code blocks, execution frames, and name spaces

A code block is a piece of Python program text that can be executed as a unit, such as a mo
class definition or a function body. Some code blocks (like modules) are normally executed
once, others (like function bodies) may be executed many times. Code blocks may textually c
other code blocks. Code blocks may invoke other code blocks (that may or may not be textua
tained in them) as part of their execution, e.g. by invoking (calling) a function.

The following are code blocks: A module is a code block. A function body is a code block. A 
definition is a code block. Each command typed interactively is a separate code block; a scrip
file given as standard input to the interpreter or specified on the interpreter command line the f
gument) is a code block; a script command (a command specified on the interpreter comma
with the ‘-c’ option) is a code block. The string argument passed to the built-in functioneval  and to
the exec  statement are code blocks. The file read by the built-in functionexecfile  is a code
block. And finally, the expression read and evaluated by the built-in functioninput  is a code block.
A code block is executed in an execution frame. Anexecution frame contains some administrative in
formation (used for debugging), determines where and how execution continues after th
block’s execution has completed, and (perhaps most importantly) defines two name spaces, t
and the global name space, that affect execution of the code block.

A name space is a mapping from names (identifiers) to objects. A particular name space may b
erenced by more than one execution frame, and from other places as well. Adding a name to
space is calledbinding a name (to an object); changing the mapping of a name is calledrebinding; re-
moving a name isunbinding. Name spaces are functionally equivalent to dictionaries (and often
plemented as dictionaries).

The local name space of an execution frame determines the default place where names are d
and searched. Theglobal name space determines the place where names listed inglobal  statements
are defined and searched, and where names that are not bound anywhere in the current code
searched.

Whether a name is local or global in a code block is determined by static inspection of the sou
for the code block: in the absence ofglobal  statements, a name that is bound anywhere in the c
block is local in the entire code block; all other names are considered global. Theglobal  statement
forces global interpretation of specified names throughout the code block. The following cons
bind names: formal parameters to functions,import  statements, class and function definition
(these bind the class or function name in the defining block), and targets that are identifiers if 
ring in an assignment,for  loop header, or in the second position of anexcept  clause header. Loca
names are searched only on the local name space; global names are searched only in the g
built-in namespace.1

A target occurring in adel  statement is also considered bound for this purpose (though the actu
mantics are to “unbind” the name).

1. If the code block containsexec  statements or the construct ‘‘from ... import * ’’, the semantics
of local names change subtly: local name lookup first searches in the local namespace, then in 
global namespace and in the built-in namespace.
23
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When a global name is not found in the global name space, it is searched in the built-in namespa
built-in namespace associated with the execution of a code block is actually found by looking up th
__builtins__  is its global name space; this should be a dictionary or a module (in the latter case 
tionary is used). Normally, the__builtins__  namespace is the dictionary of the built-in modu
__builtin__  (note: no ‘s’); if it isn’t,restricted execution mode is in effect, see [Ref:XXX]. When a
name is not found at all, aNameError  exception is raised.

The following table lists the local and global name space used for all types of code blocks. The nam
for a particular module is automatically created when the module is first imported. Note that in alm
cases, the global name space is the name space of the containing module — scopes in Python do

Notes:

n.s. meansname space

(1) The main module for a script is always called__main__ ; ‘‘the filename don’t enter into it.’’

(2) The global and local name space for these can be overridden with optional extra arguments

(3) The exec  statement and theeval()  andexecfile()  functions have optional arguments t
override the global and local namespace. If only one namespace is specified, it is used for b

The built-in functionsglobals()  andlocals()  returns a dictionary representing the current glob
and local name space, respectively. The effect of modifications to this dictionary on the name space
defined.1

1. The current implementations return the dictionary actually used to implement the name space,except for
functions, where the optimizer may cause the local name space to be implemented differently, a
locals()  returns a dictionary that is a shadow copy of the actual local name space.

Table 3: Name Spaces for Various Code Blocks

Code block type  Global name space  Local name space  Notes

Module  n.s. for this module  same as global

Script (file or command)  n.s. for__main__  same as global (1)

Interactive command  n.s. for__main__  same as global

Class definition  global n.s. of containing block  new n.s.

Function body  global n.s. of containing block  new n.s.

String passed to
exec  statement

 global n.s. of containing block  local n.s. of containing
block

 (2), (3)

String passed toeval()  global n.s. of caller  local n.s. of caller  (2), (3)

File read byexecfile()  global n.s. of caller  local n.s. of caller  (2), (3)

Expression read byinput  global n.s. of caller  local n.s. of caller
24
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4.2 Exceptions

Exceptions are a means of breaking out of the normal flow of control of a code block in order t
dle errors or other exceptional conditions. An exception israised at the point where the error is de
tected; it may behandled by the surrounding code block or by any code block that directly
indirectly invoked the code block where the error occurred.

The Python interpreter raises an exception when it detects a run-time error (such as division b
A Python program can also explicitly raise an exception with theraise  statement. Exception han
dlers are specified with thetry...except  statement. Thetry ...finally  statement specifies
cleanup code which does not handle the exception, but is executed whether an exception occ
not in the preceding code.

Python uses the “termination” model of error handling: an exception handler can find out wha
pened and continue execution at an outer level, but it cannot repair the cause of the error and 
failing operation (except by re-entering the the offending piece of code from the top).

When an exception is not handled at all, the interpreter terminates execution of the program
turns to its interactive main loop. In this case, the interpreter normally prints a stack backtrace

Exceptions are identified by string objects or class instances. Selection of a matchingexcept  clause
is based on object identity (i.e. two different string objects with the same value represent differ
ceptions). For string exceptions, the except clause must reference the same string object. For 
ceptions, the except clause must reference the same class or a base class of it.

When an exception is raised, an object (maybeNone) is passed as the exception’s “parameter” 
‘‘value’’; this object does not affect the selection of an exception handler, but is passed to the s
exception handler as additional information. For class exceptions, this object must be an inst
the exception class being raised.

See also the description of thetry  andraise  statements in “Compound statements” on page 4
25
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CHAPTER 5: EXPRESSIONS

This chapter explains the meaning of the elements of expressions in Python.

Syntax notes: in this and the following chapters, extended BNF notation will be used to describe
tax, not lexical analysis. When (one alternative of) a syntax rule has the form

name:    othername

and no semantics are given, the semantics of this form ofname are the same as forothername .

5.1 Arithmetic conversions

When a description of an arithmetic operator below uses the phrase “the numeric arguments a
verted to a common type”, the arguments are coerced using the coercion rules listed at the
chapter 3. If both arguments are standard numeric types, the following coercions are applied:

• If either argument is a complex number, the other is converted to complex;

• otherwise, if either argument is a floating point number, the other is converted to floating p

• otherwise, if either argument is a long integer, the other is converted to long integer;

• otherwise, both must be plain integers and no conversion is necessary.

Some additional rules apply for certain operators (e.g. a string left argument to the ‘%’ operator). Ex-
tensions can define their own coercions.

5.2 Atoms

Atoms are the most basic elements of expressions. The simplest atoms are identifiers or 
Forms enclosed in reverse quotes or in parentheses, brackets or braces are also categorized
cally as atoms. The syntax for atoms is:

atom:      identifier | literal | enclosure
enclosure: parenth_form|list_display|dict_display|string_conversion

5.2.1 Identifiers (Names)

An identifier occurring as an atom is a reference to a local, global or built-in name binding. If a
is assigned to anywhere in a code block (even in unreachable code), and is not mention
global  statement in that code block, then it refers to a local name throughout that code block.
it is not assigned to anywhere in the block, or when it is assigned to but also explicitly liste
global  statement, it refers to a global name if one exists, else to a built-in name (and this b
may dynamically change).

When the name is bound to an object, evaluation of the atom yields that object. When a nam
bound, an attempt to evaluate it raises aNameError  exception

5.2.2 Literals

Python supports string literals and various numeric literals:

literal:   stringliteral | integer | longinteger | floatnumber | imagnumber
27
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Evaluation of a literal yields an object of the given type (string, integer, long integer, floating 
number, complex number) with the given value. The value may be approximated in the case o
ing point and imaginary (complex) literals.  (See “Literals” on page 6 for details.)

All literals correspond to immutable data types, and hence the object’s identity is less importa
its value. Multiple evaluations of literals with the same value (either the same occurrence in th
gram text or a different occurrence) may obtain the same object or a different object with the
value.

(In the original implementation, all literals in the same code block with the same type and value
the same object.)

5.2.3 Parenthesized forms

A parenthesized form is an optional expression list enclosed in parentheses:

parenth_form:      "(" [expression_list] ")"

A parenthesized expression list yields whatever that expression list yields: if the list contains a
one comma, it yields a tuple; otherwise, it yields the single expression that makes up the exp
list.

An empty pair of parentheses yields an empty tuple object. Since tuples are immutable, the r
literals apply(i.e., two occurrences of the empty tuple may or may not yield the same object).

Note that tuples are not formed by the parentheses, but rather by use of the comma operator.
ception is the empty tuple, for which parenthesesare required — allowing unparenthesized “nothing
in expressions would cause ambiguities and allow common typos to pass uncaught.

5.2.4 List displays

A list display is a possibly empty series of expressions enclosed in square brackets:

list_display:   "[" [expression_list] "]"

A list display yields a new list object. If it has no expression list, the list object has no items. O
wise, the elements of the expression list are evaluated from left to right and inserted in the list
in that order.

5.2.5 Dictionary displays

A dictionary display is a possibly empty series of key/datum pairs enclosed in curly braces:

dict_display:   "{" [key_datum_list] "}"
key_datum_list: key_datum ("," key_datum)* [","]
key_datum:      expression ":" expression

A dictionary display yields a new dictionary object

The key/datum pairs are evaluated from left to right to define the entries of the dictionary: ea
object is used as a key into the dictionary to store the corresponding datum.
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Restrictions on the types of the key values are listed earlier in “The standard type hierarc
page 12 (to summarize, the key type should be hashable, which excludes all mutable objects)
es between duplicate keys are not detected; the last datum (textually rightmost in the display
for a given key value prevails.

5.2.6 String conversions

A string conversion is an expression list enclosed in reverse (a.k.a. backward) quotes:

string_conversion: "‘" expression_list "‘"

A string conversion evaluates the contained expression list and converts the resulting objec
string according to rules specific to its type.

If the object is a string, a number,None, or a tuple, list or dictionary containing only objects who
type is one of these, the resulting string is a valid Python expression which can be passed to th
in functioneval()  to yield an expression with the same value (or an approximation, if floa
point numbers are involved).

(In particular, converting a string adds quotes around it and converts “funny” characters to esc
quences that are safe to print.)

It is illegal to attempt to convert recursive objects (e.g. lists or dictionaries that contain a refere
themselves, directly or indirectly.)

The built-in functionrepr()  performs exactly the same conversion in its argument as enclosi
in parentheses and reverse quotes does. The built-in functionstr()  performs a similar but more
user-friendly conversion.

5.3 Primaries

Primaries represent the most tightly bound operations of the language. Their syntax is:

primary:        atom | attributeref | subscription | slicing | call

5.3.1 Attribute references

An attribute reference is a primary followed by a period and a name:

attributeref:   primary "." identifier

The primary must evaluate to an object of a type that supports attribute references. This objec
asked to produce the attribute whose name is the identifier. If this attribute is not available, the
tion AttributeError  is raised. Otherwise, the type and value of the object produced is d
mined by the object. Multiple evaluations of the same attribute reference may yield different ob

5.3.2 Subscriptions

A subscription selects an item of a sequence (string, tuple or list) or mapping (dictionary) obje

subscription:   primary "[" expression_list "]"

The primary must evaluate to an object of a sequence or mapping type.
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If the primary is a mapping, the expression list must evaluate to an object whose value is one
keys of the mapping, and the subscription selects the value in the mapping that corresponds
key.

If the primary is a sequence, the expression (list) must evaluate to a plain integer. If this value
ative, the length of the sequence is added to it (so that, e.g.x[-1]  selects the last item ofx .) The re-
sulting value must be a nonnegative integer less than the number of items in the sequence,
subscription selects the item whose index is that value (counting from zero).

A string’s items are characters. A character is not a separate data type but a string of exactly o
acter.

5.3.3 Slicings

A slicing selects a range of items in a sequence (string, tuple or list) object. Slicings may be u
expressions or as targets in assignment ordel  statements.  The syntax for a slicing:

slicing:          simple_slicing | extended_slicing
simple_slicing:   primary "[" short_slice "]"
extended_slicing: primary "[" slice_list "]"
slice_list:       slice_item ("," slice_item)* [","]
slice_item:       expression | proper_slice | ellipses
proper_slice:     short_slice | long_slice
short_slice:      [lower_bound] ":" [upper_bound]
long_slice:       short_slice ":" [stride]
lower_bound:      expression
upper_bound:      expression
stride:           expression
ellipses:         "..."

There’s an ambiguity in the formal syntax here: anything that looks like an expression list also
like a slice list, so any subscription can be interpreted as a slicing. Rather than further compl
the syntax, this is disambiguated by declaring that in this case the interpretation as a subs
takes priority over the interpretation as a slicing (this is the case if the slice list contains no 
slice nor ellipses). Similarly, when the slice list has exactly one short slice and no trailing comm
interpretation as a simple slicing takes priority over that as an extended slicing.

The semantics for a simple slicing are as follows. The primary must evaluate to a sequence
The lower and upper bound expressions, if present, must evaluate to plain integers; defaults 
and the sequence’s length, respectively. If either bound is negative, the sequence’s length is a
it. The slicing now selects all items with indexk such thati <= k < j wherei andj are the specified
lower and upper bounds. This may be an empty sequence. It is not an error ifi or j lie outside the
range of valid indexes (such items don’t exist so they aren’t selected).

The semantics for an extended slicing are as follows. The primary must evaluate to a mapping
and it is indexed with a key that is constructed from the slice list, as follows. If the slice list con
at least one comma, the key is a tuple containing the conversion of the slice items; otherwise, t
version of the lone slice item is the key. The conversion of a slice item that is an expression is 
pression. The conversion of an ellipses slice item is the built-inEllipses  object. The conversion
of a proper slice is a slice object (see page 17) whosestart , stop  andstep  attributes are the val-
ues of the expressions given as lower bound, upper bound and stride, respectively, substitutinNone
for missing expressions.
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5.3.4 Calls

A call calls a callable object (e.g. a function) with a possibly empty series of arguments:

call:                 primary "(" [argument_list [","]] ")"
argument_list:        positional_arguments ["," keyword_arguments]
                    | keyword_arguments
positional_arguments: expression ("," expression)*
keyword_arguments:    keyword_item ("," keyword_item)*
keyword_item:         identifier "=" expression

A trailing comma may be present after an argument list but does not affect the semantics.

The primary must evaluate to a callable object (user-defined functions, built-in functions, meth
built-in objects, class objects, methods of class instances, and certain class instances thems
callable; extensions may define additional callable object types).  All argument expressions ar
uated before the call is attempted. Please refer to “Function definitions” on page 48 for the sy
formal parameter lists.

If keyword arguments are present, they are first converted to positional arguments, as follows
a list of unfilled slots is created for the formal parameters. If there are N positional arguments
are placed in the first N slots. Next, for each keyword argument, the identifier is used to determ
corresponding slot (if the identifier is the same as the first formal parameter name, the first 
used, and so on). If the slot is already filled, aTypeError  exception is raised. Otherwise, the valu
of the argument is placed in the slot, filling it (even if the expression isNone, it fills the slot). When
all arguments have been processed, the slots that are still unfilled are filled with the correspond
fault value from the function definition. (Default values are calculated, once, when the function
fined; thus, a mutable object such as a list or dictionary used as default value will be shared
calls that don’t specify an argument value for the corresponding slot; this should usually be av
If there are any unfilled slots for which no default value is specified, aTypeError  exception is
raised. Otherwise, the list of filled slots is used as the argument list for the call.

If there are more positional arguments than there are formal parameter slots, aTypeError  excep-
tion is raised, unless a formal parameter using the syntax‘‘*identifier ’’ is present; in this case,
that formal parameter receives a tuple containing the excess positional arguments (or an emp
if there were no excess positional arguments).

If any keyword argument does not correspond to a formal parameter name, aTypeError  exception
is raised, unless a formal parameter using the syntax ‘‘**identifier ’’ is present; in this case, tha
formal parameter receives a dictionary containing the excess keyword arguments (using th
words as keys and the argument values as corresponding values), or a (new) empty dictionary
were no excess keyword arguments.

Formal parameters using the syntax ‘‘*identifier ’’ or ‘‘ **identifier ’’ cannot be used as
positional argument slots or as keyword argument names. Formal parameters using the
‘‘ (sublist) ’’ cannot be used as keyword argument names; the outermost sublist correspon
single unnamed argument slot, and the argument value is assigned to the sublist using the us
assignment rules after all other parameter processing is done.

A call always returns some value, possiblyNone, unless it raises an exception. How this value
computed depends on the type of the callable object.
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a user-defined function:the code block for the function is executed, passing it the argument list.
first thing the code block will do is bind the formal parameters to the arguments; this 
scribed in section“Function definitions” on page 48. When the code block executes are-
turn  statement, this specifies the return value of the function call.

a built-in function or method: the result is up to the interpreter; see the library reference manua
the descriptions of built-in functions and methods.

a class object:a new instance of that class is returned.

a class instance method:the corresponding user-defined function is called, with an argument list
is one longer than the argument list of the call. The instance becomes the first argume

5.4 The power operator

The power operator binds more tightly than unary operators on its left; it binds less tightly than
operators on its right. The syntax is:

power:         primary ["**" u_expr]

Thus, in an unparenthesized sequence of power and unary operators, the operators are evalu
right to left (this does not constrain the evaluation order for the operands).

The power operator has the same semantics as the built-inpow()  function: it yields its left argument
raised to the power of its right argument. The numeric arguments are first converted to a co
type. The result type is that of the arguments after coercion; if the result is not expressible in th
(as in raising an integer to a negative power, or a negative floating point number to a broken p
aTypeError  exception is raised.

5.5 Unary arithmetic operations

All unary arithmetic (and bit-wise) operations have the same priority:

u_expr:         power | "-" u_expr | "+" u_expr | "~" u_expr

The unary"-"  (minus) operator yields the negation of its numeric argument.

The unary"+"  (plus) operator yields its numeric argument unchanged.

The unary"~"  (invert) operator yields the bit-wise inversion of its plain or long integer argum
The bit-wise inversion ofx  is defined as-(x+1) . It only applies to integral numbers.

In all three cases, if the argument does not have the proper type, aTypeError  exception is raised.

5.6 Binary arithmetic operations

The remaining binary arithmetic operations have the conventional priority levels. Note that so
these operations also apply to certain non-numeric types. Apart from the power operator, th
only two levels, one for multiplicative operators and one for additive operators:

m_expr:         u_expr | m_expr "*" u_expr
              | m_expr "/" u_expr | m_expr "%" u_expr
a_expr:         m_expr | aexpr "+" m_expr | aexpr "-" m_expr
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The "* " (multiplication) operator yields the product of its arguments. The arguments must eithe
be numbers, or one argument must be a plain integer and the other must be a sequence. In th
case, the numbers are converted to a common type and then multiplied together. In the latter c
quence repetition is performed; a negative repetition factor yields an empty sequence.

The "/ " (division) operator yields the quotient of its arguments. The numeric arguments are firs
verted to a common type. Plain or long integer division yields an integer of the same type; the
is that of mathematical division with the ‘floor’ function applied to the result. Division by zero ra
theZeroDivisionError  exception

The "%" (modulo) operator yields the remainder from the division of the first argument by the se
The numeric arguments are first converted to a common type. A zero right argument rais
ZeroDivisionError  exception. The arguments may be floating point numbers, e.g.3.14%0.7
equals0.34  (since3.14  equals4*0.7+0.34 ). The modulo operator always yields a result wi
the same sign as its second operand (or zero); the absolute value of the result is strictly sma
the second operand.

The integer division and modulo operators are connected by the following identity:x == (x/y)*y
+ (x%y) . Integer division and modulo are also connected with the built-in functiondivmod() :
divmod(x, y) == (x/y, x%y) . These identities don’t hold for floating point and comple
numbers; there a similar identity holds wherex/y  is replaced byfloor(x/y) ) or
floor((x/y).real) , respectively.

The"+"  (addition) operator yields the sum of its arguments. The arguments must either both b
bers, or both sequences of the same type. In the former case, the numbers are converted to a
type and then added together. In the latter case, the sequences are concatenated.

The "-"  (subtraction) operator yields the difference of its arguments. The numeric argumen
first converted to a common type.

5.7 Shifting operations

The shifting operations have lower priority than the arithmetic operations:

shift_expr:     a_expr | shift_expr ( "<<" | ">>" ) a_expr

These operators accept plain or long integers as arguments. The arguments are converted t
mon type. They shift the first argument to the left or right by the number of bits given by the s
argument.

A right shift byn bits is defined as division bypow(2, n). A left shift byn bits is defined as multi-
plication withpow(2, n); for plain integers there is no overflow check so this drops bits and flips
sign if the result is not less thanpow(2,31)  in absolute value. Negative shift counts raise aVal-
ueError  exception.

5.8 Binary bit-wise operations

Each of the three bitwise operations has a different priority level:

and_expr:       shift_expr | and_expr "&" shift_expr
xor_expr:       and_expr | xor_expr "^" and_expr
or_expr:       xor_expr | or_expr "|" xor_expr
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The "&"  operator yields the bit-wise AND of its arguments, which must be plain or long inte
The arguments are converted to a common type.

The "^"  operator yields the bitwise XOR (exclusive OR) of its arguments, which must be pla
long integers. The arguments are converted to a common type.

The"|"  operator yields the bitwise (inclusive) OR of its arguments, which must be plain or lon
tegers. The arguments are converted to a common type.

5.9 Comparisons

Contrary to C, all comparison operations in Python have the same priority, which is lower tha
of any arithmetic, shifting or bitwise operation. Also contrary to C, expressions likea < b < c
have the interpretation that is conventional in mathematics:

comparison:     or_expr (comp_operator or_expr)*
comp_operator:  "<"|">"|"=="|">="|"<="|"<>"|"!="|"is" ["not"]|["not"] "in"

Comparisons yield integer values: 1 for true, 0 for false.

Comparisons can be chained arbitrarily, e.g.x < y <= z  is equivalent tox < y and y <= z,
except thaty  is evaluated only once (but in both casesz  is not evaluated at all whenx < y  is found
to be false).

Formally, ifa, b, c, ...,y, z are expressions andopa, opb, ...,opy are comparison operators, thena opa
b opb c ... y opy z is equivalent toa opa band b opb cand  ... y opy z, except that each expressio
is evaluated at most once.

Note thata opa b opb c doesn’t imply any kind of comparison betweena andc, so that e.g.x < y
> z  is perfectly legal (though perhaps not pretty).

The forms<> and!=  are equivalent; for consistency with C,!=  is preferred; where!=  is mentioned
below<> is also implied.

The operators"<", ">", "==", ">=", "<=" , and"!="  compare the values of two objects
The objects needn’t have the same type. If both are numbers, they are converted to a comm
Otherwise, objects of different typesalways compare unequal, and are ordered consistently but a
trarily. (This unusual definition of comparison is done to simplify the definition of operations
sorting and thein  andnot in  operators.)

Comparison of objects of the same type depends on the type:

• Numbers are compared arithmetically.

• Strings are compared lexicographically using the numeric equivalents (the result of the b
functionord ) of their characters.

• Tuples and lists are compared lexicographically using comparison of corresponding items.

• Mappings (dictionaries) are compared through lexicographic comparison of their sorted (ke
ue) lists.1

• Most other types compare unequal unless they are the same object; the choice whether on
is considered smaller or larger than another one is made arbitrarily but consistently within o
34
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The operatorsin  andnot in  test for sequence membership: ify is a sequence,x in y is true if and
only if there exists an indexi such thatx = y[i]. x not iny yields the inverse truth value. The exceptio
TypeError  is raised wheny is not a sequence, or wheny is a string andx is not a string of length
one.1

The operatorsis  andis not  test for object identity:x is y is true if and only ifx andy are the same
object.x is not y yields the inverse truth value.

5.10 Boolean operations

Boolean operations have the lowest priority of all Python operations:

expression:      or_test | lambda_form
or_test:        and_test | or_test "or" and_test
and_test:       not_test | and_test "and" not_test
not_test:       comparison | "not" not_test
lambda_form:"lambda" [parameter_list]: expression

In the context of Boolean operations, and also when expressions are used by control flow stat
the following values are interpreted as false:None, numeric zero of all types, empty sequenc
(strings, tuples and lists), and empty mappings (dictionaries). All other values are interpreted a

The operatornot  yields 1 if its argument is false, 0 otherwise.

The expressionx and y first evaluatesx; if x is false, its value is returned; otherwise,y is evaluated
and the resulting value is returned.

The expressionx or y first evaluatesx; if x is true, its value is returned; otherwise,y is evaluated and
the resulting value is returned.

(Note that neitherand  noror  restrict the value and type they return to 0 and 1, but rather return
last evaluated argument. This is sometimes useful, e.g. ifs  is a string that should be replaced by a d
fault value if it is empty, the expressions or ’foo’  yields the desired value. Becausenot  has to
invent a value anyway, it does not bother to return a value of the same type as its argument
not ’foo’  yields0, not ’’ .)

Lambda forms (lambda expressions) have the same syntactic position as expressions. Th
shorthand to create anonymous functions; the expressionlambda  arguments:  expression yields a
function object that behaves virtually identical to one defined with

def name (arguments):
    return expression

1. This is expensive since it requires sorting the keys first, but about the only sensible defin
tion. An earlier version of Python compared dictionaries by identity only, but this cause
surprises because people expected to be able to test a dictionary for emptiness by compa
it to {} .

1. The latter restriction is sometimes a nuisance.
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See “Function definitions” on page 48 for the syntax of parameter lists. Note that functions c
with lambda forms cannot contain statements.

5.11 Expression lists

expression_list:      expression ("," expression)* [","]

An expression list containing at least one comma yields a tuple. The length of the tuple is the n
of expressions in the list. The expressions are evaluated from left to right.

The trailing comma is required only to create a single tuple (a.k.a. asingle); it is optional in all other
cases. A single expression without a trailing comma doesn’t create a tuple, but rather yields th
of that expression. (To create an empty tuple, use an empty pair of parentheses:() .)
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5.12 Summary

The following table summarizes the operator precedences in Python, from lowest precedenc
binding) to highest precedence (most binding). Operators in the same box have the same prec
Unless the syntax is explicitly given, operators are binary. Operators in the same box group
right (except for comparisons, which chain from left to right — see above).

Table 4: Operator Precedence

or Boolean OR

and Boolean AND

not x Boolean NOT

in, not in
is, is not

<, <=, >, >=, <>, !=, =

Membership tests
Identity tests
Comparisons

| Bitwise OR

^ Bitwise XOR

& Bitwise AND

<<, >> Shifts

+, - Addition and subtraction

*, /, % Multiplication, division, remainder

+x, -x
~x

Positive, negative
Bitwise not

x.attribute
x[index]

x[index:index]
f(arguments, ...)

Attribute reference
Subscription

Slicing
Function call

(expressions . . .)
[expressions . . .]
{ key:datum, . . .}

`expressioǹ

Binding or tuple display
List display

Dictionary display
String conversion
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CHAPTER 6: SIMPLE STATEMENTS

Simple statements are comprised within a single logical line. Several simple statements may o
a single line separated by semicolons. The syntax for simple statements is:

simple_stmt:    expression_stmt
              | assignment_stmt
              | pass_stmt
              | del_stmt
              | print_stmt
              | return_stmt
              | raise_stmt
              | break_stmt
              | continue_stmt
              | import_stmt
              | global_stmt
              | exec_stmt

6.1 Expression statements

Expression statements are used (mostly interactively) to compute and write a value, or (usu
call a procedure (a function that returns no meaningful result; in Python, procedures return th
None). Other uses of expression statements are allowed and occasionally useful. The synta
expression statement is:

expression_stmt: expression_list

An expression statement evaluates the expression list (which may be a single expression). In
tive mode, if the value is notNone, it is converted to a string using the built-inrepr()  function and
the resulting string is written to standard output (see “The print statement” on page 41) on a 
itself. (Expression statements yieldingNone are not written, so that procedure calls do not cause 
output.)

6.2 Assignment statements

Assignment statements are used to (re)bind names to values and to modify attributes or items
table objects:

assignment_stmt: (target_list "=")+ expression_list
target_list:     target ("," target)* [","]
target:          identifier | "(" target_list ")" | "[" target_list "]"
               | attributeref | subscription | slicing

(See “Primaries” on page 29 for the syntax definitions for the last three symbols.)

An assignment statement evaluates the expression list (remember that this can be a single ex
or a comma-separated list, the latter yielding a tuple) and assigns the single resulting object 
of the target lists, from left to right.
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Assignment is defined recursively depending on the form of the target (list). When a target is part o
table object (an attribute reference, subscription or slicing), the mutable object must ultimately perfo
assignment and decide about its validity, and may raise an exception if the assignment is unaccepta
rules observed by various types and the exceptions raised are given with the definition of the obje
(See “The standard type hierarchy” on page 12.)

Assignment of an object to a target list is recursively defined as follows.

• If the target list is a single target: the object is assigned to that target.

• If the target list is a comma-separated list of targets: the object must be a tuple with the same nu
items as there are targets in the target list, and the items are assigned, from left to right, to the cor
ing targets.

Assignment of an object to a single target is recursively defined as follows.

• If the target is an identifier (name):

• If the name does not occur in aglobal  statement in the current code block: the name is bo
to the object in the current local name space.

• Otherwise: the name is bound to the object in the current global name space.

The name is rebound if it was already bound. This can cause the reference count for the object pr
bound to the name to reach zero, causing the object to be deallocated and its

• If the target is a target list enclosed in parentheses: the object is assigned to that target list as d
above.

• If the target is a target list enclosed in square brackets: the object must be a list with the same nu
items as the target list contains targets, and its items are assigned, from left to right, to the corres
targets.

• If the target is an attribute reference: The primary expression in the reference is evaluated. It shou
an object with assignable attributes; if this is not the case,TypeError  is raised. That object is then
asked to assign the assigned object to the given attribute; if it cannot perform the assignment, it r
exception (usually but not necessarilyAttributeError ).

• If the target is a subscription: The primary expression in the reference is evaluated. It should yield
a mutable sequence (list) object or a mapping (dictionary) object. Next, the subscript expression
uated.

If the primary is a mutable sequence object (a list), the subscript must yield a plain integer. If it is
tive, the sequence’s length is added to it. The resulting value must be a nonnegative integer less
sequence’s length, and the sequence is asked to assign the assigned object to its item with that
the index is out of range,IndexError  is raised (assignment to a subscripted sequence cannot add
items to a list).

If the primary is a mapping (dictionary) object, the subscript must have a type compatible with the
ping’s key type, and the mapping is then asked to create a key/datum pair which maps the sub
the assigned object. This can either replace an existing key/value pair with the same key value, 
a new key/value pair (if no key with the same value existed).

• If the target is a slicing: The primary expression in the reference is evaluated. It should yield a m
sequence object (e.g. a list). The assigned object should be a sequence object of the same type.
lower and upper bound expressions are evaluated, insofar they are present; defaults are zero an
quence’s length. The bounds should evaluate to (small) integers. If either bound is negative, 
40



•
S

im
ple statem

ents

nd the
ith the

 the as-

ns, and
ages.)

 side

r when

lling it

lobal
k.

olved;
t even

see be-
sions.
erted
 is the
quence’s length is added to it. The resulting bounds are clipped to lie between zero a
sequence’s length, inclusive. Finally, the sequence object is asked to replace the slice w
items of the assigned sequence. The length of the slice may be different from the length of
signed sequence, thus changing the length of the target sequence, if the object allows it.

(In the current implementation, the syntax for targets is taken to be the same as for expressio
invalid syntax is rejected during the code generation phase, causing less detailed error mess

WARNING: Although the definition of assignment implies that overlaps between the left-hand
and the right-hand side are ‘safe’ (e.g. ‘‘a, b = b, a ’’ swaps two variables), overlapswithin the col-
lection of assigned-to variables are not safe! For instance, the following program prints ‘‘[0, 2] ’’:

x = [0, 1]
i = 0
i, x[i] = 1, 2
print x

6.3 The pass  statement

pass_stmt:      "pass"

pass  is a null operation — when it is executed, nothing happens. It is useful as a placeholde
a statement is required syntactically, but no code needs to be executed, for example:

def f(arg): pass    # a function that does nothing (yet)
class C: pass       # a class with no methods (yet)

6.4 The del  statement

del_stmt:       "del" target_list

Deletion is recursively defined very similar to the way assignment is defined. Rather that spe
out in full details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name (which must exist) from the local or g
name space, depending on whether the name occurs in aglobal  statement in the same code bloc

Deletion of attribute references, subscriptions and slicings is passed to the primary object inv
deletion of a slicing is in general equivalent to assignment of an empty slice of the right type (bu
this is determined by the sliced object).

6.5 The print  statement

print_stmt:     "print" [ expression ("," expression)* [","] ]

print  evaluates each expression in turn and writes the resulting object to standard output (
low). If an object is not a string, it is first converted to a string using the rules for string conver
The (resulting or original) string is then written. A space is written before each object is (conv
and) written, unless the output system believes it is positioned at the beginning of a line. This
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case: (1) when no characters have yet been written to standard output; or (2) when the last characte
to standard output is\n ; or (3) when the last write operation on standard output was not aprint  state-
ment. (In some cases it may be functional to write an empty string to standard output for this reaso

A "\n"  character is written at the end, unless theprint  statement ends with a comma. This is the on
action if the statement contains just the keywordprint . Standard output is defined as the file object nam
stdout in the built-in modulesys . If no such object exists, or if it is not a writable file, aRuntimeEr-
ror  exception is raised. (The original implementation attempts to write to the system’s original sta
output instead, but this is not safe, and should be fixed.)

6.6 The return  statement

return_stmt:    "return" [expression_list]

return  may only occur syntactically nested in a function definition, not within a nested class defin

If an expression list is present, it is evaluated, elseNone is substituted.

return  leaves the current function call with the expression list (orNone) as return value.

Whenreturn  passes control out of atry  statement with afinally  clause, that finally clause is exe
cuted before really leaving the function.

6.7 The raise  statement

raise_stmt:     "raise" expression ["," expression ["," expression]]

raise  evaluates its first expression, which must yield a string, class, or instance object. If there is a
expression, this is evaluated, elseNone is substituted. If the first expression is a class object, then the 
ond expression must be an instance of that class or one of its derivatives. If the first expression is an
object, the second expression must beNone.

If the first object is a class or string, it then raises the exception identified by the first object, with the s
one (orNone) as its parameter. If the first object is an instance, it raises the exception identified by th
of the object, with the instance as its parameter (and there should be no second object, or the seco
should beNone).

If a third object is present, and it is notNone, it should be a traceback object (see  page 17 traceback
jects), and it is substituted instead of the current location as the place where the exception occurred
useful to re-raise an exception transparently in an except clause.

6.8 The break  statement

break_stmt:     "break"

break  may only occur syntactically nested in afor or while  loop, but not nested in a function or clas
definition within that loop.

It terminates the nearest enclosing loop, skipping the optionalelse  clause if the loop has one.

If a for  loop is terminated bybreak , the loop control target keeps its current value.
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Whenbreak  passes control out of atry  statement with afinally  clause, that finally clause is ex
ecuted before really leaving the loop.

6.9 The continue  statement

continue_stmt:  "continue"

continue  may only occur syntactically nested in afor  orwhile  loop, but not nested in a function
or class definition ortry  statement within that loop.1 It continues with the next cycle of the neare
enclosing loop.

6.10 The import  statement

import_stmt:    "import" identifier ("," identifier)*
              | "from" identifier "import" identifier ("," identifier)*
            | "from" identifier "import" "*"

Import statements are executed in two steps: (1) find a module, and initialize it if necessary; (2)
a name or names in the local name space (of the scope where theimport  statement occurs). The firs
form (withoutfrom ) repeats these steps for each identifier in the list, thefrom  form performs them
once, with the first identifier specifying the module name.

The system maintains a table of modules that have been initialized, indexed by module nam
current implementation makes this table accessible assys.modules .) When a module name is
found in this table, step (1) is finished. If not, a search for a module definition is started. Thi
looks for a built-in module definition, and if no built-in module if the given name is found, it sear
a user-specified list of directories for a file whose name is the module name with extension".py" .
(The current implementation uses the list of stringssys.path  as the search path; it is initialized
from the shell environment variable$PYTHONPATH, with an installation-dependent default.)

If a built-in module is found, its built-in initialization code is executed and step (1) is finished. 
matching file is found,ImportError  is raised. If a file is found, it is parsed, yielding an executa
code block. If a syntax error occurs,SyntaxError  is raised. Otherwise, an empty module of th
given name is created and inserted in the module table, and then the code block is executed in
text of this module. Exceptions during this execution terminate step (1).

When step (1) finishes without raising an exception, step (2) can begin.

The first form ofimport  statement binds the module name in the local name space to the m
object, and then goes on to import the next identifier, if any. Thefrom  form does not bind the mod-
ule name: it goes through the list of identifiers, looks each one of them up in the module found 
(1), and binds the name in the local name space to the object thus found. If a name is not founIm-
portError  is raised. If the list of identifiers is replaced by a star (* ), all names defined in the mod
ule are bound, except those beginning with an underscore(_).

Names bound by import statements may not occur inglobal  statements in the same scope.

Thefrom  form with *  may only occur in a module scope.

1. Except that it may currently occur within anexcept  clause.
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(The current implementation does not enforce the latter two restrictions, but programs should not ab
freedom, as future implementations may enforce them or silently change the meaning of the progra

6.11 The global  statement

global_stmt:    "global" identifier ("," identifier)*

Theglobal  statement is a declaration which holds for the entire current code block. It means that t
ed identifiers are to be interpreted as globals. Whileusing global names is automatic if they are not defin
in the local scope,assigning to global names would be impossible withoutglobal .

Names listed in aglobal  statement must not be used in the same code block before thatglobal  state-
ment is executed.

Names listed in aglobal  statement must not be defined as formal parameters or in afor  loop control tar-
get,class definition, function definition, orimport  statement.

(The current implementation does not enforce the latter two restrictions, but programs should not ab
freedom, as future implementations may enforce them or silently change the meaning of the progra

Note: theglobal  is a directive to the parser. Therefore, it applies only to code parsed at the same 
theglobal statement. In particular, aglobal  statement contained in anexec  statement does not affec
the code blockcontainingtheexec  statement, and code contained in anexec statement is unaffected by
global  statements in the code containing theexec  statement. The same applies to theeval() , exec-
file()  andcompile()  functions.

6.12 The exec  statement

exec_stmt:    "exec" expression ["in" expression ["," expression]]

This statement supports dynamic execution of Python code. The first expression should evaluate to
string, an open file object, or a code object. If it is a string, the string is parsed as a suite of Pytho
ments which is then executed (unless a syntax error occurs). If it is an open file, the file is parsed un
and executed. If it is a code object, it is simply executed.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only the 
pression afterin  is specified, it should be a dictionary, which will be used for both the global and the
variables. If two expressions are given, both must be dictionaries and they are used for the global a
variables, respectively.

Hints: dynamic evaluation of expressions is supported by the built-in functioneval() . The built-in func-
tionsglobals()  andlocals()  return the current global and local dictionary, respectively, which m
be useful to pass around for use byexec .
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CHAPTER 7: COMPOUND STATEMENTS

Compound statements contain (groups of) other statements; they affect or control the execu
those other statements in some way. In general, compound statements span multiple lines, a
in simple incarnations a whole compound statement may be contained in one line.

Theif , while  andfor  statements implement traditional control flow constructs.try  specifies ex-
ception handlers and/or cleanup code for a group of statements. Function and class definitions
syntactically compound statements.

Compound statements consist of one or more ‘clauses’. A clause consists of a header and a
The clause headers of a particular compound statement are all at the same indentation lev
clause header begins with a uniquely identifying keyword and ends with a colon. A suite is a
of statements controlled by a clause. A suite can be one or more semicolon-separated simp
ments on the same line as the header, following the header’s colon, or it can be one or more i
statements on subsequent lines. Only the latter form of suite can contain nested compound sta
the following is illegal, mostly because it wouldn’t be clear to whichif  clause a followingelse
clause would belong:

if test1: if test2: print x

Also note that the semicolon binds tighter than the colon in this context, so that in the followin
ample, either all or none of theprint  statements are executed:

if x < y < z: print x; print y; print z

Summarizing:

compound_stmt:  if_stmt | while_stmt | for_stmt
              | try_stmt | funcdef | classdef
suite:          stmt_list NEWLINE | NEWLINE INDENT statement+ DEDENT
statement:      stmt_list NEWLINE | compound_stmt
stmt_list:      simple_stmt (";" simple_stmt)* [";"]

Note that statements always end in aNEWLINE possibly followed by aDEDENT. Also note that op-
tional continuation clauses always begin with a keyword that cannot start a statement, thus th
no ambiguities (the ‘danglingelse ’ problem is solved in Python by requiring nestedif  statements
to be indented).

The formatting of the grammar rules in the following sections places each clause on a separ
for clarity.

7.1 The if  statement

The if  statement is used for conditional execution:

if_stmt:        "if" expression ":" suite
               ("elif" expression ":" suite)*
               ["else" ":" suite]

It selects exactly one of the suites by evaluating the expressions one by one until one is foun
true (see section “Boolean operations” on page 35 for the definition of true and false); then tha
is executed (and no other part of theif  statement is executed or evaluated). If all expressions
false, the suite of theelse  clause, if present, is executed.
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7.2 The while  statement

Thewhile  statement is used for repeated execution as long as an expression is true:

while_stmt:     "while" expression ":" suite
               ["else" ":" suite]

This repeatedly tests the expression and, if it is true, executes the first suite; if the expression is false
may be the first time it is tested) the suite of theelse  clause, if present, is executed and the loop termina

A break  statement executed in the first suite terminates the loop without executing theelse  clause’s
suite. Acontinue  statement executed in the first suite skips the rest of the suite and goes back to
the expression.

7.3 The for  statement

Thefor  statement is used to iterate over the elements of a sequence (string, tuple or list):

for_stmt:       "for" target_list "in" expression_list ":" suite
               ["else" ":" suite]

The expression list is evaluated once; it should yield a sequence. The suite is then executed once
item in the sequence, in the order of ascending indices. Each item in turn is assigned to the target l
the standard rules for assignments, and then the suite is executed. When the items are exhausted
immediately when the sequence is empty), the suite in theelse  clause, if present, is executed, and the lo
terminates.

A break  statement executed in the first suite terminates the loop without executing theelse  clause’s
suite. Acontinue  statement executed in the first suite skips the rest of the suite and continues w
next item, or with theelse clause if there was no next item.

The suite may assign to the variable(s) in the target list; this does not affect the next item assigned

The target list is not deleted when the loop is finished, but if the sequence is empty, it will not hav
assigned to at all by the loop. Hint: the built-in functionrange()  returns a sequence of integers suitab
to emulate the effect of Pascal’sfor i := a to b do ; e.g.range(3)  returns the list[0, 1, 2] .

Warning:  There is a subtlety when the sequence is being modified by the loop (this can only occur f
table sequences, i.e. lists). An internal counter is used to keep track of which item is used next, an
incremented on each iteration. When this counter has reached the length of the sequence the lo
nates. This means that if the suite deletes the current (or a previous) item from the sequence, the n
will be skipped (since it gets the index of the current item which has already been treated). Likewise
suite inserts an item in the sequence before the current item, the current item will be treated again 
time through the loop. This can lead to nasty bugs that can be avoided by making a temporary copy
slice of the whole sequence, e.g.

for x in a[:]:
    if x < 0: a.remove(x)
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7.4 The try  statement

Thetry  statement specifies exception handlers and/or cleanup code for a group of statemen

try_stmt:       try_exc_stmt | try_fin_stmt
try_exc_stmt:   "try" ":" suite
               ("except" [expression ["," target]] ":" suite)+
               ["else" ":" suite]
try_fin_stmt:   "try" ":" suite
               "finally" ":" suite

There are two forms oftry  statement:try...except  andtry...finally . These forms can-
not be mixed (but they can be nested in each other).

The try...except  form specifies one or more exception handlers (theexcept  clauses). When
no exception occurs in thetry  clause, no exception handler is executed. When an exception o
in thetry  suite, a search for an exception handler is started. This inspects the except clauses
until one is found that matches the exception. An expression-less except clause, if present, 
last; it matches any exception. For an except clause with an expression, that expression is ev
and the clause matches the exception if the resulting object is “compatible” with the exceptio
object is compatible with an exception if it is either the object that identifies the exception, or (f
ceptions that are classes) it is a base class of the exception, or it is a tuple containing an item
compatible with the exception. Note that the object identities must match, i.e. it must be the sa
ject, not just an object with the same value.

If no except clause matches the exception, the search for an exception handler continues in
rounding code and on the invocation stack.

If the evaluation of an expression in the header of an except clause raises an exception, the
search for a handler is cancelled and a search starts for the new exception in the surrounding c
on the call stack (it is treated as if the entiretry  statement raised the exception).

When a matching except clause is found, the exception’s parameter is assigned to the target s
in that except clause, if present, and the except clause’s suite is executed. When the end of t
is reached, execution continues normally after the entire try statement. (This means that if two
handlers exist for the same exception, and the exception occurs in the try clause of the inner 
the outer handler will not handle the exception.)

Before an except clause’s suite is executed, details about the exception are assigned to three 
in the sys  module:sys.exc_type  receives the object identifying the exception
sys.exc_value  receives the exception’s parameter;sys.exc_traceback  receives a trace-
back object (see page 17) identifying the point in the program where the exception occurred.

The optionalelse  clause is executed when no exception occurs in thetry  clause. Exceptions in the
else  clause are not handled by the precedingexcept  clauses.

Thetry...finally  form specifies a ‘cleanup’ handler. Thetry  clause is executed. When no ex
ception occurs, thefinally  clause is executed. When an exception occurs in thetry  clause, the
exception is temporarily saved, thefinally  clause is executed, and then the saved exception i
raised. If thefinally  clause raises another exception or executes areturn , break  orcontin-
ue  statement, the saved exception is lost.
47



re).

y” on

t local
tion ob-
 when the

tion is

execut-
 which
ameters
r.

 called,
tual pa-

s many
s are as-
ma at the
 formal
nt whose

mma-
g the star.

ee
When areturn  or break  statement is executed in thetry  suite of atry...finally  statement, the
finally  clause is also executed ‘on the way out’. Acontinue  statement is illegal in thetry  clause.
(The reason is a problem with the current implementation — this restriction may be lifted in the futu

7.5 Function definitions

A function definition defines a user-defined function object (see “The standard type hierarch
page 12)1:

funcdef:        "def" funcname "(" [parameter_list] ")" ":" suite
parameter_list: (defparameter ",")* ("*" identifier [, "**" identifier]
                                    | "**" identifier
                                    | defparameter [","])
defparameter:   parameter ["=" expression]
sublist:        parameter ("," parameter)* [","]
parameter:      identifier | "(" sublist ")"
funcname:       identifier

A function definition is an executable statement. Its execution binds the function name in the curren
name space to a function object (a wrapper around the executable code for the function). This func
ject contains a reference to the current global name space as the global name space to be used
function is called.

The function definition does not execute the function body; this gets executed only when the func
called.

When one or more top-level parameters have the formparameter = expression, the function is said to have
“default parameter values”. Default parameter values are evaluated when the function definition is 
ed. For a parameter with a default value, the correponding argument may be omitted from a call, in
case the parameter’s default value is substituted. If a parameter has a default value, all following par
must also have a default value — this is a syntactic restriction that is not expressed by the gramma2

Function call semantics are described in section “Calls” on page 31. When a user-defined function is
first missing arguments for which a default value exists are supplied; then the arguments (a.k.a. ac
rameters) are bound to the (formal) parameters, as follows:

• If there are no formal parameters, there must be no arguments.

• If the formal parameter list does not end in a star followed by an identifier, there must be exactly a
arguments as there are parameters in the formal parameter list (at the top level); the argument
signed to the formal parameters one by one. Note that the presence or absence of a trailing com
top level in either the formal or the actual parameter list makes no difference. The assignment to a
parameter is performed as if the parameter occurs on the left hand side of an assignment stateme
right hand side’s value is that of the argument.

• If the formal parameter list ends in a star followed by an identifier, preceded by zero or more co
followed parameters, there must be at least as many arguments as there are parameters precedin

1. The new syntax to receive arbitrary keyword arguments is not yet documented in this manual. S
chapter 12 of the Tutorial.

2. Currently this is not checked; instead,def f(a=1,b)  is interpreted asdef
f(a=1,b=None) .
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Call this numberN. The firstN arguments are assigned to the corresponding formal paramete
the way descibed above. A tuple containing the remaining arguments, if any, is then assig
the identifier following the star. This variable will always be a tuple: if there are no extra a
ments, its value is() , if there is just one extra argument, it is a singleton tuple.

Note that the ‘variable length parameter list’ feature only works at the top level of the paramet
individual parameters use a model corresponding more closely to that of ordinary assignment
the latter model is generally preferable, because of the greater type safety it offers (wrong-si
ples aren’t silently mistreated), variable length parameter lists are a sufficiently accepted prac
most programming languages that a compromise has been worked out. (And anyway, assignm
no equivalent for empty argument lists.)

It is also possible to create anonymous functions (functions not bound to a name), for immedi
in expressions. This uses lambda forms, described in section “Boolean operations” on page 3

7.6 Class definitions

A class definition defines a class object (see section “The standard type hierarchy” on page 1

classdef:       "class" classname [inheritance] ":" suite
inheritance:    "(" [expression_list] ")"
classname:      identifier

A class definition is an executable statement. It first evaluates the inheritance list, if presen
item in the inheritance list should evaluate to a class object. The class’s suite is then executed 
execution frame (see section “Code blocks, execution frames, and name spaces” on page 23)
newly created local name space and the original global name space. (Usually, the suite conta
function definitions.) When the class’s suite finishes execution, its execution frame is discard
its local name space is saved. A class object is then created using the inheritance list for t
classes and the saved local name space for the attribute dictionary. The class name is boun
class object in the original local name space.
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CHAPTER 8: TOP-LEVEL COMPONENTS

The Python interpreter can get its input from a number of sources: from a script passed to it a
dard input or as program argument, typed in interactively, from a module source file, etc. This c
gives the syntax used in these cases.

8.1 Complete Python programs

While a language specification need not prescribe how the language interpreter is invoked, it is
to have a notion of a complete Python program. A complete Python program is executed in 
mally initialized environment: all built-in and standard modules are available, but none have be
tialized, except forsys  (various system services),__builtin__  (built-in functions, exceptions
andNone) and__main__ . The latter is used to provide the local and global name space for ex
tion of the complete program.

The syntax for a complete Python program is that for file input, described in the next section.

The interpreter may also be invoked in interactive mode; in this case, it does not read and ex
complete program but reads and executes one statement (possibly compound) at a time. Th
environment is identical to that of a complete program; each statement is executed in the nam
of __main__ .

Under UNIX , a complete program can be passed to the interpreter in three forms: with the-c string
command line option, as a file passed as the first command line argument, or as standard inpu
file or standard input is a tty device, the interpreter enters interactive mode; otherwise, it execu
file as a complete program.

8.2 File input

All input read from non-interactive files has the same form:

file_input:     (NEWLINE | statement)*

This syntax is used in the following situations:

• when parsing a complete Python program (from a file or from a string);

• when parsing a module;

• when parsing a string passed to theexec  statement;

8.3 Interactive input

Input in interactive mode is parsed using the following grammar:

interactive_input: [stmt_list] NEWLINE | compound_stmt NEWLINE

Note that a (top-level) compound statement must be followed by a blank line in interactive mod
is needed to help the parser detect the end of the input.
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8.4 Expression input

There are two forms of expression input. Both ignore leading whitespace. The string argument toeval()
must have the following form:

eval_input:     expression_list NEWLINE*

The input line read byinput()  must have the following form:

input_input:    expression_list NEWLINE

Note: to read ‘raw’ input line without interpretation, you can use the built-in functionraw_input()  or
thereadline()  method of file objects.
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