
Python Library Reference

Guido van Rossum
Corporation for National Research Initiatives (CNRI)
1895 Preston White Drive, Reston, Va 20191, USA

E-mail: guido@CNRI.Reston.Va.US , guido@python.org

October 25, 1996
Release 1.4

http://www.python.org/

Copyright c
 1991-1995 by Stichting Mathematisch Centrum, Amsterdam, The
Netherlands.

All Rights Reserved

Permission to use, copy, modify, and distribute this software and its documentation
for any purpose and without fee is hereby granted, provided that the above copy-
right notice appear in all copies and that both that copyright notice and this permis-
sion notice appear in supporting documentation, and that the names of Stichting
Mathematisch Centrum or CWI or Corporation for National Research Initiatives
or CNRI not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission.

While CWI is the initial source for this software, a modified version is made avail-
able by the Corporation for National Research Initiatives (CNRI) at the Internet
address ftp://ftp.python.org.

STICHTING MATHEMATISCH CENTRUM AND CNRI DISCLAIM ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM OR CNRI BE LI-
ABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLI-
GENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CON-
NECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

i

ftp://ftp.python.org/

Abstract

Python is an extensible, interpreted, object-oriented programming language. It sup-
ports a wide range of applications, from simple text processing scripts to interactive
WWW browsers.

While thePython Reference Manualdescribes the exact syntax and semantics of
the language, it does not describe the standard library that is distributed with the
language, and which greatly enhances its immediate usability. This library contains
built-in modules (written in C) that provideaccess to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as
modules written in Python that provide standardized solutions for many problems
that occur in everyday programming. Some of these modules are explicitly de-
signed to encourage and enhance the portability of Python programs.

This library reference manual documents Python's standard library, as well as
many optional library modules (which may or may not be available, depending on
whether the underlying platform supports them and on the configuration choices
made at compile time). It also documents the standard types of the language and
its built-in functions and exceptions, many of which are not or incompletely docu-
mented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an infor-
mal introduction to Python, see thePython Tutorial; the Python Reference Manual
remains the highest authority on syntactic and semantic questions. Finally, the
manual entitledExtending and Embedding the Python Interpreterdescribes how to
add new extensions to Python and how to embed it in other applications.

Contents

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 Built-in Types : 3

2.1.1 Truth Value Testing : 4
2.1.2 Boolean Operations: 4
2.1.3 Comparisons: 5
2.1.4 Numeric Types: 6
2.1.5 Sequence Types: 8
2.1.6 Mapping Types : 11
2.1.7 Other Built-in Types: 12
2.1.8 Special Attributes: 16

2.2 Built-in Exceptions: 16
2.3 Built-in Functions : 19

3 Python Services 29
3.1 Built-in Modulesys : 30
3.2 Standard Moduletypes : 32
3.3 Standard Moduletraceback : : : : : : : : : : : : : : : : : : 34
3.4 Standard Modulepickle : 35
3.5 Standard Moduleshelve : 40
3.6 Standard Modulecopy : 41
3.7 Built-in Modulemarshal : 42
3.8 Built-in Moduleimp : 44

3.8.1 Examples : 46
3.9 Built-in Moduleparser : 47

3.9.1 Creating AST Objects: : : : : : : : : : : : : : : : : : : 49
3.9.2 Converting AST Objects: : : : : : : : : : : : : : : : : : 50

i

3.9.3 Queries on AST Objects: : : : : : : : : : : : : : : : : : 51
3.9.4 Exceptions and Error Handling: : : : : : : : : : : : : : 51
3.9.5 AST Objects: 52
3.9.6 Examples : 52

3.10 Built-in Module builtin : : : : : : : : : : : : : : : : : : : 61
3.11 Built-in Module main : 61

4 String Services 62
4.1 Standard Modulestring : 62
4.2 Built-in Moduleregex : 66

4.2.1 Regular Expressions: 67
4.2.2 Module Contents: 69

4.3 Standard Moduleregsub : 73
4.4 Built-in Modulestruct : 74

5 Miscellaneous Services 76
5.1 Built-in Modulemath : 76
5.2 Standard Modulerand : 77
5.3 Standard Modulewhrandom : : : : : : : : : : : : : : : : : : : 77
5.4 Built-in Modulearray : 77

6 Generic Operating System Services 80
6.1 Standard Moduleos : 80
6.2 Built-in Moduletime : 82
6.3 Standard Modulegetopt : 86
6.4 Standard Moduletempfile : : : : : : : : : : : : : : : : : : : 88
6.5 Standard Moduleerrno : 89

7 Optional Operating System Services 98
7.1 Built-in Modulesignal : 98
7.2 Built-in Modulesocket : 101

7.2.1 Socket Objects: 103
7.2.2 Example: 106

7.3 Built-in Moduleselect : 107
7.4 Built-in Modulethread : 108

8 UNIX Specific Services 111
8.1 Built-in Moduleposix : 111
8.2 Standard Moduleposixpath : : : : : : : : : : : : : : : : : : 118

ii

8.3 Built-in Modulepwd : 121
8.4 Built-in Modulegrp : 121
8.5 Built-in modulecrypt : 122
8.6 Built-in Moduledbm : 122
8.7 Built-in Modulegdbm : 123
8.8 Built-in Moduletermios : 123

8.8.1 Example: 124
8.9 Standard ModuleTERMIOS : 125
8.10 Built-in Modulefcntl : 125
8.11 Standard Moduleposixfile : : : : : : : : : : : : : : : : : : 126
8.12 Built-in Modulesyslog : 129

9 The Python Debugger 131
9.1 Debugger Commands: 133
9.2 How It Works : 135

10 The Python Profiler 137
10.1 Introduction to the profiler: 138
10.2 How Is This Profiler Different From The Old Profiler?: : : : : : : 138
10.3 Instant Users Manual: 139
10.4 What Is Deterministic Profiling?: : : : : : : : : : : : : : : : : : 141
10.5 Reference Manual: 142

10.5.1 TheStats Class : 143
10.6 Limitations: 146
10.7 Calibration: 147
10.8 Extensions — Deriving Better Profilers: : : : : : : : : : : : : : 148

10.8.1 OldProfile Class: 149
10.8.2 HotProfile Class: 151

11 Internet and WWW Services 153
11.1 Standard Modulecgi : 154

11.1.1 Introduction : 154
11.1.2 Using the cgi module: : : : : : : : : : : : : : : : : : : 155
11.1.3 Old classes: 157
11.1.4 Functions : 157
11.1.5 Caring about security: : : : : : : : : : : : : : : : : : : 158
11.1.6 Installing your CGI script on a Unix system: : : : : : : : 159
11.1.7 Testing your CGI script: : : : : : : : : : : : : : : : : : 160
11.1.8 Debugging CGI scripts: : : : : : : : : : : : : : : : : : : 160

iii

11.1.9 Common problems and solutions: : : : : : : : : : : : : 162
11.2 Standard Moduleurllib : 162
11.3 Standard Modulehttplib : 164

11.3.1 HTTP Objects: 165
11.3.2 Example: 166

11.4 Standard Moduleftplib : 167
11.4.1 FTP Objects: 168

11.5 Standard Modulegopherlib : : : : : : : : : : : : : : : : : : 170
11.6 Standard Modulenntplib : 171

11.6.1 NNTP Objects: 172
11.7 Standard Moduleurlparse : : : : : : : : : : : : : : : : : : : 174
11.8 Standard Modulesgmllib : 176
11.9 Standard Modulehtmllib : 178
11.10Standard Moduleformatter : : : : : : : : : : : : : : : : : : 180

11.10.1 The Formatter Interface: : : : : : : : : : : : : : : : : : 181
11.10.2 Formatter Implementations: : : : : : : : : : : : : : : : 183
11.10.3 The Writer Interface: 183
11.10.4 Writer Implementations: : : : : : : : : : : : : : : : : : 185

11.11Standard Modulerfc822 : 185
11.11.1 Message Objects: 185

11.12Standard Modulemimetools : : : : : : : : : : : : : : : : : : 187
11.12.1 Additional Methods of Message objects: : : : : : : : : : 188

11.13Standard modulebinhex : 188
11.13.1 notes: 189

11.14Standard moduleuu : 189
11.15Built-in Modulebinascii : 190
11.16Standard modulexdrlib : 191

11.16.1 Packer Objects: 191
11.16.2 Unpacker Objects: 192
11.16.3 Exceptions: 194
11.16.4 Supporting Floating Point Data: : : : : : : : : : : : : : 194

12 Restricted Execution 196
12.1 Standard Modulerexec : 197

12.1.1 An example : 200
12.2 Standard ModuleBastion : 201

13 Multimedia Services 202
13.1 Built-in Moduleaudioop : 202

iv

13.2 Built-in Moduleimageop : 206
13.3 Standard Moduleaifc : 207
13.4 Built-in Modulejpeg : 210
13.5 Built-in Modulergbimg : 211
13.6 Standard moduleimghdr : 211

14 Cryptographic Services 213
14.1 Built-in Modulemd5 : 213
14.2 Built-in Modulempz : 214
14.3 Built-in Modulerotor : 216

15 Macintosh Specific Services 218
15.1 Built-in Modulemac : 218
15.2 Standard Modulemacpath : 219
15.3 Built-in Modulectb : 219

15.3.1 connection object: 220
15.4 Built-in Modulemacconsole : : : : : : : : : : : : : : : : : : 221

15.4.1 macconsole options object: : : : : : : : : : : : : : : : : 222
15.4.2 console window object: : : : : : : : : : : : : : : : : : : 222

15.5 Built-in Modulemacdnr : 223
15.5.1 dnr result object: 224

15.6 Built-in Modulemacfs : 225
15.6.1 FSSpec objects: 226
15.6.2 alias objects: 227
15.6.3 FInfo objects: 228

15.7 Built-in ModuleMacOS : 228
15.8 Standard modulemacostools : : : : : : : : : : : : : : : : : : 230
15.9 Standard modulefindertools : : : : : : : : : : : : : : : : : 230
15.10Built-in Modulemactcp : 231

15.10.1 TCP Stream Objects: 232
15.10.2 TCP Status Objects: 233
15.10.3 UDP Stream Objects: 233

15.11Built-in Modulemacspeech : : : : : : : : : : : : : : : : : : : 234
15.11.1 voice objects: 234
15.11.2 speech channel objects: : : : : : : : : : : : : : : : : : : 235

15.12Standard moduleEasyDialogs : : : : : : : : : : : : : : : : : 235
15.13Standard moduleFrameWork : : : : : : : : : : : : : : : : : : : 236

15.13.1 Application objects : 237
15.13.2 Window Objects: 238

v

15.13.3 ControlsWindow Object: : : : : : : : : : : : : : : : : : 239
15.13.4 ScrolledWindow Object: : : : : : : : : : : : : : : : : : 239
15.13.5 DialogWindow Objects: : : : : : : : : : : : : : : : : : 240

15.14Standard moduleMiniAEFrame : : : : : : : : : : : : : : : : : 240
15.14.1 AEServer Objects: 240

16 Standard Windowing Interface 242
16.1 Built-in Modulestdwin : 242

16.1.1 Functions Defined in Modulestdwin : : : : : : : : : : 243
16.1.2 Window Objects: 246
16.1.3 Drawing Objects: 248
16.1.4 Menu Objects: 250
16.1.5 Bitmap Objects : 251
16.1.6 Text-edit Objects: 251
16.1.7 Example: 252

16.2 Standard Modulestdwinevents : : : : : : : : : : : : : : : : 253
16.3 Standard Modulerect : 253

17 SGI IRIX Specific Services 255
17.1 Built-in Moduleal : 255

17.1.1 Configuration Objects: : : : : : : : : : : : : : : : : : : 256
17.1.2 Port Objects: 257

17.2 Standard ModuleAL : 257
17.3 Built-in Modulecd : 258
17.4 Built-in Modulefl : 262

17.4.1 Functions Defined in Modulefl : : : : : : : : : : : : : : 263
17.4.2 Form Objects : 265
17.4.3 FORMS Objects: 267

17.5 Standard ModuleFL : 269
17.6 Standard Moduleflp : 269
17.7 Built-in Modulefm : 270
17.8 Built-in Modulegl : 271
17.9 Standard ModulesGLandDEVICE : : : : : : : : : : : : : : : : 273
17.10Built-in Moduleimgfile : 274

18 SunOS Specific Services 275
18.1 Built-in Modulesunaudiodev : : : : : : : : : : : : : : : : : 275

18.1.1 Audio Device Objects: : : : : : : : : : : : : : : : : : : 275

vi

Chapter 1

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a
language, such as numbers and lists. For these types, the Python language core
defines the form of literals and places some constraints on their semantics, but
does not fully define the semantics. (On the other hand, the language core does
define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be
used by all Python code without the need of animport statement. Some of these
are defined by the core language, but many are not essential for the core semantics
and are only described here.

The bulk of the library, however, consists of a collection of modules. There are
many ways to dissect this collection. Some modules are written in C and built in to
the Python interpreter; others are written in Python and imported in source form.
Some modules provide interfaces that are highly specific to Python, like print-
ing a stack trace; some provide interfaces that are specific to particular operating
systems, like socket I/O; others provide interfaces that are specific to a particular
application domain, like the World-Wide Web. Some modules are avaiable in all
versions and ports of Python; others are only available when the underlying system
supports or requires them; yet others are available only when a particular configu-
ration option was chosen at the time when Python was compiled and installed.

This manual is organized “from the inside out”: it first describes the built-in data
types, then the built-in functions and exceptions, and finally the modules, grouped

1

in chapters of related modules. The ordering of the chapters as well as the ordering
of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next
chapter when you get bored, you will get a reasonable overview of the available
modules and application areas that are supported by the Python library. Of course,
you don' thaveto read it like a novel — you can also browse the table of contents
(in front of the manual), or look for a specific function, module or term in the index
(in the back). And finally, if you enjoy learning about random subjects, you choose
a random page number (see modulerand) and read a section or two.

Let the show begin!

2

Chapter 2

Built-in Types, Exceptions and
Functions

Names for built-in exceptions and functions are found in a separate symbol table.
This table is searched last when the interpreter looks up the meaning of a name, so
local and global user-defined names can override built-in names. Built-in types are
described together here for easy reference.1

The tables in this chapter document the priorities of operators by listing them in
order of ascending priority (within a table) and grouping operators that have the
same priority in the same box. Binary operators of the same priority group from
left to right. (Unary operators group from right to left, but there you have no real
choice.) See Chapter 5 of the Python Reference Manual for the complete picture
on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter.
These are the numeric types, sequence types, and several others, including types
themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects
can be compared, tested for truth value, and converted to a string (with the` . . .`

1Most descriptions sorely lack explanations of the exceptions that may be raised — this will be
fixed in a future version of this manual.

3

notation). The latter conversion is implicitly used when an object is written by the
print statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use in anif or while condition or
as operand of the Boolean operations below. The following values are considered
false:

� None

� zero of any numeric type, e.g.,0, 0L, 0.0 .

� any empty sequence, e.g.,'' , () , [] .

� any empty mapping, e.g.,{} .

� instances of user-defined classes, if the class defines anonzero () or
len () method, when that method returns zero.

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return0 for
false and1 for true, unless otherwise stated. (Important exception: the Boolean
operationsòr ' and ànd ' always return one of their operands.)

2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes
x or y if x is false, theny, elsex (1)

x and y if x is false, thenx, elsey (1)
not x if x is false, then1, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) `not ' has a lower priority than non-Boolean operators, so e.g.not a == b
is interpreted asnot(a == b) , anda == not b is a syntax error.

4

2.1.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority
(which is higher than that of the Boolean operations). Comparisons can be chained
arbitrarily, e.g.x < y <= z is equivalent tox < y and y <= z , except that
y is evaluated only once (but in both casesz is not evaluated at all whenx < y is
found to be false).

This table summarizes the comparison operations:

Operation Meaning Notes
< strictly less than

<= less than or equal
> strictly greater than

>= greater than or equal
== equal
<> not equal (1)
!= not equal (1)
is object identity

is not negated object identity

Notes:

(1) <> and != are alternate spellings for the same operator. (I couldn' t choose
betweenABC and C! :-)

Objects of different types, except different numeric types, never compare equal;
such objects are ordered consistentlybut arbitrarily (so that sorting a heterogeneous
array yields a consistent result). Furthermore, some types (e.g., windows) support
only a degenerate notion of comparison where any two objects of that type are
unequal. Again, such objects are ordered arbitrarily but consistently.

(Implementation note: objects of different types except numbers are ordered by
their type names; objects of the same types that don' t support proper comparison
are ordered by their address.)

Two more operations with the same syntactic priority,in andnot in , are sup-
ported only by sequence types (below).

5

2.1.4 Numeric Types

There are three numeric types:plain integers, long integers, andfloating point
numbers. Plain integers (also just calledintegers) are implemented usinglong
in C, which gives them at least 32 bits of precision. Long integers have unlimited
precision. Floating point numbers are implemented usingdouble in C. All bets
on their precision are off unless you happen to know the machine you are working
with.

Numbers are created by numeric literals or as the result of built-in functions and op-
erators. Unadorned integer literals (including hex and octal numbers) yield plain
integers. Integer literals with an `L ' or l̀ ' suffix yield long integers (L̀' is pre-
ferred because1l looks too much like eleven!). Numeric literals containing a
decimal point or an exponent sign yield floating point numbers.

Python fully supports mixed arithmetic: when a binary arithmetic operator has
operands of different numeric types, the operand with the “smaller” type is con-
verted to that of the other, where plain integer is smaller than long integer is smaller
than floating point. Comparisons between numbers of mixed type use the same
rule.2 The functionsint() , long() andfloat() can be used to coerce num-
bers to a specific type.

All numeric types support the following operations, sorted by ascending priority
(operations in the same box have the same priority; all numeric operations have a
higher priority than comparison operations):

2As a consequence, the list[1, 2] is considered equal to[1.0, 2.0] , and similar for tuples.

6

Operation Result Notes
x + y sum ofx andy
x - y difference ofx andy
x * y product ofx andy
x / y quotient ofx andy (1)
x % y remainder ofx / y

- x x negated
+x x unchanged

abs(x) absolute value ofx
int(x) x converted to integer (2)

long(x) x converted to long integer (2)
float(x) x converted to floating point

divmod(x, y) the pair(x / y, x % y) (3)
pow(x, y) x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always
rounded towards minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2)
is 0.

(2) Conversion from floating point to (long or plain) integer may round or truncate
as in C; see functionsfloor() andceil() in modulemath for well-
defined conversions.

(3) See the section on built-in functions for an exact definition.

Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only for
bit-strings. Negative numbers are treated as their 2's complement value (for long
integers, this assumes a sufficiently large number of bits that no overflow occurs
during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric op-
erations and higher than the comparisons; the unary operation ` ' has the same
priority as the other unary numeric operations (`+' and -̀ ').

This table lists the bit-string operations sorted in ascending priority (operations in
the same box have the same priority):

7

Operation Result Notes
x | y bitwiseor of x andy
x ˆ y bitwiseexclusive orof x andy
x & y bitwiseandof x andy

x << n x shifted left byn bits (1), (2)
x >> n x shifted right byn bits (1), (3)

x the bits ofx inverted

Notes:

(1) Negative shift counts are illegal.

(2) A left shift by n bits is equivalent to multiplication bypow(2, n) without
overflow check.

(3) A right shift by n bits is equivalent to division bypow(2, n) without over-
flow check.

2.1.5 Sequence Types

There are three sequence types: strings, lists and tuples.

Strings literals are written in single or double quotes:'xyzzy' , "frobozz" .
See Chapter 2 of the Python Reference Manual for more about string liter-
als. Lists are constructed with square brackets, separating items with commas:
[a, b, c] . Tuples are constructed by the comma operator (not within square
brackets), with or without enclosing parentheses, but an empty tuple must have
the enclosing parentheses, e.g.,a, b, c or () . A single item tuple must have a
trailing comma, e.g.,(d,) .

Sequence types support the following operations. The `in ' and ǹot in ' oper-
ations have the same priorities as the comparison operations. The `+' and *̀ '
operations have the same priority as the corresponding numeric operations.3

This table lists the sequence operations sorted in ascending priority (operations in
the same box have the same priority). In the table,s and t are sequences of the
same type;n, i andj are integers:

3They must have since the parser can' t tell the type of the operands.

8

Operation Result Notes
x in s 1 if an item ofs is equal tox, else0

x not in s 0 if an item ofs is equal tox, else1
s + t the concatenation ofsandt

s * n, n * s n copies ofsconcatenated
s[i] i ' th item ofs, origin 0 (1)

s[i: j] slice ofs from i to j (1), (2)
len(s) length ofs
min(s) smallest item ofs
max(s) largest item ofs

Notes:

(1) If i or j is negative, the index is relative to the end of the string, i.e.,
len(s) + i or len(s) + j is substituted. But note that-0 is still 0.

(2) The slice ofs from i to j is defined as the sequence of items with indexk such
that i <= k < j. If i or j is greater thanlen(s) , uselen(s) . If i is
omitted, use0. If j is omitted, uselen(s) . If i is greater than or equal toj,
the slice is empty.

More String Operations

String objects have one unique built-in operation: the%operator (modulo) with a
string left argument interprets this string as a C sprintf format string to be applied to
the right argument, and returns the string resulting from this formatting operation.

The right argument should be a tuple with one item for each argument required by
the format string; if the string requires a single argument, the right argument may
also be a single non-tuple object.4 The following format characters are understood:
%, c, s, i, d, u, o, x, X, e, E, f, g, G. Width and precision may be a * to specify
that an integer argument specifies the actual width or precision. The flag characters
-, +, blank, # and 0 are understood. The size specifiers h, l or L may be present
but are ignored. The%s conversion takes any Python object and converts it to
a string usingstr() before formatting it. The ANSI features%p and %n are
not supported. Since Python strings have an explicit length,%sconversions don' t
assume that'\0' is the end of the string.

4A tuple object in this case should be a singleton.

9

For safety reasons, floating point precisions are clipped to 50;%f conversions for
numbers whose absolute value is over 1e25 are replaced by%gconversions.5 All
other errors raise exceptions.

If the right argument is a dictionary (or any kind of mapping), then the formats in
the string must have a parenthesized key into that dictionary inserted immediately
after the%character, and each format formats the corresponding entry from the
mapping. E.g.

>>> count = 2
>>> language = 'Python'
>>> print '%(language)s has %(count)03d quote types.' % vars()
Python has 002 quote types.
>>>

In this case no * specifiers may occur in a format (since they require a sequential
parameter list).

Additional string operations are defined in standard modulestring and in built-
in moduleregex .

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the
object. These operations would be supported by other mutable sequence types
(when added to the language) as well. Strings and tuples are immutable sequence
types and such objects cannot be modified once created. The following operations
are defined on mutable sequence types (wherex is an arbitrary object):

5These numbers are fairly arbitrary. They are intended to avoid printing endless strings of mean-
ingless digits without hampering correct use and without having to know the exact precision of
floating point values on a particular machine.

10

Operation Result Notes
s[i] = x item i of s is replaced byx

s[i: j] = t slice ofs from i to j is replaced byt
del s[i: j] same ass[i: j] = []

s.append(x) same ass[len(s):len(s)] = [x]
s.count(x) return number ofi ' s for whichs[i] == x
s.index(x) return smallesti such thats[i] == x (1)

s.insert(i , x) same ass[i: i] = [x] if i >= 0
s.remove(x) same asdel s[s.index(x)] (1)
s.reverse() reverses the items ofs in place

s.sort() permutes the items ofs to satisfys[i] <= s[j] , for i < j (2)

Notes:

(1) Raises an exception whenx is not found ins.

(2) The sort() method takes an optional argument specifying a comparison
function of two arguments (list items) which should return-1 , 0 or 1 de-
pending on whether the first argument is considered smaller than, equal to,
or larger than the second argument. Note that this slows the sorting process
down considerably; e.g. to sort a list in reverse order it is much faster to use
calls tosort() andreverse() than to usesort() with a comparison
function that reverses the ordering of the elements.

2.1.6 Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Map-
pings are mutable objects. There is currently only one standard mapping type, the
dictionary. A dictionary's keys are almost arbitrary values. The only types of
values not acceptable as keys are values containing lists or dictionaries or other
mutable types that are compared by value rather than by object identity. Numeric
types used for keys obey the normal rules for numeric comparison: if two numbers
compare equal (e.g. 1 and 1.0) then they can be used interchangeably to index the
same dictionary entry.

Dictionaries are created by placing a comma-separated list ofkey: value
pairs within braces, for example:{'jack': 4098, 'sjoerd': 4127} or
{4098: 'jack', 4127: 'sjoerd'} .

11

The following operations are defined on mappings (wherea is a mapping,k is a
key andx is an arbitrary object):

Operation Result Notes
len(a) the number of items ina

a[k] the item ofa with keyk (1)
a[k] = x seta[k] to x
del a[k] removea[k] from a (1)

a.items() a copy ofa' s list of (key, item) pairs (2)
a.keys() a copy ofa' s list of keys (2)

a.values() a copy ofa' s list of values (2)
a.has key(k) 1 if a has a keyk, else0

Notes:

(1) Raises an exception ifk is not in the map.

(2) Keys and values are listed in random order.

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only
one or two operations.

Modules

The only special operation on a module is attribute access:m. name, wherem is a
module andnameaccesses a name defined inm' s symbol table. Module attributes
can be assigned to. (Note that theimport statement is not, strictly spoken, an op-
eration on a module object;import foodoes not require a module object named
foo to exist, rather it requires an (external)definitionfor a module namedfoosome-
where.)

A special member of every module isdict . This is the dictionary contain-
ing the module's symbol table. Modifying this dictionary will actually change the
module's symbol table, but direct assignment to thedict attribute is not pos-
sible (i.e., you can writem. dict ['a'] = 1 , which definesm.a to be1,
but you can' t writem. dict = {} .

Modules are written like this:<module 'sys'> .

12

Classes and Class Instances

(See Chapters 3 and 7 of the Python Reference Manual for these.)

Functions

Function objects are created by function definitions. The only operation on a func-
tion object is to call it:func(argument-list) .

There are really two flavors of function objects: built-in functions and user-defined
functions. Both support the same operation (to call the function), but the imple-
mentation is different, hence the different object types.

The implementation adds two special read-only attributes:f .func code is a
function'scode object(see below) andf .func globals is the dictionary used
as the function's global name space (this is the same asm. dict wherem is
the module in which the functionf was defined).

Methods

Methods are functions that are called using the attribute notation. There are two
flavors: built-in methods (such asappend() on lists) and class instance methods.
Built-in methods are described with the types that support them.

The implementation
adds two special read-only attributes to class instance methods:m.im self is
the object whose method this is, andm.im func is the function implementing
the method. Callingm(arg-1, arg-2, . . ., arg-n) is completely equivalent to
callingm.im func(m.im self, arg-1, arg-2, . . ., arg-n) .

(See the Python Reference Manual for more info.)

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” ex-
ecutable Python code such as a function body. They differ from function objects
because they don' t contain a reference to their global execution environment. Code
objects are returned by the built-incompile() function and can be extracted
from function objects through theirfunc code attribute.

13

A code object can be executed or evaluated by passing it (instead of a source string)
to theexec statement or the built-ineval() function.

(See the Python Reference Manual for more info.)

Type Objects

Type objects represent the various object types. An object's type is accessed by the
built-in functiontype() . There are no special operations on types. The standard
moduletypes defines names for all standard built-in types.

Types are written like this:<type 'int'> .

The Null Object

This object is returned by functions that don' t explicitly return a value. It supports
no special operations. There is exactly one null object, namedNone (a built-in
name).

It is written asNone.

File Objects

File objects are implemented using C'sstdio package and can be created with the
built-in functionopen() described under Built-in Functions below. They are also
returned by some other built-in functions and methods, e.g.posix.popen()
andposix.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/O-related reason, the exceptionIOError is
raised. This includes situations where the operation is not defined for some reason,
like seek() on a tty device or writing a file opened for reading.

Files have the following methods:

close()
Close the file. A closed file cannot be read or written anymore.

flush()
Flush the internal buffer, likestdio ' s fflush() .

isatty()
Return1 if the file is connected to a tty(-like) device, else0.

14

read([size])
Read at mostsizebytes from the file (less if the read hitsEOF or no more
data is immediately available on a pipe, tty or similar device). If thesize
argument is negative or omitted, read all data untilEOF is reached. The
bytes are returned as a string object. An empty string is returned whenEOF

is encountered immediately. (For certain files, like ttys, it makes sense to
continue reading after anEOF is hit.)

readline([size])
Read one entire line from the file. A trailing newline character is kept in
the string6 (but may be absent when a file ends with an incomplete line). If
thesizeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An
empty string is returned whenEOF is hit immediately. Note: unlikestdio ' s
fgets() , the returned string contains null characters ('\0') if they oc-
curred in the input.

readlines()
Read untilEOF using readline() and return a list containing the lines
thus read.

seek(offset, whence)
Set the file's current position, likestdio ' s fseek() . Thewhenceargu-
ment is optional and defaults to0 (absolute file positioning); other values are
1 (seek relative to the current position) and2 (seek relative to the file's end).
There is no return value.

tell()
Return the file's current position, likestdio ' s ftell() .

truncate([size])
Truncate the file's size. If the optional size argument present, the file is
truncated to (at most) that size. The size defaults to the current position.
Availability of this function depends on the operating system version (e.g.,
not all UNIX versions support this operation).

write(str)
Write a string to the file. There is no return value. Note: due to buffering, the

6The advantage of leaving the newline on is that an empty string can be returned to meanEOF

without being ambiguous. Another advantage is that (in cases where it might matter, e.g. if you want
to make an exact copy of a file while scanning its lines) you can tell whether the last line of a file
ended in a newline or not (yes this happens!).

15

string may not actually show up in the file until theflush() or close()
method is called.

writelines(list)
Write a list of strings to the file. There is no return value. (The name is in-
tended to matchreadlines ; writelines does not add line separators.)

Internal Objects

(See the Python Reference Manual for these.)

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types,
where they are relevant:

� x. dict is a dictionary of some sort used to store an object's (writable)
attributes;

� x. methods lists
the methods of many built-in object types, e.g.,[]. methods yields
['append', 'count', 'index', 'insert', 'remove', 'reverse', 'sort'] ;

� x. members lists data attributes;

� x. class is the class to which a class instance belongs;

� x. bases is the tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions are string objects. Two distinct string objects with the same value are
different exceptions. This is done to force programmers to use exception names
rather than their string value when specifying exception handlers. The string value
of all built-in exceptions is their name, but this is not a requirement for user-defined
exceptions or exceptions defined by library modules.

The following exceptions can be generated by the interpreter or built-in functions.
Except where mentioned, they have an `associated value' indicating the detailed

16

cause of the error. This may be a string or a tuple containing several items of
information (e.g., an error code and a string explaining the code).

User code can raise built-in exceptions. This can be used to test an exception han-
dler or to report an error condition `just like' the situation in which the interpreter
raises the same exception; but beware that there is nothing to prevent user code
from raising an inappropriate error.

AttributeError
Raised when an attribute reference or assignment fails. (When an object does
not support attribute references or attribute assignments at all,TypeError
is raised.)

EOFError
Raised when one of the built-in functions (input() or raw input())
hits an end-of-file condition (EOF) without reading any data. (N.B.: the
read() andreadline() methods of file objects return an empty string
when they hitEOF.) No associated value.

IOError
Raised when an I/O operation (such as aprint statement, the built-in
open() function or a method of a file object) fails for an I/O-related reason,
e.g., `file not found' , `disk full' .

ImportError
Raised when animport statement fails to find the module definition or
when afrom . . . import fails to find a name that is to be imported.

IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently
truncated to fall in the allowed range; if an index is not a plain integer,
TypeError is raised.)

KeyError
Raised when a mapping (dictionary) key is not found in the set of existing
keys.

KeyboardInterrupt
Raised when the user hits the interrupt key (normallyControl-C or DEL).
During execution, a check for interrupts is made regularly. Interrupts typed
when a built-in functioninput() or raw input()) is waiting for input
also raise this exception. No associated value.

MemoryError

17

Raised when an operation runs out of memory but the situation may still be
rescued (by deleting some objects). The associated value is a string indicat-
ing what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C'smalloc() func-
tion), the interpreter may not always be able to completely recover from this
situation; it nevertheless raises an exception so that a stack traceback can be
printed, in case a run-away program was the cause.

NameError
Raised when a local or global name is not found. This applies only to un-
qualified names. The associated value is the name that could not be found.

OverflowError
Raised when the result of an arithmetic operation is too large to be rep-
resented. This cannot occur for long integers (which would rather raise
MemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also
aren' t checked. For plain integers, all operations that can overflow are
checked except left shift, where typical applications prefer to drop bits than
raise an exception.

RuntimeError
Raised when an error is detected that doesn' t fall in any of the other cat-
egories. The associated value is a string indicating what precisely went
wrong. (This exception is a relic from a previous version of the interpreter;
it is not used any more except by some extension modules that haven' t been
converted to define their own exceptions yet.)

SyntaxError
Raised when the parser encounters a syntax error. This may occur in an
import statement, in anexec statement, in a call to the built-in function
eval() or input() , or when reading the initial script or standard input
(also interactively).

SystemError
Raised when the interpreter finds an internal error, but the situation does not
look so serious to cause it to abandon all hope. The associated value is a
string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python in-
terpreter. Be sure to report the version string of the Python interpreter
(sys.version ; it is also printed at the start of an interactive Python ses-

18

sion), the exact error message (the exception's associated value) and if pos-
sible the source of the program that triggered the error.

SystemExit
This exception is raised by thesys.exit() function. When it is not han-
dled, the Python interpreter exits; no stack traceback is printed. If the asso-
ciated value is a plain integer, it specifies the system exit status (passed to
C'sexit() function); if it is None, the exit status is zero; if it has another
type (such as a string), the object's value is printed and the exit status is one.

A call to sys.exit is translated into an exception so that clean-up han-
dlers (finally clauses oftry statements) can be executed, and so that a
debugger can execute a script without running the risk of losing control. The
posix. exit() function can be used if it is absolutely positively neces-
sary to exit immediately (e.g., after afork() in the child process).

TypeError
Raised when a built-in operation or function is applied to an object of inap-
propriate type. The associated value is a string giving details about the type
mismatch.

ValueError
Raised when a built-in operation or function receives an argument that has
the right type but an inappropriate value, and the situation is not described
by a more precise exception such asIndexError .

ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero.
The associated value is a string indicating the type of the operands and the
operation.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always avail-
able. They are listed here in alphabetical order.

abs(x)
Return the absolute value of a number. The argument may be a plain or long
integer or a floating point number.

apply(function, args[, keywords])
The functionargument must be a callable object (a user-defined or built-in

19

function or method, or a class object) and theargsargument must be a tuple.
The functionis called withargsas argument list; the number of arguments
is the the length of the tuple. (This is different from just callingfunc(args) ,
since in that case there is always exactly one argument.) If the optional
keywordsargument is present, it must be a dictionary whose keys are strings.
It specifies keyword arguments to be added to the end of the the argument
list.

chr(i)
Return a string of one character whoseASCII code is the integeri, e.g.,
chr(97) returns the string'a' . This is the inverse oford() . The ar-
gument must be in the range [0..255], inclusive.

cmp(x, y)
Compare the two objectsx andy and return an integer according to the out-
come. The return value is negative ifx < y, zero if x == y and strictly
positive ifx > y.

coerce(x, y)
Return a tuple consisting of the two numeric arguments converted to a com-
mon type, using the same rules as used by arithmetic operations.

compile(string, filename, kind)
Compile thestring into a code object. Code objects can be executed by an
exec statement or evaluated by a call toeval() . Thefilenameargument
should give the file from which the code was read; pass e.g.'<string>'
if it wasn' t read from a file. Thekind argument specifies what kind of code
must be compiled; it can be'exec' if string consists of a sequence of
statements,'eval' if it consists of a single expression, or'single' if
it consists of a single interactive statement (in the latter case, expression
statements that evaluate to something else thanNone will printed).

delattr(object, name)
This is a relative ofsetattr . The arguments are an object and a string.
The string must be the name of one of the object's attributes. The func-
tion deletes the named attribute, provided the object allows it. For example,
delattr(x, ' foobar') is equivalent todel x. foobar.

dir()
Without arguments, return the list of names in the current local symbol ta-
ble. With a module, class or class instance object as argument (or anything
else that has a dict attribute), returns the list of names in that object's

20

attribute dictionary. The resulting list is sorted. For example:

>>> import sys
>>> dir()
['sys']
>>> dir(sys)
['argv', 'exit', 'modules', 'path', 'stderr', 'stdin', 'stdout']
>>>

divmod(a, b)
Take two numbers as arguments and return a pair of integers consisting of
their integer quotient and remainder. With mixed operand types, the rules
for binary arithmetic operators apply. For plain and long integers, the result
is the same as(a / b, a % b) . For floating point numbers the result is
the same as(math.floor(a / b), a % b) .

eval(expression[, globals[, locals]])
The arguments are a string and two optional dictionaries. Theexpression
argument is parsed and evaluated as a Python expression (technically speak-
ing, a condition list) using theglobalsandlocalsdictionaries as global and
local name space. If thelocalsdictionary is omitted it defaults to theglobals
dictionary. If both dictionaries are omitted, the expression is executed in
the environment whereeval is called. The return value is the result of the
evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval('x+1')
2
>>>

This function can also be used to execute arbitrary code objects (e.g. created
by compile()). In this case pass a code object instead of a string. The
code object must have been compiled passing'eval' to thekindargument.

Hints: dynamic execution of statements is supported by theexec statement.
Execution of statements from a file is supported by theexecfile() func-
tion. Theglobals() andlocals() functions returns the current global
and local dictionary, respectively, which may be useful to pass around for
use byeval() or execfile() .

21

execfile(file [, globals[, locals]])
This function is similar to theexec statement, but parses a file instead of
a string. It is different from theimport statement in that it does not use
the module administration — it reads the file unconditionally and does not
create a new module.7

The arguments are a file name and two optional dictionaries. The file is
parsed and evaluated as a sequence of Python statements (similarly to a mod-
ule) using theglobalsandlocalsdictionaries as global and local name space.
If the localsdictionary is omitted it defaults to theglobalsdictionary. If both
dictionaries are omitted, the expression is executed in the environment where
execfile() is called. The return value isNone.

filter(function, list)
Construct a list from those elements oflist for which functionreturns true. If
list is a string or a tuple, the result also has that type; otherwise it is always
a list. If functionis None, the identity function is assumed, i.e. all elements
of list that are false (zero or empty) are removed.

float(x)
Convert a number to floating point. The argument may be a plain or long
integer or a floating point number.

getattr(object, name)
The arguments are an object and a string. The string must be the name of
one of the object's attributes. The result is the value of that attribute. For
example,getattr(x, ' foobar') is equivalent tox. foobar.

globals()
Return a dictionary representing the current global symbol table. This is
always the dictionary of the current module (inside a function or method, this
is the module where it is defined, not the module from which it is called).

hasattr(object, name)
The arguments are an object and a string. The result is 1 if the string is
the name of one of the object's attributes, 0 if not. (This is implemented
by calling getattr(object, name) and seeing whether it raises an
exception or not.)

hash(object)
Return the hash value of the object (if it has one). Hash values are 32-

7It is used relatively rarely so does not warrant being made into a statement.

22

bit integers. They are used to quickly compare dictionary keys during a
dictionary lookup. Numeric values that compare equal have the same hash
value (even if they are of different types, e.g. 1 and 1.0).

hex(x)
Convert an integer number (of any size) to a hexadecimal string. The result
is a valid Python expression.

id(object)
Return the `identity' of an object. This is an integer which is guaranteed to
be unique and constant for this object during its lifetime. (Two objects whose
lifetimes are disjunct may have the same id() value.) (Implementation note:
this is the address of the object.)

input([prompt])
Almost equivalent to eval(raw input(prompt)) . Like
raw input() , thepromptargument is optional. The difference is that a
long input expression may be broken over multiple lines using the backslash
convention.

int(x)
Convert a number to a plain integer. The argument may be a plain or long
integer or a floating point number. Conversion of floating point numbers to
integers is defined by the C semantics; normally the conversion truncates
towards zero.8

len(s)
Return the length (the number of items) of an object. The argument may be
a sequence (string, tuple or list) or a mapping (dictionary).

locals()
Return a dictionary representing the current local symbol table. Inside a
function, modifying this dictionary does not always have the desired effect.

long(x)
Convert a number to a long integer. The argument may be a plain or long
integer or a floating point number.

map(function, list, ...)
Apply functionto every item oflist and return a list of the results. If addi-
tional list arguments are passed,functionmust take that many arguments and
is applied to the items of all lists in parallel; if a list is shorter than another it

8This is ugly — the language definition should require truncation towards zero.

23

is assumed to be extended withNone items. If functionis None, the iden-
tity function is assumed; if there are multiple list arguments,map returns
a list consisting of tuples containing the corresponding items from all lists
(i.e. a kind of transpose operation). Thelist arguments may be any kind of
sequence; the result is always a list.

max(s)
Return the largest item of a non-empty sequence (string, tuple or list).

min(s)
Return the smallest item of a non-empty sequence (string, tuple or list).

oct(x)
Convert an integer number (of any size) to an octal string. The result is a
valid Python expression.

open(filename[, mode[, bufsize]])
Return a new file object (described earlier under Built-in Types). The first
two arguments are the same as forstdio ' s fopen() : filenameis the file
name to be opened,modeindicates how the file is to be opened:'r' for
reading,'w' for writing (truncating an existing file), and'a' opens it for
appending (which onsomeUNIX systems means thatall writes append to
the end of the file, regardless of the current seek position). Modes'r+' ,
'w+' and'a+' open the file for updating, provided the underlyingstdio
library understands this. On systems that differentiate between binary and
text files, 'b' appended to the mode opens the file in binary mode. If the
file cannot be opened,IOError is raised. Ifmodeis omitted, it defaults to
'r' . The optionalbufsizeargument specifies the file's desired buffer size: 0
means unbuffered, 1 means line buffered, any other positive value means use
a buffer of (approximately) that size. A negativebufsizemeans to use the
system default, which is usually line buffered for for tty devices and fully
buffered for other files.9

ord(c)
Return theASCII value of a string of one character. E.g.,ord('a') returns
the integer97. This is the inverse ofchr() .

9Specifying a buffer size currently has no effect on systems that don' t havesetvbuf() . The
interface to specify the buffer size is not done using a method that callssetvbuf() , because
that may dump core when called after any I/O has been performed, and there's no reliable way to
determine whether this is the case.

24

pow(x, y [, z])
Returnx to the powery; if z is present, returnx to the powery, modulo
z (computed more efficiently thanpow(x, y) %z). The arguments must
have numeric types. With mixed operand types, the rules for binary arith-
metic operators apply. The effective operand type is also the type of the
result; if the result is not expressible in this type, the function raises an ex-
ception; e.g.,pow(2, -1) or pow(2, 35000) is not allowed.

range([start,] end[, step])
This is a versatile function to create lists containing arithmetic progressions.
It is most often used infor loops. The arguments must be plain inte-
gers. If thestepargument is omitted, it defaults to1. If the start argument
is omitted, it defaults to0. The full form returns a list of plain integers
[start, start + step, start + 2 * step, ...] . If stepis positive, the
last element is the largeststart + i * stepless thanend; if stepis negative,
the last element is the largeststart + i * stepgreater thanend. stepmust
not be zero (or else an exception is raised). Example:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(0, -10, -1)
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)
[]
>>> range(1, 0)
[]
>>>

raw input([prompt])
If the promptargument is present, it is written to standard output without
a trailing newline. The function then reads a line from input, converts it to
a string (stripping a trailing newline), and returns that. WhenEOF is read,
EOFError is raised. Example:

25

>>> s = raw_input('--> ')
--> Monty Python's Flying Circus
>>> s
"Monty Python's Flying Circus"
>>>

reduce(function, list [, initializer])
Apply the binaryfunction to the items oflist so as to reduce the list to a
single value. E.g.,reduce(lambda x, y: x*y, list, 1) returns
the product of the elements oflist. The optionalinitializer can be thought of
as being prepended tolist so as to allow reduction of an emptylist. Thelist
arguments may be any kind of sequence.

reload(module)
Re-parse and re-initialize an already importedmodule. The argument must
be a module object, so it must have been successfully imported before. This
is useful if you have edited the module source file using an external editor
and want to try out the new version without leaving the Python interpreter.
The return value is the module object (i.e. the same as themoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the first
import statement for it does not bind its name locally, but does store a
(partially initialized) module object insys.modules . To reload the mod-
ule you must firstimport it again (this will bind the name to the partially
initialized module object) before you canreload() it.

When a module is reloaded, its dictionary (containing the module's global
variables) is retained. Redefinitions of names will override the old defini-
tions, so this is generally not a problem. If the new version of a module does
not define a name that was defined by the old version, the old definition re-
mains. This feature can be used to the module's advantage if it maintains a
global table or cache of objects — with atry statement it can test for the
table's presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically
loaded modules, except forsys , main and builtin . In certain
cases, however, extension modules are not designed to be initialized more
than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module usingfrom . . . import
. . . , calling reload() for the other module does not redefine the objects

26

imported from it — one way around this is to re-execute thefrom statement,
another is to useimport and qualified names (module.name) instead.

If a module instantiates instances of a class, reloading the module that de-
fines the class does not affect the method definitions of the instances — they
continue to use the old class definition. The same is true for derived classes.

repr(object)
Return a string containing a printable representation of an object. This is the
same value yielded by conversions (reverse quotes). It is sometimes useful
to be able to access this operation as an ordinary function. For many types,
this function makes an attempt to return a string that would yield an object
with the same value when passed toeval() .

round(x, n)
Return the floating point valuex rounded tondigits after the decimal point. If
n is omitted, it defaults to zero. The result is a floating point number. Values
are rounded to the closest multiple of 10 to the power minusn; if two multi-
ples are equally close, rounding is done away from 0 (so e.g.round(0.5)
is 1.0 andround(-0.5) is -1.0).

setattr(object, name, value)
This is the counterpart ofgetattr . The arguments are an object, a string
and an arbitrary value. The string must be the name of one of the object's
attributes. The function assigns the value to the attribute, provided the object
allows it. For example,setattr(x, ' foobar', 123) is equivalent to
x. foobar = 123 .

str(object)
Return a string containing a nicely printable representation of an object. For
strings, this returns the string itself. The difference withrepr(object) is
thatstr(object) does not always attempt to return a string that is accept-
able toeval() ; its goal is to return a printable string.

tuple(sequence)
Return a tuple whose items are the same and in the same order as
sequence' s items. Ifsequenceis alread a tuple, it is returned unchanged.
For instance,tuple('abc') returns returns('a', 'b', 'c') and
tuple([1, 2, 3]) returns(1, 2, 3) .

type(object)
Return the type of anobject. The return value is a type object. The standard
moduletypes defines names for all built-in types. For instance:

27

>>> import types
>>> if type(x) == types.StringType: print "It's a string"

vars([object])
Without arguments, return a dictionary corresponding to the current local
symbol table. With a module, class or class instance object as argument
(or anything else that has adict attribute), returns a dictionary corre-
sponding to the object's symbol table. The returned dictionary should not be
modified: the effects on the corresponding symbol table are undefined.10

xrange([start,] end[, step])
This function is very similar torange() , but returns an “xrange object” in-
stead of a list. This is an opaque sequence type which yields the same values
as the corresponding list, without actually storing them all simultaneously.
The advantage ofxrange() overrange() is minimal (sincexrange()
still has to create the values when asked for them) except when a very large
range is used on a memory-starved machine (e.g. MS-DOS) or when all of
the range's elements are never used (e.g. when the loop is usually terminated
with break).

10In the current implementation, local variable bindings cannot normally be affected this way, but
variables retrieved from other scopes (e.g. modules) can be. This may change.

28

Chapter 3

Python Services

The modules described in this chapter provide a wide range of services related to
the Python interpreter and its interaction with its environment. Here's an overview:

sys — Access system specific parameters and functions.

types — Names for all built-in types.

traceback — Print or retrieve a stack traceback.

pickle — Convert Python objects to streams of bytes and back.

shelve — Python object persistency.

copy — Shallow and deep copy operations.

marshal — Convert Python objects to streams of bytes and back (with different
constraints).

imp — Access the implementation of theimport statement.

parser — Retrieve and submit parse trees from and to the runtime support envi-
ronment.

builtin — The set of built-in functions.

main — The environment where the top-level script is run.

29

3.1 Built-in Module sys

This module provides access to some variables used or maintained by the inter-
preter and to functions that interact strongly with the interpreter. It is always avail-
able.

argv
The list of command line arguments passed to a Python script.
sys.argv[0] is the script name (it is operating system dependent whether
this is a full pathname or not). If the command was executed using the `-c '
command line option to the interpreter,sys.argv[0] is set to the string
"-c" . If no script name was passed to the Python interpreter,sys.argv
has zero length.

builtin module names
A list of strings giving the names of all modules that are compiled into this
Python interpreter. (This information is not available in any other way —
sys.modules.keys() only lists the imported modules.)

exc type
exc value
exc traceback

These three variables are not always defined; they are set when an exception
handler (anexcept clause of atry statement) is invoked. Their mean-
ing is: exc type gets the exception type of the exception being handled;
exc value gets the exception parameter (itsassociated valueor the sec-
ond argument toraise); exc traceback gets a traceback object (see
the Reference Manual) which encapsulates the call stack at the point where
the exception originally occurred.

exit(n)
Exit from Python with numeric exit statusn. This is implemented by rais-
ing theSystemExit exception, so cleanup actions specified byfinally
clauses oftry statements are honored, and it is possible to catch the exit
attempt at an outer level.

exitfunc
This value is not actually defined by the module, but can be set by the user
(or by a program) to specify a clean-up action at program exit. When set,
it should be a parameterless function. This function will be called when the
interpreter exits in any way (except when a fatal error occurs: in that case

30

the interpreter's internal state cannot be trusted).

last type
last value
last traceback

These three variables are not always defined; they are set when an exception
is not handled and the interpreter prints an error message and a stack trace-
back. Their intended use is to allow an interactive user to import a debugger
module and engage in post-mortem debugging without having to re-execute
the command that caused the error (which may be hard to reproduce). The
meaning of the variables is the same as that ofexc type , exc value and
exc tracaback , respectively.

modules
Gives the list of modules that have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks.

path
A list of strings that specifies the search path for modules. Initialized from
the environment variablePYTHONPATH, or an installation-dependent de-
fault.

platform
This string contains a platform identifier. This can be used to append
platform-specific components tosys.path , for instance.

ps1
ps2

Strings specifying the primary and secondary prompt of the interpreter.
These are only defined if the interpreter is in interactive mode. Their ini-
tial values in this case are'>>> ' and'... ' .

setcheckinterval(interval)
Set the interpreter's “check interval”. This integer value determines how
often the interpreter checks for periodic things such as thread switches and
signal handlers. The default is 10, meaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase perfor-
mance for programs using threads. Setting it to a value� 0 checks every
virtual instruction, maximizing responsiveness as well as overhead.

settrace(tracefunc)
Set the system's trace function, which allows you to implement a Python
source code debugger in Python. See section “How It Works” in the chapter

31

on the Python Debugger.

setprofile(profilefunc)
Set the system's profile function, which allows you to implement a Python
source code profiler in Python. See the chapter on the Python Profiler. The
system's profile function is called similarly to the system's trace function
(seesys.settrace), but it isn' t called for each executed line of code
(only on call and return and when an exception occurs). Also, its return
value is not used, so it can just returnNone.

stdin
stdout
stderr

File objects corresponding to the interpreter's standard input, output and er-
ror streams.sys.stdin is used for all interpreter input except for scripts
but including calls toinput() andraw input() . sys.stdout is used
for the output ofprint and expression statements and for the prompts
of input() andraw input() . The interpreter's own prompts and (al-
most all of) its error messages go tosys.stderr . sys.stdout and
sys.stderr needn' t be built-in file objects: any object isacceptable as
long as it has awrite method that takes a string argument. (Changing
these objects doesn' t affect the standard I/O streams of processes executed
by popen() , system() or theexec*() family of functions in theos
module.)

tracebacklimit
When this variable is set to an integer value, it determines the maximum
number of levels of traceback information printed when an unhandled ex-
ception occurs. The default is 1000. When set to 0 or less, all traceback
information is suppressed and only the exception type and value are printed.

3.2 Standard Moduletypes

This module defines names for all object types that are used by the standard Python
interpreter (but not for the types defined by various extension modules). It is safe to
use “from types import * ” — the module does not export any other names
besides the ones listed here. New names exported by future versions of this module
will all end in Type .

Typical use is for functions that do different things depending on their argument

32

types, like the following:

from types import *
def delete(list, item):

if type(item) is IntType:
del list[item]

else:
list.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returned bytype()).

IntType
The type of integers (e.g.1).

LongType
The type of long integers (e.g.1L).

FloatType
The type of floating point numbers (e.g.1.0).

StringType
The type of character strings (e.g.'Spam').

TupleType
The type of tuples (e.g.(1, 2, 3, 'Spam')).

ListType
The type of lists (e.g.[0, 1, 2, 3]).

DictType
The type of dictionaries (e.g.{'Bacon': 1, 'Ham': 0}).

DictionaryType
An alternative name forDictType .

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternative name forFunctionType .

33

CodeType
The type for code objects such as returned bycompile() .

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternative name forMethodType .

BuiltinFunctionType
The type of built-in functions likelen or sys.exit .

BuiltinMethodType
An alternative name forBuiltinFunction .

ModuleType
The type of modules.

FileType
The type of open file objects such assys.stdout .

XRangeType
The type of range objects returned byxrange() .

TracebackType
The type of traceback objects such as found insys.exc traceback .

FrameType
The type of frame objects such as found intb.tb frame if tb is a trace-
back object.

3.3 Standard Moduletraceback

This module provides a standard interface to format and print stack traces of Python
programs. It exactly mimics the behavior of the Python interpreter when it prints
a stack trace. This is useful when you want to print stack traces under program
control, e.g. in a “wrapper” around the interpreter.

34

The module uses traceback objects — this is the object type that is stored in the
variablessys.exc traceback andsys.last traceback .

The module defines the following functions:

print tb(traceback[, limit])
Print up to limit stack trace entries fromtraceback. If limit is omitted or
None, all entries are printed.

extract tb(traceback[, limit])
Return a list of up tolimit “pre-processed” stack trace entries extracted from
traceback. It is useful for alternate formatting of stack traces. Iflimit is
omitted orNone, all entries are extracted. A “pre-processed” stack trace
entry is a quadruple (filename, line number, function name, line text) repre-
senting the information that is usually printed for a stack trace. Theline text
is a string with leading and trailing whitespace stripped; if the source is not
available it isNone.

print exception(type, value, traceback[, limit])
Print exception informa-
tion and up tolimit stack trace entries fromtraceback. This differs from
print tb in the following ways: (1) iftracebackis notNone, it prints a
header “Traceback (innermost last): ”; (2) it prints the exception
typeandvalueafter the stack trace; (3) iftypeis SyntaxError andvalue
has the appropriate format, it prints the line where the syntax error occurred
with a caret indication the approximate position of the error.

print exc([limit])
This is a shorthand for print exception(sys.exc type,
sys.exc value, sys.exc traceback, limit) .

print last([limit])
This is a short-
hand forprint exception(sys.last type, sys.last value,
sys.last traceback, limit) .

3.4 Standard Modulepickle

The pickle module implements a basic but powerful algorithm for “pickling”
(a.k.a. serializing, marshalling or flattening) nearly arbitrary Python objects. This
is the act of converting objects to a stream of bytes (and back: “unpickling”). This

35

is a more primitive notion than persistency — althoughpickle reads and writes
file objects, it does not handle the issue of naming persistent objects, nor the (even
more complicated) area of concurrent access to persistent objects. Thepickle
module can transform a complex object into a byte stream and it can transform the
byte stream into an object with the same internal structure. The most obvious thing
to do with these byte streams is to write them onto a file, but it is also conceivable
to send them across a network or store them in a database. The moduleshelve
provides a simple interface to pickle and unpickle objects on “dbm”-style database
files.

Unlike the built-in modulemarshal , pickle handles the following correctly:

� recursive objects (objects containing references to themselves)

� object sharing (references to the same object in different places)

� user-defined classes and their instances

The data format used bypickle is Python-specific. This has the advantage that
there are no restrictions imposed by external standards such as CORBA (which
probably can' t represent pointer sharing or recursive objects); however it means
that non-Python programs may not be able to reconstruct pickled Python objects.

The pickle data format uses a printableASCII representation. This is slightly
more voluminous than a binary representation. However, small integers actually
takelessspace when represented as minimal-size decimal strings than when repre-
sented as 32-bit binary numbers, and strings are only much longer if they contain
many control characters or 8-bit characters. The big advantage of using printable
ASCII (and of some other characteristics ofpickle ' s representation) is that for
debugging or recovery purposes it is possible for a human to read the pickled file
with a standard text editor. (I could have gone a step further and used a notation like
S-expressions, but the parser (currently written in Python) would have been con-
siderably more complicated and slower, and the files would probably have become
much larger.)

The pickle module doesn' t handle code objects, which themarshal module
does. I supposepickle could, and maybe it should, but there's probably no great
need for it right now (as long asmarshal continues to be used for reading and
writing code objects), and at least this avoids the possibility of smuggling Trojan
horses into a program.

36

For the benefit of persistency modules written usingpickle , it supports the no-
tion of a reference to an object outside the pickled data stream. Such objects are
referenced by a name, which is an arbitrary string of printableASCII characters.
The resolution of such names is not defined by thepickle module — the per-
sistent object module will have to implement a methodpersistent load . To
write references to persistent objects, the persistent module must define a method
persistent id which returns eitherNone or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module.

Next, it must normally be possible to create class instances by calling the class
without arguments. Usually, this is best accomplished by providing default values
for all arguments to its init method (if it has one). If this is undesirable,
the class can define a methodgetinitargs () , which should return atuple
containing the arguments to be passed to the class constructor (init ()).

Classes can further influence how their instances are pickled — if the class defines
the method getstate () , it is called and the return state is pickled as the
contents for the instance, and if the class defines the methodsetstate () ,
it is called with the unpickled state. (Note that these methods can also be used
to implement copying class instances.) If there is nogetstate () method,
the instance's dict is pickled. If there is no setstate () method, the
pickled object must be a dictionary and its items are assigned to the new instance's
dictionary. (If a class defines bothgetstate () and setstate () , the
state object needn' t be a dictionary — these methods can do what they want.) This
protocol is also used by the shallow and deep copying operations defined in the
copy module.

Note that when class instances are pickled, their class's code and data are not pick-
led along with them. Only the instance data are pickled. This is done on purpose,
so you can fix bugs in a class or add methods and still load objects that were created
with an earlier version of the class. If you plan to have long-lived objects that will
see many versions of a class, it may be worthwhile to put a version number in the
objects so that suitable conversions can be made by the class'ssetstate ()
method.

When a class itself is pickled, only its name is pickled — the class definition is not
pickled, but re-imported by the unpickling process. Therefore, the restriction that
the class must be defined at the top level in a module applies to pickled classes as
well.

37

The interface can be summarized as follows.

To pickle an objectx onto a filef , open for writing:

p = pickle.Pickler(f)
p.dump(x)

A shorthand for this is:

pickle.dump(x, f)

To unpickle an objectx from a filef , open for reading:

u = pickle.Unpickler(f)
x = u.load()

A shorthand is:

x = pickle.load(f)

The Pickler class only calls the methodf.write with a string argument.
The Unpickler calls the methodsf.read (with an integer argument) and
f.readline (without argument), both returning a string. It is explicitly allowed
to pass non-file objects here, as long as they have the right methods.

The following types can be pickled:

� None

� integers, long integers, floating point numbers

� strings

� tuples, lists and dictionaries containing only picklable objects

� classes that are defined at the top level in a module

� instances of such classes whosedict or setstate () is picklable

38

Attempts to pickle unpicklable objects will raise thePicklingError exception;
when this happens, an unspecified number of bytes may have been written to the
file.

It is possible to make multiple calls to thedump() method of the samePickler
instance. These must then be matched to the same number of calls to theload()
instance of the correspondingUnpickler instance. If the same object is pick-
led by multipledump() calls, theload() will all yield references to the same
object. Warning: this is intended for pickling multiple objects without interven-
ing modifications to the objects or their parts. If you modify an object and then
pickle it again using the samePickler instance, the object is not pickled again
— a reference to it is pickled and theUnpickler will return the old value, not
the modified one. (There are two problems here: (a) detecting changes, and (b)
marshalling a minimal set of changes. I have no answers. Garbage Collection may
also become a problem here.)

Apart from thePickler andUnpickler classes, the module defines the fol-
lowing functions, and an exception:

dump(object, file)
Write a pickled representation ofobectto the open file objectfile. This is
equivalent toPickler(file).dump(object) .

load(file)
Read a pickled object from the open file objectfile. This is equivalent to
Unpickler(file).load() .

dumps(object)
Return the pickled representation of the object as a string, instead of writing
it to a file.

loads(string)
Read a pickled object from a string instead of a file. Characters in the string
past the pickled object's representation are ignored.

PicklingError
This exception is raised when an unpicklable object is passed to
Pickler.dump() .

39

3.5 Standard Moduleshelve

A “shelf” is a persistent, dictionary-like object. The difference with “dbm”
databases is that the values (not the keys!) in a shelf can be essentially arbitrary
Python objects — anything that thepickle module can handle. This includes
most class instances, recursive data types, and objects containing lots of shared
sub-objects. The keys are ordinary strings.

To summarize the interface (key is a string,data is an arbitrary object):

import shelve

d = shelve.open(filename) # open, with (g)dbm filename -- no suffix

d[key] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists
list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

Restrictions:

� The choice of which database package will be used (e.g. dbm or gdbm)
depends on which interface is available. Therefore it isn' t safe to open the
database directly using dbm. The database is also (unfortunately) subject to
the limitations of dbm, if it is used — this means that (the pickled represen-
tation of) the objects stored in the database should be fairly small, and in rare
cases key collisions may cause the database to refuse updates.

� Dependent on the implementation, closing a persistent dictionary may or
may not be necessary to flush changes to disk.

� The shelve module does not supportconcurrent read/write access to
shelved objects. (Multiple simultaneous readaccesses are safe.) When a

40

program has a shelf open for writing, no other program should have it open
for reading or writing. UNIX file locking can be used to solve this, but this
differs across UNIX versions and requires knowledge about the database im-
plementation used.

3.6 Standard Modulecopy

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

x = copy.copy(y) # make a shallow copy of y
x = copy.deepcopy(y) # make a deep copy of y

For module specific errors,copy.error is raised.

The difference between shallow and deep copying is only relevant for compound
objects (objects that contain other objects, like lists or class instances):

� A shallow copyconstructs a new compound object and then (to the extent
possible) insertsreferencesinto it to the objects found in the original.

� A deep copyconstructs a new compound object and then, recursively, inserts
copiesinto it of the objects found in the original.

Two problems often exist with deep copy operations that don' t exist with shallow
copy operations:

� Recursive objects (compound objects that, directly or indirectly, contain a
reference to themselves) may cause a recursive loop.

� Because deep copy copieseverythingit may copy too much, e.g. administra-
tive data structures that should be shared even between copies.

Python'sdeepcopy() operation avoids these problems by:

41

� keeping a table of objects already copied during the current copying pass;
and

� letting user-defined classes override the copying operation or the set of com-
ponents copied.

This version does not copy types like module, class, function, method, nor stack
trace, stack frame, nor file, socket, window, nor array, nor any similar types.

Classes can use the same interfaces to control copying that they use to control pick-
ling: they can define methods calledgetinitargs () , getstate ()
and setstate () . See the description of modulepickle for information on
these methods.

3.7 Built-in Module marshal

This module contains functions that can read and write Python values in a binary
format. The format is specific to Python, but independent of machine architecture
issues (e.g., you can write a Python value to a file on a PC, transport the file to a
Sun, and read it back there). Details of the format are undocumented on purpose;
it may change between Python versions (although it rarely does).1

This is not a general “persistency” module. For general persistency and trans-
fer of Python objects through RPC calls, see the modulespickle andshelve .
Themarshal module exists mainly to support reading and writing the “pseudo-
compiled” code for Python modules of `.pyc ' files.

Not all Python object types are supported; in general, only objects whose value
is independent from a particular invocation of Python can be written and read by
this module. The following types are supported:None, integers, long integers,
floating point numbers, strings, tuples, lists, dictionaries, and code objects, where
it should be understood that tuples, lists and dictionaries are only supported as
long as the values contained therein are themselves supported; and recursive lists
and dictionaries should not be written (they will cause infinite loops).

Caveat: On machines where C'slong int type has more than 32 bits (such as

1The name of this module stems from a bit of terminology used by the designers of Modula-3
(amongst others), who use the term “marshalling” for shipping of data around in a self-contained
form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

42

the DEC Alpha), it is possible to create plain Python integers that are longer than
32 bits. Since the currentmarshal module uses 32 bits to transfer plain Python
integers, such values are silently truncated. This particularly affects the use of very
long integer literals in Python modules — these will beaccepted by the parser on
such machines, but will be silently be truncated when the module is read from the
.pyc instead.2

There are functions that read/write files as well as functions operating on strings.

The module defines these functions:

dump(value, file)
Write the value on the open file. The value must be a supported type. The file
must be an open file object such assys.stdout or returned byopen()
or posix.popen() .

If the value has (or contains an object that has) an unsupported type, a
ValueError exception is raised – but garbage data will also be written
to the file. The object will not be properly read back byload() .

load(file)
Read one value from the open file and return it. If no valid value is read,
raiseEOFError , ValueError or TypeError . The file must be an open
file object.

Warning: If an object containing an unsupported type was marshalled with
dump() , load() will substituteNone for the unmarshallable type.

dumps(value)
Return the string that would be written to a file bydump(value, file) .
The value must be a supported type. Raise aValueError exception if
value has (or contains an object that has) an unsupported type.

loads(string)
Convert the string to a value. If no valid value is found, raiseEOFError ,
ValueError or TypeError . Extra characters in the string are ignored.

2A solution would be to refuse such literals in the parser, since they are inherentlynon-portable.
Another solution would be to let themarshal module raise an exception when an integer value
would be truncated. At least one of these solutions will be implemented in a future version.

43

3.8 Built-in Module imp

This module provides an interface to the mechanisms used to implement the
import statement. It defines the following constants and functions:

get magic()
Return the magic string value used to recognize byte-compiled code files
(“ .pyc files”).

get suffixes()
Return a list of triples, each describing a particular type of file. Each triple
has the form(suffix, mode, type) , wheresuffixis a string to be appended
to the module name to form the filename to search for,modeis the mode
string to pass to the built-inopen function to open the file (this can be'r'
for text files or'rb' for binary files), andtype is the file type, which has
one of the valuesPY SOURCE, PY COMPILEDor C EXTENSION, defined
below. (System-dependent values may also be returned.)

find module(name, [path])
Try to find the modulenameon the search pathpath. The defaultpath is
sys.path . The return value is a triple(file, pathname, description)
wherefile is an open file object positioned at the beginning,pathnameis the
pathname of the file found, anddescriptionis a triple as contained in the list
returned byget suffixes describing the kind of file found.

init builtin(name)
Initialize the built-in module callednameand return its module object. If the
module was already initialized, it will be initializedagain. A few modules
cannot be initialized twice — attempting to initialize these again will raise
an ImportError exception. If there is no built-in module calledname,
None is returned.

init frozen(name)
Initialize the frozen module callednameand return its module object. If
the module was already initialized, it will be initializedagain. If there is
no frozen module calledname, None is returned. (Frozen modules are
modules written in Python whose compiled byte-code object is incorpo-
rated into a custom-built Python interpreter by Python'sfreeze utility. See
Tools/freeze for now.)

is builtin(name)
Return1 if there is a built-in module callednamewhich can be initialized

44

again. Return-1 if there is a built-in module callednamewhich cannot
be initialized again (seeinit builtin). Return0 if there is no built-in
module calledname.

is frozen(name)
Return1 if there is a frozen module (seeinit frozen) calledname, 0 if
there is no such module.

load compiled(name, pathname, file)
Load and initialize a module implemented as a byte-compiled code file and
return its module object. If the module was already initialized, it will be
initialized again. Thenameargument is used to create or access a module
object. Thepathnameargument points to the byte-compiled code file. The
fileargument is the byte-compiled code file, open for reading in binary mode,
from the beginning. It must currently be a real file object, not a user-defined
class emulating a file.

load dynamic(name, pathname, [file])
Load and initialize a module implemented as a dynamically loadable shared
library and return its module object. If the module was already initialized,
it will be initialized again. Some modules don' t like that and may raise an
exception. Thepathnameargument must point to the shared library. The
nameargument is used to construct the name of the initialization function:
an external C function calledinit name() in the shared library is called.
The optionalfile argment is ignored. (Note: using shared libraries is highly
system dependent, and not all systems support it.)

load source(name, pathname, file)
Load and initialize a module implemented as a Python source file and return
its module object. If the module was already initialized, it will be initialized
again. Thenameargument is used to create or access a module object. The
pathnameargument points to the source file. Thefile argument is the source
file, open for reading as text, from the beginning. It must currently be a real
file object, not a user-defined class emulating a file. Note that if a properly
matching byte-compiled file (with suffix.pyc) exists, it will be used instead
of parsing the given source file.

new module(name)
Return a new empty module object calledname. This object isnot inserted
in sys.modules .

45

The following constants with integer values, defined in the module, are used to
indicate the search result ofimp.find module .

SEARCHERROR
The module was not found.

PY SOURCE
The module was found as a source file.

PY COMPILED
The module was found as a compiled code object file.

C EXTENSION
The module was found as dynamically loadable shared library.

3.8.1 Examples

The following function emulates the default import statement:

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
if sys.modules.has_key(name):

return sys.modules[name]

If any of the following calls raises an exception,
there's a problem we can't handle -- let the caller handle it.

See if it's a built-in module.
m = imp.init_builtin(name)
if m:

return m

See if it's a frozen module.
m = imp.init_frozen(name)
if m:

return m

46

Search the default path (i.e. sys.path).
fp, pathname, (suffix, mode, type) = imp.find_module(name)

See what we got.
try:

if type == imp.C_EXTENSION:
return imp.load_dynamic(name, pathname)

if type == imp.PY_SOURCE:
return imp.load_source(name, pathname, fp)

if type == imp.PY_COMPILED:
return imp.load_compiled(name, pathname, fp)

Shouldn't get here at all.
raise ImportError, '%s: unknown module type (%d)' % (name, type)

finally:
Since we may exit via an exception, close fp explicitly.
fp.close()

3.9 Built-in Module parser

The parser module provides an interface to Python's internal parser and byte-
code compiler. The primary purpose for this interface is to allow Python code to
edit the parse tree of a Python expression and create executable code from this.
This is better than trying to parse and modify an arbitrary Python code fragment as
a string because parsing is performed in a manner identical to the code forming the
application. It is also faster.

There are a few things to note about this module which are important to making
use of the data structures created. This is not a tutorial on editing the parse trees
for Python code, but some examples of using theparser module are presented.

Most importantly, a good understanding of the Python grammar processed by the
internal parser is required. For full information on the language syntax, refer to
the Language Reference. The parser itself is created from a grammar specifica-
tion defined in the fileG̀rammar/Grammar ' in the standard Python distribution.
The parse trees stored in the “AST objects” created by this module are the actual
output from the internal parser when created by theexpr() or suite() func-
tions, described below. The AST objects created bysequence2ast() faithfully

47

simulate those structures. Be aware that the values of the sequences which are con-
sidered “correct” will vary from one version of Python to another as the formal
grammar for the language is revised. However, transporting code from one Python
version to another as source text will always allow correct parse trees to be created
in the target version, with the only restriction being that migrating to an older ver-
sion of the interpreter will not support more recent language constructs. The parse
trees are not typically compatible from one version to another, whereas source code
has always been forward-compatible.

Each element of the sequences returned byast2list or ast2tuple() has
a simple form. Sequences representing non-terminal elements in the gram-
mar always have a length greater than one. The first element is an integer
which identifies a production in the grammar. These integers are given symbolic
names in the C header file `Include/graminit.h ' and the Python module
`Lib/symbol.py ' . Each additional element of the sequence represents a com-
ponent of the production as recognized in the input string: these are always se-
quences which have the same form as the parent. An important aspect of this
structure which should be noted is that keywords used to identify the parent node
type, such as the keywordif in an if stmt , are included in the node tree with-
out any special treatment. For example, theif keyword is represented by the
tuple(1, 'if') , where1 is the numeric value associated with allNAMEtokens,
including variable and function names defined by the user. In an alternate form
returned when line number information is requested, the same token might be rep-
resented as(1, 'if', 12) , where the12 represents the line number at which
the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child
elements and the addition of the source text which was identified. The example
of theif keyword above is representative. The various types of terminal symbols
are defined in the C header file `Include/token.h ' and the Python module
`Lib/token.py ' .

The AST objects are not required to support the functionality of this module, but
are provided for three purposes: to allow an application to amortize the cost of
processing complex parse trees, to provide a parse tree representation which con-
serves memory space when compared to the Python list or tuple representation,
and to ease the creation of additional modules in C which manipulate parse trees.
A simple “wrapper” class may be created in Python to hide the use of AST objects;
theAST library module provides a variety of such classes.

Theparser module defines functions for a few distinct purposes. The most im-

48

portant purposes are to create AST objects and to convert AST objects to other
representations such as parse trees and compiled code objects, but there are also
functions which serve to query the type of parse tree represented by an AST ob-
ject.

3.9.1 Creating AST Objects

AST objects may be created from source code or from a parse tree. When creating
an AST object from source, different functions are used to create the'eval' and
'exec' forms.

expr(string)
Theexpr() function parses the parameterstring as if it were an input to
compile(string, 'eval') . If the parse succeeds, an AST object is cre-
ated to hold the internal parse tree representation, otherwise an appropriate
exception is thrown.

suite(string)
Thesuite() function parses the parameterstringas if it were an input to
compile(string, 'exec') . If the parse succeeds, an AST object is cre-
ated to hold the internal parse tree representation, otherwise an appropriate
exception is thrown.

sequence2ast(sequence)
This function accepts a parse tree represented as a sequence and builds an
internal representation if possible. If it can validate that the tree conforms to
the Python grammar and all nodes are valid node types in the host version
of Python, an AST object is created from the internal representation and re-
turned to the called. If there is a problem creating the internal representation,
or if the tree cannot be validated, aParserError exception is thrown. An
AST object created this way should not be assumed to compile correctly;
normal exceptions thrown by compilation may still be initiated when the
AST object is passed tocompileast() . This may indicate problems not
related to syntax (such as aMemoryError exception), but may also be due
to constructs such as the result of parsingdel f(0) , which escapes the
Python parser but is checked by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-
element lists of the form(1, 'name') or as three-element lists of the
form (1, 'name', 56) . If the third element is present, it is assumed to

49

be a valid line number. The line number may be specified for any subset of
the terminal symbols in the input tree.

tuple2ast(sequence)
This is the same function assequence2ast() . This entry point is main-
tained for backward compatibility.

3.9.2 Converting AST Objects

AST objects, regardless of the input used to create them, may be converted to parse
trees represented as list- or tuple- trees, or may be compiled into executable code
objects. Parse trees may be extracted with or without line numbering information.

ast2list(ast [, line info = 0])
This function accepts an AST object from the caller inast and returns a
Python list representing the equivelent parse tree. The resulting list repre-
sentation can be used for inspection or the creation of a new parse tree in
list form. This function does not fail so long as memory is available to build
the list representation. If the parse tree will only be used for inspection,
ast2tuple() should be used instead to reduce memory consumption and
fragmentation. When the list representation is required, this function is sig-
nificantly faster than retrieving a tuple representation and converting that to
nested lists.

If line info is true, line number information will be included for all terminal
tokens as a third element of the list representing the token. This information
is omitted if the flag is false or omitted.

ast2tuple(ast [, line info = 0])
This function accepts an AST object from the caller inast and returns a
Python tuple representing the equivelent parse tree. Other than returning a
tuple instead of a list, this function is identical toast2list() .

If line info is true, line number information will be included for all terminal
tokens as a third element of the list representing the token. This information
is omitted if the flag is false or omitted.

compileast(ast [, filename = '<ast>'])
The Python byte compiler can be invoked on an AST object to produce code
objects which can be used as part of anexec statement or a call to the built-
in eval() function. This function provides the interface to the compiler,
passing the internal parse tree fromast to the parser, using the source file

50

name specified by thefilenameparameter. The default value supplied for
filenameindicates that the source was an AST object.

Compiling an AST object may result in exceptions related to compila-
tion; an example would be aSyntaxError caused by the parse tree for
del f(0) : this statement is considered legal within the formal grammar
for Python but is not a legal language construct. TheSyntaxError raised
for this condition is actually generated by the Python byte-compiler nor-
mally, which is why it can be raised at this point by theparser module.
Most causes of compilation failure can be diagnosed programmatically by
inspection of the parse tree.

3.9.3 Queries on AST Objects

Two functions are provided which allow an application to determine if an AST
was create as an expression or a suite. Neither of these functions can be used to
determine if an AST was created from source code viaexpr() or suite() or
from a parse tree viasequence2ast() .

isexpr(ast)
Whenastrepresents an'eval' form, this function returns a true value (1),
otherwise it returns false (0). This is useful, since code objects normally
cannot be queried for this information using existing built-in functions. Note
that the code objects created bycompileast() cannot be queried like
this either, and are identical to those created by the built-incompile()
function.

issuite(ast)
This function mirrorsisexpr() in that it reports whether an AST object
represents an'exec' form, commonly known as a “suite.” It is not safe to
assume that this function is equivelent tonot isexpr(ast) , as additional
syntactic fragments may be supported in the future.

3.9.4 Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in ex-
ceptions from other portions of the Python runtime environment. See each function
for information about the exceptions it can raise.

51

ParserError
Exception raised when a failure occurs within the parser module. This
is generally produced for validation failures rather than the built in
SyntaxError thrown during normal parsing. The exception argument is
either a string describing the reason of the failure or a tuple containing a se-
quence causing the failure from a parse tree passed tosequence2ast()
and an explanatory string. Calls tosequence2ast() need to be able to
handle either type of exception, while calls to other functions in the module
will only need to be aware of the simple string values.

Note that the functionscompileast() , expr() , andsuite() may throw
exceptions which are normally thrown by the parsing and compilation pro-
cess. These include the built in exceptionsMemoryError , OverflowError ,
SyntaxError , andSystemError . In these cases, these exceptions carry all
the meaning normally associated with them. Refer to the descriptions of each func-
tion for detailed information.

3.9.5 AST Objects

AST objects returned byexpr() , suite() , andsequence2ast() have no
methods of their own. Some of the functions defined which accept an AST object
as their first argument may change to object methods in the future. The type of
these objects is available asASTType in the module.

Ordered and equality comparisons are supported between AST objects.

3.9.6 Examples

The parser modules allows operations to be performed on the parse tree of Python
source code before the bytecode is generated, and provides for inspection of the
parse tree for information gathering purposes. Two examples are presented. The
simple example demonstrates emulation of thecompile() built-in function and
the complex example shows the use of a parse tree for information discovery.

Emulation of compile()

While many useful operations may take place between parsing and bytecode gener-
ation, the simplest operation is to do nothing. For this purpose, using theparser

52

module to produce an intermediate data structure is equivelent to the code

>>> code = compile('a + 5', 'eval')
>>> a = 5
>>> eval(code)
10

The equivelent operation using theparser module is somewhat longer, and al-
lows the intermediate internal parse tree to be retained as an AST object:

>>> import parser
>>> ast = parser.expr('a + 5')
>>> code = parser.compileast(ast)
>>> a = 5
>>> eval(code)
10

An application which needs both AST and code objects can package this code into
readily available functions:

import parser

def load_suite(source_string):
ast = parser.suite(source_string)
code = parser.compileast(ast)
return ast, code

def load_expression(source_string):
ast = parser.expr(source_string)
code = parser.compileast(ast)
return ast, code

Information Discovery

Some applications benefit from direct access to the parse tree. The remainder of
this section demonstrates how the parse tree provides access to module documenta-
tion defined in docstrings without requiring that the code being examined be loaded

53

into a running interpreter viaimport . This can be very useful for performing
analyses of untrusted code.

Generally, the example will demonstrate how the parse tree may be traversed to
distill interesting information. Two functions and a set of classes are developed
which provide programmatic access to high level function and class definitions
provided by a module. The classes extract information from the parse tree and
provide access to the information at a useful semantic level, one function provides a
simple low-level pattern matching capability, and the other function defines a high-
level interface to the classes by handling file operations on behalf of the caller. All
source files mentioned here which are not part of the Python installationare located
in the D̀emo/parser/ ' directory of the distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but
most modules need only a limited measure of this when defining classes, functions,
and methods. In this example, the only definitions that will be considered are those
which are defined in the top level of their context, e.g., a function defined by adef
statement at column zero of a module, but not a function defined within a branch
of an if ... else construct, though there are some good reasons for doing so in
some situations. Nesting of definitions will be handled by the code developed in
the example.

To construct the upper-level extraction methods, we need to know what the parse
tree structure looks like and how much of it we actually need to be concerned
about. Python uses a moderately deep parse tree so there are a large number of
intermediate nodes. It is important to read and understand the formal grammar used
by Python. This is specified in the file `Grammar/Grammar ' in the distribution.
Consider the simplest case of interest when searching for docstrings: a module
consisting of a docstring and nothing else. (See file `docstring.py ' .)

"""Some documentation.
"""

Using the interpreter to take a look at the parse tree, we find a bewildering mass of
numbers and parentheses, with the documentation buried deep in nested tuples.

>>> import parser
>>> import pprint
>>> ast = parser.suite(open('docstring.py').read())
>>> tup = parser.ast2tuple(ast)

54

>>> pprint.pprint(tup)
(257,

(264,
(265,

(266,
(267,

(307,
(287,

(288,
(289,

(290,
(292,

(293,
(294,

(295,
(296,

(297,
(298,

(299,
(300, (3, '"""Some documentation.\012"""'))))))))))))))))

(4, ''))),
(4, ''),
(0, ''))

The numbers at the first element of each node in the tree are the node types; they
map directly to terminal and non-terminal symbols in the grammar. Unfortunately,
they are represented as integers in the internal representation, and the Python struc-
tures generated do not change that. However, thesymbol and token modules
provide symbolic names for the node types and dictionaries which map from the
integers to the symbolic names for the node types.

In the output presented above, the outermost tuple contains four elements: the in-
teger257 and three additional tuples. Node type257 has the symbolic name
file input . Each of these inner tuples contains an integer as the first element;
these integers,264 , 4, and0, represent the node typesstmt , NEWLINE, and
ENDMARKER, respectively. Note that these values may change depending on the
version of Python you are using; consult `symbol.py ' and t̀oken.py ' for de-
tails of the mapping. It should be fairly clear that the outermost node is related
primarily to the input source rather than the contents of the file, and may be disre-

55

garded for the moment. Thestmt node is much more interesting. In particular, all
docstrings are found in subtrees which are formed exactly as this node is formed,
with the only difference being the string itself. The association between the doc-
string in a similar tree and the defined entity (class, function, or module) which it
describes is given by the position of the docstring subtree within the tree defining
the described structure.

By replacing the actual docstring with something to signify a variable compo-
nent of the tree, we allow a simple pattern matching approach to check any given
subtree for equivelence to the general pattern for docstrings. Since the exam-
ple demonstrates information extraction, we can safely require that the tree be in
tuple form rather than list form, allowing a simple variable representation to be
['variable name'] . A simple recursive function can implement the pattern
matching, returning a boolean and a dictionary of variable name to value mappings.
(See file èxample.py ' .)

from types import ListType, TupleType

def match(pattern, data, vars=None):
if vars is None:

vars = {}
if type(pattern) is ListType:

vars[pattern[0]] = data
return 1, vars

if type(pattern) is not TupleType:
return (pattern == data), vars

if len(data) != len(pattern):
return 0, vars

for pattern, data in map(None, pattern, data):
same, vars = match(pattern, data, vars)
if not same:

break
return same, vars

Using this simple representation for syntactic variables and the symbolic node
types, the pattern for the candidate docstring subtrees becomes fairly readable.
(See file èxample.py ' .)

import symbol

56

import token

DOCSTRING_STMT_PATTERN = (
symbol.stmt,
(symbol.simple_stmt,

(symbol.small_stmt,
(symbol.expr_stmt,

(symbol.testlist,
(symbol.test,

(symbol.and_test,
(symbol.not_test,

(symbol.comparison,
(symbol.expr,

(symbol.xor_expr,
(symbol.and_expr,

(symbol.shift_expr,
(symbol.arith_expr,

(symbol.term,
(symbol.factor,

(symbol.power,
(symbol.atom,

(token.STRING, ['docstring'])
)))))))))))))))),

(token.NEWLINE, '')
))

Using thematch() function with this pattern, extracting the module docstring
from the parse tree created previously is easy:

>>> found, vars = match(DOCSTRING_STMT_PATTERN, tup[1])
>>> found
1
>>> vars
{'docstring': '"""Some documentation.\012"""'}

Once specific data can be extracted from a location where it is expected, the ques-
tion of where information can be expected needs to be answered. When dealing
with docstrings, the answer is fairly simple: the docstring is the firststmt node in

57

a code block (file input or suite node types). A module consists of a sin-
glefile input node, and class and function definitionseach contain exactly one
suite node. Classes and functions are readily identified as subtrees of code block
nodes which start with(stmt, (compound stmt, (classdef, ... or
(stmt, (compound stmt, (funcdef, Note that these subtrees
cannot be matched bymatch() since it does not support multiple sibling nodes
to match without regard to number. A more elaborate matching function could be
used to overcome this limitation, but this is sufficient for the example.

Given the ability to determine whether a statement might be a docstring and extract
the actual string from the statement, some work needs to be performed to walk the
parse tree for an entire module and extract information about the names defined in
each context of the module and associate any docstrings with the names. The code
to perform this work is not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be some-
what more flexible. Each “major” block of the module is described by an object
providing several methods for inquiry and a constructor which accepts at least the
subtree of the complete parse tree which it represents. TheModuleInfo con-
structor accepts an optionalnameparameter since it cannot otherwise determine
the name of the module.

The public classes includeClassInfo , FunctionInfo , andModuleInfo .
All objects provide the methodsget name() , get docstring() ,
get class names() , andget class info() . The ClassInfo objects
supportget method names() and get method info() while the other
classes provideget function names() andget function info() .

Within each of the forms of code block that the public classes represent, most of
the required information is in the same form and is accessed in the same way, with
classes having the distinction that functions defined at the top level are referred
to as “methods.” Since the difference in nomenclature reflects a real semantic
distinction from functions defined outside of a class, the implementation needs to
maintain the distinction. Hence, most of the functionality of the public classes can
be implemented in a common base class,SuiteInfoBase , with the accessors
for function and method information provided elsewhere. Note that there is only
one class which represents function and method information; this paralels the use
of thedef statement to define both types of elements.

Most of the accessor functions are declared inSuiteInfoBase and do not need
to be overriden by subclasses. More importantly, the extraction of most informa-

58

tion from a parse tree is handled through a method called by theSuiteInfoBase
constructor. The example code for most of the classes is clear when read along-
side the formal grammar, but the method which recursively creates new infor-
mation objects requires further examination. Here is the relevant part of the
SuiteInfoBase definition from èxample.py ' :

class SuiteInfoBase:
_docstring = ''
_name = ''

def __init__(self, tree = None):
self._class_info = {}
self._function_info = {}
if tree:

self._extract_info(tree)

def _extract_info(self, tree):
extract docstring
if len(tree) == 2:

found, vars = match(DOCSTRING_STMT_PATTERN[1], tree[1])
else:

found, vars = match(DOCSTRING_STMT_PATTERN, tree[3])
if found:

self._docstring = eval(vars['docstring'])
discover inner definitions
for node in tree[1:]:

found, vars = match(COMPOUND_STMT_PATTERN, node)
if found:

cstmt = vars['compound']
if cstmt[0] == symbol.funcdef:

name = cstmt[2][1]
self._function_info[name] = FunctionInfo(cstmt)

elif cstmt[0] == symbol.classdef:
name = cstmt[2][1]
self._class_info[name] = ClassInfo(cstmt)

After initializingsome internal state, the constructor calls theextract info()
method. This method performs the bulk of the information extraction which takes
place in the entire example. The extraction has two distinct phases: the location of

59

the docstring for the parse tree passed in, and the discovery of additional definitions
within the code block represented by the parse tree.

The initial if test determines whether the nested suite is of the “short form” or the
“long form.” The short form is used when the code block is on the same line as the
definition of the code block, as in

def square(x): "Square an argument."; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make_power(exp):
"Make a function that raises an argument to the exponent `exp'."
def raiser(x, y=exp):

return x ** y
return raiser

When the short form is used, the code block may contain a docstring as the first,
and possibly only,small stmt element. The extraction of such a docstring is
slightly different and requires only a portion of the complete pattern used in the
more common case. As implemented, the docstring will only be found if there is
only onesmall stmt node in thesimple stmt node. Since most functions
and methods which use the short form do not provide a docstring, this may be
considered sufficient. The extraction of the docstring proceeds using thematch()
function as described above, and the value of the docstring is stored as an attribute
of theSuiteInfoBase object.

After docstring extraction, a simple definition discovery algorithm operates on the
stmt nodes of thesuite node. The special case of the short form is not tested;
since there are nostmt nodes in the short form, the algorithm will silently skip
the singlesimple stmt node and correctly not discover any nested definitions.

Each statement in the code block is categorized as a class definition, function or
method definition, or something else. For the definition statements, the name of
the element defined is extracted and a representation object appropriate to the defi-
nition is created with the defining subtree passed as an argument to the constructor.
The repesentation objects are stored in instance variables and may be retrieved by
name using the appropriate accessor methods.

The public classes provide any accessors required which are more specific than
those provided by theSuiteInfoBase class, but the real extraction algorithm

60

remains common to all forms of code blocks. A high-level function can be
used to extract the complete set of information from a source file. (See file
`example.py ' .)

def get_docs(fileName):
source = open(fileName).read()
import os
basename = os.path.basename(os.path.splitext(fileName)[0])
import parser
ast = parser.suite(source)
tup = parser.ast2tuple(ast)
return ModuleInfo(tup, basename)

This provides an easy-to-use interface to the documentation of a module. If infor-
mation is required which is not extracted by the code of this example, the code may
be extended at clearly defined points to provide additional capabilities.

3.10 Built-in Module builtin

This module provides direct access to all `built-in' identifiers of Python; e.g.
builtin .open is the full name for the built-in functionopen . See the sec-

tion on Built-in Functions in the previous chapter.

3.11 Built-in Module main

This module represents the (otherwise anonymous) scope in which the interpreter's
main program executes — commands read either from standard input or from a
script file.

61

Chapter 4

String Services

The modules described in this chapter provide a wide range of string manipulation
operations. Here's an overview:

string — Common string operations.

regex — Regular expression search and match operations.

regsub — Substitution and splitting operations that use regular expressions.

struct — Interpret strings as packed binary data.

4.1 Standard Modulestring

This module defines some constants useful for checking character classes and some
useful string functions. See the modulesregex andregsub for string functions
based on regular expressions.

The constants defined in this module are are:

digits
The string'0123456789' .

hexdigits
The string'0123456789abcdefABCDEF' .

62

letters
The concatenation of the stringslowercase anduppercase described
below.

lowercase
A string containing all the characters that are considered lowercase letters.
On most systems this is the string'abcdefghijklmnopqrstuvwxyz' .
Do not change its definition — the effect on the routinesupper and
swapcase is undefined.

octdigits
The string'01234567' .

uppercase
A string containing all the characters that are considered uppercase letters.
On most systems this is the string'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
Do not change its definition — the effect on the routineslower and
swapcase is undefined.

whitespace
A string containing all characters that are considered whitespace. On most
systems this includes the characters space, tab, linefeed, return, formfeed,
and vertical tab. Do not change its definition — the effect on the routines
strip andsplit is undefined.

The functions defined in this module are:

atof(s)
Convert a string to a floating point number. The string must have the standard
syntax for a floating point literal in Python, optionally preceded by a sign
(`+' or -̀ ').

atoi(s [, base])
Convert strings to an integer in the givenbase. The string must consist of
one or more digits, optionally preceded by a sign (`+' or -̀ '). Thebase
defaults to 10. If it is 0, a default base is chosen depending on the leading
characters of the string (after stripping the sign): `0x ' or `0X' means 16,
`0' means 8, anything else means 10. Ifbaseis 16, a leading0̀x ' or `0X' is
always accepted. (Note: for a more flexible interpretation of numericliterals,
use the built-in functioneval() .)

atol(s [, base])
Convert strings to a long integer in the givenbase. The string must consist

63

of one or more digits, optionally preceded by a sign (`+' or -̀ '). Thebase
argument has the same meaning as foratoi() . A trailing l̀ ' or `L' is not
allowed, except if the base is 0.

capitalize(word)
Capitalize the first character of the argument.

capwords(s)
Split the argument into words usingsplit , capitalize each word using
capitalize , and join the capitalized words usingjoin . Note that
this replaces runs of whitespace characters by a single space. (See also
regsub.capwords() for a version that doesn' t change the delimiters,
and lets you specify a word separator.)

expandtabs(s, tabsize)
Expand tabs in a string, i.e. replace them by one or more spaces, depending
on the current column and the given tab size. The column number is reset
to zero after each newline occurring in the string. This doesn' t understand
other non-printing characters or escape sequences.

find(s, sub[, start])
Return the lowest index insnot smaller thanstartwhere the substringsubis
found. Return-1 whensubdoes not occur as a substring ofs with index at
leaststart. If start is omitted, it defaults to0. If start is negative,len(s) is
added.

rfind(s, sub[, start])
Like find but find the highest index.

index(s, sub[, start])
Like find but raiseValueError when the substring is not found.

rindex(s, sub[, start])
Like rfind but raiseValueError when the substring is not found.

count(s, sub[, start])
Return the number of (non-overlapping) occurrences of substringsub in
string s with index at leaststart. If start is omitted, it defaults to0. If
start is negative,len(s) is added.

lower(s)
Convert letters to lower case.

maketrans(from, to)

64

Return a translation table suitable for passing tostring.translate or
regex.compile , that will map each character infrom into the character
at the same position into; fromandto must have the same length.

split(s [, sep[, maxsplit]])
Return a list of the words of the strings. If the optional second argumentsep
is absent orNone, the words are separated by arbitrary strings of whitespace
characters (space, tab, newline, return, formfeed). If the second argument
sep is present and notNone, it specifies a string to be used as the word
separator. The returned list will then have one more items than the number
of non-overlapping occurrences of the separator in the string. The optional
third argumentmaxsplitdefaults to 0. If it is nonzero, at mostmaxsplit
number of splits occur, and the remainder of the string is returned as the
final element of the list (thus, the list will have at mostmaxsplit+1 elements).
(See alsoregsub.split() for a version that allows specifying a regular
expression as the separator.)

splitfields(s [, sep[, maxsplit]])
This function behaves identical tosplit . (In the past,split was only
used with one argument, whilesplitfields was only used with two ar-
guments.)

join(words[, sep])
Concatenate a list or tuple of words with intervening occurrences ofsep.
The default value forsepis a single space character. It is always true that
string.join(string.split(s, sep), sep) equalss.

joinfields(words[, sep])
This function behaves identical tojoin . (In the past,join was only
used with one argument, whilejoinfields was only used with two argu-
ments.)

lstrip(s)
Remove leading whitespace from the strings.

rstrip(s)
Remove trailing whitespace from the strings.

strip(s)
Remove leading and trailing whitespace from the strings.

swapcase(s)
Convert lower case letters to upper case and vice versa.

65

translate(s, table[, deletechars])
Delete all characters froms that are indeletechars(if present), and then
translate the characters usingtable, which must be a 256-character string
giving the translation for each character value, indexed by its ordinal.

upper(s)
Convert letters to upper case.

ljust(s, width)
rjust(s, width)
center(s, width)

These functions respectively left-justify, right-justify and center a string in
a field of given width. They return a string that is at leastwidth characters
wide, created by padding the strings with spaces until the given width on
the right, left or both sides. The string is never truncated.

zfill(s, width)
Pad a numeric string on the left with zero digits until the given width is
reached. Strings starting with a sign are handled correctly.

This module is implemented in Python. Much of its functionality has been reim-
plemented in the built-in modulestrop . However, you shouldneverimport the
latter module directly. Whenstring discovers thatstrop exists, it transparently
replaces parts of itself with the implementation fromstrop . After initialization,
there isnooverhead in usingstring instead ofstrop .

4.2 Built-in Module regex

This module provides regular expression matching operations similar to those
found in Emacs. It is always available.

By default the patterns are Emacs-style regular expressions (with one exception).
There is a way to change the syntax to match that of several well-known UNIX

utilities. The exception is that Emacs' `\s ' pattern is not supported, since the
original implementation references the Emacs syntax tables.

This module is 8-bit clean: both patterns and strings may contain null bytes and
characters whose high bit is set.

Please note:There is a little-known fact about Python string literals which means
that you don' t usually have to worry about doubling backslashes, even though they

66

are used to escape special characters in string literals as well as in regular expres-
sions. This is because Python doesn' t remove backslashes from stringliterals if
they are followed by an unrecognized escape character.However, if you want to
include a literalbackslashin a regular expression represented as a string literal,
you have toquadrupleit. E.g. to extract LATEX `\section{ . . .} ' headers from a
document, you can use this pattern:'\\\\section{\(.*\)}' . Another ex-
ception:the escape sequece `\b ' is significant in string literals (where it means the
ASCII bell character) as well as in Emacs regular expressions (where it stands for
a word boundary), so in order to search for a word boundary, you should use the
pattern'\\b' . Similarly, a backslash followed by a digit 0-7 should be doubled
to avoid interpretation as an octal escape.

4.2.1 Regular Expressions

A regular expression (or RE) specifies a set of strings that matches it; the functions
in this module let you check if a particular string matches a given regular expression
(or if a given regular expression matches a particular string, which comes down to
the same thing).

Regular expressions can be concatenated to form new regular expressions; ifA
and B are both regular expressions, thenAB is also an regular expression. If a
stringp matches A and another stringq matches B, the stringpq will match AB.
Thus, complex expressions can easily be constructed from simpler ones like the
primitives described here. For details of the theory and implementation of regular
expressions, consult almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows.

Regular expressions can contain both special and ordinary characters. Ordi-
nary characters, like 'A' , 'a ' , or '0' , are the simplest regular expressions; they
simply match themselves. You can concatenate ordinary characters, so 'last '
matches the characters ' last' . (In the rest of this section, we' ll write RE's in
this special font , usually without quotes, and strings to be matched ' in
single quotes' .)

Special characters either stand for classes of ordinary characters, or affect how the
regular expressions around them are interpreted.

The special characters are:

. (Dot.) Matches any character except a newline.

67

ˆ (Caret.) Matches the start of the string.

$ Matches the end of the string.foo matches both ' foo' and ' foobar' , while
the regular expression 'foo$ ' matches only ' foo' .

* Causes the resulting RE to match 0 or more repetitions of the preceding RE.
ab* will match ' a' , ' ab' , or ' a' followed by any number of ' b's.

+ Causes the resulting RE to match 1 or more repetitions of the preceding RE.
ab+ will match ' a' followed by any non-zero number of ' b's; it will not
match just ' a' .

? Causes the resulting RE to match 0 or 1 repetitions of the preceding RE.ab?
will match either ' a' or ' ab' .

\ Either escapes special characters (permitting you to match characters like
' *?+&$'), or signals a special sequence; special sequences are discussed
below. Remember that Python also uses the backslash as an escape sequence
in string literals; if the escape sequence isn' t recognized by Python's parser,
the backslash and subsequent character are included in the resulting string.
However, if Python would recognize the resulting sequence, the backslash
should be repeated twice.

[] Used to indicate a set of characters. Characters can be listed individually,
or a range is indicated by giving two characters and separating them by a
' -' . Special characters are not active inside sets. For example,[akm$]
will match any of the characters ' a' , ' k' , ' m' , or ' $' ;[a-z] will match any
lowercase letter.

If you want to include a] inside a set, it must be the first character of the
set; to include a- , place it as the first or last character.

Charactersnot within a range can be matched by including aˆ as the first
character of the set;ˆ elsewhere will simply match the 'ˆ ' character.

The special sequences consist of '\ ' and a character from the list below. If the
ordinary character is not on the list, then the resulting RE will match the second
character. For example,\$ matches the character ' $' . Ones where the backslash
should be doubled are indicated.

\| A\|B , where A and B can be arbitrary REs, creates a regular expression that
will match either A or B. This can be used inside groups (see below) as well.

68

\(\) Indicates the start and end of a group; the contents of a group can be matched
later in the string with the\1-9] special sequence, described next.

\\1, ... \\7, \8, \9
Matches the contents of the group of the same number. For example,
\(.+\) \\1 matches ' the the' or ' 55 55' , but not ' the end' (note the space
after the group). This special sequence can only be used to match one of
the first 9 groups; groups with higher numbers can be matched using the\v
sequence. (\8 and\9 don' t need a double backslash because they are not
octal digits.)

\\b Matches the empty string, but only at the beginning or end of a word. A
word is defined as a sequence of alphanumeric characters, so the end of a
word is indicated by whitespace or a non-alphanumeric character.

\B Matches the empty string, but when it isnot at the beginning or end of a
word.

\v Must be followed by a two digit decimal number, and matches the contents
of the group of the same number. The group number must be between 1 and
99, inclusive.

\w Matches any alphanumeric character; this is equivalent to the set
[a-zA-Z0-9] .

\W Matches any non-alphanumeric character; this is equivalent to the set
[ˆa-zA-Z0-9] .

\< Matches the empty string, but only at the beginning of a word. A word is
defined as a sequence of alphanumeric characters, so the end of a word is
indicated by whitespace or a non-alphanumeric character.

\> Matches the empty string, but only at the end of a word.

\\\\ Matches a literal backslash.

\` Like ˆ , this only matches at the start of the string.

\\' Like $, this only matches at the end of the string.

4.2.2 Module Contents

The module defines these functions, and an exception:

69

match(pattern, string)
Return how many characters at the beginning ofstringmatch the regular ex-
pressionpattern. Return-1 if the string does not match the pattern (this is
different from a zero-length match!).

search(pattern, string)
Return the first position instring that matches the regular expressionpattern.
Return-1 if no position in the string matches the pattern (this is different
from a zero-length match anywhere!).

compile(pattern[, translate])
Compile a regular expression pattern into a regular expression object, which
can be used for matching using itsmatch andsearch methods, described
below. The optional argumenttranslate, if present, must be a 256-character
string indicating how characters (both of the pattern and of the strings to be
matched) are translated before comparing them; thei -th element of the string
gives the translation for the character withASCII codei . This can be used to
implement case-insensitive matching; see thecasefold data item below.

The sequence

prog = regex.compile(pat)
result = prog.match(str)

is equivalent to

result = regex.match(pat, str)

but the version usingcompile() is more efficient when multiple regular
expressions are used concurrently in a single program. (The compiled version
of the last pattern passed toregex.match() or regex.search() is
cached, so programs that use only a single regular expression at a time needn' t
worry about compiling regular expressions.)

set syntax(flags)
Set the syntax to be used by future calls tocompile , match andsearch .
(Already compiled expression objects are not affected.) The argument is an
integer which is the OR of several flag bits. The return value is the previ-
ous value of the syntax flags. Names for the flags are defined in the standard
moduleregex syntax ; read the file r̀egex syntax.py ' for more in-
formation.

70

symcomp(pattern[, translate])
This is likecompile , but supports symbolic group names: if a parenthesis-
enclosed group begins with a group name in angular brackets, e.g.
'\(<id>[a-z][a-z0-9]*\)' , the group can be referenced by its name
in arguments to thegroup method of the resulting compiled regular ex-
pression object, like this:p.group('id') . Group names may contain
alphanumeric characters and' ' only.

error
Exception raised when a string passed to one of the functions here is not a
valid regular expression (e.g., unmatched parentheses) or when some other
error occurs during compilation or matching. (It is never an error if a string
contains no match for a pattern.)

casefold
A string suitable to pass astranslateargument tocompile to map all upper
case characters to their lowercase equivalents.

Compiled regular expression objects support these methods:

match(string [, pos])
Return how many characters at the beginning ofstring match the compiled
regular expression. Return-1 if the string does not match the pattern (this is
different from a zero-length match!).

The optional second parameterposgives an index in the string where the
search is to start; it defaults to0. This is not completely equivalent to slicing
the string; the'ˆ' pattern character matches at the real begin of the string
and at positions just after a newline, not necessarily at the index where the
search is to start.

search(string [, pos])
Return the first position instring that matches the regular expression
pattern . Return-1 if no position in the string matches the pattern (this
is different from a zero-length match anywhere!).

The optional second parameter has the same meaning as for thematch
method.

group(index, index, ...)
This method is only valid when the last call to thematch orsearch method
found a match. It returns one or more groups of the match. If there is a single
indexargument, the result is a single string; if there are multiple arguments,
the result is a tuple with one item per argument. If theindex is zero, the

71

corresponding return value is the entire matching string; if it is in the inclusive
range [1..99], it is the string matching the the corresponding parenthesized
group (using the default syntax, groups are parenthesized using(and)). If
no such group exists, the corresponding result isNone.

If the regular expression was compiled bysymcomp instead ofcompile ,
the indexarguments may also be strings identifying groups by their group
name.

Compiled regular expressions support these data attributes:

regs
When the last call to thematch or search method found a match, this
is a tuple of pairs of indices corresponding to the beginning and end of all
parenthesized groups in the pattern. Indices are relative to the string argument
passed tomatch or search . The 0-th tuple gives the beginning and end or
the whole pattern. When the last match or search failed, this isNone.

last
When the last call to thematch or search method found a match, this is
the string argument passed to that method. When the last match or search
failed, this isNone.

translate
This is the value of thetranslateargument toregex.compile that created
this regular expression object. If thetranslateargument was omitted in the
regex.compile call, this isNone.

givenpat
The regular expression pattern as passed tocompile or symcomp.

realpat
The regular expression after stripping the group names for regular expressions
compiled withsymcomp. Same asgivenpat otherwise.

groupindex
A dictionary giving the mapping from symbolic group names to numerical
group indices for regular expressions compiled withsymcomp. None other-
wise.

72

4.3 Standard Moduleregsub

This module defines a number of functions useful for working with regular expres-
sions (see built-in moduleregex).

Warning: these functions are not thread-safe.

sub(pat, repl, str)
Replace the first occurrence of patternpat in stringstr by replacementrepl.
If the pattern isn' t found, the string is returned unchanged. The pattern may
be a string or an already compiled pattern. The replacement may contain
references `\ digit' to subpatterns and escaped backslashes.

gsub(pat, repl, str)
Replace all (non-overlapping) occurrences of patternpat in stringstr by re-
placementrepl. The same rules as forsub() apply. Empty matches for
the pattern are replaced only when not adjacent to a previous match, so e.g.
gsub('', '-', 'abc') returns'-a-b-c-' .

split(str, pat [, maxsplit])
Split the stringstr in fields separated by delimiters matching the patternpat,
and return a list containing the fields. Only non-empty matches for the pattern
are considered, so e.g.split('a:b', ':*') returns['a', 'b'] and
split('abc', '') returns['abc'] . Themaxsplitdefaults to 0. If it
is nonzero, onlymaxsplitnumber of splits occur, and the remainder of the
string is returned as the final element of the list.

splitx(str, pat [, maxsplit])
Split the stringstr in fields separated by delimiters matching the patternpat,
and return a list containing the fields as well as the separators. For exam-
ple, splitx('a:::b', ':*') returns['a', ':::', 'b'] . Oth-
erwise, this function behaves the same assplit .

capwords(s [, pat])
Capitalize words separated by optional patternpat. The default pattern uses
any characters except letters, digits and underscores as word delimiters. Cap-
italization is done by changing the first character of each word to upper case.

73

4.4 Built-in Module struct

This module performs conversions between Python values and C structs repre-
sented as Python strings. It usesformat strings(explained below) as compact
descriptions of the lay-out of the C structs and the intended conversion to/from
Python values.

See also built-in modulearray .

The module defines the following exception and functions:

error
Exception raised on various occasions; argument is a string describing what
is wrong.

pack(fmt, v1, v2, . . .)
Return a string containing the valuesv1, v2, . . . packed according to the
given format. The arguments must match the values required by the format
exactly.

unpack(fmt, string)
Unpack the string (presumably packed bypack(fmt, . . .)) according to
the given format. The result is a tuple even if it contains exactly one item.
The string must contain exactly the amount of data required by the format
(i.e. len(string) must equalcalcsize(fmt)).

calcsize(fmt)
Return the size of the struct (and hence of the string) corresponding to the
given format.

Format characters have the following meaning; the conversion between C and
Python values should be obvious given their types:

Format C Python
`x ' pad byte no value
`c ' char string of length 1
`b' signed char integer
`h' short integer
`i ' int integer
`l ' long integer
`f ' float float
`d' double float

74

A format character may be preceded by an integral repeat count; e.g. the format
string '4h' means exactly the same as'hhhh' .

C numbers are represented in the machine's native format and byte order, and prop-
erly aligned by skipping pad bytes if necessary (according to the rules used by the
C compiler).

Examples (all on a big-endian machine):

pack('hhl', 1, 2, 3) == '\000\001\000\002\000\000\000\003'
unpack('hhl', '\000\001\000\002\000\000\000\003') == (1, 2, 3)
calcsize('hhl') == 8

Hint: to align the end of a structure to the alignment requirement of a particular
type, end the format with the code for that type with a repeat count of zero, e.g. the
format 'llh0l' specifies two pad bytes at the end, assuming longs are aligned
on 4-byte boundaries.

(More format characters are planned, e.g.'s' for character arrays, upper case
for unsigned variants, and a way to specify the byte order, which is useful for
[de]constructing network packets and reading/writing portable binary file formats
like TIFF and AIFF.)

75

Chapter 5

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are
available in all Python versions. Here's an overview:

math — Mathematical functions (sin() etc.).

rand — Integer random number generator.

whrandom — Floating point random number generator.

array — Efficient arrays of uniformly typed numeric values.

5.1 Built-in Module math

This module is always available. It provides access to the mathematical func-
tions defined by the C standard. They are:acos(x) , asin(x) , atan(x) ,
atan2(x, y) , ceil(x) , cos(x) , cosh(x) , exp(x) , fabs(x) , floor(x) ,
fmod(x, y) , frexp(x) , hypot(x, y) , ldexp(x, y) , log(x) , log10(x) ,
modf(x) , pow(x, y) , sin(x) , sinh(x) , sqrt(x) , tan(x) , tanh(x) .

Note thatfrexp andmodf have a different call/return pattern than their C equiv-
alents: they take a single argument and return a pair of values, rather than returning
their second return value through an `output parameter' (there is no such thing in
Python).

The module also defines two mathematical constants:pi ande.

76

5.2 Standard Modulerand

This module implements a pseudo-random number generator with an interface sim-
ilar to rand() in C. It defines the following functions:

rand()
Returns an integer random number in the range [0 ... 32768).

choice(s)
Returns a random element from the sequence (string, tuple or list)s.

srand(seed)
Initializes the random number generator with the given integral seed. When
the module is first imported, the random number is initialized with the current
time.

5.3 Standard Modulewhrandom

This module implements a Wichmann-Hill pseudo-random number generator. It
defines the following functions:

random()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed(x, y, z)
Initializes the random number generator from the integersx, y andz. When
the module is first imported, the random number is initialized using values
derived from the current time.

5.4 Built-in Module array

This module defines a new object type which can efficiently represent an array
of basic values: characters, integers, floating point numbers. Arrays are sequence
types and behave very much like lists, except that the type of objects stored in them
is constrained. The type is specified at object creation time by using atype code,
which is a single character. The following type codes are defined:

77

Typecode Type Minimal size in bytes
'c' character 1
'b' signed integer 1
'h' signed integer 2
'i' signed integer 2
'l' signed integer 4
'f' floating point 4
'd' floating point 8

The actual representation of values is determined by the machine architecture
(strictly speaking, by the C implementation). The actual size can be accessed
through theitemsizeattribute.

See also built-in modulestruct .

The module defines the following function:

array(typecode[, initializer])
Return a new array whose items are restricted bytypecode, and initialized
from the optionalinitializer value, which must be a list or a string. The list
or string is passed to the new array'sfromlist() or fromstring()
method (see below) to add initial items to the array.

Array objects support the following data items and methods:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

append(x)
Append a new item with valuex to the end of the array.

byteswap(x)
“Byteswap” all items of the array. This is only supported for integer values. It
is useful when reading data from a file written on a machine with a different
byte order.

fromfile(f , n)
Readn items (as machine values) from the file objectf and append them to
the end of the array. If less thann items are available,EOFError is raised,
but the items that were available are still inserted into the array.f must be a
real built-in file object; something else with aread() method won' t do.

78

fromlist(list)
Append items from the list. This is equivalent to
for x in list: a.append(x) except that if there is a type error, the
array is unchanged.

fromstring(s)
Appends items from the string, interpreting the string as an array of machine
values (i.e. as if it had been read from a file using thefromfile() method).

insert(i, x)
Insert a new item with valuex in the array before positioni.

tofile(f)
Write all items (as machine values) to the file objectf .

tolist()
Convert the array to an ordinary list with the same items.

tostring()
Convert the array to an array of machine values and return the string repre-
sentation (the same sequence of bytes that would be written to a file by the
tofile() method.)

When an array object is printed or converted to a string, it is represented as
array(typecode, initializer) . The initializer is omitted if the array is empty,
otherwise it is a string if thetypecodeis 'c' , otherwise it is a list of numbers. The
string is guaranteed to be able to be converted back to an array with the same type
and value using reverse quotes (``). Examples:

array('l')
array('c', 'hello world')
array('l', [1, 2, 3, 4, 5])
array('d', [1.0, 2.0, 3.14])

79

Chapter 6

Generic Operating System
Services

The modules described in this chapter provide interfaces to operating system fea-
tures that are available on (almost) all operating systems, such as files and a clock.
The interfaces are generally modelled after the UNIX or C interfaces but they are
available on most other systems as well. Here's an overview:

os — Miscellaneous OS interfaces.

time — Time access and conversions.

getopt — Parser for command line options.

tempfile — Generate temporary file names.

6.1 Standard Moduleos

This module provides a more portable way of using operating system (OS) depen-
dent functionality than importing an OS dependent built-in module likeposix .

When the optional built-in moduleposix is available, this module exports the
same functions and data asposix ; otherwise, it searches for an OS dependent
built-in module likemac and exports the same functions and data as found there.
The design of all Python's built-in OS dependent modules is such that as long
as the same functionality is available, it uses the same interface; e.g., the func-

80

tion os.stat(file) returns stat info about afile in a format compatible with the
POSIX interface.

Extensions peculiar to a particular OS are also available through theos module,
but using them is of course a threat to portability!

Note that after the first timeos is imported, there isno performance penalty in
using functions fromos instead of directly from the OS dependent built-in module,
so there should beno reason not to useos !

In addition to whatever the correct OS dependent module exports, the following
variables and functions are always exported byos :

name
The name of the OS dependent module imported. The following names have
currently been registered:'posix' , 'nt' , 'dos' , 'mac' .

path
The corresponding OS dependent standard module for pathname opera-
tions, e.g., posixpath or macpath . Thus, (given the proper im-
ports), os.path.split(file) is equivalent to but more portable than
posixpath.split(file) .

curdir
The constant string used by the OS to refer to the current directory, e.g.'.'
for POSIX or':' for the Mac.

pardir
The constant string used by the OS to refer to the parent directory, e.g.'..'
for POSIX or'::' for the Mac.

sep
The character used by the OS to separate pathname components, e.g.'/' for
POSIX or ':' for the Mac. Note that knowing this is not sufficient to be
able to parse or concatenate pathnames—better useos.path.split()
andos.path.join() —but it is occasionally useful.

pathsep
The character conventionally used by the OS to separate search patch com-
ponents (as in$PATH), e.g.':' for POSIX or';' for MS-DOS.

defpath
The default search path used byos.exec*p*() if the environment doesn' t
have a'PATH' key.

81

execl(path, arg0, arg1, ...)
This is equivalent toos.execv(path, (arg0, arg1, ...)) .

execle(path, arg0, arg1, ..., env)
This is equivalent toos.execve(path, (arg0, arg1, ...), env) .

execlp(path, arg0, arg1, ...)
This is equivalent toos.execvp(path, (arg0, arg1, ...)) .

execvp(path, args)
This is like os.execv(path, args) but duplicates the shell's actions in
searching for an executable file in a list of directories. The directory list is
obtained fromos.environ['PATH'] .

execvpe(path, args, env)
This is a cross betweenos.execve() andos.execvp() . The directory
list is obtained fromenv['PATH'] .

(The functionsos.execv() and execve() are not documented here, since
they are implemented by the OS dependent module. If the OS dependent module
doesn' t define either of these, the functions that rely on it will raise an exception.
They are documented in the section on moduleposix , together with all other
functions thatos imports from the OS dependent module.)

6.2 Built-in Module time

This module provides various time-related functions. It is always available.

An explanation of some terminology and conventions is in order.

� The “epoch” is the point where the time starts. On January 1st of that year, at
0 hours, the “time since the epoch” is zero. For UNIX, the epoch is 1970. To
find out what the epoch is, look atgmtime(0) .

� UTC is Coordinated Universal Time (formerly known as Greenwich Mean
Time). The acronym UTC is not a mistake but a compromise between English
and French.

� DST is Daylight Saving Time, an adjustment of the timezone by (usually) one
hour during part of the year. DST rules are magic (determined by local law)
and can change from year to year. The C library has a table containing the
local rules (often it is read from a system file for flexibility) and is the only
source of True Wisdom in this respect.

82

� The precision of the various real-time functions may be less than suggested
by the units in which their value or argument is expressed. E.g. on most
UNIX systems, the clock “ticks” only 50 or 100 times a second, and on the
Mac, times are only accurate to whole seconds.

� The time tuple as returned bygmtime() andlocaltime() , or as accpted
by mktime() is a tuple of 9 integers: year (e.g. 1993), month (1–12), day
(1–31), hour (0–23), minute (0–59), second (0–59), weekday (0–6, monday
is 0), Julian day (1–366) and daylight savings flag (-1, 0 or 1). Note that
unlike the C structure, the month value is a range of 1-12, not 0-11. A year
value of< 100 will typically be silently converted to 1900+ year value. A -1
argument as daylight savings flag, passed tomktime() will usually result
in the correct daylight savings state to be filled in.

The module defines the following functions and data items:

altzone
The offset of the local DST timezone, in seconds west of the 0th meridian, if
one is defined. Negative if the local DST timezone is east of the 0th meridian
(as in Western Europe, including the UK). Only use this ifdaylight is
nonzero.

asctime(tuple)
Convert a tuple representing a time as returned bygmtime()
or localtime() to a 24-character string of the following form:
'Sun Jun 20 23:21:05 1993' . Note: unlike the C function of the
same name, there is no trailing newline.

clock()
Return the current CPU time as a floating point number expressed in seconds.
The precision, and in fact the very definiton of the meaning of “CPU time”,
depends on that of the C function of the same name.

ctime(secs)
Convert a time expressed in seconds since the epoch to a string representing
local time.ctime(t) is equivalent toasctime(localtime(t)) .

daylight
Nonzero if a DST timezone is defined.

gmtime(secs)
Convert a time expressed in seconds since the epoch to a time tuple in UTC
in which the dst flag is always zero. Fractions of a second are ignored.

83

localtime(secs)
Like gmtime but converts to local time. The dst flag is set to 1 when DST
applies to the given time.

mktime(tuple)
This is the inverse function oflocaltime . Its argument is the full 9-tuple
(since the dst flag is needed — pass -1 as the dst flag if it is unknown) which
expresses the time inlocal time, not UTC. It returns a floating point number,
for compatibility with time.time() . If the input value can't be repre-
sented as a valid time, OverflowError is raised.

sleep(secs)
Suspend execution for the given number of seconds. The argument may be a
floating point number to indicate a more precise sleep time.

strftime(format, tuple)
Convert a tuple representing a time as returned bygmtime() or
localtime() to a string as specified by the format argument.

The following directives, shown without the optional field width and preci-
sion specification, are replaced by the indicated characters:

84

%a Locale's abbreviated weekday name.
%A Locale's full weekday name.
%b Locale's abbreviated month name.
%B Locale's full month name.
%c Locale's appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%E Locale's combined Emperor/Era name and year.
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%n New-line character.
%N Locale's Emperor/Era name.
%o Locale's Emperor/Era year.
%p Locale's equivalent of either AM or PM.
%S Second as a decimal number [00,61].
%t Tab character.
%U Week number of the year (Sunday as the first day of the week)

as a decimal number [00,53]. All days in a new year preceding
the first Sunday are considered to be in week 0.

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the week)

as a decimal number [00,53]. All days in a new year preceding
the first Sunday are considered to be in week 0.

%x Locale's appropriate date representation.
%X Locale's appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%Z Time zone name (or by no characters if no time zone exists).
%% %

An optional field width and precision specification can immediately follow
the initial % of a directive in the following order:

85

[-—0]w the decimal digit string w specifies a minimum field width in
which the result of the conversion is right- or left-justified. It is
right-justified (with space padding) by default. If the optional
flag `-' is specified, it is left-justified with space padding on the
right. If the optional flag `0' is specified, it is right-justified and
padded with zeros on the left.

.p the decimal digit string p specifies the minimum number of
digits to appear for the d, H, I, j, m, M, o, S, U, w, W, y and Y
directives, and the maximum number of characters to be used
from the a, A, b, B, c, D, E, F, h, n, N, p, r, t, T, x, X, z, Z, and
the first case, if a directive supplies fewer digits than specified
by the precision, it will be expanded with leading zeros. In
the second case, if a directive supplies more characters than
specified by the precision, excess characters will truncated on
the right.

If no field width or precision is specified for a d, H, I, m, M, S, U, W, y, or j
directive, a default of .2 is used for all but j for which .3 is used.

time()
Return the time as a floating point number expressed in seconds since the
epoch, in UTC. Note that even though the time is always returned as a floating
point number, not all systems provide time with a better precision than 1
second.

timezone
The offset of the local (non-DST) timezone, in seconds west of the 0th merid-
ian (i.e. negative in most of Western Europe, positive in the US, zero in the
UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone,
the second is the name of the local DST timezone. If no DST timezone is
defined, the second string should not be used.

6.3 Standard Modulegetopt

This module helps scripts to parse the command line arguments in
sys.argv . It supports the same conventions as the UNIX getopt()
function (including the special meanings of arguments of the form `- ' and

86

`-- '). Long options similar to those supported by GNU software may
be used as well via an optional third argument. It defines the function
getopt.getopt(args, options [, long options]) and the excep-
tion getopt.error .

The first argument togetopt() is the argument list passed to the script with its
first element chopped off (i.e.,sys.argv[1:]). The second argument is the
string of option letters that the script wants to recognize, with options that require
an argument followed by a colon (i.e., the same format that UNIX getopt()
uses). The third option, if specified, is a list of strings with the names of the long
options which should be supported. The leading'--' characters should not be
included in the option name. Options which require an argument should be fol-
lowed by an equal sign ('='). The return value consists of two elements: the first
is a list of option-and-value pairs; the second is the list of program arguments left
after the option list was stripped (this is a trailing slice of the first argument). Each
option-and-value pair returned has the option as its first element, prefixed with a
hyphen (e.g.,'-x'), and the option argument as its second element, or an empty
string if the option has no argument. The options occur in the list in the same or-
der in which they were found, thus allowing multiple occurrences. Long and short
options may be mixed.

An example using only UNIX style options:

>>> import getopt, string
>>> args = string.split('-a -b -cfoo -d bar a1 a2')
>>> args
['-a', '-b', '-cfoo', '-d', 'bar', 'a1', 'a2']
>>> optlist, args = getopt.getopt(args, 'abc:d:')
>>> optlist
[('-a', ''), ('-b', ''), ('-c', 'foo'), ('-d', 'bar')]
>>> args
['a1', 'a2']
>>>

Using long option names is equally easy:

87

>>> s = '--condition=foo --testing --output-file abc.def -x a1 a2'
>>> args = string.split(s)
>>> args
['--condition=foo', '--testing', '--output-file', 'abc.def', '-x', 'a1', 'a
>>> optlist, args = getopt.getopt(args, 'x', [
... 'condition=', 'output-file=', 'testing'])
>>> optlist
[('--condition', 'foo'), ('--testing', ''), ('--output-file', 'abc.def'),
>>> args
['a1', 'a2']
>>>

The exceptiongetopt.error = 'getopt.error' is raised when an un-
recognized option is found in the argument list or when an option requiring an
argument is given none. The argument to the exception is a string indicating the
cause of the error. For long options, an argument given to an option which does
not require one will also cause this exception to be raised.

6.4 Standard Moduletempfile

This module generates temporary file names. It is not UNIX specific, but it may
require some help on non-UNIX systems.

Note: the modules does not create temporary files, nor does it automatically remove
them when the current process exits or dies.

The module defines a single user-callable function:

mktemp()
Return a unique temporary filename. This is an absolute pathname of a file
that does not exist at the time the call is made. No two calls will return the
same filename.

The module uses two global variables that tell it how to construct a temporary
name. The caller may assign values to them; by default they are initialized at the
first call tomktemp() .

tempdir
When set to a value other thanNone, this variable defines the directory in
which filenames returned bymktemp() reside. The default is taken from

88

the environment variableTMPDIR; if this is not set, either/usr/tmp is
used (on UNIX), or the current working directory (all other systems). No
check is made to see whether its value is valid.

template
When set to a value other thanNone, this variable defines the prefix of the fi-
nal component of the filenames returned bymktemp() . A string of decimal
digits is added to generate unique filenames. The default is either “@pid. ”
wherepid is the current process ID (on UNIX), or “tmp ” (all other systems).

Warning: if a UNIX process usesmktemp() , then callsfork() and both par-
ent and child continue to usemktemp() , the processes will generate conflict-
ing temporary names. To resolve this, the child process should assignNone to
template , to force recomputing the default on the next call tomktemp() .

6.5 Standard Moduleerrno

This module makes available standard errno system symbols. The value of each
symbol is the corresponding integer value. The names and descriptions are bor-
rowed from linux/include/errno.h, which should be pretty all-inclusive. Of the
following list, symbols that are not used on the current platform are not defined by
the module.

Symbols available can include:
EPERM

Operation not permitted

ENOENT
No such file or directory

ESRCH
No such process

EINTR
Interrupted system call

EIO
I/O error

ENXIO
No such device or address

E2BIG

89

Arg list too long

ENOEXEC
Exec format error

EBADF
Bad file number

ECHILD
No child processes

EAGAIN
Try again

ENOMEM
Out of memory

EACCES
Permission denied

EFAULT
Bad address

ENOTBLK
Block device required

EBUSY
Device or resource busy

EEXIST
File exists

EXDEV
Cross-device link

ENODEV
No such device

ENOTDIR
Not a directory

EISDIR
Is a directory

EINVAL
Invalid argument

ENFILE

90

File table overflow

EMFILE
Too many open files

ENOTTY
Not a typewriter

ETXTBSY
Text file busy

EFBIG
File too large

ENOSPC
No space left on device

ESPIPE
Illegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE
Broken pipe

EDOM
Math argument out of domain of func

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File name too long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY

91

Directory not empty

ELOOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

ENOMSG
No message of desired type

EIDRM
Identifier removed

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3 reset

ELNRNG
Link number out of range

EUNATCH
Protocol driver not attached

ENOCSI
No CSI structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchange full

ENOANO

92

No anode

EBADRQC
Invalid request code

EBADSLT
Invalid slot

EDEADLOCK
File locking deadlock error

EBFONT
Bad font file format

ENOSTR
Device not a stream

ENODATA
No data available

ETIME
Timer expired

ENOSR
Out of streams resources

ENONET
Machine is not on the network

ENOPKG
Package not installed

EREMOTE
Object is remote

ENOLINK
Link has been severed

EADV
Advertise error

ESRMNT
Srmount error

ECOMM
Communication error on send

EPROTO

93

Protocol error

EMULTIHOP
Multihop attempted

EDOTDOT
RFS specific error

EBADMSG
Not a data message

EOVERFLOW
Value too large for defined data type

ENOTUNIQ
Name not unique on network

EBADFD
File descriptor in bad state

EREMCHG
Remote address changed

ELIBACC
Can not access a needed shared library

ELIBBAD
Accessing a corrupted shared library

ELIBSCN
.lib section in a.out corrupted

ELIBMAX
Attempting to link in too many shared libraries

ELIBEXEC
Cannot exec a shared library directly

EILSEQ
Illegal byte sequence

ERESTART
Interrupted system call should be restarted

ESTRPIPE
Streams pipe error

EUSERS

94

Too many users

ENOTSOCK
Socket operation on non-socket

EDESTADDRREQ
Destination address required

EMSGSIZE
Message too long

EPROTOTYPE
Protocol wrong type for socket

ENOPROTOOPT
Protocol not available

EPROTONOSUPPORT
Protocol not supported

ESOCKTNOSUPPORT
Socket type not supported

EOPNOTSUPP
Operation not supported on transport endpoint

EPFNOSUPPORT
Protocol family not supported

EAFNOSUPPORT
Address family not supported by protocol

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Cannot assign requested address

ENETDOWN
Network is down

ENETUNREACH
Network is unreachable

ENETRESET
Network dropped connection because of reset

ECONNABORTED

95

Software caused connection abort

ECONNRESET
Connection reset by peer

ENOBUFS
No buffer space available

EISCONN
Transport endpoint is already connected

ENOTCONN
Transport endpoint is not connected

ESHUTDOWN
Cannot send after transport endpoint shutdown

ETOOMANYREFS
Too many references: cannot splice

ETIMEDOUT
Connection timed out

ECONNREFUSED
Connection refused

EHOSTDOWN
Host is down

EHOSTUNREACH
No route to host

EALREADY
Operation already in progress

EINPROGRESS
Operation now in progress

ESTALE
Stale NFS file handle

EUCLEAN
Structure needs cleaning

ENOTNAM
Not a XENIX named type file

ENAVAIL

96

No XENIX semaphores available

EISNAM
Is a named type file

EREMOTEIO
Remote I/O error

EDQUOT
Quota exceeded

97

Chapter 7

Optional Operating System
Services

The modules described in this chapter provide interfaces to operating system fea-
tures that are available on selected operating systems only. The interfaces are gen-
erally modelled after the UNIX or C interfaces but they are available on some other
systems as well (e.g. Windows or NT). Here's an overview:

signal — Set handlers for asynchronous events.

socket — Low-level networking interface.

select — Wait for I/O completion on multiple streams.

thread — Create multiple threads of control within one namespace.

7.1 Built-in Module signal

This module provides mechanisms to use signal handlers in Python. Some general
rules for working with signals handlers:

� A handler for a particular signal, once set, remains installed until it is ex-
plicitly reset (i.e. Python emulates the BSD style interface regardless of the
underlying implementation), with the exception of the handler forSIGCHLD,
which follows the underlying implementation.

98

� There is no way to “block” signals temporarily from critical sections (since
this is not supported by all UNIX flavors).

� Although Python signal handlers are called asynchronously as far as the
Python user is concerned, they can only occur between the “atomic” instruc-
tions of the Python interpreter. This means that signals arriving during long
calculations implemented purely in C (e.g. regular expression matches on
large bodies of text) may be delayed for an arbitrary amount of time.

� When a signal arrives during an I/O operation, it is possible that the I/O oper-
ation raises an exception after the signal handler returns. This is dependent on
the underlying UNIX system's semantics regarding interrupted system calls.

� Because the C signal handler always returns, it makeslittle sense to catch
synchronous errors likeSIGFPE or SIGSEGV.

� Python installs a small number of signal handlers by default:SIGPIPE is
ignored (so write errors on pipes and sockets can be reported as ordinary
Python exceptions),SIGINT is translated into aKeyboardInterrupt
exception, andSIGTERM is caught so that necessary cleanup (especially
sys.exitfunc) can be performed before actually terminating. All of these
can be overridden.

� Some care must be taken if both signals and threads are used in the same
program. The fundamental thing to remember in using signals and threads
simultaneously is: always performsignal() operations in the main thread
of execution. Any thread can perform analarm() , getsignal() , or
pause() ; only the main thread can set a new signal handler, and the main
thread will be the only one to receive signals (this is enforced by the Python
signal module, even if the underlying thread implementation supports sending
signals to individual threads). This means that signals can' t be used as a
means of interthread communication. Use locks instead.

The variables defined in the signal module are:

SIG DFL
This is one of two standard signal handling options; it will simply perform
the default function for the signal. For example, on most systems the default
action for SIGQUIT is to dump core and exit, while the default action for
SIGCLD is to simply ignore it.

SIG IGN
This is another standard signal handler, which will simply ignore the given
signal.

99

SIG*
All the signal numbers are defined symbolically. For example, the hangup
signal is defined assignal.SIGHUP ; the variable names are identical
to the names used in C programs, as found in `signal.h ' . The UNIX

man page for s̀ignal ' lists the existing signals (on some systems this is
`signal(2) ' , on others the list is ins̀ignal(7) '). Note that not all sys-
tems define the same set of signal names; only those names defined by the
system are defined by this module.

NSIG
One more than the number of the highest signal number.

The signal module defines the following functions:

alarm(time)
If time is non-zero, this function requests that aSIGALRMsignal be sent to
the process intime seconds. Any previously scheduled alarm is canceled
(i.e. only one alarm can be scheduled at any time). The returned value is
then the number of seconds before any previously set alarm was to have been
delivered. If time is zero, no alarm id scheduled, and any scheduled alarm
is canceled. The return value is the number of seconds remaining before a
previously scheduled alarm. If the return value is zero, no alarm is currently
scheduled. (See the UNIX man pagealarm(2) .)

getsignal(signalnum)
Return the current signal handler for the signalsignalnum. The re-
turned value may be a callable Python object, or one of the spe-
cial values signal.SIG IGN, signal.SIG DFL or None. Here,
signal.SIG IGN means that the signal was previously ignored,
signal.SIG DFL means that the default way of handling the signal was
previously in use, andNone means that the previous signal handler was not
installed from Python.

pause()
Cause the process to sleep until a signal is received; the appropriate handler
will then be called. Returns nothing. (See the UNIX man pagesignal(2) .)

signal(signalnum, handler)
Set the handler for signalsignalnumto the functionhandler. handlercan be
any callable Python object, or one of the special valuessignal.SIG IGN
or signal.SIG DFL. The previous signal handler will be returned (see
the description ofgetsignal() above). (See the UNIX man page

100

signal(2) .)

When threads are enabled, this function can only be called from the main
thread; attempting to call it from other threads will cause aValueError
exception to be raised.

Thehandleris called with two arguments: the signal number and the current
stack frame (None or a frame object; see the reference manual for a descrip-
tion of frame objects).

7.2 Built-in Module socket

This module provides access to the BSDsocketinterface. It is available on UNIX

systems that support this interface.

For an introduction to socket programming (in C), see the following papers:An In-
troductory 4.3BSD Interprocess Communication Tutorial, by Stuart Sechrest and
An Advanced 4.3BSD Interprocess Communication Tutorial, by Samuel J. Leffler
et al, both in the UNIX Programmer's Manual, Supplementary Documents 1 (sec-
tions PS1:7 and PS1:8). The UNIX manual pages for the various socket-related
system calls are also a valuable source of information on the details of socket se-
mantics.

The Python interface is a straightforward transliteration of the UNIX system call
and library interface for sockets to Python's object-oriented style: thesocket()
function returns asocket objectwhose methods implement the various socket sys-
tem calls. Parameter types are somewhat higer-level than in the C interface: as
with read() andwrite() operations on Python files, buffer allocation on re-
ceive operations is automatic, and buffer length is implicit on send operations.

Socket addresses are represented as a single string for theAF UNIX address
family and as a pair(host, port) for the AF INET address family, where
host is a string representing either a hostname in Internet domain notation like
'daring.cwi.nl' or an IP address like'100.50.200.5' , andport is an
integral port number. Other address families are currently not supported. The ad-
dress format required by a particular socket object is automatically selected based
on the address family specified when the socket object was created.

All errors raise exceptions. The normal exceptions for invalid argument types and
out-of-memory conditions can be raised; errors related to socket or address seman-
tics raise the errorsocket.error .

101

Non-blocking mode is supported through thesetblocking() method.

The modulesocket exports the following constants and functions:

error
This exception is raised for socket- or address-related errors. The accompany-
ing value is either a string telling what went wrong or a pair(errno, string)
representing an error returned by a system call, similar to the value accompa-
nyingposix.error .

AF UNIX
AF INET

These constants represent the address (and protocol) families, used for the
first argument tosocket() . If the AF UNIX constant is not defined then
this protocol is unsupported.

SOCKSTREAM
SOCKDGRAM
SOCKRAW
SOCKRDM
SOCKSEQPACKET

These constants represent the socket types, used for the second argument to
socket() . (OnlySOCKSTREAMandSOCKDGRAMappear to be generally
useful.)

SO*
SOMAXCONN
MSG*
SOL *
IPPROTO*
IPPORT *
INADDR *
IP *

Many constants of these forms, documented in the UNIX documentation on
sockets and/or the IP protocol, are also defined in the socket module. They
are generally used in arguments to thesetsockopt and getsockopt
methods of socket objects. In most cases, only those symbols that are defined
in the UNIX header files are defined; for a few symbols, default values are
provided.

gethostbyname(hostname)
Translate a host name to IP address format. The IP address is returned as a

102

string, e.g.,'100.50.200.5' . If the host name is an IP address itself it is
returned unchanged.

gethostname()
Return a string containing the hostname of the machine where the Python in-
terpreter is currently executing. If you want to know the current machine's IP
address, usesocket.gethostbyname(socket.gethostname()) .

gethostbyaddr(ip address)
Return a triple (hostname, aliaslist, ipaddrlist) where
hostname is the primary host name responding to the givenip address,
aliaslist is a (possibly empty) list of alternative host names for the same
address, andipaddrlist is a list of IP addresses for the same interface on
the same host (most likely containing only a single address).

getservbyname(servicename, protocolname)
Translate an Internet service name and protocol name to a port number for
that service. The protocol name should be'tcp' or 'udp' .

socket(family, type[, proto])
Create a new socket using the given address family, socket type and protocol
number. The address family should beAF INET or AF UNIX. The socket
type should beSOCKSTREAM, SOCKDGRAMor perhaps one of the other
`SOCK' constants. The protocol number is usually zero and may be omitted
in that case.

fromfd(fd, family, type[, proto])
Build a socket object from an existing file descriptor (an integer as returned
by a file object'sfileno method). Address family, socket type and protocol
number are as for thesocket function above. The file descriptor should
refer to a socket, but this is not checked — subsequent operations on the
object may fail if the file descriptor is invalid. This function is rarely needed,
but can be used to get or set socket options on a socket passed to a program
as standard input or output (e.g. a server started by the UNIX inet daemon).

7.2.1 Socket Objects

Socket objects have the following methods. Except formakefile() these corre-
spond to UNIX system calls applicable to sockets.

103

accept()
Accept a connection. The socket must be bound to an address and listening
for connections. The return value is a pair(conn, address) whereconnis
a newsocket object usable to send and receive data on the connection, and
addressis the address bound to the socket on the other end of the connection.

bind(address)
Bind the socket toaddress. The socket must not already be bound. (The
format ofaddressdepends on the address family — see above.)

close()
Close the socket. All future operations on the socket object will fail. The
remote end will receive no more data (after queued data is flushed). Sockets
are automatically closed when they are garbage-collected.

connect(address)
Connect to a remote socket ataddress. (The format ofaddressdepends on
the address family — see above.)

fileno()
Return the socket's file descriptor (a small integer). This is useful with
select .

getpeername()
Return the remote address to which the socket is connected. This is useful to
find out the port number of a remote IP socket, for instance. (The format of
the address returned depends on the address family — see above.) On some
systems this function is not supported.

getsockname()
Return the socket's own address. This is useful to find out the port number
of an IP socket, for instance. (The format of the address returned depends on
the address family — see above.)

getsockopt(level, optname[, buflen])
Return the value of the given socket option (see the UNIX man pageget-
sockopt(2)). The needed symbolic constants (SO* etc.) are defined in this
module. Ifbuflenis absent, an integer option is assumed and its integer value
is returned by the function. Ifbuflen is present, it specifies the maximum
length of the buffer used to receive the option in, and this buffer is returned
as a string. It is up to the caller to decode the contents of the buffer (see the
optional built-in modulestruct for a way to decode C structures encoded
as strings).

104

listen(backlog)
Listen for connections made to the socket. Thebacklogargument specifies
the maximum number of queued connections and should be at least 1; the
maximum value is system-dependent (usually 5).

makefile([mode[, bufsize]])
Return afile objectassociated with the socket. (File objects were described
earlier under Built-in Types.) The file object references adup() ped ver-
sion of the socket file descriptor, so the file object and socket object may be
closed or garbage-collected independently. The optionalmodeandbufsize
arguments are interpreted the same way as by the built-inopen() function.

recv(bufsize[, flags])
Receive data from the socket. The return value is a string representing the
data received. The maximum amount of data to be received at once is spec-
ified by bufsize. See the UNIX manual page for the meaning of the optional
argumentflags; it defaults to zero.

recvfrom(bufsize[, flags])
Receive data from the socket. The return value is a pair(string, address)
wherestring is a string representing the data received andaddressis the ad-
dress of the socket sending the data. The optionalflagsargument has the
same meaning as forrecv() above. (The format ofaddressdepends on the
address family — see above.)

send(string [, flags])
Send data to the socket. The socket must be connected to a remote socket.
The optionalflagsargument has the same meaning as forrecv() above.
Return the number of bytes sent.

sendto(string [, flags] , address)
Send data to the socket. The socket should not be connected to a remote
socket, since the destination socket is specified byaddress . The optional
flagsargument has the same meaning as forrecv() above. Return the num-
ber of bytes sent. (The format ofaddressdepends on the address family —
see above.)

setblocking(flag)
Set blocking or non-blocking mode of the socket: ifflag is 0, the socket
is set to non-blocking, else to blocking mode. Initially all sockets are in
blocking mode. In non-blocking mode, if arecv call doesn' t find any data,
or if a send call can' t immediately dispose of the data, asocket.error

105

exception is raised; in blocking mode, the calls block until they can proceed.

setsockopt(level, optname, value)
Set the value of the given socket option (see the UNIX man pagesetsock-
opt(2)). The needed symbolic constants are defined in thesocket module
(SO* etc.). The value can be an integer or a string representing a buffer.
In the latter case it is up to the caller to ensure that the string contains the
proper bits (see the optional built-in modulestruct for a way to encode C
structures as strings).

shutdown(how)
Shut down one or both halves of the connection. Ifhowis 0, further receives
are disallowed. Ifhowis 1, further sends are disallowed. Ifhowis 2, further
sends and receives are disallowed.

Note that there are no methodsread() or write() ; userecv() andsend()
withoutflagsargument instead.

7.2.2 Example

Here are two minimal example programs using the TCP/IP protocol: a server that
echoes all data that it receives back (servicing only one client), and a client using it.
Note that a server must perform the sequencesocket , bind , listen , accept
(possibly repeating theaccept to service more than one client), while a client
only needs the sequencesocket , connect . Also note that the server does not
send /receive on the socket it is listening on but on the new socket returned by
accept .

106

Echo server program
from socket import *
HOST = '' # Symbolic name meaning the local host
PORT = 50007 # Arbitrary non-privileged server
s = socket(AF_INET, SOCK_STREAM)
s.bind(HOST, PORT)
s.listen(1)
conn, addr = s.accept()
print 'Connected by', addr
while 1:

data = conn.recv(1024)
if not data: break
conn.send(data)

conn.close()

Echo client program
from socket import *
HOST = 'daring.cwi.nl' # The remote host
PORT = 50007 # The same port as used by the server
s = socket(AF_INET, SOCK_STREAM)
s.connect(HOST, PORT)
s.send('Hello, world')
data = s.recv(1024)
s.close()
print 'Received', `data`

7.3 Built-in Module select

This module provides access to the functionselect available in most UNIX ver-
sions. It defines the following:

error
The exception raised when an error occurs. The accompanying value is a pair
containing the numeric error code fromerrno and the corresponding string,

107

as would be printed by the C functionperror() .

select(iwtd, owtd, ewtd[, timeout])
This is a straightforward interface to the UNIX select() system call. The
first three arguments are lists of `waitable objects' : either integers repre-
senting UNIX file descriptors or objects with a parameterless method named
fileno() returning such an integer. The three lists of waitable objects are
for input, output and `exceptional conditions' , respectively. Empty lists are
allowed. The optionaltimeoutargument specifies a time-out as a floating
point number in seconds. When thetimeoutargument is omitted the func-
tion blocks until at least one file descriptor is ready. A time-out value of zero
specifies a poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the
first three arguments. When the time-out is reached without a file descriptor
becoming ready, three empty lists are returned.

Amongst the acceptable object types in the lists are Python file objects (e.g.
sys.stdin , or objects returned byopen() orposix.popen()), socket
objects returned bysocket.socket() , and the modulestdwin which
happens to define a functionfileno() for just this purpose. You may also
define awrapperclass yourself, as long as it has an appropriatefileno()
method (that really returns a UNIX file descriptor, not just a random integer).

7.4 Built-in Module thread

This module provides low-level primitives for working with multiple threads
(a.k.a.light-weight processesor tasks) — multiple threads of control sharing their
global data space. For synchronization, simple locks (a.k.a.mutexesor binary
semaphores) are provided.

The module is optional and supported on SGI IRIX 4.x and 5.x and Sun Solaris 2.x
systems, as well as on systems that have a PTHREAD implementation (e.g. KSR).

It defines the following constant and functions:

error
Raised on thread-specific errors.

start new thread(func, arg)
Start a new thread. The thread executes the functionfuncwith the argument
list arg (which must be a tuple). When the function returns, the thread silently

108

exits. When the function terminates with an unhandled exception, a stack
trace is printed and then the thread exits (but other threads continue to run).

exit()
This is a shorthand forthread.exit thread() .

exit thread()
Raise theSystemExit exception. When not caught, this will cause the
thread to exit silently.

allocate lock()
Return a new lock object. Methods of locks are described below. The lock is
initially unlocked.

get ident()
Return the `thread identifier' of the current thread. This is a nonzero integer.
Its value has no direct meaning; it is intended as a magic cookie to be used
e.g. to index a dictionary of thread-specific data. Thread identifiers may be
recycled when a thread exits and another thread is created.

Lock objects have the following methods:

acquire([waitflag])
Without the optional argument, this method acquires the lock unconditionally,
if necessary waiting until it is released by another thread (only one thread at
a time can acquire a lock — that's their reason for existence), and returns
None. If the integerwaitflagargument is present, the action depends on its
value: if it is zero, the lock is only acquired if it can be acquired immediately
without waiting, while if it is nonzero, the lock is acquired unconditionally as
before. If an argument is present, the return value is 1 if the lock is acquired
successfully, 0 if not.

release()
Releases the lock. The lock must have been acquired earlier, but not neces-
sarily by the same thread.

locked()
Return the status of the lock: 1 if it has been acquired by some thread, 0 if
not.

Caveats:

� Threads interact strangely with interrupts: theKeyboardInterrupt ex-
ception will be received by an arbitrary thread. (When thesignal module

109

is available, interrupts always go to the main thread.)

� Calling sys.exit() or raising theSystemExit is equivalent to calling
thread.exit thread() .

� Not all built-in functions that may block waiting for I/O allow other threads
to run. (The most popular ones (sleep , read , select) work as expected.)

110

Chapter 8

UNIX Specific Services

The modules described in this chapter provide interfaces to features that are unique
to the UNIX operating system, or in some cases to some or many variants of it.
Here's an overview:

posix — The most common Posix system calls (normally used via moduleos).

posixpath — Common Posix pathname manipulations (normally used via
os.path).

pwd — The password database (getpwnam() and friends).

grp — The group database (getgrnam() and friends).

crypt — The (crypt() function used to check Unix passwords).

dbm — The standard “database” interface, based onndbm.

gdbm — GNU's reinterpretation of dbm.

termios — Posix style tty control.

fcntl — Thefcntl() andioctl() system calls.

posixfile — A file-like object with support for locking.

8.1 Built-in Module posix

This module provides access to operating system functionality that is standardized
by the C Standard and the POSIX standard (a thinly disguised UNIX interface).

111

Do not import this module directly. Instead, import the moduleos , which pro-
vides aportableversion of this interface. On UNIX, theos module provides a
superset of theposix interface. On non-UNIX operating systems theposix
module is not available, but a subset is always available through theos interface.
Onceos is imported, there isnoperformance penalty in using it instead ofposix .

The descriptions below are very terse; refer to the corresponding UNIX manual
entry for more information. Arguments calledpathrefer to a pathname given as a
string.

Errors are reported as exceptions; the usual exceptions are given for type errors,
while errors reported by the system calls raiseposix.error , described below.

Moduleposix defines the following data items:

environ
A dictionary representing the string environment at the time the interpreter
was started. For example,posix.environ['HOME'] is the pathname of
your home directory, equivalent togetenv("HOME") in C. Modifying this
dictionary does not affect the string environment passed on byexecv() ,
popen() or system() ; if you need to change the environment, pass
environ to execve() or add variable assignments and export statements
to the command string forsystem() or popen() .1

error
This exception is raised when a POSIX function returns a POSIX-
related error (e.g., not for illegal argument types). Its string value is
'posix.error' . The accompanying value is a pair containing the nu-
meric error code fromerrno and the corresponding string, as would be
printed by the C functionperror() .

It defines the following functions and constants:

chdir(path)
Change the current working directory topath.

chmod(path, mode)
Change the mode ofpathto the numericmode.

chown(path, uid, gid)
Change the owner and group id ofpathto the numericuid andgid. (Not on

1The problem with automatically passing onenviron is that there is no portable way of chang-
ing the environment.

112

MS-DOS.)

close(fd)
Close file descriptorfd.
Note: this function is intended for low-level I/O and must be applied to a file
descriptor as returned byposix.open() or posix.pipe() . To close a
“file object” returned by the built-in functionopen or byposix.popen or
posix.fdopen , use itsclose() method.

dup(fd)
Return a duplicate of file descriptorfd.

dup2(fd, fd2)
Duplicate file descriptorfd to fd2, closing the latter first if necessary. Return
None.

execv(path, args)
Execute the executablepath with argument listargs, replacing the current
process (i.e., the Python interpreter). The argument list may be a tuple or list
of strings. (Not on MS-DOS.)

execve(path, args, env)
Execute the executablepath with argument listargs, and environmentenv,
replacing the current process (i.e., the Python interpreter). The argument
list may be a tuple or list of strings. The environment must be a dictionary
mapping strings to strings. (Not on MS-DOS.)

exit(n)
Exit to the system with statusn, without calling cleanup handlers, flushing
stdio buffers, etc. (Not on MS-DOS.)
Note: the standard way to exit issys.exit(n) . posix. exit() should
normally only be used in the child process after afork() .

fdopen(fd [, mode[, bufsize]])
Return an open file object connected to the file descriptorfd. Themodeand
bufsizearguments have the same meaning as the corresponding arguments to
the built-inopen() function.

fork()
Fork a child process. Return 0 in the child, the child's process id in the parent.
(Not on MS-DOS.)

fstat(fd)
Return status for file descriptorfd, like stat() .

113

getcwd()
Return a string representing the current working directory.

getegid()
Return the current process's effective group id. (Not on MS-DOS.)

geteuid()
Return the current process's effective user id. (Not on MS-DOS.)

getgid()
Return the current process's group id. (Not on MS-DOS.)

getpgrp()
Return the current process group id. (Not on MS-DOS.)

getpid()
Return the current process id. (Not on MS-DOS.)

getppid()
Return the parent's process id. (Not on MS-DOS.)

getuid()
Return the current process's user id. (Not on MS-DOS.)

kill(pid, sig)
Kill the processpid with signalsig. (Not on MS-DOS.)

link(src, dst)
Create a hard link pointing tosrcnameddst. (Not on MS-DOS.)

listdir(path)
Return a list containing the names of the entries in the directory. The list is in
arbitrary order. It does not include the special entries'.' and'..' even if
they are present in the directory.

lseek(fd, pos, how)
Set the current position of file descriptorfd to positionpos, modified byhow:
0 to set the position relative to the beginning of the file; 1 to set it relative to
the current position; 2 to set it relative to the end of the file.

lstat(path)
Like stat() , but do not follow symbolic links. (On systems without sym-
bolic links, this is identical toposix.stat .)

mkfifo(path[, mode])
Create a FIFO (a POSIX named pipe) namedpathwith numeric modemode.

114

The defaultmodeis 0666 (octal). The current umask value is first masked out
from the mode. (Not on MS-DOS.)

FIFOs are pipes that can be accessed like regular files. FIFOs exist un-
til they are deleted (for example withos.unlink). Generally, FIFOs are
used as rendez-vous between “client” and “server” type processes: the server
opens the FIFO for reading, and the client opens it for writing. Note that
mkfifo() doesn' t open the FIFO – it just creates the rendez-vous point.

mkdir(path[, mode])
Create a directory namedpathwith numeric modemode. The defaultmode
is 0777 (octal). On some systems,modeis ignored. Where it is used, the
current umask value is first masked out.

nice(increment)
Add incr to the process' “niceness”. Return the new niceness. (Not on MS-
DOS.)

open(file, flags, mode)
Open the filefileand set various flags according toflagsand possibly its mode
according tomode. Return the file descriptor for the newly opened file.

Note: this function is intended for low-level I/O. For normal usage, use
the built-in functionopen , which returns a “file object” withread() and
write() methods (and many more).

pipe()
Create a pipe. Return a pair of file descriptors(r, w) usable for reading
and writing, respectively. (Not on MS-DOS.)

plock(op)
Lock program segments into memory. The value ofop (defined in
<sys/lock.h>) determines which segments are locked. (Not on MS-
DOS.)

popen(command[, mode[, bufsize]])
Open a pipe to or fromcommand. The return value is an open file object
connected to the pipe, which can be read or written depending on whether
modeis 'r' (default) or'w' . Thebufsizeargument has the same meaning
as the corresponding argument to the built-inopen() function. (Not on
MS-DOS.)

read(fd, n)
Read at mostn bytes from file descriptorfd. Return a string containing the

115

bytes read.

Note: this function is intended for low-level I/O and must be applied to a file
descriptor as returned byposix.open() or posix.pipe() . To read a
“file object” returned by the built-in functionopen or by posix.popen
or posix.fdopen , or sys.stdin , use itsread() or readline()
methods.

readlink(path)
Return a string representing the path to which the symbolic link points. (On
systems without symbolic links, this always raisesposix.error .)

remove(path)
Remove the filepath. Seermdir below to remove a directory.

rename(src, dst)
Rename the file or directorysrc to dst.

rmdir(path)
Remove the directorypath.

setgid(gid)
Set the current process's group id. (Not on MS-DOS.)

setpgrp()
Calls the system callsetpgrp() or setpgrp(0, 0) depending on
which version is implemented (if any). See the UNIX manual for the se-
mantics. (Not on MS-DOS.)

setpgid(pid, pgrp)
Calls the system callsetpgid() . See the UNIX manual for the semantics.
(Not on MS-DOS.)

setsid()
Calls the system callsetsid() . See the UNIX manual for the semantics.
(Not on MS-DOS.)

setuid(uid)
Set the current process's user id. (Not on MS-DOS.)

stat(path)
Perform astatsystem call on the given path. The return value is a tuple of at
least 10 integers giving the most important (and portable) members of thestat
structure, in the orderst mode, st ino , st dev , st nlink , st uid ,
st gid , st size , st atime , st mtime , st ctime . More items may

116

be added at the end by some implementations. (On MS-DOS, some items are
filled with dummy values.)

Note: The standard modulestat defines functions and constants that are
useful for extracting information from a stat structure.

symlink(src, dst)
Create a symbolic link pointing tosrcnameddst. (On systems without sym-
bolic links, this always raisesposix.error .)

system(command)
Execute the command (a string) in a subshell. This is implemented by calling
the Standard C functionsystem() , and has the same limitations. Changes
to posix.environ , sys.stdin etc. are not reflected in the environment
of the executed command. The return value is the exit status of the process as
returned by Standard Csystem() .

tcgetpgrp(fd)
Return the process group associated with the terminal given byfd (an open
file descriptor as returned byposix.open()). (Not on MS-DOS.)

tcsetpgrp(fd, pg)
Set the process group associated with the terminal given byfd (an open file
descriptor as returned byposix.open()) to pg. (Not on MS-DOS.)

times()
Return a 5-tuple of floating point numbers indicating accumulated (CPU or
other) times, in seconds. The items are: user time, system time, children's
user time, children's system time, and elapsed real time since a fixed point
in the past, in that order. See the UNIX manual pagetimes(2). (Not on MS-
DOS.)

umask(mask)
Set the current numeric umask and returns the previous umask. (Not on MS-
DOS.)

uname()
Return a 5-tuple
containing information identifying the current operating system. The tuple
contains 5 strings:(sysname, nodename, release, version, machine) .
Some systems truncate the nodename to 8 characters or to the leading compo-
nent; a better way to get the hostname issocket.gethostname() . (Not
on MS-DOS, nor on older UNIX systems.)

117

unlink(path)
Remove the filepath. This is the same function asremove ; the unlink
name is its traditional UNIX name.

utime(path, (atime, mtime))
Set the access and modified time of the file to the given values. (The second
argument is a tuple of two items.)

wait()
Wait for completion of a child process, and return a tuple containing its pid
and exit status indication (encoded as by UNIX). (Not on MS-DOS.)

waitpid(pid, options)
Wait for completion of a child process given by proces id, and return a
tuple containing its pid and exit status indication (encoded as by UNIX).
The semantics of the call are affected by the value of the integer options,
which should be 0 for normal operation. (If the system does not support
waitpid() , this always raisesposix.error . Not on MS-DOS.)

write(fd, str)
Write the stringstr to file descriptorfd. Return the number of bytes actually
written.

Note: this function is intended for low-level I/O and must be applied to a file
descriptor as returned byposix.open() or posix.pipe() . To write
a “file object” returned by the built-in functionopen or by posix.popen
or posix.fdopen , or sys.stdout or sys.stderr , use itswrite()
method.

WNOHANG
The option forwaitpid() to avoid hanging if no child process status is
available immediately.

8.2 Standard Moduleposixpath

This module implements some useful functions on POSIX pathnames.

Do not import this module directly. Instead, import the moduleos and use
os.path .

basename(p)
Return the base name of pathnamep. This is the second half of the pair

118

returned byposixpath.split(p) .

commonprefix(list)
Return the longest string that is a prefix of all strings inlist. If list is empty,
return the empty string ('').

exists(p)
Return true ifp refers to an existing path.

expanduser(p)
Return the argument with an initial component of ` ' or `user' replaced
by thatuser' s home directory. An initial ` ' is replaced by the environment
variable$HOME; an initial ` user' is looked up in the password directory
through the built-in modulepwd. If the expansion fails, or if the path does
not begin with a tilde, the path is returned unchanged.

expandvars(p)
Return the argument with environment variables expanded. Substrings of
the form $̀name' or `${ name} ' are replaced by the value of environment
variablename. Malformed variable names and references to non-existing
variables are left unchanged.

isabs(p)
Return true ifp is an absolute pathname (begins with a slash).

isfile(p)
Return true ifp is an existing regular file. This follows symbolic links, so
bothislink() andisfile() can be true for the same path.

isdir(p)
Return true ifp is an existing directory. This follows symbolic links, so both
islink() andisdir() can be true for the same path.

islink(p)
Return true ifp refers to a directory entry that is a symbolic link. Always
false if symbolic links are not supported.

ismount(p)
Return true if pathnamep is a mount point: a point in a file system where
a different file system has been mounted. The function checks whetherp' s
parent, p̀/.. ' , is on a different device thanp, or whether p̀/.. ' andp point
to the same i-node on the same device — this should detect mount points for
all UNIX and POSIX variants.

119

join(p, q)
Join the pathsp andq intelligently: If q is an absolute path, the return value
is q. Otherwise, the concatenation ofp andq is returned, with a slash ('/')
inserted unlessp is empty or ends in a slash.

normcase(p)
Normalize the case of a pathname. This returns the path unchanged; however,
a similar function inmacpath converts upper case to lower case.

samefile(p, q)
Return true if both pathname arguments refer to the same file or directory (as
indicated by device number and i-node number). Raise an exception if a stat
call on either pathname fails.

split(p)
Split the pathnamep in a pair(head, tail) , wheretail is the last pathname
component andheadis everything leading up to that. Thetail part will never
contain a slash; ifp ends in a slash,tail will be empty. If there is no slash in
p, headwill be empty. If p is empty, bothheadandtail are empty. Trailing
slashes are stripped fromheadunless it is the root (one or more slashes only).
In nearly all cases,join(head, tail) equalsp (the only exception being
when there were multiple slashes separatingheadfrom tail).

splitext(p)
Split the pathnamep in a pair(root, ext) such thatroot + ext == p, and
ext is empty or begins with a period and contains at most one period.

walk(p, visit, arg)
Calls the functionvisit with arguments(arg, dirname, names) for
each directory in the directory tree rooted atp (including p itself, if
it is a directory). The argumentdirname specifies the visited direc-
tory, the argumentnames lists the files in the directory (gotten from
posix.listdir(dirname) , so including .̀ ' and .̀. '). Thevisit function
may modifynamesto influence the set of directories visited belowdirname,
e.g., to avoid visiting certain parts of the tree. (The object referred to by
namesmust be modified in place, usingdel or slice assignment.)

120

8.3 Built-in Module pwd

This module provides access to the UNIX password database. It is available on all
UNIX versions.

Password database entries are reported as 7-tuples containing the following items
from the password database (see `<pwd.h> '), in order:pw name, pw passwd ,
pw uid , pw gid , pw gecos , pw dir , pw shell . The uid and gid items are
integers, all others are strings. An exception is raised if the entry asked for cannot
be found.

It defines the following items:

getpwuid(uid)
Return the password database entry for the given numeric user ID.

getpwnam(name)
Return the password database entry for the given user name.

getpwall()
Return a list of all available password database entries, in arbitrary order.

8.4 Built-in Module grp

This module provides access to the UNIX group database. It is available on all
UNIX versions.

Group database entries are reported as 4-tuples containing the following items from
the group database (see `<grp.h> '), in order:gr name, gr passwd , gr gid ,
gr mem. The gid is an integer, name and password are strings, and the member
list is a list of strings. (Note that most users are not explicitly listed as members of
the group they are in according to the password database.) An exception is raised
if the entry asked for cannot be found.

It defines the following items:

getgrgid(gid)
Return the group database entry for the given numeric group ID.

getgrnam(name)
Return the group database entry for the given group name.

getgrall()

121

Return a list of all available group entries, in arbitrary order.

8.5 Built-in module crypt

This module implements an interface to the crypt(3) routine, which is a one-way
hash function based upon a modified DES algorithm; see the Unix man page for
further details. Possible uses include allowing Python scripts to accept typed pass-
words from the user, or attempting to crack Unix passwords with a dictionary.

crypt(word, salt)
word will usually be a user's password.salt is a 2-character string which will
be used to select one of 4096 variations of DES. The characters insalt must
be either. , / , or an alphanumeric character. Returns the hashed password as
a string, which will be composed of characters from the same alphabet as the
salt.

The module and documentation were written by Steve Majewski.

8.6 Built-in Module dbm

Thedbmmodule provides an interface to the UNIX (n)dbm library. Dbm objects
behave like mappings (dictionaries), except that keys and values are always strings.
Printing a dbm object doesn' t print the keys and values, and theitems() and
values() methods are not supported.

See also thegdbm module, which provides a similar interface using the GNU
GDBM library.

The module defines the following constant and functions:

error
Raised on dbm-specific errors, such as I/O errors.KeyError is raised for
general mapping errors like specifying an incorrect key.

open(filename, [flag, [mode]])
Open a dbm database and return a dbm object. Thefilenameargument is the
name of the database file (without the `.dir ' or .̀pag ' extensions).

The optionalflag argument can be'r' (to open an existing database for
reading only — default),'w' (to open an existing database for reading and

122

writing), 'c' (which creates the database if it doesn' t exist), or'n' (which
always creates a new empty database).

The optionalmodeargument is the UNIX mode of the file, used only when
the database has to be created. It defaults to octal0666 .

8.7 Built-in Module gdbm

This module is nearly identical to thedbm module, but uses GDBM instead. Its
interface is identical, and not repeated here.

Warning: the file formats created by gdbm and dbm are incompatible.

8.8 Built-in Module termios

This module provides an interface to the Posix calls for tty I/O control. For a
complete description of these calls, see the Posix or UNIX manual pages. It is
only available for those UNIX versions that support Posixtermios style tty I/O
control (and then only if configured at installation time).

All functions in this module take a file descriptorfd as their first argument. This
must be an integer file descriptor, such as returned bysys.stdin.fileno() .

This module should be used in conjunction with theTERMIOSmodule, which
defines the relevant symbolic constants (see the next section).

The module defines the following functions:

tcgetattr(fd)
Return a list containing the tty attributes for file descriptorfd, as follows:
[iflag, oflag, cflag, lflag, ispeed, ospeed, cc] wherecc is a list of
the tty special characters (each a string of length 1, except the items with
indicesVMIN andVTIME, which are integers when these fields are defined).
The interpretation of the flags and the speeds as well as the indexing in the
cc array must be done using the symbolic constants defined in theTERMIOS
module.

tcsetattr(fd, when, attributes)
Set the tty attributes for file descriptorfd from theattributes, which is a list
like the one returned bytcgetattr() . The whenargument determines

123

when the attributes are changed:TERMIOS.TCSANOWto change immedi-
ately,TERMIOS.TCSADRAINto change after transmitting all queued out-
put, orTERMIOS.TCSAFLUSHto change after transmitting all queued out-
put and discarding all queued input.

tcsendbreak(fd, duration)
Send a break on file descriptorfd. A zerodurationsends a break for 0.25–0.5
seconds; a nonzerodurationhas a system dependent meaning.

tcdrain(fd)
Wait until all output written to file descriptorfd has been transmitted.

tcflush(fd, queue)
Discard queued data on file descriptorfd. Thequeueselector specifies which
queue:TERMIOS.TCIFLUSH for the input queue,TERMIOS.TCOFLUSH
for the output queue, orTERMIOS.TCIOFLUSHfor both queues.

tcflow(fd, action)
Suspend or resume input or output on file descriptorfd. The action argu-
ment can beTERMIOS.TCOOFFto suspend output,TERMIOS.TCOONto
restart output,TERMIOS.TCIOFF to suspend input, orTERMIOS.TCION
to restart input.

8.8.1 Example

Here's a function that prompts for a password with echoing turned off.
Note the technique using a separatetermios.tcgetattr() call and a
try ... finally statement to ensure that the old tty attributes are restored
exactly no matter what happens:

def getpass(prompt = "Password: "):
import termios, TERMIOS, sys
fd = sys.stdin.fileno()
old = termios.tcgetattr(fd)
new = termios.tcgetattr(fd)
new[3] = new[3] & TERMIOS.ECHO # lflags
try:

termios.tcsetattr(fd, TERMIOS.TCSADRAIN, new)
passwd = raw_input(prompt)

finally:

124

termios.tcsetattr(fd, TERMIOS.TCSADRAIN, old)
return passwd

8.9 Standard ModuleTERMIOS

This module defines the symbolic constants required to use thetermios module
(see the previous section). See the Posix or UNIX manual pages (or the source) for
a list of those constants.

Note: this module resides in a system-dependent subdirectory of the Python library
directory. You may have to generate it for your particular system using the script
`Tools/scripts/h2py.py ' .

8.10 Built-in Module fcntl

This module performs file control and I/O control on file descriptors. It is an inter-
face to thefcntl() andioctl() UNIX routines. File descriptors can be obtained with
thefileno()method of a file or socket object.

The module defines the following functions:

fcntl(fd, op [, arg])
Perform the requested operation on file descriptorfd. The operation is de-
fined byop and is operating system dependent. Typically these codes can be
retrieved from the library moduleFCNTL. The argumentarg is optional, and
defaults to the integer value0. When it is present, it can either be an integer
value, or a string. With the argument missing or an integer value, the return
value of this function is the integer return value of the realfcntl() call.
When the argument is a string it represents a binary structure, e.g. created by
struct.pack() . The binary data is copied to a buffer whose address is
passed to the realfcntl() call. The return value after a successful call is
the contents of the buffer, converted to a string object. In case thefcntl()
fails, anIOError will be raised.

ioctl(fd, op, arg)
This function is identical to thefcntl() function, except that the operations
are typically defined in the library moduleIOCTL.

flock(fd, op)

125

Perform the lock operationop on file descriptorfd. See the Unix manual for
details. (On some systems, this function is emulated usingfcntl .)

lockf(fd, code, [len, [start, [whence]]])
This is a wrapper around theF SETLKandF SETLKW fcntl() calls. See
the Unix manual for details.

If the library modulesFCNTLor IOCTL are missing, you can find the opcodes in
the C include filessys/fcntl andsys/ioctl . You can create the modules
yourself with the h2py script, found in theTools/scripts directory.

Examples (all on a SVR4 compliant system):

import struct, FCNTL

file = open(...)
rv = fcntl(file.fileno(), FCNTL.O_NDELAY, 1)

lockdata = struct.pack('hhllhh', FCNTL.F_WRLCK, 0, 0, 0, 0, 0)
rv = fcntl(file.fileno(), FCNTL.F_SETLKW, lockdata)

Note that in the first example the return value variablerv will hold an integer
value; in the second example it will hold a string value. The structure lay-out for
the lockadatavariable is system dependent – therefore using theflock() call
may be better.

8.11 Standard Moduleposixfile

Note:This module will become obsolete in a future release. The locking operation
that it provides is done better and more portably by thefcntl.lockf() call.

This module implements some additional functionalityover the built-infile objects.
In particular, it implements file locking, control over the file flags, and an easy
interface to duplicate the file object. The module defines a new file object, the
posixfile object. It has all the standard file object methods and adds the methods
described below. This module only works for certain flavors of UNIX, since it uses
fcntl() for file locking.

To instantiate a posixfile object, use theopen() function in the posixfile module.
The resulting object looks and feels roughly the same as a standard file object.

126

The posixfile module defines the following constants:

SEEKSET
offset is calculated from the start of the file

SEEKCUR
offset is calculated from the current position in the file

SEEKEND
offset is calculated from the end of the file

The posixfile module defines the following functions:

open(filename[, mode[, bufsize]])
Create a new posixfile object with the given filename and mode. The
filename, modeand bufsizearguments are interpreted the same way as by
the built-inopen() function.

fileopen(fileobject)
Create a new posixfile object with the given standard file object. The resulting
object has the same filename and mode as the original file object.

The posixfile object defines the following additional methods:

lock(fmt, [len [, start [, whence]]])
Lock the specified section of the file that the file object is referring to. The
format is explained below in a table. Thelenargument specifies the length of
the section that should be locked. The default is0. startspecifies the starting
offset of the section, where the default is0. Thewhenceargument specifies
where the offset is relative to. It accepts one of the constantsSEEKSET,
SEEKCURor SEEKEND. The default isSEEKSET. For more information
about the arguments refer to the fcntl manual page on your system.

flags([flags])
Set the specified flags for the file that the file object is referring to. The new
flags are ORed with the old flags, unless specified otherwise. The format is
explained below in a table. Without theflagsargument a string indicating
the current flags is returned (this is the same as the ' ?' modifier). For more
information about the flags refer to the fcntl manual page on your system.

dup()
Duplicate the file object and the underlying file pointer and file descriptor.
The resulting object behaves as if it were newly opened.

dup2(fd)

127

Duplicate the file object and the underlying file pointer and file descriptor.
The new object will have the given file descriptor. Otherwise the resulting
object behaves as if it were newly opened.

file()
Return the standard file object that the posixfile object is based on. This is
sometimes necessary for functions that insist on a standard file object.

All methods returnIOError when the request fails.

Format characters for thelock() method have the following meaning:

Format Meaning
`u' unlock the specified region
`r ' request a read lock for the specified section
`w' request a write lock for the specified section

In addition the following modifiers can be added to the format:

Modifier Meaning Notes
`| ' wait until the lock has been granted
`?' return the first lock conflicting with the requested lock, orNone if there is no conflict. (1)

Note:

(1)
The lock returned is in the format(mode, len, start, whence, pid)
where mode is a character representing the type of lock (' r' or ' w'). This modifier
prevents a request from being granted; it is for query purposes only.

Format character for theflags() method have the following meaning:

Format Meaning
`a ' append only flag
`c ' close on exec flag
`n ' no delay flag (also called non-blocking flag)
`s ' synchronization flag

In addition the following modifiers can be added to the format:

128

Modifier Meaning Notes
`! ' turn the specified flags ' off' , instead of the default ' on' (1)
`=' replace the flags, instead of the default ' OR' operation (1)
`?' return a string in which the characters represent the flags that are set.(2)

Note:

(1) The! and= modifiers are mutually exclusive.

(2) This string represents the flags after they may have been altered by the same
call.

Examples:

from posixfile import *

file = open('/tmp/test', 'w')
file.lock('w|')
...
file.lock('u')
file.close()

8.12 Built-in Module syslog

This module provides an interface to the Unixsyslog library routines. Refer to
the UNIX manual pages for a detailed description of thesyslog facility.

The module defines the following functions:

syslog([priority,] message)
Send the stringmessageto the system logger. A trailing newline is
added if necessary. Each message is tagged with a priority composed of
a facility and a level. The optionalpriority argument, which defaults to
(LOG USER | LOGINFO) , determines the message priority.

openlog(ident, [logopt, [facility]])
Logging options other than the defaults can be set by explicitly opening the
log file with openlog() prior to callingsyslog() . The defaults are (usu-

129

ally) ident = `syslog ' , logopt= 0, facility = LOGUSER. The ident argu-
ment is a string which is prepended to every message. The optionallogopt
argument is a bit field - see below for possible values to combine. The op-
tional facility argument sets the default facility for messages which do not
have a facility explicitly encoded.

closelog()
Close the log file.

setlogmask(maskpri)
This function set the priority mask tomaskpriand returns the previous mask
value. Calls tosyslog with a priority level not set inmaskpriare ignored.
The default is to log all priorities. The functionLOGMASK(pri) calculates
the mask for the individual prioritypri. The functionLOGUPTO(pri) cal-
culates the mask for all priorities up to and includingpri.

The module defines the following constants:

Priority levels (high to low): LOGEMERG, LOGALERT, LOGCRIT, LOGERR,
LOGWARNING, LOGNOTICE, LOGINFO, LOGDEBUG.

Facilities: LOGKERN, LOGUSER, LOGMAIL , LOGDAEMON, LOGAUTH,
LOGLPR, LOGNEWS, LOGUUCP, LOGCRONand LOGLOCAL0 to
LOGLOCAL7.

Log options:
LOGPID , LOGCONS, LOGNDELAY, LOGNOWAITandLOGPERRORif
defined in s̀yslog.h ' .

130

Chapter 9

The Python Debugger

The modulepdb defines an interactive source code debugger for Python programs.
It supports setting breakpoints and single stepping at the source line level, inspec-
tion of stack frames, source code listing, and evaluation of arbitrary Python code
in the context of any stack frame. It also supports post-mortem debugging and can
be called under program control.

The debugger is extensible — it is actually defined as a classPdb. This is currently
undocumented but easily understood by reading the source. The extension interface
uses the (also undocumented) modulesbdb andcmd.

A primitive windowing version of the debugger also exists — this is modulewdb,
which requires STDWIN (see the chapter on STDWIN specific modules).

The debugger's prompt is “(Pdb) ”. Typical usage to run a program under con-
trol of the debugger is:

>>> import pdb
>>> import mymodule
>>> pdb.run('mymodule.test()')
> <string>(0)?()
(Pdb) continue
> <string>(1)?()
(Pdb) continue
NameError: 'spam'
> <string>(1)?()
(Pdb)

131

Typical usage to inspect a crashed program is:

>>> import pdb
>>> import mymodule
>>> mymodule.test()
Traceback (innermost last):

File "<stdin>", line 1, in ?
File "./mymodule.py", line 4, in test

test2()
File "./mymodule.py", line 3, in test2

print spam
NameError: spam
>>> pdb.pm()
> ./mymodule.py(3)test2()
-> print spam
(Pdb)

The module defines the following functions; each enters the debugger in a slightly
different way:

run(statement[, globals[, locals]])
Execute thestatement(given as a string) under debugger control. The debug-
ger prompt appears before any code is executed; you can set breakpoints and
typecontinue , or you can step through the statement usingstep ornext
(all these commands are explained below). The optionalglobalsand locals
arguments specify the environment in which the code is executed; by default
the dictionary of the module main is used. (See the explanation of the
exec statement or theeval() built-in function.)

runeval(expression[, globals[, locals]])
Evaluate theexpression(given as a a string) under debugger control. When
runeval() returns, it returns the value of the expression. Otherwise this
function is similar torun() .

runcall(function[, argument, ...])
Call the function(a function or method object, not a string) with the given
arguments. Whenruncall() returns, it returns whatever the function call
returned. The debugger prompt appears as soon as the function is entered.

set trace()
Enter the debugger at the calling stack frame. This is useful to hard-code a

132

breakpoint at a given point in a program, even if the code is not otherwise
being debugged (e.g. when an assertion fails).

post mortem(traceback)
Enter post-mortem debugging of the giventracebackobject.

pm()
Enter post-mortem debugging of the traceback found in
sys.last traceback .

9.1 Debugger Commands

The debugger recognizes the following commands. Most commands can be abbre-
viated to one or two letters; e.g. “h(elp) ” means that either “h” or “ help ” can
be used to enter the help command (but not “he ” or “ hel ”, nor “H” or “ Help or
“HELP”). Arguments to commands must be separated by whitespace (spaces or
tabs). Optional arguments are enclosed in square brackets (“[] ”) in the command
syntax; the square brackets must not be typed. Alternatives in the command syntax
are separated by a vertical bar (“| ”).

Entering a blank line repeats the last command entered. Exception: if the last
command was a “list ” command, the next 11 lines are listed.

Commands that the debugger doesn' t recognize are assumed to be Python state-
ments and are executed in the context of the program being debugged. Python
statements can also be prefixed with an exclamation point (“! ”). This is a pow-
erful way to inspect the program being debugged; it is even possible to change
a variable or call a function. When an exception occurs in such a statement, the
exception name is printed but the debugger's state is not changed.

h(elp) [command]

Without argument, print the list of available commands. With acommand
as argument, print help about that command. “help pdb ” displays the full
documentation file; if the environment variablePAGERis defined, the file is
piped through that command instead. Since thecommandargument must be
an identifier, “help exec ” must be entered to get help on the “! ” com-
mand.

w(here) Print a stack trace, with the most recent frame at the bottom. An arrow
indicates the current frame, which determines the context of most commands.

133

d(own) Move the current frame one level down in the stack trace (to an older
frame).

u(p) Move the current frame one level up in the stack trace (to a newer frame).

b(reak) [lineno| function]
With a linenoargument, set a break there in the current file. With afunction
argument, set a break at the entry of that function. Without argument, list all
breaks.

cl(ear) [lineno]
With a linenoargument, clear that break in the current file. Without argument,
clear all breaks (but first ask confirmation).

s(tep) Execute the current line, stop at the first possible occasion (either in a func-
tion that is called or on the next line in the current function).

n(ext) Continue execution until the next line in the current function is reached or it
returns. (The difference betweennext andstep is thatstep stops inside a
called function, whilenext executes called functions at (nearly) full speed,
only stopping at the next line in the current function.)

r(eturn) Continue execution until the current function returns.

c(ont(inue)) Continue execution, only stop when a breakpoint is encountered.

l(ist) [first [, last]]
List source code for the current file. Without arguments, list 11 lines around
the current line or continue the previous listing. With one argument, list 11
lines around at that line. With two arguments, list the given range; if the
second argument is less than the first, it is interpreted as a count.

a(rgs) Print the argument list of the current function.

p expressionEvaluate theexpressionin the current context and print its value.
(Note: print can also be used, but is not a debugger command — this
executes the Pythonprint statement.)

[! statement]
Execute the (one-line)statementin the context of the current stack frame.
The exclamation point can be omitted unless the first word of the statement
resembles a debugger command. To set a global variable, you can prefix the
assignment command with a “global ” command on the same line, e.g.:

(Pdb) global list_options; list_options = ['-l']
(Pdb)

q(uit) Quit from the debugger. The program being executed is aborted.

134

9.2 How It Works

Some changes were made to the interpreter:

� sys.settrace(func) sets the global trace function

� there can also a local trace function (see later)

Trace functions have three arguments: (frame, event, arg)

frame is the current stack frame

event is a string:'call' , 'line' , 'return' or 'exception'

arg is dependent on the event type

A trace function should return a new trace function or None. Class methods are
accepted (and most useful!) as trace methods.

The events have the following meaning:

'call' A function is called (or some other code block entered). The global
trace function is called; arg is the argument list to the function; the return
value specifies the local trace function.

'line' The interpreter is about to execute a new line of code (sometimes mul-
tiple line events on one line exist). The local trace function is called; arg in
None; the return value specifies the new local trace function.

'return' A function (or other code block) is about to return. The local trace
function is called; arg is the value that will be returned. The trace function's
return value is ignored.

'exception' An exception has occurred. The local trace function is called;
arg is a triple (exception, value, traceback); the return value specifies the new
local trace function

Note that as an exception is propagated down the chain of callers, an
'exception' event is generated at each level.

Stack frame objects have the following read-only attributes:

f code the code object being executed

f lineno the current line number (-1 for 'call' events)

135

f back the stack frame of the caller, or None

f locals dictionary containing local name bindings

f globals dictionary containing global name bindings

Code objects have the following read-only attributes:

co code the code string

co names the list of names used by the code

co consts the list of (literal) constants used by the code

co filename the filename from which the code was compiled

136

Chapter 10

The Python Profiler

Copyright c
 1994, by InfoSeek Corporation, all rights reserved.

Written by James Roskind1

Permission to use, copy, modify, and distribute this Python software and its asso-
ciated documentation for any purpose (subject to the restriction in the following
sentence) without fee is hereby granted, provided that the above copyright notice
appears in all copies, and that both that copyright notice and this permission notice
appear in supporting documentation, and that the name of InfoSeek not be used in
advertising or publicity pertaining to distribution of the software without specific,
written prior permission. This permission is explicitly restricted to the copying and
modification of the software to remain in Python, compiled Python, or other lan-
guages (such as C) wherein the modified or derived code is exclusively imported
into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH RE-
GARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INFOSEEK
CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSE-
QUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

1Updated and converted to LATEX by Guido van Rossum. The references to the old profiler are
left in the text, although it no longer exists.

137

The profiler was written after only programming in Python for 3 weeks. As a result,
it is probably clumsy code, but I don' t know for sure yet ' cause I' m a beginner :-).
I did work hard to make the code run fast, so that profiling would be a reasonable
thing to do. I tried not to repeat code fragments, but I' m sure I did some stuff
in really awkward ways at times. Please send suggestions for improvements to:
jar@netscape.com . I won' t promiseany support. ...but I'd appreciate the
feedback.

10.1 Introduction to the profiler

A profiler is a program that describes the run time performance of a program,
providing a variety of statistics. This documentation describes the profiler func-
tionality provided in the modulesprofile andpstats. This profiler provides
deterministic profilingof any Python programs. It also provides a series of report
generation tools to allow users to rapidly examine the results of a profile operation.

10.2 How Is This Profiler Different From The Old Pro-
filer?

The big changes from old profiling module are that you get more information, and
you pay less CPU time. It's not a trade-off, it's a trade-up.

To be specific:

Bugs removed: Local stack frame is no longer molested, execution time is now
charged to correct functions.

Accuracy increased: Profiler execution time is no longer charged to user's code,
calibration for platform is supported, file reads are not donebyprofilerduring
profiling (and charged to user's code!).

Speed increased:Overhead CPU cost was reduced by more than a factor of two
(perhaps a factor of five), lightweight profiler module is all that must be
loaded, and the report generating module (pstats) is not needed during
profiling.

Recursive functions support: Cumulative times in recursive functions are cor-
rectly calculated; recursive entries are counted.

138

Large growth in report generating UI: Distinct profiles runs can be added to-
gether forming a comprehensive report; functions that import statistics take
arbitrary lists of files; sorting criteria is now based on keywords (instead of 4
integer options); reports shows what functions were profiled as well as what
profile file was referenced; output format has been improved.

10.3 Instant Users Manual

This section is provided for users that “don' t want to read the manual.” It provides
a very brief overview, and allows a user to rapidly perform profiling on an existing
application.

To profile an application with a main entry point of `foo() ' , you would add the
following to your module:

import profile
profile.run("foo()")

The above action would cause `foo() ' to be run, and a series of informative lines
(the profile) to be printed. The above approach is most useful when working with
the interpreter. If you would like to save the results of a profile into a file for later
examination, you can supply a file name as the second argument to therun()
function:

import profile
profile.run("foo()", 'fooprof')

When you wish to review the profile, you should use the methods in thepstats
module. Typically you would load the statistics data as follows:

import pstats
p = pstats.Stats('fooprof')

The classStats (the above code just created an instance of this class) has a variety
of methods for manipulating and printing the data that was just read into `p' . When
you ranprofile.run() above, what was printed was the result of three method
calls:

139

p.strip_dirs().sort_stats(-1).print_stats()

The first method removed the extraneous path from all the module names. The
second method sorted all the entries according to the standard module/line/name
string that is printed (this is to comply with the semantics of the old profiler). The
third method printed out all the statistics. You might try the following sort calls:

p.sort_stats('name')
p.print_stats()

The first call will actually sort the list by function name, and the second call will
print out the statistics. The following are some interesting calls to experiment with:

p.sort_stats('cumulative').print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten
most significant lines. If you want to understand what algorithms are taking time,
the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of
time, you would do:

p.sort_stats('time').print_stats(10)

to sort according to time spent within each function, and then print the statistics for
the top ten functions.

You might also try:

p.sort_stats('file').print_stats('__init__')

This will sort all the statistics by file name, and then print out statistics for only the
class init methods (' cause they are spelled withinit in them). As one final
example, you could try:

p.sort_stats('time', 'cum').print_stats(.5, 'init')

140

This line sorts statistics with a primary key of time, and a secondary key of cumu-
lative time, and then prints out some of the statistics. To be specific, the list is first
culled down to 50% (re: `.5 ') of its original size, then only lines containinginit
are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could now (`p ' is
still sortedaccording to the last criteria) do:

p.print_callers(.5, 'init')

and you would get a list of callers for each of the listed functions.

If you want more functionality, you' re going to have to read the manual, or guess
what the following functions do:

p.print_callees()
p.add('fooprof')

10.4 What Is Deterministic Profiling?

Deterministic profilingis meant to reflect the fact that allfunction call, function
return, andexceptionevents are monitored, and precise timings are made for the
intervals between these events (during which time the user's code is executing). In
contrast,statistical profiling(which is not done by this module) randomly samples
the effective instruction pointer, and deduces where time is being spent. The latter
technique traditionally involves less overhead (as the code does not need to be
instrumented), but provides only relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the presence of in-
strumented code is not required to do deterministic profiling. Python automatically
provides ahook (optional callback) for each event. In addition, the interpreted
nature of Python tends to add so much overhead to execution, that deterministic
profiling tends to only add small processing overhead in typical applications. The
result is that deterministic profiling is not that expensive, yet provides extensive
run time statistics about the execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to
identify possible inline-expansion points (high call counts). Internal time statistics
can be used to identify “hot loops” that should be carefully optimized. Cumulative

141

time statistics should be used to identify high level errors in the selection of algo-
rithms. Note that the unusual handling of cumulative times in this profiler allows
statistics for recursive implementations of algorithms to be directly compared to
iterative implementations.

10.5 Reference Manual

The primary entry point for the profiler is the global functionprofile.run() .
It is typically used to create any profile information. The reports are formatted and
printed using methods of the classpstats.Stats . The following is a descrip-
tion of all of these standard entry points and functions. For a more in-depth view of
some of the code, consider reading the later section on Profiler Extensions, which
includes discussion of how to derive “better” profilers from the classes presented,
or reading the source code for these modules.

profile.run(string [, filename[, ...]])
This function takes a single argument that has can be passed to theexec
statement, and an optional file name. In all cases this routine attempts to
exec its first argument, and gather profiling statistics from the execution.
If no file name is present, then this function automatically prints a simple
profiling report, sorted by the standard name string (file/line/function-name)
that is presented in each line. The following is a typical output from such a
call:

main()
2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)

43/3 0.533 0.012 0.749 0.250 pobject.py:99(evaluate)
...

The first line indicates that this profile was generated by the call:
profile.run('main()') , and hence the exec' ed string is'main()' . The
second line indicates that 2706 calls were monitored. Of those calls, 2004 were
primitive. We defineprimitive to mean that the call was not induced via recursion.
The next line:Ordered by: standard name , indicates that the text string in
the far right column was used to sort the output. The column headings include:

ncalls for the number of calls,

142

tottime for the total time spent in the given function (and excluding time made in
calls to sub-functions),

percall is the quotient oftottime divided byncalls

cumtime is the total time spent in this and all subfunctions (i.e., from invocation till
exit). This figure is accurateevenfor recursive functions.

percall is the quotient ofcumtime divided by primitive calls
filename:lineno(function)provides the respective data of each function

When there are two numbers in the first column (e.g.: `43/3 '), then the latter is
the number of primitive calls, and the former is the actual number of calls. Note
that when the function does not recurse, these two values are the same, and only the
single figure is printed.

pstats.Stats(filename[, ...])
This class constructor creates an instance of a “statistics object” from a
filename(or set of filenames).Stats objects are manipulated by methods,
in order to print useful reports.
The file selected by the above constructor must have been created by the
corresponding version ofprofile . To be specific, there isNOfile compati-
bility guaranteed with future versions of this profiler, and there is no compat-
ibility with files produced by other profilers (e.g., the old system profiler).
If several files are provided, all the statistics for identical functions will be
coalesced, so that an overall view of several processes can be considered in a
single report. If additional files need to be combined with data in an existing
Stats object, theadd() method can be used.

10.5.1 TheStats Class

strip dirs()
This method for theStats class removes all leading path information from
file names. It is very useful in reducing the size of the printout to fit within
(close to) 80 columns. This method modifies the object, and the stripped in-
formation is lost. After performing a strip operation, the object is considered
to have its entries in a “random” order, as it was just after object initialization
and loading. Ifstrip dirs() causes two function names to be indistin-
guishable (i.e., they are on the same line of the same filename, and have the
same function name), then the statistics for these two entries are accumulated
into a single entry.

add(filename[, ...])
This method of theStats class accumulates additional profiling informa-

143

tion into the current profiling object. Its arguments should refer to filenames
created by the corresponding version ofprofile.run() . Statistics for
identically named (re: file, line, name) functions are automatically accumu-
lated into single function statistics.

sort stats(key[, ...])
This method modifies theStats object by sorting it according to the sup-
plied criteria. The argument is typically a string identifying the basis of a sort
(example:"time" or "name").

When more than one key is provided, then additional keys are used as sec-
ondary criteria when the there is equality in all keys selected before them. For
example, sortstats(' name' , ' file') will sort all the entries according to their
function name, and resolve all ties (identical function names) by sorting by
file name.

Abbreviations can be used for any key names, as long as the abbreviation is
unambiguous. The following are the keys currently defined:

Valid Arg Meaning
"calls" call count
"cumulative" cumulative time
"file" file name
"module" file name
"pcalls" primitive call count
"line" line number
"name" function name
"nfl" name/file/line
"stdname" standard name
"time" internal time

Note that all sorts on statistics are in descending order (placing most time
consuming items first), where as name, file, and line number searches are in
ascending order (i.e., alphabetical). The subtle distinction between"nfl"
and"stdname" is that the standard name is a sort of the name as printed,
which means that the embedded line numbers get compared in an odd way.
For example, lines 3, 20, and 40 would (if the file names were the same)
appear in the string order 20, 3 and 40. In contrast,"nfl" does a numeric
compare of the line numbers. In fact,sort stats("nfl") is the same as
sort stats("name", "file", "line") .

For compatibility with the old profiler, the numeric arguments `-1 ' , `0 ' , `1' ,
and 2̀' are permitted. They are interpreted as"stdname" , "calls" ,
"time" , and"cumulative" respectively. If this old style format (nu-

144

meric) is used, only one sort key (the numeric key) will be used, and addi-
tional arguments will be silently ignored.

reverse order()
This method for theStats class reverses the ordering of the basic list within
the object. This method is provided primarily for compatibility with the old
profiler. Its utility is questionable now that ascending vs descending order is
properly selected based on the sort key of choice.

print stats(restriction[, ...])
This method for theStats class prints out a report as described in the
profile.run() definition.

The order of the printing is based on the lastsort stats() operation done
on the object (subject to caveats inadd() andstrip dirs()) .

The arguments provided (if any) can be used to limit the list down to the sig-
nificant entries. Initially, the list is taken to be the complete set of profiled
functions. Each restriction is either an integer (to select a count of lines),
or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage
of lines), or a regular expression (to pattern match the standard name that is
printed). If several restrictions are provided, then they are applied sequen-
tially. For example:

print_stats(.1, "foo:")

would first limit the printing to first 10% of list, and then only print functions
that were part of filename `.*foo: ' . In contrast, the command:

print_stats("foo:", .1)

would limit the list to all functions having file names `.*foo: ' , and then
proceed to only print the first 10% of them.

print callers(restrictions[, ...])
This method for theStats class prints a list of all functions that called
each function in the profiled database. The ordering is identical to that pro-
vided byprint stats() , and the definition of the restricting argument
is also identical. For convenience, a number is shown in parentheses after
each caller to show how many times this specific call was made. A second
non-parenthesized number is the cumulative time spent in the function at the
right.

print callees(restrictions[, ...])
This method for theStats class prints a list of all function that were called
by the indicated function. Aside from this reversal of direction of calls (re:

145

called vs was called by), the arguments and ordering are identical to the
print callers() method.

ignore()
This method of theStats class is used to dispose of the value returned by
earlier methods. All standard methods in this class return the instance that is
being processed, so that the commands can be strung together. For example:

pstats.Stats('foofile').strip_dirs().sort_stats('cum') \
.print_stats().ignore()

would perform all the indicated functions, but it would not return the final
reference to theStats instance.2

10.6 Limitations

There are two fundamental limitations on this profiler. The first is that it relies on
the Python interpreter to dispatchcall, return, andexceptionevents. Compiled C
code does not get interpreted, and hence is “invisible” to the profiler. All time spent
in C code (including builtin functions) will be charged to the Python function that
invoked the C code. If the C code calls out to some native Python code, then those
calls will be profiled properly.

The second limitation has to do with accuracy of timing information. There is
a fundamental problem with deterministic profilers involving accuracy. The most
obvious restriction is that the underlying “clock” is only ticking at a rate (typically)
of about .001 seconds. Hence no measurements will be more accurate that that
underlying clock. If enough measurements are taken, then the “error” will tend to
average out. Unfortunately, removing this first error induces a second source of
error...

The second problem is that it “takes a while” from when an event is dispatched until
the profiler's call to get the time actuallygetsthe state of the clock. Similarly, there
is a certain lag when exiting the profiler event handler from the time that the clock's
value was obtained (and then squirreled away), until the user's code is once again
executing. As a result, functions that are called many times, or call many functions,
will typically accumulate this error. The error that accumulates in this fashion is
typically less than the accuracy of the clock (i.e., less than one clock tick), but it
can accumulate and become very significant. This profiler provides a means of

2This was once necessary, when Python would print any unused expression result that was not
None. The method is still defined for backward compatibility.

146

calibrating itself for a given platform so that this error can be probabilistically (i.e.,
on the average) removed. After the profiler is calibrated, it will be more accurate
(in a least square sense), but it will sometimes produce negative numbers (when
call counts are exceptionally low, and the gods of probability work against you :-).
) Do NOT be alarmed by negative numbers in the profile. They shouldonlyappear
if you have calibrated your profiler, and the results are actually better than without
calibration.

10.7 Calibration

The profiler class has a hard coded constant that is added to each event handling
time to compensate for the overhead of calling the time function, and socking away
the results. The following procedure can be used to obtain this constant for a given
platform (see discussion in section Limitations above).

import profile
pr = profile.Profile()
pr.calibrate(100)
pr.calibrate(100)
pr.calibrate(100)

The argument to calibrate() is the number of times to try to do the sample calls to
get the CPU times. If your computer isveryfast, you might have to do:

pr.calibrate(1000)

or even:

pr.calibrate(10000)

The object of this exercise is to get a fairly consistent result. When you have a
consistent answer, you are ready to use that number in the source code. For a Sun
Sparcstation 1000 running Solaris 2.3, the magical number is about .00053. If you
have a choice, you are better off with a smaller constant, and your results will “less
often” show up as negative in profile statistics.

The following shows how the tracedispatch() method in the Profile class should
be modified to install the calibration constant on a Sun Sparcstation 1000:

147

def trace_dispatch(self, frame, event, arg):
t = self.timer()
t = t[0] + t[1] - self.t - .00053 # Calibration constant

if self.dispatch[event](frame,t):
t = self.timer()
self.t = t[0] + t[1]

else:
r = self.timer()
self.t = r[0] + r[1] - t # put back unrecorded delta

return

Note that if there is no calibration constant, then the line containing the callibration
constant should simply say:

t = t[0] + t[1] - self.t # no calibration constant

You can also achieve the same results using a derived class (and the profiler will
actually run equally fast!!), but the above method is the simplest to use. I could
have made the profiler “self calibrating”, but it would have made the initialization
of the profiler class slower, and would have required somevery fancy coding, or
else the use of a variable where the constant `.00053 ' was placed in the code
shown. This is aVERY critical performance section, and there is no reason to use
a variable lookup at this point, when a constant can be used.

10.8 Extensions — Deriving Better Profilers

TheProfile class of moduleprofile was written so that derived classes could
be developed to extend the profiler. Rather than describing all the details of such
an effort, I' ll just present the following two examples of derived classes that can be
used to do profiling. If the reader is an avid Python programmer, then it should be
possible to use these as a model and create similar (and perchance better) profile
classes.

If all you want to do is change how the timer is called, or which timer function
is used, then the basic class has an option for that in the constructor for the class.
Consider passing the name of a function to call into the constructor:

148

pr = profile.Profile(your_time_func)

The resulting profiler will callyour time func() instead ofos.times() .
The function should return either a single number or a list of numbers (like what
os.times() returns). If the function returns a single time number, or the list of
returned numbers has length 2, then you will get an especially fast version of the
dispatch routine.

Be warned that youshouldcalibrate the profiler class for the timer function that you
choose. For most machines, a timer that returns a lone integer value will provide
the best results in terms of low overhead during profiling. (os.times isprettybad,
' cause it returns a tuple of floating point values, so all arithmetic is floating point
in the profiler!). If you want to substitute a better timer in the cleanest fashion,
you should derive a class, and simply put in the replacement dispatch method that
better handles your timer call, along with the appropriate calibration constant :-).

10.8.1 OldProfile Class

The following derived profiler simulates the old style profiler, providing errant
results on recursive functions. The reason for the usefulness of this profiler is that
it runs faster (i.e., less overhead) than the old profiler. It still creates all the caller
stats, and is quite useful when there isno recursion in the user's code. It is also a
lot more accurate than the old profiler, as it does not charge all its overhead time to
the user's code.

class OldProfile(Profile):

def trace_dispatch_exception(self, frame, t):
rt, rtt, rct, rfn, rframe, rcur = self.cur
if rcur and not rframe is frame:

return self.trace_dispatch_return(rframe, t)
return 0

def trace_dispatch_call(self, frame, t):
fn = `frame.f_code`

self.cur = (t, 0, 0, fn, frame, self.cur)
if self.timings.has_key(fn):

149

tt, ct, callers = self.timings[fn]
self.timings[fn] = tt, ct, callers

else:
self.timings[fn] = 0, 0, {}

return 1

def trace_dispatch_return(self, frame, t):
rt, rtt, rct, rfn, frame, rcur = self.cur
rtt = rtt + t
sft = rtt + rct

pt, ptt, pct, pfn, pframe, pcur = rcur
self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur

tt, ct, callers = self.timings[rfn]
if callers.has_key(pfn):

callers[pfn] = callers[pfn] + 1
else:

callers[pfn] = 1
self.timings[rfn] = tt+rtt, ct + sft, callers

return 1

def snapshot_stats(self):
self.stats = {}
for func in self.timings.keys():

tt, ct, callers = self.timings[func]
nor_func = self.func_normalize(func)
nor_callers = {}
nc = 0
for func_caller in callers.keys():

nor_callers[self.func_normalize(func_caller)]=\
callers[func_caller]

nc = nc + callers[func_caller]
self.stats[nor_func] = nc, nc, tt, ct, nor_callers

150

10.8.2 HotProfile Class

This profiler is the fastest derived profile example. It does not calculate caller-callee
relationships, and does not calculate cumulative time under a function. It only
calculates time spent in a function, so it runs very quickly (re: very low overhead).
In truth, the basic profiler is so fast, that is probably not worth the savings to give
up the data, but this class still provides a nice example.

class HotProfile(Profile):

def trace_dispatch_exception(self, frame, t):
rt, rtt, rfn, rframe, rcur = self.cur
if rcur and not rframe is frame:

return self.trace_dispatch_return(rframe, t)
return 0

def trace_dispatch_call(self, frame, t):
self.cur = (t, 0, frame, self.cur)
return 1

def trace_dispatch_return(self, frame, t):
rt, rtt, frame, rcur = self.cur

rfn = `frame.f_code`

pt, ptt, pframe, pcur = rcur
self.cur = pt, ptt+rt, pframe, pcur

if self.timings.has_key(rfn):
nc, tt = self.timings[rfn]
self.timings[rfn] = nc + 1, rt + rtt + tt

else:
self.timings[rfn] = 1, rt + rtt

return 1

def snapshot_stats(self):
self.stats = {}

151

for func in self.timings.keys():
nc, tt = self.timings[func]
nor_func = self.func_normalize(func)
self.stats[nor_func] = nc, nc, tt, 0, {}

152

Chapter 11

Internet and WWW Services

The modules described in this chapter provide various services to World-Wide Web
(WWW) clients and/or services, and a few modules related to news and email.
They are all implemented in Python. Some of these modules require the presence of
the system-dependent modulesockets , which is currently only fully supported
on Unix and Windows NT. Here is an overview:

cgi — Common Gateway Interface, used to interpret forms in server-side scripts.

urllib — Open an arbitrary object given by URL (requires sockets).

httplib — HTTP protocol client (requires sockets).

ftplib — FTP protocol client (requires sockets).

gopherlib — Gopher protocol client (requires sockets).

nntplib — NNTP protocol client (requires sockets).

urlparse — Parse a URL string into a tuple (addressing scheme identifier, network
location, path, parameters, query string, fragment identifier).

sgmllib — Only as much of an SGML parser as needed to parse HTML.

htmllib — A (slow) parser for HTML documents.

formatter — Generic output formatter and device interface.

rfc822 — Parse RFC-822 style mail headers.

mimetools — Tools for parsing MIME style message bodies.

153

11.1 Standard Modulecgi

Support module for CGI (Common Gateway Interface) scripts.

This module defines a number of utilities for use by CGI scripts written in Python.

11.1.1 Introduction

A CGI script is invoked by an HTTP server, usually to process user input submitted
through an HTML<FORM>or <ISINPUT> element.

Most often, CGI scripts live in the server's specialcgi-bin directory. The HTTP
server places all sorts of information about the request (such as the client's host-
name, the requested URL, the query string, and lots of other goodies) in the script's
shell environment, executes the script, and sends the script's output back to the
client.

The script's input is connected to the client too, and sometimes the form data is
read this way; at other times the form data is passed via the “query string” part
of the URL. This module (cgi.py) is intended to take care of the different cases
and provide a simpler interface to the Python script. It also provides a number of
utilities that help in debugging scripts, and the latest addition is support for file
uploads from a form (if your browser supports it – Grail 0.3 and Netscape 2.0 do).

The output of a CGI script should consist of two sections, separated by a blank
line. The first section contains a number of headers, telling the client what kind
of data is following. Python code to generate a minimal header section looks like
this:

print "Content-type: text/html" # HTML is following
print # blank line, end of headers

The second section is usually HTML, which allows the client software to display
nicely formatted text with header, in-line images, etc. Here's Python code that
prints a simple piece of HTML:

print "<TITLE>CGI script output</TITLE>"
print "<H1>This is my first CGI script</H1>"
print "Hello, world!"

154

(It may not be fully legal HTML according to the letter of the standard, but any
browser will understand it.)

11.1.2 Using the cgi module

Begin by writingimport cgi . Don' t usefrom cgi import * – the mod-
ule defines all sorts of names for its own use or for backward compatibility that
you don' t want in your namespace.

It's best to use theFieldStorage class. The other classes define in this module
are provided mostly for backward compatibility. Instantiate it exactly once, without
arguments. This reads the form contents from standard input or the environment
(depending on the value of various environment variables set according to the CGI
standard). Since it may consume standard input, it should be instantiated only once.

TheFieldStorage instance can be accessed as if it were a Python dictionary.
For instance, the following code (which assumes that theContent-type header
and blank line have already been printed) checks that the fieldsname andaddr
are both set to a non-empty string:

form = cgi.FieldStorage()
form_ok = 0
if form.has_key("name") and form.has_key("addr"):
if form["name"].value != "" and form["addr"].value != "":
form_ok = 1
if not form_ok:
print "<H1>Error</H1>"
print "Please fill in the name and addr fields."
return
...further form processing here...

Here the fields, accessed throughform[key] , are themselves instances of
FieldStorage (or MiniFieldStorage , depending on the form encoding).

If the submitted form data contains more than one field with the same name, the
object retrieved byform[key] is not a(Mini)FieldStorage instance but a
list of such instances. If you expect this possibility (i.e., when your HTML form
comtains multiple fields with the same name), use thetype() function to deter-
mine whether you have a single instance or a list of instances. For example, here's
code that concatenates any number of username fields, separated by commas:

155

username = form["username"]
if type(username) is type([]):
Multiple username fields specified
usernames = ""
for item in username:
if usernames:
Next item -- insert comma
usernames = usernames + "," + item.value
else:
First item -- don't insert comma
usernames = item.value
else:
Single username field specified
usernames = username.value

If a field represents an uploaded file, the value attribute reads the entire file in
memory as a string. This may not be what you want. You can test for an uploaded
file by testing either the filename attribute or the file attribute. You can then read
the data at leasure from the file attribute:

fileitem = form["userfile"]
if fileitem.file:
It's an uploaded file; count lines
linecount = 0
while 1:
line = fileitem.file.readline()
if not line: break
linecount = linecount + 1

The file upload draft standard entertains the possibility of uploading multiple files
from one field (using a recursivemultipart/* encoding). When this occurs,
the item will be a dictionary-like FieldStorage item. This can be determined by
testing its type attribute, which should have the valuemultipart/form-data
(or perhaps another string beginning withmultipart/ It this case, it can be
iterated over recursively just like the top-level form object.

When a form is submitted in the “old” format (as the query string or as a single
data part of typeapplication/x-www-form-urlencoded), the items will
actually be instances of the classMiniFieldStorage . In this case, the list, file
and filename attributes are alwaysNone.

156

11.1.3 Old classes

These classes, present in earlier versions of thecgi module, are still supported for
backward compatibility. New applications should use the FieldStorage class.

SvFormContentDict : single value form content as dictionary; assumes each
field name occurs in the form only once.

FormContentDict : multiple value form content as dictionary (the form items
are lists of values). Useful if your form contains multiple fields with the same
name.

Other classes (FormContent , InterpFormContentDict) are present for
backwards compatibility with really old applications only. If you still use these
and would be inconvenienced when they disappeared from a next version of this
module, drop me a note.

11.1.4 Functions

These are useful if you want more control, or if you want to employ some of the
algorithms implemented in this module in other circumstances.

parse(fp)
: Parse a query in the environment or from a file (defaultsys.stdin).

parse qs(qs)
: parse a query string given as a string argument (data of type
application/x-www-form-urlencoded).

parse multipart(fp, pdict)
: parse input of typemultipart/form-data (for file uploads). Argu-
ments arefp for the input file andpdict for the dictionary containing other
parameters ofcontent-type header

Returns a dictionary just likeparse qs() : keys are the field names, each
value is a list of values for that field. This is easy to use but not much
good if you are expecting megabytes to be uploaded – in that case, use
theFieldStorage class instead which is much more flexible. Note that
content-type is the raw, unparsed contents of thecontent-type
header.

Note that this does not parse nested multipart parts – useFieldStorage
for that.

157

parse header(string)
: parse a header likeContent-type into a main content-type and a dictio-
nary of parameters.

test()
: robust test CGI script, usable as main program. Writes minimal HTTP
headers and formats all information provided to the script in HTML form.

print environ()
: format the shell environment in HTML.

print form(form)
: format a form in HTML.

print directory()
: format the current directory in HTML.

print environ usage()
: print a list of useful (used by CGI) environment variables in HTML.

escape()
: convert the characters “&”, “ <” and “>” to HTML-safe sequences. Use
this if you need to display text that might contain such characters in HTML.
To translate URLs for inclusion in the HREF attribute of an<A> tag, use
urllib.quote() .

11.1.5 Caring about security

There's one important rule: if you invoke an external program (e.g. via the
os.system() or os.popen() functions), make very sure you don' t pass ar-
bitrary strings received from the client to the shell. This is a well-known security
hole whereby clever hackers anywhere on the web can exploit a gullible CGI script
to invoke arbitrary shell commands. Even parts of the URL or field names cannot
be trusted, since the request doesn' t have to come from your form!

To be on the safe side, if you must pass a string gotten from a form to a shell
command, you should make sure the string contains only alphanumeric characters,
dashes, underscores, and periods.

158

11.1.6 Installing your CGI script on a Unix system

Read the documentation for your HTTP server and check with your local system
administrator to find the directory where CGI scripts should be installed; usually
this is in a directorycgi-bin in the server tree.

Make sure that your script is readable and executable by “others”; the Unix file
mode should be 755 (usechmod 755 filename). Make sure that the first line
of the script contains#! starting in column 1 followed by the pathname of the
Python interpreter, for instance:

#!/usr/local/bin/python

Make sure the Python interpreter exists and is executable by “others”.

Make sure that any files your script needs to read or write are readable or writable,
respectively, by “others” – their mode should be 644 for readable and 666 for
writable. This is because, for security reasons, the HTTP server executes your
script as user “nobody”, without any special privileges. It can only read (write,
execute) files that everybody can read (write, execute). The current directory at
execution time is also different (it is usually the server's cgi-bin directory) and
the set of environment variables is also different from what you get at login. in
particular, don' t count on the shell's search path for executables ($PATH) or the
Python module search path ($PYTHONPATH) to be set to anything interesting.

If you need to load modules from a directory which is not on Python's default
module search path, you can change the path in your script, before importing other
modules, e.g.:

import sys
sys.path.insert(0, "/usr/home/joe/lib/python")
sys.path.insert(0, "/usr/local/lib/python")

(This way, the directory inserted last will be searched first!)

Instructions for non-Unix systems will vary; check your HTTP server's documen-
tation (it will usually have a section on CGI scripts).

159

11.1.7 Testing your CGI script

Unfortunately, a CGI script will generally not run when you try it from the com-
mand line, and a script that works perfectly from the command line may fail myste-
riously when run from the server. There's one reason why you should still test your
script from the command line: if it contains a syntax error, the python interpreter
won' t execute it at all, and the HTTP server will most likely send a cryptic error to
the client.

Assuming your script has no syntax errors, yet it does not work, you have no choice
but to read the next section:

11.1.8 Debugging CGI scripts

First of all, check for trivial installation errors – reading the section above on in-
stalling your CGI script carefully can save you a lot of time. If you wonder whether
you have understood the installation procedure correctly, try installing a copy of
this module file (cgi.py) as a CGI script. When invoked as a script, the file will
dump its environment and the contents of the form in HTML form. Give it the right
mode etc, and send it a request. If it's installed in the standardcgi-bin directory,
it should be possible to send it a request by entering a URL into your browser of
the form:

http://yourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If this gives an error of type 404, the server cannot find the script – perhaps you
need to install it in a different directory. If it gives another error (e.g. 500), there's
an installation problem that you should fix before trying to go any further. If you
get a nicely formatted listing of the environment and form content (in this example,
the fields should be listed as “addr” with value “At Home” and “name” with value
“Joe Blow”), thecgi.py script has been installed correctly. If you follow the
same procedure for your own script, you should now be able to debug it.

The next step could be to call thecgi module's test() function from your script:
replace its main code with the single statement

cgi.test()

This should produce the same results as those gotten from installing thecgi.py
file itself.

160

When an ordinary Python script raises an unhandled exception (e.g. because of
a typo in a module name, a file that can' t be opened, etc.), the Python interpreter
prints a nice traceback and exits. While the Python interpreter will still do this
when your CGI script raises an exception, most likely the traceback will end up in
one of the HTTP server's log file, or be discarded altogether.

Fortunately, once you have managed to get your script to execute *some* code,
it is easy to catch exceptions and cause a traceback to be printed. Thetest()
function below in this module is an example. Here are the rules:

1. Import the traceback module (before entering the try-except!)

2. Make sure you finish printing the headers and the blank line early

3. Assignsys.stderr to sys.stdout

4. Wrap all remaining code in a try-except statement

5. In the except clause, calltraceback.print exc()

For example:

import sys
import traceback
print "Content-type: text/html"
print
sys.stderr = sys.stdout
try:
...your code here...
except:
print "\n\n<PRE>"
traceback.print_exc()

Notes: The assignment tosys.stderr is needed because the traceback prints to
sys.stderr . Theprint " nnnn<PRE>" statement is necessary to disable the
word wrapping in HTML.

If you suspect that there may be a problem in importing the traceback module, you
can use an even more robust approach (which only uses built-in modules):

import sys
sys.stderr = sys.stdout

161

print "Content-type: text/plain"
print
...your code here...

This relies on the Python interpreter to print the traceback. The content type of
the output is set to plain text, which disables all HTML processing. If your script
works, the raw HTML will be displayed by your client. If it raises an exception,
most likely after the first two lines have been printed, a traceback will be displayed.
Because no HTML interpretation is going on, the traceback will readable.

11.1.9 Common problems and solutions

� Most HTTP servers buffer the output from CGI scripts until the script is com-
pleted. This means that it is not possible to display a progress report on the
client's display while the script is running.

� Check the installation instructions above.

� Check the HTTP server's log files. (tail -f logfile in a separate win-
dow may be useful!)

� Always check a script for syntax errors first, by doing something like
python script.py .

� When using any of the debugging techniques, don' t forget to add
import sys to the top of the script.

� When invoking external programs, make sure they can be found. Usually,
this means using absolute path names –$PATH is usually not set to a very
useful value in a CGI script.

� When reading or writing external files, make sure they can be read or written
by every user on the system.

� Don' t try to give a CGI script a set-uid mode. This doesn' t work on most
systems, and is a security liability as well.

11.2 Standard Moduleurllib

This module provides a high-level interface for fetching data across the World-
Wide Web. In particular, theurlopen function is similar to the built-in func-
tion open , but accepts URLs (Universal Resource Locators) instead of filenames.

162

Some restrictions apply — it can only open URLs for reading, and no seek opera-
tions are available.

it defines the following public functions:

urlopen(url)
Open a network object denoted by a URL for reading. If the URL does not
have a scheme identifier, or if it has `file: ' as its scheme identifier, this
opens a local file; otherwise it opens a socket to a server somewhere on the
network. If the connection cannot be made, or if the server returns an error
code, theIOError exception is raised. If all went well, a file-like object
is returned. This supports the following methods:read() , readline() ,
readlines() , fileno() , close() and info() . Except for the last
one, these methods have the same interface as for file objects — see the sec-
tion on File Objects earlier in this manual. (It's not a built-in file object, how-
ever, so it can' t be used at those few places where a true built-in file object is
required.)

The info() method returns an instance of the classrfc822.Message
containing the headers received from the server, if the protocol uses such
headers (currently the only supported protocol that uses this is HTTP). See
the description of therfc822 module.

urlretrieve(url)
Copy a network object denoted by a URL to a local file, if necessary. If
the URL points to a local file, or a valid cached copy of the object exists,
the object is not copied. Return a tuple (filename, headers) wherefilename
is the local file name under which the object can be found, andheadersis
eitherNone (for a local object) or whatever theinfo() method of the object
returned byurlopen() returned (for a remote object, possibly cached).
Exceptions are the same as forurlopen() .

urlcleanup()
Clear the cache that may have been built up by previous calls to
urlretrieve() .

quote(string [, addsafe])
Replace special characters instring using the%xx escape. Letters, digits,
and the characters “,.- ” are never quoted. The optionaladdsafeparameter
specifies additional characters that should not be quoted — its default value
is '/' .

Example:quote('/ conolly/') yields '/%7econnolly/' .

163

unquote(string)
Replace %̀xx' escapes by their single-character equivalent.

Example:unquote('/%7Econnolly/') yields '/ connolly/' .

Restrictions:

� Currently, only the following protocols are supported: HTTP, (versions 0.9
and 1.0), Gopher (but not Gopher-+), FTP, and local files.

� The caching feature ofurlretrieve() has been disabled until I find the
time to hack proper processing of Expiration time headers.

� There should be a function to query whether a particular URL is in the cache.

� For backward compatibility, if a URL appears to point to a local file but the
file can' t be opened, the URL is re-interpreted using the FTP protocol. This
can sometimes cause confusing error messages.

� The urlopen() and urlretrieve() functions can cause arbitrarily
long delays while waiting for a network connection to be set up. This means
that it is difficult to build an interactive web client using these functions with-
out using threads.

� The data returned byurlopen() or urlretrieve() is the raw data re-
turned by the server. This may be binary data (e.g. an image), plain text
or (for example) HTML. The HTTP protocol provides type information in
the reply header, which can be inspected by looking at theContent-type
header. For the Gopher protocol, type information is encoded in the URL;
there is currently no easy way to extract it. If the returned data is HTML, you
can use the modulehtmllib to parse it.

� Although theurllib module contains (undocumented) routines to parse
and unparse URL strings, the recommended interface for URL manipulation
is in moduleurlparse .

11.3 Standard Modulehttplib

This module defines a class which implements the client side of the HTTP protocol.
It is normally not used directly — the moduleurllib uses it to handle URLs that
use HTTP.

The module defines one class,HTTP. An HTTPinstance represents one transaction
with an HTTP server. It should be instantiated passing it a host and optional port

164

number. If no port number is passed, the port is extracted from the host string
if it has the formhost:port , else the default HTTP port (80) is used. If no
host is passed, no connection is made, and theconnect method should be used
to connect to a server. For example, the following calls all create instances that
connect to the server at the same host and port:

>>> h1 = httplib.HTTP('www.cwi.nl')
>>> h2 = httplib.HTTP('www.cwi.nl:80')
>>> h3 = httplib.HTTP('www.cwi.nl', 80)

Once anHTTP instance has been connected to an HTTP server, it should be used
as follows:

1. Make exactly one call to theputrequest() method.

2. Make zero or more calls to theputheader() method.

3. Call theendheaders() method (this can be omitted if step 4 makes no
calls).

4. Optional calls to thesend() method.

5. Call thegetreply() method.

6. Call thegetfile() method and read the data off the file object that it
returns.

11.3.1 HTTP Objects

HTTPinstances have the following methods:

set debuglevel(level)
Set the debugging level (the amount of debugging output printed). The de-
fault debug level is0, meaning no debugging output is printed.

connect(host[, port])
Connect to the server given byhostandport. See the intro for the default port.
This should be called directly only if the instance was instantiated without
passing a host.

send(data)
Send data to the server. This should be used directly only after the
endheaders() method has been called and beforegetreply() has
been called.

165

putrequest(request, selector)
This should be the first call after the connection to the server has been made.
It sends a line to the server consisting of therequeststring, theselectorstring,
and the HTTP version (HTTP/1.0).

putheader(header, argument[, ...])
Send an RFC-822 style header to the server. It sends a line to the server
consisting of the header, a colon and a space, and the first argument. If more
arguments are given, continuation lines are sent, each consisting of a tab and
an argument.

endheaders()
Send a blank line to the server, signalling the end of the headers.

getreply()
Complete the request by shutting down the sending end of the socket, read
the reply from the server, and return a triple (replycode, message, headers).
Here replycodeis the integer reply code from the request (e.g.200 if the
request was handled properly);messageis the message string corresponding
to the reply code; andheaderis an instance of the classrfc822.Message
containing the headers received from the server. See the description of the
rfc822 module.

getfile()
Return a file object from which the data returned by the server can be read,
using theread() , readline() or readlines() methods.

11.3.2 Example

Here is an example session:

>>> import httplib
>>> h = httplib.HTTP('www.cwi.nl')
>>> h.putrequest('GET', '/index.html')
>>> h.putheader('Accept', 'text/html')
>>> h.putheader('Accept', 'text/plain')
>>> h.endheaders()
>>> errcode, errmsg, headers = h.getreply()
>>> print errcode # Should be 200
>>> f = h.getfile()

166

>>> data f.read() # Get the raw HTML
>>> f.close()
>>>

11.4 Standard Moduleftplib

This module defines the classFTP and a few related items. TheFTP class im-
plements the client side of the FTP protocol. You can use this to write Python
programs that perform a variety of automated FTP jobs, such as mirroring other ftp
servers. It is also used by the moduleurllib to handle URLs that use FTP. For
more information on FTP (File Transfer Protocol), see Internet RFC 959.

Here's a sample session using theftplib module:

>>> from ftplib import FTP
>>> ftp = FTP('ftp.cwi.nl') # connect to host, default port
>>> ftp.login() # user anonymous, passwd user@hostname
>>> ftp.retrlines('LIST') # list directory contents
total 24418
drwxrwsr-x 5 ftp-usr pdmaint 1536 Mar 20 09:48 .
dr-xr-srwt 105 ftp-usr pdmaint 1536 Mar 21 14:32 ..
-rw-r--r-- 1 ftp-usr pdmaint 5305 Mar 20 09:48 INDEX

.

.

.
>>> ftp.quit()

The module defines the following items:

FTP([host[, user, passwd, acct]])
Return a new instance of theFTP class. Whenhostis given, the method call
connect(host) is made. Whenuser is given, additionally the method call
login(user, passwd, acct) is made (wherepasswdandacct default to
the empty string when not given).

all errors
The set of all exceptions (as a tuple) that methods ofFTP instances may raise
as a result of problems with the FTP connection (as opposed to programming

167

errors made by the caller). This set includes the four exceptions listed below
as well assocket.error andIOError .

error reply
Exception raised when an unexpected reply is received from the server.

error temp
Exception raised when an error code in the range 400–499 is received.

error perm
Exception raised when an error code in the range 500–599 is received.

error proto
Exception raised when a reply is received from the server that does not begin
with a digit in the range 1–5.

11.4.1 FTP Objects

FTP instances have the following methods:

set debuglevel(level)
Set the instance's debugging level. This controls the amount of debugging
output printed. The default, 0, produces no debugging output. A value of 1
produces a moderate amount of debugging output, generally a single line per
request. A value of 2 or higher produces the maximum amount of debugging
output, logging each line sent and received on the control connection.

connect(host[, port])
Connect to the given host and port. The default port number is 21, as specified
by the FTP protocol specification. It is rarely needed to specify a different
port number. This function should be called only once for each instance; it
should not be called at all if a host was given when the instance was created.
All other methods can only be used after a connection has been made.

getwelcome()
Return the welcome message sent by the server in reply to the initial connec-
tion. (This message sometimes contains disclaimers or help information that
may be relevant to the user.)

login([user[, passwd[, acct]]])
Log in as the givenuser. The passwdand acct parameters are op-
tional and default to the empty string. If nouser is specified, it de-
faults to ànonymous ' . If user is anonymous , the defaultpasswdis

168

`realuser@host' where realuser is the real user name (glanced from the
`LOGNAME' or `USER' environment variable) andhostis the hostname as re-
turned bysocket.gethostname() . This function should be called only
once for each instance, after a connection has been established; it should not
be called at all if a host and user were given when the instance was created.
Most FTP commands are only allowed after the client has logged in.

abort()
Abort a file transfer that is in progress. Using this does not always work, but
it's worth a try.

sendcmd(command)
Send a simple command string to the server and return the response string.

voidcmd(command)
Send a simple command string to the server and handle the response. Re-
turn nothing if a response code in the range 200–299 is received. Raise an
exception otherwise.

retrbinary(command, callback, maxblocksize)
Retrieve a file in binary transfer mode.commandshould be an appropriate
`RETR' command, i.e."RETR filename" . Thecallback function is called
for each block of data received, with a single string argument giving the data
block. Themaxblocksizeargument specifies the maximum block size (which
may not be the actual size of the data blocks passed tocallback).

retrlines(command[, callback])
Retrieve a file or directory listing inASCII transfer mode. varcommand
should be an appropriate `RETR' command (seeretrbinary() or a
`LIST ' command (usually just the string"LIST"). Thecallbackfunction
is called for each line, with the trailing CRLF stripped. The defaultcallback
prints the line tosys.stdout .

storbinary(command, file, blocksize)
Store a file in binary transfer mode.commandshould be an appropriate
`STOR' command, i.e."STOR filename" . file is an open file object which
is read until EOF using itsread() method in blocks of sizeblocksizeto
provide the data to be stored.

storlines(command, file)
Store a file inASCII transfer mode. commandshould be an appropriate
`STOR' command (seestorbinary()). Lines are read until EOF from
the open file objectfile using itsreadline() method to privide the data to

169

be stored.

nlst(argument[, . . .])
Return a list of files as returned by the `NLST' command. The optional varar-
gument is a directory to list (default is the current server directory). Multiple
arguments can be used to pass non-standard options to the `NLST' command.

dir(argument[, . . .])
Return a directory listing as returned by the `LIST ' command, as a list of
lines. The optional varargument is a directory to list (default is the current
server directory). Multiple arguments can be used to pass non-standard op-
tions to the L̀IST ' command. If the last argument is a function, it is used as
a callbackfunction as forretrlines() .

rename(fromname, toname)
Rename filefromnameon the server totoname.

cwd(pathname)
Set the current directory on the server.

mkd(pathname)
Create a new directory on the server.

pwd()
Return the pathname of the current directory on the server.

quit()
Send a Q̀UIT' command to the server and close the connection. This is the
“polite” way to close a connection, but it may raise an exception of the server
reponds with an error to theQUIT command.

close()
Close the connection unilaterally. This should not be applied to an already
closed connection (e.g. after a successful call toquit() .

11.5 Standard Modulegopherlib

This module provides a minimal implementation of client side of the the Gopher
protocol. It is used by the moduleurllib to handle URLs that use the Gopher
protocol.

The module defines the following functions:

170

send selector(selector, host[, port])
Send aselectorstring to the gopher server athostandport (default 70). Re-
turn an open file object from which the returned document can be read.

send query(selector, query, host[, port])
Send aselectorstring and aquerystring to a gopher server athostandport
(default 70). Return an open file object from which the returned document
can be read.

Note that the data returned by the Gopher server can be of any type, depending
on the first character of the selector string. If the data is text (first character of the
selector is 0̀'), lines are terminated by CRLF, and the data is terminated by a line
consisting of a single `. ' , and a leading `. ' should be stripped from lines that begin
with `.. ' . Directory listings (first charactger of the selector is `1') are transferred
using the same protocol.

11.6 Standard Modulenntplib

This module defines the classNNTPwhich implements the client side of the NNTP
protocol. It can be used to implement a news reader or poster, or automated news
processors. For more information on NNTP (Network News Transfer Protocol),
see Internet RFC 977.

Here are two small examples of how it can be used. To list some statistics about a
newsgroup and print the subjects of the last 10 articles:

>>> s = NNTP('news.cwi.nl')
>>> resp, count, first, last, name = s.group('comp.lang.python')
>>> print 'Group', name, 'has', count, 'articles, range', first, 'to', last
Group comp.lang.python has 59 articles, range 3742 to 3803
>>> resp, subs = s.xhdr('subject', first + '-' + last)
>>> for id, sub in subs[-10:]: print id, sub
...
3792 Re: Removing elements from a list while iterating...
3793 Re: Who likes Info files?
3794 Emacs and doc strings
3795 a few questions about the Mac implementation
3796 Re: executable python scripts
3797 Re: executable python scripts
3798 Re: a few questions about the Mac implementation
3799 Re: PROPOSAL: A Generic Python Object Interface for Python C Modules

171

3802 Re: executable python scripts
3803 Re: POSIX wait and SIGCHLD
>>> s.quit()
'205 news.cwi.nl closing connection. Goodbye.'
>>>

To post an article from a file (this assumes that the article has valid headers):

>>> s = NNTP('news.cwi.nl')
>>> f = open('/tmp/article')
>>> s.post(f)
'240 Article posted successfully.'
>>> s.quit()
'205 news.cwi.nl closing connection. Goodbye.'
>>>

The module itself defines the following items:

NNTP(host[, port])
Return a new instance of theNNTPclass, representing a connection to the NNTP
server running on hosthost, listening at portport. The defaultport is 119.

error reply
Exception raised when an unexpected reply is received from the server.

error temp
Exception raised when an error code in the range 400–499 is received.

error perm
Exception raised when an error code in the range 500–599 is received.

error proto
Exception raised when a reply is received from the server that does not begin with a
digit in the range 1–5.

11.6.1 NNTP Objects

NNTP instances have the following methods. Theresponsethat is returned as the first item
in the return tuple of almost all methods is the server's response: a string beginning with
a three-digit code. If the server's response indicates an error, the method raises one of the
above exceptions.

getwelcome()
Return the welcome message sent by the server in reply to the initial connection.
(This message sometimes contains disclaimers or help information that may be rele-
vant to the user.)

172

set debuglevel(level)
Set the instance's debugging level. This controls the amount of debugging output
printed. The default, 0, produces no debugging output. A value of 1 produces a mod-
erate amount of debugging output, generally a single line per request or response. A
value of 2 or higher produces the maximum amount of debugging output, logging
each line sent and received on the connection (including message text).

newgroups(date, time)
Send a ǸEWGROUPS' command. Thedateargument should be a string of the form
" yymmdd" indicating the date, andtimeshould be a string of the form" hhmmss"
indicating the time. Return a pair(response, groups) wheregroupsis a list of
group names that are new since the given date and time.

newnews(group, date, time)
Send a ǸEWNEWS' command. Here,group is a group name or"*" , and
date and time have the same meaning as fornewgroups() . Return a pair
(response, articles) wherearticlesis a list of article ids.

list()
Send a L̀IST ' command. Return a pair(response, list) where list is a list of
tuples. Each tuple has the form(group, last, first, flag) , wheregroupis a group
name,last andfirst are the last and first article numbers (as strings), andflag is 'y'
if posting is allowed,'n' if not, and'm' if the newsgroup is moderated. (Note the
ordering:last, first.)

group(name)
Send a G̀ROUP' command, wherename is the group name. Return a tuple
(response, count, first, last, name) wherecountis the (estimated) number of
articles in the group,first is the first article number in the group,last is the last arti-
cle number in the group, andnameis the group name. The numbers are returned as
strings.

help()
Send a H̀ELP' command. Return a pair(response, list) wherelist is a list of help
strings.

stat(id)
Send a S̀TAT' command, whereid is the message id (enclosed in `<' and >̀') or
an article number (as a string). Return a triple(varresponse, number, id)
wherenumberis the article number (as a string) andid is the article id (enclosed in
`<' and >̀').

next()
Send a ǸEXT' command. Return as forstat() .

last()
Send a L̀AST' command. Return as forstat() .

173

head(id)
Send a H̀EAD' command, whereid has the same meaning as forstat() . Return
a pair(response, list) wherelist is a list of the article's headers (an uninterpreted
list of lines, without trailing newlines).

body(id)
Send a B̀ODY' command, whereid has the same meaning as forstat() . Return a
pair (response, list) wherelist is a list of the article's body text (an uninterpreted
list of lines, without trailing newlines).

article(id)
Send a ÀRTICLE' command, whereid has the same meaning as forstat() . Re-
turn a pair(response, list) wherelist is a list of the article's header and body text
(an uninterpreted list of lines, without trailing newlines).

slave()
Send a S̀LAVE' command. Return the server'sresponse.

xhdr(header, string)
Send anX̀HDR' command. This command is not defined in the RFC but is a common
extension. Theheaderargument is a header keyword, e.g."subject" . Thestring
argument should have the form" first- last" wherefirst andlast are the first and last
article numbers to search. Return a pair(response, list) , wherelist is a list of pairs
(id, text) , whereid is an article id (as a string) andtext is the text of the requested
header for that article.

post(file)
Post an article using the `POST' command. Thefile argument is an open file object
which is read until EOF using itsreadline() method. It should be a well-formed
news article, including the required headers. Thepost() method automatically
escapes lines beginning with `. ' .

ihave(id, file)
Send an ÌHAVE' command. If the response is not an error, treatfile exactly as for
thepost() method.

quit()
Send a Q̀UIT' command and close the connection. Once this method has been
called, no other methods of the NNTP object should be called.

11.7 Standard Moduleurlparse

This module defines a standard interface to break URL strings up in components (addessing
scheme, network location, path etc.), to combine the components back into a URL string,
and to convert a “relative URL” to an absolute URL given a “base URL”.

174

The module has been designed to match the current Internet draft on Relative Uniform
Resource Locators (and discovered a bug in an earlier draft!).

It defines the following functions:

urlparse(urlstring [, defaultscheme[, allow fragments]])
Parse a URL into 6 components, returning a 6-tuple: (addressing scheme, network lo-
cation, path, parameters, query, fragment identifier). This corresponds to the general
structure of a URL:scheme:// netloc/ path; parameters?query#fragment. Each tu-
ple item is a string, possibly empty. The components are not broken up in smaller
parts (e.g. the network location is a single string), and % escapes are not expanded.
The delimiters as shown above are not part of the tuple items, except for a leading
slash in thepathcomponent, which is retained if present.
Example:
urlparse('http://www.cwi.nl:80/%7Eguido/Python.html')

yields the tuple
('http', 'www.cwi.nl:80', '/%7Eguido/Python.html', '', '', '')

If the defaultschemeargument is specified, it gives the default addressing scheme,
to be used only if the URL string does not specify one. The default value for this
argument is the empty string.
If the allow fragmentsargument is zero, fragment identifiers are not allowed, even
if the URL's addressing scheme normally does support them. The default value for
this argument is1.

urlunparse(tuple)
Construct a URL string from a tuple as returned byurlparse . This may result in
a slightly different, but equivalent URL, if the URL that was parsed originally had
redundant delimiters, e.g. a ? with an empty query (the draft states that these are
equivalent).

urljoin(base, url [, allow fragments])
Construct a full (“absolute”) URL by combining a “base URL” (base) with a “relative
URL” (url). Informally, this uses components of the base URL, in particular the
addressing scheme, the network location and (part of) the path, to provide missing
components in the relative URL.
Example:
urljoin('http://www.cwi.nl/%7Eguido/Python.html', 'FAQ.html')

yields the string
'http://www.cwi.nl/%7Eguido/FAQ.html'

Theallow fragmentsargument has the same meaning as forurlparse .

175

11.8 Standard Modulesgmllib

This module defines a classSGMLParser which serves as the basis for parsing text files
formatted in SGML (Standard Generalized Mark-up Language). In fact, it does not provide
a full SGML parser — it only parses SGML insofar as it is used by HTML, and the module
only exists as a base for thehtmllib module.

In particular, the parser is hardcoded to recognize the following constructs:

� Opening and closing tags of the form “<tag attr=" value" ...> ” and “</ tag>”,
respectively.

� Numeric character references of the form “&#name; ”.

� Entity references of the form “&name; ”.

� SGML comments of the form “<!-- text--> ”. Note that spaces, tabs, and newlines
are allowed between the trailing “>” and the immediately preceeding “-- ”.

The SGMLParser class must be instantiated without arguments. It has the following
interface methods:

reset()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantia-
tion time.

setnomoretags()
Stop processing tags. Treat all following input as literal input (CDATA). (This is
only provided so the HTML tag<PLAINTEXT> can be implemented.)

setliteral()
Enter literal mode (CDATA mode).

feed(data)
Feed some text to the parser. It is processed insofar as it consists of complete ele-
ments; incomplete data is buffered until more data is fed orclose() is called.

close()
Force processing of all buffered data as if it were followed by an end-of-file
mark. This method may be redefined by a derived class to define additional
processing at the end of the input, but the redefined version should always call
SGMLParser.close() .

handle starttag(tag, method, attributes)
This method is called to handle start tags for which either astart tag() or
do tag() method has been defined. Thetag argument is the name of the tag
converted to lower case, and themethod argument is the bound method which
should be used to support semantic interpretation of the start tag. Theattributes
argument is a list of (name, value) pairs containing the attributes found inside

176

the tag's<> brackets. Thenamehas been translated to lower case and dou-
ble quotes and backslashes in thevalue have been interpreted. For instance, for
the tag , this method would be called as
unknown starttag('a', [('href', 'http://www.cwi.nl/')]) .
The base implementation simply callsmethod with attributes as the only ar-
gument.

handle endtag(tag, method)
This method is called to handle endtags for which anend tag() method has been
defined. Thetag argument is the name of the tag converted to lower case, and the
method argument is the bound method which should be used to support semantic
interpretation of the end tag. If noend tag() method is defined for the closing
element, this handler is not called. The base implementation simply callsmethod .

handle data(data)
This method is called to process arbitrary data. It is intended to be overridden by a
derived class; the base class implementation does nothing.

handle charref(ref)
This method is called to process a character reference of the form “&#ref ; ”. In the
base implementation,ref must be a decimal number in the range 0-255. It translates
the character toASCII and calls the methodhandle data() with the character as
argument. Ifref is invalid or out of range, the methodunknown charref(ref) is
called to handle the error. A subclass must override this method to provide support
for named character entities.

handle entityref(ref)
This method is called to process a general entity reference of the form “&ref ; ” where
ref is an general entity reference. It looks forref in the instance (or class) vari-
ableentitydefs which should be a mapping from entity names to corresponding
translations. If a translation is found, it calls the methodhandle data() with
the translation; otherwise, it calls the methodunknown entityref(ref) . The
defaultentitydefs defines translations for& , &apos , > , < , and
" .

handle comment(comment)
This method is called when a comment is encountered. Thecomment argument is
a string containing the text between the “<!-- ” and “--> ” delimiters, but not the
delimiters themselves. For example, the comment “<!--text--> ” will cause this
method to be called with the argument'text' . The default method does nothing.

report unbalanced(tag)
This method is called when an end tag is found which does not correspond to any
open element.

unknown starttag(tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden

177

by a derived class; the base class implementation does nothing.

unknown endtag(tag)
This method is called to process an unknown end tag. It is intended to be overridden
by a derived class; the base class implementation does nothing.

unknown charref(ref)
This method is called to process unresolvable numeric character references. It is
intended to be overridden by a derived class; the base class implementation does
nothing.

unknown entityref(ref)
This method is called to process an unknown entity reference. It is intended to be
overridden by a derived class; the base class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may also
define methods of the following form to define processing of specific tags. Tag names in
the input stream are case independent; thetagoccurring in method names must be in lower
case:

start tag(attributes)
This method is called to process an opening tagtag. It has preference over
do tag() . The attributes argument has the same meaning as described for
handle starttag() above.

do tag(attributes)
This method is called to process an opening tagtagthat does not come with a match-
ing closing tag. Theattributesargument has the same meaning as described for
handle starttag() above.

end tag()
This method is called to process a closing tagtag.

Note that the parser maintains a stack of open elements for which no end tag has been
found yet. Only tags processed bystart tag() are pushed on this stack. Definition of
an end tag() method is optional for these tags. For tags processed bydo tag() or by
unknown tag() , noend tag() method must be defined; if defined, it will not be used.
If both start tag() anddo tag() methods exist for a tag, thestart tag() method
takes precedence.

11.9 Standard Modulehtmllib

This module defines a class which can serve as a base for parsing text files formatted
in the HyperText Mark-up Language (HTML). The class is not directly concerned with
I/O — it must be provided with input in string form via a method, and makes calls to
methods of a “formatter” object in order to produce output. TheHTMLParser class is

178

designed to be used as a base class for other classes in order to add functionality, and allows
most of its methods to be extended or overridden. In turn, this class is derived from and
extends theSGMLParser class defined in modulesgmllib . Two implementations of
formatter objects are provided in theformatter module; refer to the documentation for
that module for information on the formatter interface.

The following is a summary of the interface defined bysgmllib.SGMLParser :

� The interface to feed data to an instance is through thefeed() method, which takes
a string argument. This can be called with as little or as much text at a time as desired;
p.feed(a); p.feed(b) has the same effect asp.feed(a+b) . When the
data contains complete HTML tags, these are processed immediately; incomplete
elements are saved in a buffer. To force processing of all unprocessed data, call the
close() method.
For example, to parse the entire contents of a file, use:

parser.feed(open('myfile.html').read())
parser.close()

� The interface to define semantics for HTML tags is very simple: derive a class and
define methods calledstart tag() , end tag() , ordo tag() . The parser will call
these at appropriate moments:start tag or do tag is called when an opening tag
of the form<tag ...> is encountered;end tag is called when a closing tag of
the form<tag> is encountered. If an opening tag requires a corresponding closing
tag, like<H1> ... </H1> , the class should define thestart tag method; if a tag
requires no closing tag, like<P>, the class should define thedo tagmethod.

The module defines a single class:

HTMLParser(formatter)
This is the basic HTML parser class. It supports all entity names required by the
HTML 2.0 specification (RFC 1866). It also defines handlers for all HTML 2.0 and
many HTML 3.0 and 3.2 elements.

In addition to tag methods, theHTMLParser class provides some additional methods and
instance variables for use within tag methods.

formatter
This is the formatter instance associated with the parser.

nofill
Boolean flag which should be true when whitespace should not be collapsed, or false
when it should be. In general, this should only be true when character data is to
be treated as “preformatted” text, as within a<PRE>element. The default value is
false. This affects the operation ofhandle data() andsave end() .

anchor bgn(href, name, type)
This method is called at the start of an anchor region. The arguments correspond

179

to the attributes of the<A> tag with the same names. The default implementation
maintains a list of hyperlinks (defined by thehref argument) within the document.
The list of hyperlinks is available as the data attributeanchorlist .

anchor end()
This method is called at the end of an anchor region. The default implementation
adds a textual footnote marker using an index into the list of hyperlinks created by
anchor bgn() .

handle image(source, alt [, ismap[, align [, width[, height]]]])
This method is called to handle images. The default implementation simply passes
thealt value to thehandle data() method.

save bgn()
Begins saving character data in a buffer instead of sending it to the formatter object.
Retrieve the stored data viasave end() Use of thesave bgn() / save end()
pair may not be nested.

save end()
Ends buffering character data and returns all data saved since the preceeding call to
save bgn() . If nofill flag is false, whitespace is collapsed to single spaces.
A call to this method without a preceeding call tosave bgn() will raise a
TypeError exception.

11.10 Standard Moduleformatter

This module supports two interface definitions,each with mulitple implementations. The
formatterinterface is used by theHTMLParser class of thehtmllib module, and the
writer interface is required by the formatter interface.

Formatter objects transform an abstract flow of formatting events into specific output events
on writer objects. Formatters manage several stack structures to allow various properties
of a writer object to be changed and restored; writers need not be able to handle relative
changes nor any sort of “change back” operation. Specific writer properties which may
be controlled via formatter objects are horizontal alignment, font, and left margin inden-
tations. A mechanism is provided which supports providing arbitrary, non-exclusive style
settings to a writer as well. Additional interfaces facilitate formatting events which are not
reversible, such as paragraph separation.

Writer objects encapsulate device interfaces. Abstract devices, such as file formats, are
supported as well as physical devices. The provided implementations all work with ab-
stract devices. The interface makes available mechanisms for setting the properties which
formatter objects manage and inserting data into the output.

180

11.10.1 The Formatter Interface

Interfaces to create formatters are dependent on the specific formatter class being instanti-
ated. The interfaces described below are the required interfaces which all formatters must
support once initialized.

One data element is defined at the module level:

AS IS
Value which can be used in the font specification passed to thepush font()
method described below, or as the new value to any otherpush property() method.
Pushing theAS IS value allows the correspondingpop property() method to be
called without having to track whether the property was changed.

The following attributes are defined for formatter instance objects:

writer
The writer instance with which the formatter interacts.

end paragraph(blanklines)
Close any open paragraphs and insert at leastblanklines before the next para-
graph.

add line break()
Add a hard line break if one does not already exist. This does not break the logical
paragraph.

add hor rule(*args, **kw)
Insert a horizontal rule in the output. A hard break is inserted if there is data in
the current paragraph, but the logical paragraph is not broken. The arguments and
keywords are passed on to the writer'ssend line break() method.

add flowing data(data)
Provide data which should be formatted with collapsed whitespaces. Whitespace
from preceeding and successive calls toadd flowing data() is considered as
well when the whitespace collapse is performed. The data which is passed to this
method is expected to be word-wrapped by the output device. Note that any word-
wrapping still must be performed by the writer object due to the need to rely on
device and font information.

add literal data(data)
Provide data which should be passed to the writer unchanged. Whitespace, including
newline and tab characters, are considered legal in the value ofdata .

add label data(format, counter)
Insert a label which should be placed to the left of the current left margin. This
should be used for constructing bulleted or numbered lists. If theformat value is
a string, it is interpreted as a format specification forcounter , which should be
an integer. The result of this formatting becomes the value of the label; ifformat

181

is not a string it is used as the label value directly. The label value is passed as
the only argument to the writer'ssend label data() method. Interpretation of
non-string label values is dependent on the associated writer.
Format specifications are strings which, in combination with a counter value, are
used to compute label values. Each character in the format string is copied to the
label value, with some characters recognized to indicate a transform on the counter
value. Specifically, the character “1” represents the counter value formatter as an
arabic number, the characters “A” and “a” represent alphabetic representations of the
counter value in upper and lower case, respectively, and “I ” and “i ” represent the
counter value in Roman numerals, in upper and lower case. Note that the alphabetic
and roman transforms require that the counter value be greater than zero.

flush softspace()
Send any pending whitespace buffered from a previous call
to add flowing data() to the associated writer object. This should be called
before any direct manipulation of the writer object.

push alignment(align)
Push a new alignment setting onto the alignment stack. This may beAS IS if no
change is desired. If the alignment value is changed from the previous setting, the
writer'snew alignment() method is called with thealign value.

pop alignment()
Restore the previous alignment.

push font((size, italic, bold, teletype))
Change some or all font properties of the writer object. Properties which are not set
to AS IS are set to the values passed in while others are maintained at their current
settings. The writer'snew font() method is called with the fully resolved font
specification.

pop font()
Restore the previous font.

push margin(margin)
Increase the number of left margin indentations by one, associating the logical tag
margin with the new indentation. The initial margin level is0. Changed values of
the logical tag must be true values; false values other thanAS IS are not sufficient
to change the margin.

pop margin()
Restore the previous margin.

push style(*styles)
Push any number of arbitrary style specifications. All styles are pushed onto the
styles stack in order. A tuple representing the entire stack, includingAS IS values,
is passed to the writer'snew styles() method.

182

pop style([n = 1])
Pop the lastn style specifications passed topush style() . A tuple representing
the revised stack, includingAS IS values, is passed to the writer'snew styles()
method.

set spacing(spacing)
Set the spacing style for the writer.

assert line data([flag = 1])
Inform the formatter that data has been added to the current paragraph out-of-band.
This should be used when the writer has been manipulated directly. The optional
flag argument can be set to false if the writer manipulations produced a hard line
break at the end of the output.

11.10.2 Formatter Implementations

Two implementations of formatter objects are provided by this module. Most applications
may use one of these classes without modification or subclassing.

NullFormatter([writer = None])
A formatter which does nothing. Ifwriter is omitted, aNullWriter instance
is created. No methods of the writer are called byNullWriter instances. Imple-
mentations should inherit from this class if implementing a writer interface but don' t
need to inherit any implementation.

AbstractFormatter(writer)
The standard formatter. This implementation has demonstrated wide applicability to
many writers, and may be used directly in most circumstances. It has been used to
implement a full-featured world-wide web browser.

11.10.3 The Writer Interface

Interfaces to create writers are dependent on the specific writer class being instantiated.
The interfaces described below are the required interfaces which all writers must support
once initialized. Note that while most applications can use theAbstractFormatter
class as a formatter, the writer must typically be provided by the application.

new alignment(align)
Set the alignment style. Thealign value can be any object, but by convention is a
string orNone, whereNone indicates that the writer's “preferred” alignment should
be used. Conventionalalign values are'left' , 'center' , 'right' , and
'justify' .

new font(font)
Set the font style. The value offont will be None, indicating that the device's

183

default font should be used, or a tuple of the form (size, italic, bold, teletype). Size
will be a string indicating the size of font that should be used; specific strings and
their interpretation must be defined by the application. Theitalic, bold, andteletype
values are boolean indicators specifying which of those font attributes should be
used.

new margin(margin, level)
Set the margin level to the integerlevel and the logical tag tomargin . Interpre-
tation of the logical tag is at the writer's discretion; the only restriction on the value
of the logical tag is that it not be a false value for non-zero values oflevel .

new spacing(spacing)
Set the spacing style tospacing .

new styles(styles)
Set additional styles. Thestyles value is a tuple of arbitrary values; the value
AS IS should be ignored. Thestyles tuple may be interpreted either as a set or as
a stack depending on the requirements of the application and writer implementation.

send line break()
Break the current line.

send paragraph(blankline)
Produce a paragraph separation of at leastblankline blank lines, or the equive-
lent. Theblankline value will be an integer.

send hor rule(*args, **kw)
Display a horizontal rule on the output device. The arguments to this method are
entirely application- and writer-specific, and should be interpreted with care. The
method implementation may assume that a line break has already been issued via
send line break() .

send flowing data(data)
Output character data which may be word-wrapped and re-flowed as needed. Within
any sequence of calls to this method, the writer may assume that spans of multiple
whitespace characters have been collapsed to single space characters.

send literal data(data)
Output character data which has already been formatted for display. Generally,
this should be interpreted to mean that line breaks indicated by newline charac-
ters should be preserved and no new line breaks should be introduced. The data
may contain embedded newline and tab characters, unlike data provided to the
send formatted data() interface.

send label data(data)
Set data to the left of the current left margin, if possible. The value ofdata
is not restricted; treatment of non-string values is entirely application- and writer-
dependent. This method will only be called at the beginning of a line.

184

11.10.4 Writer Implementations

Three implementations of the writer object interface are provided as examples by this mod-
ule. Most applications will need to derive new writer classes from theNullWriter class.

NullWriter()
A writer which only provides the interface definition; no actions are taken on any
methods. This should be the base class for all writers which do not need to inherit
any implementation methods.

AbstractWriter()
A writer which can be used in debugging formatters, but not much else. Each method
simply accounces itself by printing its name and arguments on standard output.

DumbWriter([file = None [, maxcol = 72]])
Simple writer class which writes output on the file object passed in asfile or, if
file is omitted, on standard output. The output is simply word-wrapped to the
number of columns specified bymaxcol . This class is suitable for reflowing a
sequence of paragraphs.

11.11 Standard Modulerfc822

This module defines a class,Message , which represents a collection of “email headers”
as defined by the Internet standard RFC 822. It is used in various contexts, usually to read
such headers from a file.

A Message instance is instantiated with an open file object as parameter. Instantiation
reads headers from the file up to a blank line and stores them in the instance; after instan-
tiation, the file is positioned directly after the blank line that terminates the headers.

Input lines as read from the file may either be terminated by CR-LF or by a single linefeed;
a terminating CR-LF is replaced by a single linefeed before the line is stored.

All header matching is done independent of upper or lower case; e.g.m['From'] ,
m['from'] andm['FROM'] all yield the same result.

11.11.1 Message Objects

A Message instance has the following methods:

rewindbody()
Seek to the start of the message body. This only works if the file object is seekable.

getallmatchingheaders(name)
Return a list of lines consisting of all headers matchingname, if any. Each physical

185

line, whether it is a continuation line or not, is a separate list item. Return the empty
list if no header matchesname.

getfirstmatchingheader(name)
Return a list of lines comprising the first header matchingname, and its continuation
line(s), if any. ReturnNone if there is no header matchingname.

getrawheader(name)
Return a single string consisting of the text after the colon in the first header matching
name. This includes leading whitespace, the trailing linefeed, and internal linefeeds
and whitespace if there any continuation line(s) were present. ReturnNone if there
is no header matchingname.

getheader(name)
Like getrawheader(name) , but strip leading and trailing whitespace (but not
internal whitespace).

getaddr(name)
Return a pair (full name, email address) parsed from the string returned by
getheader(name) . If no header matchingnameexists, returnNone, None ;
otherwise both the full name and the address are (possibly empty)strings.
Example: Ifm' s firstFrom header contains the string
'jack@cwi.nl (Jack Jansen)' , then m.getaddr('From') will yield
the pair ('Jack Jansen', 'jack@cwi.nl') . If the header contained
'Jack Jansen <jack@cwi.nl>' instead, it would yield the exact same re-
sult.

getaddrlist(name)
This is similar togetaddr(list) , but parses a header containing a list of email
addresses (e.g. aTo header) and returns a list of (full name, email address) pairs
(even if there was only one address in the header). If there is no header matching
name, return an empty list.
XXX The current version of this function is not really correct. It yields bogus results
if a full name contains a comma.

getdate(name)
Retrieve a header usinggetheader and parse it into a 9-tuple compatible with
time.mktime() . If there is no header matchingname, or it is unparsable, return
None.
Date parsing appears to be a black art, and not all mailers adhere to the standard.
While it has been tested and found correct on a large collection of email from many
sources, it is still possible that this function may occasionally yield an incorrect
result.

Message instances also support a read-only mapping interface. In particular:
m[name] is the same asm.getheader(name) ; and len(m) , m.has key(name) ,
m.keys() , m.values() andm.items() act as expected (and consistently).

186

Finally, Message instances have two public instance variables:

headers
A list containing the entire set of header lines, in the order in which they were read.
Each line contains a trailing newline. The blank line terminating the headers is not
contained in the list.

fp
The file object passed at instantiation time.

11.12 Standard Modulemimetools

This module defines a subclass of the classrfc822.Message and a number of utility
functions that are useful for the manipulation for MIME style multipart or encoded mes-
sage.

It defines the following items:

Message(fp)
Return a new instance of themimetools.Message class. This is a subclass of
therfc822.Message class, with some additional methods (see below).

choose boundary()
Return a unique string that has a high likelihood of being usable as a part boundary.
The string has the form" hostipaddr. uid. pid. timestamp. random" .

decode(input, output, encoding)
Read data encoded using the allowed MIMEencodingfrom open file objectinput
and write the decoded data to open file objectoutput. Valid values forencoding
include"base64" , "quoted-printable" and"uuencode" .

encode(input, output, encoding)
Read data from open file objectinputand write it encoded using the allowed MIME
encodingto open file objectoutput. Valid values forencodingare the same as for
decode() .

copyliteral(input, output)
Read lines until EOF from open fileinputand write them to open fileoutput.

copybinary(input, output)
Read blocks until EOF from open fileinputand write them to open fileoutput. The
block size is currently fixed at 8192.

187

11.12.1 Additional Methods of Message objects

The mimetools.Message class defines the following methods in addition to the
rfc822.Message class:

getplist()
Return the parameter list of theContent-type header. This is a list
if strings. For parameters of the form `key=value' , key is converted to
lower case butvalue is not. For example, if the message contains the
header C̀ontent-type: text/html; spam=1; Spam=2; Spam ' then
getplist() will return the Python list['spam=1', 'spam=2', 'Spam'] .

getparam(name)
Return thevalueof the first parameter (as returned bygetplist() of the form
`name=value' for the givenname. If valueis surrounded by quotes of the form¡...¿
or ”...” , these are removed.

getencoding()
Return the encoding specified in the `Content-transfer-encoding ' message
header. If no such header exists, return"7bit" . The encoding is converted to lower
case.

gettype()
Return the message type (of the form `type/varsubtype ') as specified in the
`Content-type ' header. If no such header exists, return"text/plain" . The
type is converted to lower case.

getmaintype()
Return the main type as specified in the `Content-type ' header. If no such header
exists, return"text" . The main type is converted to lower case.

getsubtype()
Return the subtype as specified in the `Content-type ' header. If no such header
exists, return"plain" . The subtype is converted to lower case.

11.13 Standard modulebinhex

This module encodes and decodes files in binhex4 format, a format allowing representa-
tion of Macintosh files in ASCII. On the macintosh, both forks of a file and the finder
information are encoded (or decoded), on other platforms only the data fork is handled.

Thebinhex module defines the following functions:

binhex(input, output)
Convert a binary file with filenameinput to binhex fileoutput. Theoutputparameter
can either be a filename or a file-like object (any object supporting awrite andclose

188

method).

hexbin(input[, output])
Decode a binhex fileinput. Input may be a filename or a file-like object supporting
read andclosemethods. The resulting file is written to a file namedoutput, unless
the argument is empty in which case the output filename is read from the binhex file.

11.13.1 notes

There is an alternative, more powerful interface to the coder and decoder, see the source
for details.

If you code or decode textfiles on non-Macintosh platforms they will still use the macintosh
newline convention (carriage-return as end of line).

As of this writing,hexbinappears to not work in all cases.

11.14 Standard moduleuu

This module encodes and decodes files in uuencode format, allowing arbitrary binary data
to be transferred over ascii-only connections. Whereever a file argument is expected, the
methodsaccept either a pathname ('-' for stdin/stdout) or a file-like object.

Normally you would pass filenames, but there is one case where you have to open the file
yourself: if you are on a non-unix platform and your binary file is actually a textfile that
you want encoded unix-compatible you will have to open the file yourself as a textfile, so
newline conversion is performed.

This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.

Theuu module defines the following functions:

encode(in file, out file [, name, mode])
Uuencode filein file into file out file. The uuencoded file will have the header spec-
ifying nameandmodeas the defaults for the results of decoding the file. The default
defaults are taken fromin file, or '-' and0666 respectively.

decode(in file [, out file, mode])
This call decodes uuencoded filein file placing the result on fileout file. If out file
is a pathname themodeis also set. Defaults forout file andmodeare taken from the
uuencode header.

189

11.15 Built-in Module binascii

The binascii module contains a number of methods to convert between binary and various
ascii-encoded binary representations. Normally, you will not use these modules directly
but use wrapper modules likeuu or hexbin in stead, this module solely exists because
bit-manipuation of large amounts of data is slow in python.

Thebinascii module defines the following functions:

a2b uu(string)
Convert a single line of uuencoded data back to binary and return the binary data.
Lines normally contain 45 (binary) bytes, except for the last line. Line data may be
followed by whitespace.

b2a uu(data)
Convert binary data to a line of ascii characters, the return value is the converted line,
including a newline char. The length ofdatashould be at most 45.

a2b base64(string)
Convert a block of base64 data back to binary and return the binary data. More than
one line may be passed at a time.

b2a base64(data)
Convert binary data to a line of ascii characters in base64 coding. The return value
is the converted line, including a newline char. The length ofdatashould be at most
57 to adhere to the base64 standard.

a2b hqx(string)
Convert binhex4 formatted ascii data to binary, without doing rle-decompression.
The string should contain a complete number of binary bytes, or (in case of the last
portion of the binhex4 data) have the remaining bits zero.

rledecode hqx(data)
Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm
uses0x90 after a byte as a repeat indicator, followed by a count. A count of0
specifies a byte value of0x90 . The routine returns the decompressed data, unless
data input data ends in an orphaned repeat indicator, in which case theIncomplete
exception is raised.

rlecode hqx(data)
Perform binhex4 style RLE-compression ondataand return the result.

b2a hqx(data)
Perform hexbin4 binary-to-ascii translation and return the resulting string. The argu-
ment should already be rle-coded, and have a length divisible by 3 (except possibly
the last fragment).

crc hqx(data, crc)

190

Compute the binhex4 crc value ofdata, starting with an initialcrc and returning the
result.

Error
Exception raised on errors. These are usually programming errors.

Incomplete
Exception raised on incomplete data. These are usually not programming errors, but
handled by reading a little more data and trying again.

11.16 Standard modulexdrlib

Thexdrlib module supports the External Data Representation Standard as described in
RFC 1014, written by Sun Microsystems, Inc. June 1987. It supports most of the data
types described in the RFC, although some, most notablyfloat anddouble are only
supported on those operating systems that provide an XDR library.

Thexdrlib module defines two classes, one for packing variables into XDR representa-
tion, and another for unpacking from XDR representation. There are also two exception
classes.

11.16.1 Packer Objects

Packer is the class for packing data into XDR representation. ThePacker class is
instantiated with no arguments.

get buffer()
Returns the current pack buffer as a string.

reset()
Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the ap-
propriatepack typemethod. Each method takes a single argument, the value to pack.
The following simple data type packing methods are supported:pack uint , pack int ,
pack enum, pack bool , pack uhyper , andpack hyper .

The following methods pack floating point numbers, however they require C library
support. Without the optional C built-in module, both of these methods will raise an
xdrlib.ConversionError exception. See the note at the end of this chapter for
details.

pack float(value)
Packs the single-precision floating point numbervalue.

pack double(value)

191

Packs the double-precision floating point numbervalue.

The following methods support packing strings, bytes, and opaque data:

pack fstring(n, s)
Packs a fixed length string,s. n is the length of the string but it isnotpacked into the
data buffer. The string is padded with null bytes if necessary to guaranteed 4 byte
alignment.

pack fopaque(n, data)
Packs a fixed length opaque data stream, similarly topack fstring .

pack string(s)
Packs a variable length string,s. The length of the string is first packed as an un-
signed integer, then the string data is packed withpack fstring .

pack opaque(data)
Packs a variable length opaque data string, similarly topack string .

pack bytes(bytes)
Packs a variable length byte stream, similarly topack string .

The following methods support packing arrays and lists:

pack list(list, pack item)
Packs alist of homogeneous items. This method is useful for lists with an indeter-
minate size; i.e. the size is not available until the entire list has been walked. For
each item in the list, an unsigned integer1 is packed first, followed by the data value
from the list.pack item is the function that is called to pack the individual item. At
the end of the list, an unsigned integer0 is packed.

pack farray(n, array, pack item)
Packs a fixed length list (array) of homogeneous items.n is the length of the list; it is
notpacked into the buffer, but aValueError exception is raised iflen(array)
is not equal ton. As above,pack item is the function used to pack each element.

pack array(list, pack item)
Packs a variable lengthlist of homogeneous items. First, the length of the list is
packed as an unsigned integer, then each element is packed as inpack farray
above.

11.16.2 Unpacker Objects

Unpacker is the complementary class which unpacks XDR data values from a string
buffer, and has the following methods:

init (data)
Instantiates anUnpacker object with the string bufferdata.

192

reset(data)
Resets the string buffer with the givendata.

get position()
Returns the current unpack position in the data buffer.

set position(position)
Sets the data buffer unpack position toposition. You should be careful about using
get position() andset position() .

done()
Indicates unpack completion. Raises anxdrlib.Error exception if all of the data
has not been unpacked.

In addition, every data type that can be packed with aPacker , can be unpacked with
an Unpacker . Unpacking methods are of the formunpack type, and take no argu-
ments. They return the unpacked object. The same caveats apply forunpack float and
unpack double as above.

unpack float()
Unpacks a single-precision floating point number.

unpack double()
Unpacks a double-precision floating point number, similarly tounpack float .

In addition, the following methods unpack strings, bytes, and opaque data:

unpack fstring(n)
Unpacks and returns a fixed length string.n is the number of characters expected.
Padding with null bytes to guaranteed 4 byte alignment is assumed.

unpack fopaque(n)
Unpacks and returns a fixed length opaque data stream, similarly to
unpack fstring .

unpack string()
Unpacks and returns a variable length string. The length of the string is first unpacked
as an unsigned integer, then the string data is unpacked withunpack fstring .

unpack opaque()
Unpacks and returns a variable length opaque data string, similarly to
unpack string .

unpack bytes()
Unpacks and returns a variable length byte stream, similarly tounpack string .

The following methods support unpacking arrays and lists:

unpack list(unpackitem)
Unpacks and returns a list of homogeneous items. The list is unpacked one ele-
ment at a time by first unpacking an unsigned integer flag. If the flag is1, then the

193

item is unpacked and appended to the list. A flag of0 indicates the end of the list.
unpackitem is the function that is called to unpack the items.

unpack farray(n, unpackitem)
Unpacks and returns (as a list) a fixed length array of homogeneous items.n is
number of list elements to expect in the buffer. As above,unpackitemis the function
used to unpack each element.

unpack array(unpackitem)
Unpacks and returns a variable lengthlist of homogeneous items. First, the length
of the list is unpacked as an unsigned integer, then each element isunpacked as in
unpack farray above.

11.16.3 Exceptions

Exceptions in this module are coded as class instances:

Error
The base exception class.Error has a single public data membermsg containing
the description of the error.

ConversionError
Class derived fromError . Contains no additional instance variables.

Here is an example of how you would catch one of these exceptions:

import xdrlib
p = xdrlib.Packer()
try:

p.pack_double(8.01)
except xdrlib.ConversionError, instance:

print 'packing the double failed:', instance.msg

11.16.4 Supporting Floating Point Data

Packing and
unpacking floating point data, i.e.Packer.pack float , Packer.pack double ,
Unpacker.unpack float , andUnpacker.unpack double , are only supported
with the helper built-in xdr module, which relies on your operating system having the
appropriate XDR library routines.

If you have built the Python interpeter with thexdr module, or have built thexdr
module as a shared library,xdrlib will use these to pack and unpack floating point
numbers. Otherwise, using these routines will raise aConversionError exception.

194

See the Python installation instructions for details on building thexdr module.

195

Chapter 12

Restricted Execution

In general, Python programs have complete access to theunderlying operating system
throug the various functions and classes, For example, a Python program can open any file
for reading and writing by using theopen() built-in function (provided the underlying
OS gives you permission!). This is exactly what you want for most applications.

There exists a class of applications for which this “openness” is inappropriate. Take Grail:
a web browser that accepts “applets”, snippets of Python code, from anywhere on the
Internet for execution on the local system. This can be used to improve the user interface
of forms, for instance. Since the originator of the code is unknown, it is obvious that it
cannot be trusted with the full resources of the local machine.

Restricted executionis the basic framework in Python that allows for the segregation of
trusted and untrusted code. It is based on the notion that trusted Python code (asupervisor)
can create a “padded cell' (or environment) with limited permissions, and run the untrusted
code within this cell. The untrusted code cannot break out of its cell, and can only interact
with sensitive system resources through interfaces defined and managed by the trusted
code. The term “restricted execution” is favored over “safe-Python” since true safety is
hard to define, and is determined by the way the restricted environment is created. Note
that the restricted environments can be nested, with inner cells creating subcells of lesser,
but never greater, privilege.

An interesting aspect of Python's restricted execution model is that the interfaces presented
to untrusted code usually have the same names as those presented to trusted code. There-
fore no special interfaces need to be learned to write code designed to run in a restricted
environment. And because the exact nature of the padded cell is determined by the super-
visor, different restrictions can be imposed, depending on the application. For example, it
might be deemed “safe” for untrusted code to read any file within a specified directory, but
never to write a file. In this case, the supervisor may redefine the built-inopen() function
so that it raises an exception whenever themodeparameter is'w' . It might also perform

196

a chroot() -like operation on thefilenameparameter, such that root is always relative
to some safe “sandbox” area of the filesystem. In this case, the untrusted code would
still see an built-inopen() function in its environment, with the same calling interface.
The semantics would be identical too, withIOError s being raised when the supervisor
determined that an unallowable parameter is being used.

The Python run-time determines whether a particular code block is executing in restricted
execution mode based on the identity of thebuiltins object in its global variables:
if this is (the dictionary of) the standardbuiltin module, the code is deemed to be
unrestricted, else it is deemed to be restricted.

Python code executing in restricted mode faces a number of limitations that are designed
to prevent it from escaping from the padded cell. For instance, the function object attribute
func globals and the class and instance object attributedict are unavailable.

Two modules provide the framework for setting up restricted execution environments:

rexec — Basic restricted execution framework.

Bastion — Providing restricted access to objects.

12.1 Standard Modulerexec

This module contains theRExec class, which supportsr exec() , r eval() ,
r execfile() , andr import() methods, which are restricted versions of the stan-
dard Python functionsexec() , eval() , execfile() , and theimport statement.
Code executed in this restricted environment will only have access to modules and func-
tions that are deemed safe; you can subclassRExec to add or remove capabilities as de-
sired.

Note: TheRExec class can prevent code from performing unsafe operations like reading
or writing disk files, or using TCP/IP sockets. However, it does not protect against code
using extremely large amounts of memory or CPU time.

RExec([hooks[, verbose]])
Returns an instance of theRExec class.

hooksis an instance of theRHooks class or a subclass of it. If it is omitted orNone,
the defaultRHooks class is instantiated. Whenever the RExec module searches for
a module (even a built-in one) or reads a module's code, it doesn' t actually go out
to the file system itself. Rather, it calls methods of an RHooks instance that was
passed to or created by its constructor. (Actually, the RExec object doesn' t make
these calls—they are made by a module loader object that's part of the RExec object.
This allows another level of flexibility, e.g. using packages.)

By providing an alternate RHooks object, we can control the file systemaccesses
made to import a module, without changing the actual algorithm that controls the

197

order in which those accesses are made. For instance, we could substitute an RHooks
object that passes all filesystem requests to a file server elsewhere, via some RPC
mechanism such as ILU. Grail's applet loader uses this to support importing applets
from a URL for a directory.
If verboseis true, additional debugging output may be sent to standard output.

The RExec class has the followingclass attributes, which are used by theinit method.
Changing them on an existing instance won' t have any effect; instead, create a subclass of
RExec and assign them new values in the class definition. Instances of the new class will
then use those new values. All these attributes are tuples of strings.

nok builtin names
Contains the names of built-in functions which willnot be available to pro-
grams running in the restricted environment. The value forRExec is ('open',
'reload', ' import ') . (This gives the exceptions, because by far the major-
ity of built-in functions are harmless. A subclass that wants to override this variable
should probably start with the value from the base class and concatenate additional
forbidden functions — when new dangerous built-in functions are added to Python,
they will also be added to this module.)

ok builtin modules
Contains the names of built-in modules which can be safely imported. The value for
RExec is ('audioop', 'array', 'binascii', 'cmath', 'errno',
'imageop', 'marshal', 'math', 'md5', 'operator', 'parser',
'regex', 'rotor', 'select', 'strop', 'struct', 'time') . A sim-
ilar remark about overriding this variable applies — use the value from the base class
as a starting point.

ok path
Contains the directories which will be searched when animport is performed in
the restricted environment. The value forRExec is the same assys.path (at the
time the module is loaded) for unrestricted code.

ok posix names
Contains the names of the functions in theos module which will be available to pro-
grams running in the restricted environment. The value forRExec is ('error',
'fstat', 'listdir', 'lstat', 'readlink', 'stat', 'times',
'uname', 'getpid', 'getppid', 'getcwd', 'getuid', 'getgid',
'geteuid', 'getegid') .

ok sys names
Contains the names of the functions and variables in thesys module which will be
available to programs running in the restricted environment. The value forRExec is
('ps1', 'ps2', 'copyright', 'version', 'platform', 'exit',
'maxint') .

RExec instances support the following methods:

198

r eval(code)
codemust either be a string containing a Python expression, or a compiled code
object, which will be evaluated in the restricted environment'smain module.
The value of the expression or code object will be returned.

r exec(code)
codemust either be a string containing one or more lines of Python code, or a com-
piled code object, which will be executed in the restricted environment'smain
module.

r execfile(filename)
Execute the Python code contained in the filefilenamein the restricted environment's

main module.

Methods whose names begin withs are similar to the functions beginning withr , but the
code will be granted access to restricted versions of the standard I/O streanssys.stdin ,
sys.stderr , andsys.stdout .

s eval(code)
codemust be a string containing a Python expression, which will be evaluated in the
restricted environment.

s exec(code)
codemust be a string containing one or more lines of Python code, which will be
executed in the restricted environment.

s execfile(code)
Execute the Python code contained in the filefilenamein the restricted environment.

RExec objects must also support various methods which will be implicitly called by code
executing in the restricted environment. Overriding these methods in a subclass is used to
change the policies enforced by a restricted environment.

r import(modulename[, globals, locals, fromlist])
Import the modulemodulename, raising anImportError exception if the module
is considered unsafe.

r open(filename[, mode[, bufsize]])
Method called whenopen() is called in the restricted environment. The arguments
are identical to those ofopen() , and a file object (or a class instance compatible
with file objects) should be returned.RExec' s default behaviour is allow opening
any file for reading, but forbidding any attempt to write a file. See the example below
for an implementation of a less restrictiver open() .

r reload(module)
Reload the module objectmodule, re-parsing and re-initializing it.

r unload(module)
Unload the module objectmodule(i.e., remove it from the restricted environment's

199

sys.modules dictionary).

And their equivalents with access to restricted standard I/O streams:

s import(modulename[, globals, locals, fromlist])
Import the modulemodulename, raising anImportError exception if the module
is considered unsafe.

s reload(module)
Reload the module objectmodule, re-parsing and re-initializing it.

s unload(module)
Unload the module objectmodule.

12.1.1 An example

Let us say that we want a slightly more relaxed policy than the standard RExec class. For
example, if we' re willing to allow files in `/tmp ' to be written, we can subclass theRExec
class:

class TmpWriterRExec(rexec.RExec):
def r_open(self, file, mode='r', buf=-1):

if mode in ('r', 'rb'):
pass

elif mode in ('w', 'wb', 'a', 'ab'):
check filename : must begin with /tmp/
if file[:5]!='/tmp/':

raise IOError, "can't write outside /tmp"
elif (string.find(file, '/../') >= 0 or

file[:3] == '../' or file[-3:] == '/..'):
raise IOError, "'..' in filename forbidden"

else: raise IOError, "Illegal open() mode"
return open(file, mode, buf)

Notice that the above code will occasionally forbid a perfectly valid filename; for
example, code in the restricted environment won' t be able to open a file called
`/tmp/foo/../bar ' . To fix this, ther open method would have to simplify the file-
name to /̀tmp/bar ' , which would require splitting apart the filename and performing
various operations on it. In cases where security is at stake, it may be preferable to write
simple code which is sometimes overly restrictive, instead of more general code that is also
more complex and may harbor a subtle security hole.

200

12.2 Standard ModuleBastion

According to the dictionary, a bastion is “a fortified area or position”, or “something that
is considered a stronghold.” It's a suitable name for this module, which provides a way
to forbid access to certain attributes of an object. It must always be used with therexec
module, in order to allow restricted-mode programsaccess to certain safe attributes of an
object, while denying access to other, unsafe attributes.

Bastion(object[, filter, name, class])
Protect the class instanceobject, returning a bastion for the object. Any attempt to
access one of the object's attributes will have to be approved by thefilter function; if
the access is denied an AttributeError exception will be raised.
If present,filter must be a function that accepts a string containing an attribute name,
and returns true if access to that attribute will be permitted; if filter returns false, the
access is denied. The default filter denies access to any function beginning with an
underscore (). The bastion's string representation will be<Bastion for name>
if a value fornameis provided; otherwise,repr(object) will be used.
class, if present, would be a subclass ofBastionClass ; see the code in
`bastion.py ' for the details. Overriding the defaultBastionClass will rarely
be required.

201

Chapter 13

Multimedia Services

The modules described in this chapter implement various algorithms or interfaces that
are mainly useful for multimedia applications. They are available at the discretion of the
installation. Here's an overview:

audioop — Manipulate raw audio data.

imageop — Manipulate raw image data.

aifc — Read and write audio files in AIFF or AIFC format.

jpeg — Read and write image files in compressed JPEG format.

rgbimg — Read and write image files in “SGI RGB” format (the module isnot SGI
specific though)!

13.1 Built-in Module audioop

The audioop module contains some useful operations on sound fragments. It operates
on sound fragments consisting of signed integer samples 8, 16 or 32 bits wide, stored in
Python strings. This is the same format as used by theal andsunaudiodev modules.
All scalar items are integers, unless specified otherwise.

A few of the more complicated operations only take 16-bit samples, otherwise the sample
size (in bytes) is always a parameter of the operation.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unknown number of bytes per sample,
etc.

202

add(fragment1, fragment2, width)
Return a fragment which is the addition of the two samples passed as parameters.
width is the sample width in bytes, either1, 2 or 4. Both fragments should have the
same length.

adpcm2lin(adpcmfragment, width, state)
Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See the
description of lin2adpcm for details on ADPCM coding. Return a tuple
(sample, newstate) where the sample has the width specified inwidth.

adpcm32lin(adpcmfragment, width, state)
Decode an alternative 3-bit ADPCM code. Seelin2adpcm3 for details.

avg(fragment, width)
Return the average over all samples in the fragment.

avgpp(fragment, width)
Return the average peak-peak value over all samples in the fragment. No filtering is
done, so the usefulness of this routine is questionable.

bias(fragment, width, bias)
Return a fragment that is the original fragment with a bias added to each sample.

cross(fragment, width)
Return the number of zero crossings in the fragment passed as an argument.

findfactor(fragment, reference)
Return a factorF such thatrms(add(fragment, mul(reference, -F)))
is minimal, i.e., return the factor with which you should multiplyreferenceto make
it match as well as possible tofragment. The fragments should both contain 2-byte
samples.
The time taken by this routine is proportional tolen(fragment) .

findfit(fragment, reference)
This routine (which only accepts 2-byte sample fragments)
Try to matchreferenceas well as possible to a portion offragment(which should be
the longer fragment). This is (conceptually) done by taking slices out offragment,
usingfindfactor to compute the best match, and minimizing the result. The frag-
ments should both contain 2-byte samples. Return a tuple(offset, factor) where
offsetis the (integer) offset intofragmentwhere the optimal match started andfactor
is the (floating-point) factor as perfindfactor .

findmax(fragment, length)
Searchfragmentfor a slice of lengthlengthsamples (not bytes!) with maximum en-
ergy, i.e., returni for which rms(fragment[i*2:(i+length)*2]) is maxi-
mal. The fragments should both contain 2-byte samples.
The routine takes time proportional tolen(fragment) .

getsample(fragment, width, index)

203

Return the value of sampleindexfrom the fragment.

lin2lin(fragment, width, newwidth)
Convert samples between 1-, 2- and 4-byte formats.

lin2adpcm(fragment, width, state)
Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an adap-
tive coding scheme, whereby each 4 bit number is the difference between one sample
and the next, divided by a (varying) step. The Intel/DVI ADPCM algorithm has been
selected for use by the IMA, so it may well become a standard.
State is a tuple containing the state of the coder. The coder returns a tuple
(adpcmfrag, newstate) , and thenewstateshould be passed to the next call of
lin2adpcm. In the initial callNone can be passed as the state.adpcmfragis the
ADPCM coded fragment packed 2 4-bit values per byte.

lin2adpcm3(fragment, width, state)
This is an alternative ADPCM coder that uses only 3 bits per sample. It is not com-
patible with the Intel/DVI ADPCM coder and its output is not packed (due to laziness
on the side of the author). Its use is discouraged.

lin2ulaw(fragment, width)
Convert samples in the audio fragment to U-LAW encoding and return this as a
Python string. U-LAW is an audio encoding format whereby you get a dynamic
range of about 14 bits using only 8 bit samples. It is used by the Sun audio hardware,
among others.

minmax(fragment, width)
Return a tuple consisting of the minimum and maximum values of all samples in the
sound fragment.

max(fragment, width)
Return the maximum of theabsolute valueof all samples in a fragment.

maxpp(fragment, width)
Return the maximum peak-peak value in the sound fragment.

mul(fragment, width, factor)
Return a fragment that has all samples in the original framgent multiplied by the
floating-point valuefactor. Overflow is silently ignored.

reverse(fragment, width)
Reverse the samples in a fragment and returns the modified fragment.

rms(fragment, width)
Return the root-mean-square of the fragment, i.e.sP

Si
2

n

204

This is a measure of the power in an audio signal.

tomono(fragment, width, lfactor, rfactor)
Convert a stereo fragment to a mono fragment. The left channel is multiplied by
lfactor and the right channel byrfactor before adding the two channels to give a
mono signal.

tostereo(fragment, width, lfactor, rfactor)
Generate a stereo fragment from a mono fragment. Each pair of samples in the
stereo fragment are computed from the mono sample, whereby left channel samples
are multiplied bylfactor and right channel samples byrfactor.

ulaw2lin(fragment, width)
Convert sound fragments in ULAW encoding to linearly encoded sound fragments.
ULAW encoding always uses 8 bits samples, sowidthrefers only to the sample width
of the output fragment here.

Note that operations such asmul or max make no distinction between mono and stereo
fragments, i.e. all samples are treated equal. If this is a problem the stereo fragment should
be split into two mono fragments first and recombined later. Here is an example of how to
do that:

def mul_stereo(sample, width, lfactor, rfactor):
lsample = audioop.tomono(sample, width, 1, 0)
rsample = audioop.tomono(sample, width, 0, 1)
lsample = audioop.mul(sample, width, lfactor)
rsample = audioop.mul(sample, width, rfactor)
lsample = audioop.tostereo(lsample, width, 1, 0)
rsample = audioop.tostereo(rsample, width, 0, 1)
return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol to
be stateless (i.e. to be able to tolerate packet loss) you should not only transmit the data
but also the state. Note that you should send theinitial state (the one you passed to
lin2adpcm) along to the decoder, not the final state (as returned by the coder). If you
want to usestruct to store the state in binary you can code the first element (the pre-
dicted value) in 16 bits and the second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against
themselves. It could well be that I misinterpreted the standards in which case they will not
be interoperable with the respective standards.

The find... routines might look a bit funny at first sight. They are primarily meant to
do echo cancellation. A reasonably fast way to do this is to pick the most energetic piece
of the output sample, locate that in the input sample and subtract the whole output sample
from the input sample:

205

def echocancel(outputdata, inputdata):
pos = audioop.findmax(outputdata, 800) # one tenth second
out_test = outputdata[pos*2:]
in_test = inputdata[pos*2:]
ipos, factor = audioop.findfit(in_test, out_test)
Optional (for better cancellation):
factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],
out_test)
prefill = '\0'*(pos+ipos)*2
postfill = '\0'*(len(inputdata)-len(prefill)-len(outputdata))
outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill
return audioop.add(inputdata, outputdata, 2)

13.2 Built-in Module imageop

The imageop module contains some useful operations on images. It operates on images
consisting of 8 or 32 bit pixels stored in Python strings. This is the same format as used by
gl.lrectwrite and theimgfile module.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unknown number of bits per pixel, etc.

crop(image, psize, width, height, x0, y0, x1, y1)
Return the selected part ofimage, which should bywidthbyheightin size and consist
of pixels ofpsizebytes.x0, y0, x1 andy1 are like thelrectread parameters, i.e.
the boundary is included in the new image. The new boundaries need not be inside
the picture. Pixels that fall outside the old image will have their value set to zero. If
x0 is bigger thanx1 the new image is mirrored. The same holds for the y coordinates.

scale(image, psize, width, height, newwidth, newheight)
Returnimagescaled to sizenewwidthby newheight. No interpolation is done, scal-
ing is done by simple-minded pixel duplication or removal. Therefore, computer-
generated images or dithered images will not look nice after scaling.

tovideo(image, psize, width, height)
Run a vertical low-pass filter over an image. It does so by computing each destination
pixel as the average of two vertically-aligned source pixels. The main use of this
routine is to forestall excessive flicker if the image is displayed on a video device
that uses interlacing, hence the name.

grey2mono(image, width, height, threshold)

206

Convert a 8-bit deep greyscale image to a 1-bit deep image by tresholding all the pix-
els. The resulting image is tightly packed and is probably only useful as an argument
to mono2grey .

dither2mono(image, width, height)
Convert an 8-bit greyscale image to a 1-bit monochrome image using a (simple-
minded) dithering algorithm.

mono2grey(image, width, height, p0, p1)
Convert a 1-bit monochrome image to an 8 bit greyscale or color image. All pixels
that are zero-valued on input get valuep0on output and all one-value input pixels get
valuep1 on output. To convert a monochrome black-and-white image to greyscale
pass the values0 and255 respectively.

grey2grey4(image, width, height)
Convert an 8-bit greyscale image to a 4-bit greyscale image without dithering.

grey2grey2(image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image without dithering.

dither2grey2(image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image with dithering. As for
dither2mono , the dithering algorithm is currently very simple.

grey42grey(image, width, height)
Convert a 4-bit greyscale image to an 8-bit greyscale image.

grey22grey(image, width, height)
Convert a 2-bit greyscale image to an 8-bit greyscale image.

13.3 Standard Moduleaifc

This module provides support for reading and writing AIFF and AIFF-C files. AIFF is
Audio Interchange File Format, a format for storing digital audio samples in a file. AIFF-
C is a newer version of the format that includes the ability to compress the audio data.

Audio files have a number of parameters that describe the audio data. The sampling
rate or frame rate is the number of times per second the sound is sampled. The num-
ber of channels indicate if the audio is mono, stereo, or quadro. Each frame consists of
one sample per channel. The sample size is the size in bytes of each sample. Thus a
frame consists ofnchannels*samplesizebytes, and a second's worth of audio consists of
nchannels*samplesize* frameratebytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two channels
(stereo) and has a frame rate of 44,100 frames/second. This gives a frame size of 4 bytes
(2*2), and a second's worth occupies 2*2*44100 bytes, i.e. 176,400 bytes.

207

Moduleaifc defines the following function:

open(file, mode)
Open an AIFF or AIFF-C file and return an object instance with methods that are
described below. The argument file is either a string naming a file or a file object.
The mode is either the string'r' when the file must be opened for reading, or
'w' when the file must be opened for writing. When used for writing, the file object
should be seekable, unless you know ahead of time how many samples you are going
to write in total and usewriteframesraw() andsetnframes() .

Objects returned byaifc.open() when a file is opened for reading have the following
methods:

getnchannels()
Return the number of audio channels (1 for mono, 2 for stereo).

getsampwidth()
Return the size in bytes of individual samples.

getframerate()
Return the sampling rate (number of audio frames per second).

getnframes()
Return the number of audio frames in the file.

getcomptype()
Return a four-character string describing the type of compression used in the audio
file. For AIFF files, the returned value is'NONE' .

getcompname()
Return a human-readable description of the type of compression used in the audio
file. For AIFF files, the returned value is'not compressed' .

getparams()
Return a tuple consisting of all of the above values in the above order.

getmarkers()
Return a list of markers in the audio file. A marker consists of a tuple of three
elements. The first is the mark ID (an integer), the second is the mark position in
frames from the beginning of the data (an integer), the third is the name of the mark
(a string).

getmark(id)
Return the tuple as described ingetmarkers for the mark with the given id.

readframes(nframes)
Read and return the nextnframesframes from the audio file. The returned data is a
string containing for each frame the uncompressed samples of all channels.

rewind()

208

Rewind the read pointer. The nextreadframes will start from the beginning.

setpos(pos)
Seek to the specified frame number.

tell()
Return the current frame number.

close()
Close the AIFF file. After calling this method, the object can no longer be used.

Objects returned byaifc.open() when a file is opened for writing have all the above
methods, except forreadframes andsetpos . In addition the following methods exist.
The get methods can only be called after the correspondingset methods have been
called. Before the firstwriteframes or writeframesraw , all parameters except for
the number of frames must be filled in.

aiff()
Create an AIFF file. The default is that an AIFF-C file is created, unless the name of
the file ends in ' .aiff' in which case the default is an AIFF file.

aifc()
Create an AIFF-C file. The default is that an AIFF-C file is created, unless the name
of the file ends in ' .aiff' in which case the default is an AIFF file.

setnchannels(nchannels)
Specify the number of channels in the audio file.

setsampwidth(width)
Specify the size in bytes of audio samples.

setframerate(rate)
Specify the sampling frequency in frames per second.

setnframes(nframes)
Specify the number of frames that are to be written to the audio file. If this parameter
is not set, or not set correctly, the file needs to support seeking.

setcomptype(type, name)
Specify the compression type. If not specified, the audio data will not be compressed.
In AIFF files, compression is not possible. The name parameter should be a human-
readable description of the compression type, the type parameter should be a four-
character string. Currently the following compression types are supported: NONE,
ULAW, ALAW, G722.

setparams(nchannels, sampwidth, framerate, comptype, compname)
Set all the above parameters at once. The argument is a tuple consisting of the various
parameters. This means that it is possible to use the result of agetparams call as
argument tosetparams .

209

setmark(id, pos, name)
Add a mark with the given id (larger than 0), and the given name at the given position.
This method can be called at any time beforeclose .

tell()
Return the current write position in the output file. Useful in combination with
setmark .

writeframes(data)
Write data to the output file. This method can only be called after the audio file
parameters have been set.

writeframesraw(data)
Like writeframes , except that the header of the audio file is not updated.

close()
Close the AIFF file. The header of the file is updated to reflect the actual size of the
audio data. After calling this method, the object can no longer be used.

13.4 Built-in Module jpeg

The modulejpeg provides access to the jpeg compressor and decompressor written by
the Independent JPEG Group. JPEG is a (draft?) standard for compressing pictures. For
details on jpeg or the Independent JPEG Group software refer to the JPEG standard or the
documentation provided with the software.

The jpeg module defines these functions:

compress(data, w, h, b)
Treat data as a pixmap of widthw and heighth, with b bytes per pixel. The data
is in SGI GL order, so the first pixel is in the lower-left corner. This means that
lrectread return data can immediately be passed to compress. Currently only
1 byte and 4 byte pixels are allowed, the former being treated as greyscale and the
latter as RGB color. Compress returns a string that contains the compressed picture,
in JFIF format.

decompress(data)
Data is a string containing a picture in JFIF format. It returns a tuple
(data, width, height, bytesperpixel) . Again, the data is suitable to pass to
lrectwrite .

setoption(name, value)
Set various options. Subsequent compress and decompress calls will use these op-
tions. The following options are available:

'forcegray' Force output to be grayscale, even if input is RGB.
'quality' Set the quality of the compressed image to a value between0 and

210

100 (default is75). Compress only.
'optimize' Perform Huffman table optimization. Takes longer, but results in

smaller compressed image. Compress only.
'smooth' Perform inter-block smoothing on uncompressed image. Only useful

for low-quality images. Decompress only.

Compress and uncompress raise the errorjpeg.error in case of errors.

13.5 Built-in Module rgbimg

The rgbimg module allows python programs toaccess SGI imglib image files (also known
as .̀rgb ' files). The module is far from complete, but is provided anyway since the func-
tionality that there is is enough in some cases. Currently, colormap files are not supported.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unsupported file type, etc.

sizeofimage(file)
This function returns a tuple(x, y) wherex and y are the size of the image in
pixels. Only 4 byte RGBA pixels, 3 byte RGB pixels, and 1 byte greyscale pixels are
currently supported.

longimagedata(file)
This function reads and decodes the image on the specified file, and returns it as a
Python string. The string has 4 byte RGBA pixels. The bottom left pixel is the first
in the string. This format is suitable to pass togl.lrectwrite , for instance.

longstoimage(data, x, y, z, file)
This function writes the RGBA data indatato image filefile. x andy give the size of
the image.z is 1 if the saved image should be 1 byte greyscale, 3 if the saved image
should be 3 byte RGB data, or 4 if the saved images should be 4 byte RGBA data.
The input data always contains 4 bytes per pixel. These are the formats returned by
gl.lrectread .

ttob(flag)
This function sets a global flag which defines whether the scan lines of the image are
read or written from bottom to top (flag is zero, compatible with SGI GL) or from
top to bottom(flag is one, compatible with X). The default is zero.

13.6 Standard moduleimghdr

The imghdr module determines the type of image contained in a file or byte stream.

211

The imghdr module defines the following function:

what(filename[, h])
Tests the image data contained in the file named byfilename, and returns a string
describing the image type. If optionalh is provided, thefilenameis ignored andh is
assumed to contain the byte stream to test.

The following image types are recognized, as listed below with the return value from
what :

“rgb” SGI ImgLib Files

“gif” GIF 87a and 89a Files

“pbm” Portable Bitmap Files

“pgm” Portable Graymap Files

“ppm” Portable Pixmap Files

“tiff” TIFF Files

“rast” Sun Raster Files

“xbm” X Bitmap Files

“jpeg” JPEG data in JIFF format

You can extend the list of file typesimghdr can recognize by appending to this variable:

tests
A list of functions performing the individual tests. Each function takes two argu-
ments: the byte-stream and an open file-like object. Whenwhat() is called with a
byte-stream, the file-like object will beNone.
The test function should return a string describing the image type if the test suc-
ceeded, orNone if it failed.

Example:

>>> import imghdr
>>> imghdr.what('/tmp/bass.gif')
'gif'

212

Chapter 14

Cryptographic Services

The modules described in this chapter implement various algorithms of a cryptographic
nature. They are available at the discretion of the installation. Here's an overview:

md5 — RSA's MD5 message digest algorithm.

mpz — Interface to the GNU MP library for arbitrary precision arithmetic.

rotor — Enigma-like encryption and decryption.

Hardcore cypherpunks will probably find the cryptographic modules written by Andrew
Kuchling of further interest; the package adds built-in modules for DES and IDEA en-
cryption, provides a Python module for reading and decrypting PGP files, and then
some. These modules are not distributed with Python but available separately. See
the URL h̀ttp://www.magnet.com/ amk/python/pct.html ' or send email to
`amk@magnet.com' for more information.

14.1 Built-in Module md5

This module implements the interface to RSA's MD5 message digest algorithm (see also
Internet RFC 1321). Its use is quite straightforward: use themd5.new() to create an
md5 object. You can now feed this object with arbitrary strings using theupdate()
method, and at any point you can ask it for thedigest(a strong kind of 128-bit checksum,
a.k.a. “fingerprint”) of the contatenation of the strings fed to it so far using thedigest()
method.

For example, to obtain the digest of the string"Nobody inspects the spammish
repetition" :

213

>>> import md5
>>> m = md5.new()
>>> m.update("Nobody inspects")
>>> m.update(" the spammish repetition")
>>> m.digest()
'\273d\234\203\335\036\245\311\331\336\311\241\215\360\377\351'

More condensed:

>>> md5.new("Nobody inspects the spammish repetition").digest()
'\273d\234\203\335\036\245\311\331\336\311\241\215\360\377\351'

new([arg])
Return a new md5 object. Ifarg is present, the method callupdate(arg) is made.

md5([arg])
For backward compatibility reasons, this is an alternative name for thenew() func-
tion.

An md5 object has the following methods:

update(arg)
Update the md5 object with the stringarg. Repeated calls are equiv-
alent to a single call with the concatenation of all the arguments, i.e.
m.update(a); m.update(b) is equivalent tom.update(a+b) .

digest()
Return the digest of the strings passed to theupdate() method so far. This is an
16-byte string which may contain non-ASCII characters, including null bytes.

copy()
Return a copy (“clone”) of the md5 object. This can be used to efficiently compute
the digests of strings that share a common initial substring.

14.2 Built-in Module mpz

This is an optional module. It is only available when Python is configured to include it,
which requires that the GNU MP software is installed.

This module implements the interface to part of the GNU MP library, which defines arbi-
trary precision integer and rational number arithmetic routines. Only the interfaces to the
integer (`mpz . . . ') routines are provided. If not stated otherwise, the description in the
GNU MP documentation can be applied.

214

In general,mpz-numbers can be used just like other standard Python numbers, e.g. you can
use the built-in operators like+, * , etc., as well as the standard built-in functions likeabs ,
int , . . . , divmod , pow. Please note:thebitwise-xoroperation has been implemented
as a bunch ofands, inverts andors, because the library lacks anmpz xor function, and I
didn' t need one.

You create an mpz-number by calling the function calledmpz (see below for an exact
description). An mpz-number is printed like this:mpz(value) .

mpz(value)
Create a new mpz-number.valuecan be an integer, a long, another mpz-number, or
even a string. If it is a string, it is interpreted as an array of radix-256 digits, least
significant digit first, resulting in a positive number. See also thebinary method,
described below.

A number ofextrafunctions are defined in this module. Non mpz-arguments are converted
to mpz-values first, and the functions return mpz-numbers.

powm(base, exponent, modulus)
Returnpow(base, exponent) % modulus. If exponent== 0, returnmpz(1) .
In contrast to the C-library function, this version can handle negative exponents.

gcd(op1, op2)
Return the greatest common divisor ofop1andop2.

gcdext(a, b)
Return a tuple(g, s, t) , such thata* s + b* t == g == gcd(a, b) .

sqrt(op)
Return the square root ofop. The result is rounded towards zero.

sqrtrem(op)
Return a tuple(root, remainder) , such thatroot* root + remainder == op.

divm(numerator, denominator, modulus)
Returns a numberq. such thatq * denominator% modulus == numerator. One
could also implement this function in Python, usinggcdext .

An mpz-number has one method:

binary()
Convert this mpz-number to a binary string, where the number has been stored as an
array of radix-256 digits, least significant digit first.
The mpz-number must have a value greater than or equal to zero, otherwise a
ValueError -exception will be raised.

215

14.3 Built-in Module rotor

This module implements a rotor-based encryption algorithm, contributed by Lance Elling-
house. The design is derived from the Enigma device, a machine used during World War
II to encipher messages. A rotor is simply a permutation. For example, if the character `A'
is the origin of the rotor, then a given rotor might map `A' to `L' , `B' to `Z' , `C' to `G' , and
so on. To encrypt, we choose several different rotors, and set the origins of the rotors to
known positions; their initial position is the ciphering key. To encipher a character, we per-
mute the original character by the first rotor, and then apply the second rotor's permutation
to the result. We continue until we've applied all the rotors; the resulting character is our
ciphertext. We then change the origin of the final rotor by one position, from `A' to `B' ; if
the final rotor has made a complete revolution, then we rotate the next-to-last rotor by one
position, and apply the same procedure recursively. In other words, after enciphering one
character, we advance the rotors in the same fashion as a car's odometer. Decoding works
in the same way, except we reverse the permutations and apply them in the opposite order.

The available functions in this module are:

newrotor(key[, numrotors])
Return a rotor object.key is a string containing the encryption key for the object;
it can contain arbitrary binary data. The key will be used to randomly generate
the rotor permutations and their initial positions.numrotorsis the number of rotor
permutations in the returned object; if it is omitted, a default value of 6 will be used.

Rotor objects have the following methods:

setkey()
Reset the rotor to its initial state.

encrypt(plaintext)
Reset the rotor object to its initial state and encryptplaintext, returning a string con-
taining the ciphertext. The ciphertext is always the same length as the original plain-
text.

encryptmore(plaintext)
Encryptplaintextwithout resetting the rotor object, and return a string containing the
ciphertext.

decrypt(ciphertext)
Reset the rotor object to its initial state and decryptciphertext, returning a string
containing the ciphertext. The plaintext string will always be the same length as the
ciphertext.

decryptmore(ciphertext)
Decryptciphertextwithout resetting the rotor object, and return a string containing
the ciphertext.

216

An example usage:

>>> import rotor
>>> rt = rotor.newrotor('key', 12)
>>> rt.encrypt('bar')
'\2534\363'
>>> rt.encryptmore('bar')
'\357\375$'
>>> rt.encrypt('bar')
'\2534\363'
>>> rt.decrypt('\2534\363')
'bar'
>>> rt.decryptmore('\357\375$')
'bar'
>>> rt.decrypt('\357\375$')
'l(\315'
>>> del rt

The module's code is not an exact simulation of the original Enigma device; it implements
the rotor encryption scheme differently from the original. The most important difference
is that in the original Enigma, there were only 5 or 6 different rotors in existence, and
they were applied twice to each character; the cipher key was the order in which they
were placed in the machine. The Python rotor module uses the supplied key to initialize
a random number generator; the rotor permutations and their initial positions are then
randomly generated. The original device only enciphered the letters of the alphabet, while
this module can handle any 8-bit binary data; it also produces binary output. This module
can also operate with an arbitrary number of rotors.

The original Enigma cipher was broken in 1944. The version implemented here is probably
a good deal more difficult to crack (especially if you use many rotors), but it won' t be
impossible for a truly skilful and determined attacker to break the cipher. So if you want to
keep the NSA out of your files, this rotor cipher may well be unsafe, but for discouraging
casual snooping through your files, it will probably be just fine, and may be somewhat
safer than using the Unix `crypt ' command.

217

Chapter 15

Macintosh Specific Services

The modules in this chapter are available on the Apple Macintosh only.

Aside from the modules described here there are also interfaces to various MacOS tool-
boxes, which are currently not extensively described. The toolboxes for which modules
exist are:AE (Apple Events),Cm(Component Manager),Ctl (Control Manager),Dlg
(Dialog Manager),Evt (Event Manager),Fm (Font Manager),List (List Manager),
Menu (Moenu Manager),Qd (QuickDraw), Qt (QuickTime), Res (Resource Manager
and Handles),Scrap (Scrap Manager),Snd (Sound Manager),TE (TextEdit), Waste
(non-Apple TextEdit replacement) andWin (Window Manager).

If applicable the module will define a number of Python objects for the various structures
declared by the toolbox, and operations will be implemented as methods of the object.
Other operations will be implemented as functions in the module. Not all operations pos-
sible in C will also be possible in Python (callbacks are often a problem), and parameters
will occasionally be different in Python (input and output buffers, especially). All methods
and functions have adoc string describing their arguments and return values, and for
additional description you are referred to Inside Mac or similar works.

15.1 Built-in Module mac

This module provides a subset of the operating system dependent functionality provided by
the optional built-in moduleposix . It is best accessed through the more portable standard
moduleos .

The following functions are available in this module:chdir , close , dup , fdopen ,
getcwd , lseek , listdir , mkdir , open , read , rename , rmdir , stat , sync ,
unlink , write , as well as the exceptionerror . Note that the times returned bystat

218

are floating-point values, like all time values in MacPython.

One additional function is available:xstat . This function returns the same information
asstat , but with three extra values appended: the size of the resource fork of the file and
its 4-char creator and type.

15.2 Standard Modulemacpath

This module provides a subset of the pathname manipulation functions available from the
optional standard moduleposixpath . It is best accessed through the more portable
standard moduleos , asos.path .

The following functions are available in this module:normcase , normpath , isabs ,
join , split , isdir , isfile , walk , exists . For other functions available in
posixpath dummy counterparts are available.

15.3 Built-in Module ctb

This module provides a partial interface to the Macintosh Communications Toolbox. Cur-
rently, only Connection Manager tools are supported. It may not be available in all Mac
Python versions.

error
The exception raised on errors.

cmData
cmCntl
cmAttn

Flags for thechannelargument of theReadandWritemethods.

cmFlagsEOM
End-of-message flag forReadandWrite.

choose*
Values returned byChoose.

cmStatus*
Bits in the status as returned byStatus.

available()
Return 1 if the communication toolbox is available, zero otherwise.

CMNew(name, sizes)
Create a connection object using the connection tool namedname. sizesis a 6-
tuple given buffer sizes for data in, data out, control in, control out, attention in and

219

attention out. Alternatively, passingNone will result in default buffer sizes.

15.3.1 connection object

For all connection methods that take atimeoutargument, a value of-1 is indefinite, mean-
ing that the command runs to completion.

callback
If this member is set to a value other thanNone it should point to a function ac-
cepting a single argument (the connection object). This will make all connection
object methods work asynchronously, with the callback routine being called upon
completion.
Note: for reasons beyond my understanding the callback routine is currently never
called. You are advised against using asynchronous calls for the time being.

Open(timeout)
Open an outgoing connection, waiting at mosttimeoutseconds for the connection to
be established.

Listen(timeout)
Wait for an incoming connection. Stop waiting aftertimeoutseconds. This call is
only meaningful to some tools.

accept(yesno)
Accept (whenyesnois non-zero) or reject an incoming call afterListenreturned.

Close(timeout, now)
Close a connection. Whennow is zero, the close is orderly (i.e. outstanding output
is flushed, etc.) with a timeout oftimeoutseconds. Whennow is non-zero the close
is immediate, discarding output.

Read(len, chan, timeout)
Readlen bytes, or untiltimeoutseconds have passed, from the channelchan(which
is one ofcmData, cmCntlor cmAttn). Return a 2-tuple: the data read and the end-of-
message flag.

Write(buf, chan, timeout, eom)
Write buf to channelchan, aborting aftertimeoutseconds. Wheneomhas the value
cmFlagsEOMan end-of-message indicator will be written after the data (if this con-
cept has a meaning for this communication tool). The method returns the number of
bytes written.

Status()
Return connection status as the 2-tuple(sizes, flags) . sizesis a 6-tuple giving the
actual buffer sizes used (seeCMNew), flagsis a set of bits describing the state of the
connection.

220

GetConfig()
Return the configuration string of the communication tool. These configuration
strings are tool-dependent, but usually easily parsed and modified.

SetConfig(str)
Set the configuration string for the tool. The strings are parsed left-to-right, with
later values taking precedence. This means individual configuration parameters can
be modified by simply appending something like'baud 4800' to the end of the
string returned byGetConfigand passing that to this method. The method returns
the number of characters actually parsed by the tool before it encountered an error
(or completed successfully).

Choose()
Present the user with a dialog to choose a communication tool and configure it. If
there is an outstanding connection some choices (like selecting a different tool) may
cause the connection to be aborted. The return value (one of thechoose*constants)
will indicate this.

Idle()
Give the tool a chance to use the processor. You should call this method regularly.

Abort()
Abort an outstanding asynchronousOpenor Listen.

Reset()
Reset a connection. Exact meaning depends on the tool.

Break(length)
Send a break. Whether this means anything, what it means and interpretation of the
lengthparameter depend on the tool in use.

15.4 Built-in Module macconsole

This module is available on the Macintosh, provided Python has been built using the Think
C compiler. It provides an interface to the Think console package, with which basic text
windows can be created.

options
An object allowing you to set various options when creating windows, see below.

C ECHO
C NOECHO
C CBREAK
C RAW

Options for thesetmode method. C ECHO and C CBREAK enable character
echo, the other two disable it,C ECHO andC NOECHOenable line-oriented in-

221

put (erase/kill processing, etc).

copen()
Open a new console window. Return a console window object.

fopen(fp)
Return the console window object corresponding with the given file object.fp should
be one ofsys.stdin , sys.stdout or sys.stderr .

15.4.1 macconsole options object

These options are examined when a window is created:

top
left

The origin of the window.

nrows
ncols

The size of the window.

txFont
txSize
txStyle

The font, fontsize and fontstyle to be used in the window.

title
The title of the window.

pause atexit
If set non-zero, the window will wait for user action before closing.

15.4.2 console window object

file
The file object corresponding to this console window. If the file is buffered, you
should callfile.flush() betweenwrite() andread() calls.

setmode(mode)
Set the input mode of the console toC ECHO, etc.

settabs(n)
Set the tabsize ton spaces.

cleos()
Clear to end-of-screen.

222

cleol()
Clear to end-of-line.

inverse(onoff)
Enable inverse-video mode: characters with the high bit set are displayed in inverse
video (this disables the upper half of a non-ASCII character set).

gotoxy(x, y)
Set the cursor to position(x, y) .

hide()
Hide the window, remembering the contents.

show()
Show the window again.

echo2printer()
Copy everything written to the window to the printer as well.

15.5 Built-in Module macdnr

This module provides an interface to the Macintosh Domain Name Resolver. It is usually
used in conjunction with themactcpmodule, to map hostnames to IP-addresses. It may
not be available in all Mac Python versions.

Themacdnr module defines the following functions:

Open([filename])
Open the domain name resolver extension. Iffilenameis given it should be the
pathname of the extension, otherwise a default is used. Normally, this call is not
needed since the other calls will open the extension automatically.

Close()
Close the resolver extension. Again, not needed for normal use.

StrToAddr(hostname)
Look up the IP address forhostname. This call returns a dnr result object of the
“address” variation.

AddrToName(addr)
Do a reverse lookup on the 32-bit integer IP-addressaddr. Returns a dnr result object
of the “address” variation.

AddrToStr(addr)
Convert the 32-bit integer IP-addressaddr to a dotted-decimal string. Returns the
string.

HInfo(hostname)

223

Query the nameservers for aHInfo record for hosthostname. These records con-
tain hardware and software information about the machine in question (if they are
available in the first place). Returns a dnr result object of the “hinfo” variety.

MXInfo(domain)
Query the nameservers for a mail exchanger fordomain. This is the hostname of a
host willing toaccept SMTP mail for the given domain. Returns a dnr result object
of the “mx” variety.

15.5.1 dnr result object

Since the DNR calls all execute asynchronously you do not get the results back immedi-
ately. Instead, you get a dnr result object. You can check this object to see whether the
query is complete, and access its attributes to obtain the information when it is.

Alternatively, you can also reference the result attributes directly, this will result in an
implicit wait for the query to complete.

The rtnCodeandcnameattributes are always available, the others depend on the type of
query (address, hinfo or mx).

wait()
Wait for the query to complete.

isdone()
Return 1 if the query is complete.

rtnCode
The error code returned by the query.

cname
The canonical name of the host that was queried.

ip0
ip1
ip2
ip3

At most four integer IP addresses for this host. Unused entries are zero. Valid only
for address queries.

cpuType
osType

Textual strings giving the machine type an OS name. Valid for hinfo queries.

exchange
The name of a mail-exchanger host. Valid for mx queries.

preference
The preference of this mx record. Not too useful, since the Macintosh will only

224

return a single mx record. Mx queries only.

The simplest way to use the module to convert names to dotted-decimal strings, without
worrying about idle time, etc:

>>> def gethostname(name):
... import macdnr
... dnrr = macdnr.StrToAddr(name)
... return macdnr.AddrToStr(dnrr.ip0)

15.6 Built-in Module macfs

This module providesaccess to macintosh FSSpec handling, the Alias Manager, finder
aliases and the Standard File package.

Whenever a function or method expects afile argument, this argument can be one of three
things: (1) a full or partial Macintosh pathname, (2) an FSSpec object or (3) a 3-tuple
(wdRefNum, parID, name) as described in Inside Mac VI. A description of aliases
and the standard file package can also be found there.

FSSpec(file)
Create an FSSpec object for the specified file.

RawFSSpec(data)
Create an FSSpec object given the raw data for the C structure for the FSSpec as
a string. This is mainly useful if you have obtained an FSSpec structure over a
network.

RawAlias(data)
Create an Alias object given the raw data for the C structure for the alias as a string.
This is mainly useful if you have obtained an FSSpec structure over a network.

FInfo()
Create a zero-filled FInfo object.

ResolveAliasFile(file)
Resolve an alias file. Returns a 3-tuple(fsspec, isfolder, aliased) wherefsspec
is the resultingFSSpec object,isfolder is true if fsspecpoints to a folder andaliased
is true if the file was an alias in the first place (otherwise the FSSpec object for the
file itself is returned).

StandardGetFile([type, ...])
Present the user with a standard “open input file” dialog. Optionally, you can pass
up to four 4-char file types to limit the files the user can choose from. The function
returns an FSSpec object and a flag indicating that the user completed the dialog
without cancelling.

225

PromptGetFile(prompt[, type, ...])
Similar toStandardGetFilebut allows you to specify a prompt.

StandardPutFile(prompt, [default])
Present the user with a standard “open output file” dialog.prompt is the prompt
string, and the optionaldefaultargument initializes the output file name. The func-
tion returns an FSSpec object and a flag indicating that the user completed the dialog
without cancelling.

GetDirectory([prompt])
Present the user with a non-standard “select a directory” dialog.promptis the prompt
string, and the optional. Return an FSSpec object and a success-indicator.

SetFolder([fsspec])
Set the folder that is initially presented to the user when one of the file selection
dialogs is presented.Fsspecshould point to a file in the folder, not the folder itself
(the file need not exist, though). If no argument is passed the folder will be set to the
current directory, i.e. whatos.getcwd() returns.
Note that starting with system 7.5 the user can change Standard File behaviour with
the “general controls” controlpanel, thereby making this call inoperative.

FindFolder(where, which, create)
Locates one of the “special” folders that MacOS knows about, such as the trash or the
Preferences folder.Whereis the disk to search,which is the 4-char string specifying
which folder to locate. Settingcreatecauses the folder to be created if it does not
exist. Returns a(vrefnum, dirid) tuple.
The constants forwhere and which can be obtained from the standard module
MACFS.

FindApplication(creator)
Locate the application with 4-char creator codecreator. The function returns an
FSSpec object pointing to the application.

15.6.1 FSSpec objects

data
The raw data from the FSSpec object, suitable for passing to other applications, for
instance.

as pathname()
Return the full pathname of the file described by the FSSpec object.

as tuple()
Return the(wdRefNum, parID, name) tuple of the file described by the FSSpec
object.

NewAlias([file])

226

Create an Alias object pointing to the file described by this FSSpec. If the optional
file parameter is present the alias will be relative to that file, otherwise it will be
absolute.

NewAliasMinimal()
Create a minimal alias pointing to this file.

GetCreatorType()
Return the 4-char creator and type of the file.

SetCreatorType(creator, type)
Set the 4-char creator and type of the file.

GetFInfo()
Return a FInfo object describing the finder info for the file.

SetFInfo(finfo)
Set the finder info for the file to the values specified in thefinfoobject.

GetDates()
Return a tuple with three floating point values representing the creation date, modi-
fication date and backup date of the file.

SetDates(crdate, moddate, backupdate)
Set the creation, modification and backup date of the file. The values are in the
standard floating point format used for times throughout Python.

15.6.2 alias objects

data
The raw data for the Alias record, suitable for storing in a resource or transmitting to
other programs.

Resolve([file])
Resolve the alias. If the alias was created as a relative alias you should pass the file
relative to which it is. Return the FSSpec for the file pointed to and a flag indicating
whether the alias object itself was modified during the search process.

GetInfo(num)
An interface to the C routineGetAliasInfo() .

Update(file, [file2])
Update the alias to point to thefile given. If file2 is present a relative alias will be
created.

Note that it is currently not possible to directly manipulate a resource as an alias object.
Hence, after callingUpdateor afterResolveindicates that the alias has changed the Python
program is responsible for getting thedata from the alias object and modifying the re-
source.

227

15.6.3 FInfo objects

See Inside Mac for a complete description of what the various fields mean.

Creator
The 4-char creator code of the file.

Type
The 4-char type code of the file.

Flags
The finder flags for the file as 16-bit integer. The bit values inFlagsare defined in
standard moduleMACFS.

Location
A Point giving the position of the file's icon in its folder.

Fldr
The folder the file is in (as an integer).

15.7 Built-in Module MacOS

This module providesaccess to MacOS specific functionality in the python interpreter,
such as how the interpreter eventloop functions and the like. Use with care.

Note the capitalisation of the module name, this is a historical artefact.

Error
This exception is raised on MacOS generated errors, either from functions in this
module or from other mac-specific modules like the toolbox interfaces. The argu-
ments are the integer error code (theOSErr value) and a textual description of the
error code. Symbolic names for all known error codes are defined in the standard
modulemacerrors.

SetHighLevelEventHandler(handler)
Pass a python function that will be called upon reception of a high-level event. The
previous handler is returned. The handler function is called with the event as argu-
ment.
Note that your event handler is currently only called dependably if your main event
loop is instdwin.

AcceptHighLevelEvent()
Read a high-level event. The return value is a tuple(sender, refcon, data) .

SetScheduleTimes(fgi, fgy [, bgi, bgy])
Controls how often the interpreter checks the event queue and how long it will yield
the processor to other processes.fgi specifies after how many clicks (one click is

228

one 60th of a second) the interpreter should check the event queue, andfgy speci-
fies for how many clicks the CPU should be yielded when in the foreground. The
optionalbgi andbgyallow you to specify different values to use when python runs
in the background, otherwise the background values will be set the the same as the
foreground values. The function returns nothing.
The default values, which are based on minimal empirical testing, are 12, 1, 6 and 2
respectively.

EnableAppswitch(onoff)
Enable or disable the python event loop, based on the value ofonoff. The old value
is returned. If the event loop is disabled no time is granted to other applications,
checking for command-period is not performed and it is impossible to switch appli-
cations. This should only be used by programs providing their own complete event
loop.
Note that based on the compiler used to build python it is still possible to loose events
even with the python event loop disabled. If you have asys.stdout window its
handler will often also look in the event queue. Making sure nothing is ever printed
works around this.

HandleEvent(ev)
Pass the event recordev back to the python event loop, or possibly to the handler for
thesys.stdout window (based on the compiler used to build python). This allows
python programs that do their own event handling to still have some command-period
and window-switching capability.

GetErrorString(errno)
Return the textual description of MacOS error codeerrno.

splash(resid)
This function will put a splash window on-screen, with the contents of the DLOG
resource specified byresid . Calling with a zero argument will remove the splash
screen. This function is useful if you want an applet to post a splash screen early in
initialization without first having to load numerous extension modules.

DebugStr(message[, object])
Drop to the low-level debugger with messagemessage. The optionalobjectargument
is not used, but can easily be inspected from the debugger.
Note that you should use this function with extreme care: if no low-level debugger
like MacsBug is installed this call will crash your system. It is intended mainly for
developers of Python extension modules.

openrf(name [, mode])
Open the resource fork of a file. Arguments are the same as for the builtin function
open . The object returned has file-like semantics, but it is not a python file object,
so there may be subtle differences.

229

15.8 Standard modulemacostools

This module contains some convenience routines for file-manipulation on the Macintosh.

Themacostools module defines the following functions:

copy(src, dst[, createpath, copytimes])
Copy filesrc to dst. The files can be specified as pathnames orFSSpec objects. If
createpathis non-zerodstmust be a pathname and the folders leading to the desti-
nation are created if necessary. The method copies data and resource fork and some
finder information (creator, type, flags) and optionally the creation, modification and
backup times (default is to copy them). Custom icons, comments and icon position
are not copied.

If the source is an alias the original to which the alias points is copied, not the alias-
file.

copytree(src, dst)
Recursively copy a file tree fromsrc to dst, creating folders as needed.Srcanddst
should be specified as pathnames.

mkalias(src, dst)
Create a finder aliasdst pointing to src. Both may be specified as pathnames or
FSSpecobjects.

touched(dst)
Tell the finder that some bits of finder-information such as creator or type for filedst
has changed. The file can be specified by pathname or fsspec. This call should prod
the finder into redrawing the files icon.

BUFSIZ
The buffer size forcopy , default 1 megabyte.

Note that the process of creating finder aliases is not specified in the Apple documentation.
Hence, aliases created withmkalias could conceivably have incompatible behaviour in
some cases.

15.9 Standard modulefindertools

This module contains routines that give Python programsaccess to some functionality
provided by the finder. They are implemented as wrappers around the AppleEvent interface
to the finder.

All file and folder parameters can be specified either as full pathnames or asFSSpec
objects.

The findertools module defines the following functions:

230

launch(file)
Tell the finder to launchfile. What launching means depends on the file: applications
are started, folders are opened and documents are opened in the correct application.

Print(file)
Tell the finder to print a file (again specified by full pathname or FSSpec). The
behaviour is identical to selecting the file and using the print command in the finder.

copy(file, destdir)
Tell the finder to copy a file or folderfile to folderdestdir. The function returns an
Alias object pointing to the new file.

move(file, destdir)
Tell the finder to move a file or folderfile to folderdestdir. The function returns an
Alias object pointing to the new file.

sleep()
Tell the finder to put the mac to sleep, if your machine supports it.

restart()
Tell the finder to perform an orderly restart of the machine.

shutdown()
Tell the finder to perform an orderly shutdown of the machine.

15.10 Built-in Module mactcp

This module provides an interface to the Macintosh TCP/IP driver MacTCP. There is an
accompanying modulemacdnr which provides an interface to the name-server (allowing
you to translate hostnames to ip-addresses), a moduleMACTCPconst which has symbolic
names for constants constants used by MacTCP. Since the builtin modulesocket is also
available on the mac it is usually easier to use sockets in stead of the mac-specific MacTCP
API.

A complete description of the MacTCP interface can be found in the Apple MacTCP API
documentation.

MTU()
Return the Maximum Transmit Unit (the packet size) of the network interface.

IPAddr()
Return the 32-bit integer IP address of the network interface.

NetMask()
Return the 32-bit integer network mask of the interface.

TCPCreate(size)
Create a TCP Stream object.sizeis the size of the receive buffer,4096 is suggested

231

by various sources.

UDPCreate(size, port)
Create a UDP stream object.sizeis the size of the receive buffer (and, hence, the size
of the biggest datagram you can receive on this port).port is the UDP port number
you want to receive datagrams on, a value of zero will make MacTCP select a free
port.

15.10.1 TCP Stream Objects

asr
When set to a value different thanNone this should point to a function with
two integer parameters: an event code and a detail. This function will be called
upon network-generated events such as urgent data arrival. In addition, it is
called with eventcodeMACTCP.PassiveOpenDone when a PassiveOpen
completes. This is a Python addition to the MacTCP semantics. It is safe to do
further calls from theasr .

PassiveOpen(port)
Wait for an incoming connection on TCP portport (zero makes the system pick a free
port). The call returns immediately, and you should usewait to wait for completion.
You should not issue any method calls other thanwait , isdone orGetSockName
before the call completes.

wait()
Wait for PassiveOpen to complete.

isdone()
Return 1 if aPassiveOpen has completed.

GetSockName()
Return the TCP address of this side of a connection as a 2-tuple(host, port) ,
both integers.

ActiveOpen(lport, host, rport)
Open an outgoing connection to TCP address(host, rport) . Use local portlport
(zero makes the system pick a free port). This call blocks until the connection has
been established.

Send(buf, push, urgent)
Send databuf over the connection.Pushandurgentare flags as specified by the TCP
standard.

Rcv(timeout)
Receive data. The call returns whentimeoutseconds have passed or when (according
to the MacTCP documentation) “a reasonable amount of data has been received”.
The return value is a 3-tuple(data, urgent, mark) . If urgent data is outstanding

232

Rcv will always return that before looking at any normal data. The first call returning
urgent data will have theurgentflag set, the last will have themarkflag set.

Close()
Tell MacTCP that no more data will be transmitted on this connection. The call
returns when all data has been acknowledged by the receiving side.

Abort()
Forcibly close both sides of a connection, ignoring outstanding data.

Status()
Return a TCP status object for this stream giving the current status (see below).

15.10.2 TCP Status Objects

This object has no methods, only some members holding information on the connection. A
complete description of all fields in this objects can be found in the Apple documentation.
The most interesting ones are:

localHost
localPort
remoteHost
remotePort

The integer IP-addresses and port numbers of both endpoints of the connection.

sendWindow
The current window size.

amtUnackedData
The number of bytes sent but not
yet acknowledged.sendWindow - amtUnackedData is what you can pass
to Send without blocking.

amtUnreadData
The number of bytes received but not yet read (what you canRecv without block-
ing).

15.10.3 UDP Stream Objects

Note that, unlike the name suggests, there is nothing stream-like about UDP.

asr
The asynchronous service routine to be called on events such as datagram arrival
without outstandingRead call. Theasr has a single argument, the event code.

port
A read-only member giving the port number of this UDP stream.

233

Read(timeout)
Read a datagram, waiting at mosttimeoutseconds (�1 is infinite). Return the data.

Write(host, port, buf)
Sendbuf as a datagram to IP-addresshost, portport.

15.11 Built-in Module macspeech

This module provides an interface to the Macintosh Speech Manager, allowing you to let
the Macintosh utter phrases. You need a version of the speech manager extension (version
1 and 2 have been tested) in yourExtensions folder for this to work. The module does
not provide full access to all features of the Speech Manager yet. It may not be available
in all Mac Python versions.

Available()
Test availability of the Speech Manager extension (and, on the PowerPC, the Speech
Manager shared library). Return 0 or 1.

Version()
Return the (integer) version number of the Speech Manager.

SpeakString(str)
Utter the stringstr using the default voice, asynchronously. This aborts any speech
that may still be active from priorSpeakString invocations.

Busy()
Return the number of speech channels busy, system-wide.

CountVoices()
Return the number of different voices available.

GetIndVoice(num)
Return a voice object for voice numbernum.

15.11.1 voice objects

Voice objects contain the description of a voice. It is currently not yet possible to access
the parameters of a voice.

GetGender()
Return the gender of the voice: 0 for male, 1 for female and�1 for neuter.

NewChannel()
Return a new speech channel object using this voice.

234

15.11.2 speech channel objects

A speech channel object allows you to speak strings with slightly more control than
SpeakString() , and allows you to use multiple speakers at the same time. Please note
that channel pitch and rate are interrelated in some way, so that to make your Macintosh
sing you will have to adjust both.

SpeakText(str)
Start uttering the given string.

Stop()
Stop babbling.

GetPitch()
Return the current pitch of the channel, as a floating-point number.

SetPitch(pitch)
Set the pitch of the channel.

GetRate()
Get the speech rate (utterances per minute) of the channel as a floating point number.

SetRate(rate)
Set the speech rate of the channel.

15.12 Standard moduleEasyDialogs

The EasyDialogs module contains some simple dialogs for the Macintosh, modelled
after thestdwin dialogs with similar names.

TheEasyDialogs module defines the following functions:

Message(str)
A modal dialog with the message textstr, which should be at most 255 characters
long, is displayed. Control is returned when the user clicks “OK”.

AskString(prompt[, default])
Ask the user to input a string value, in a modal dialog.Prompt is the promt mes-
sage, the optionaldefaultarg is the initial value for the string. All strings can be at
most 255 bytes long.AskStringreturns the string entered orNone in case the user
cancelled.

AskYesNoCancel(question[, default])
Present a dialog with textquestionand three buttons labelled “yes”, “no” and “can-
cel”. Return1 for yes,0 for no and-1 for cancel. The default return value chosen
by hitting return is0. This can be changed with the optionaldefaultargument.

ProgressBar([label, maxval])

235

Display a modeless progress dialog with a thermometer bar.Label is the textstring
displayed (default “Working...”),maxvalis the value at which progress is complete
(default 100). The returned object has one method,set(value) , which sets the
value of the progress bar. The bar remains visible until the object returned is dis-
carded.
The progress bar has a “cancel” button, but it is currentlynon-functional.

Note thatEasyDialogs does not currently use the notification manager. This means that
displaying dialogs while the program is in the background will lead to unexpected results
and possibly crashes. Also, all dialogs are modeless and hence expect to be at the top of
the stacking order. This is true when the dialogs are created, but windows that pop-up later
(like a console window) may also result in crashes.

15.13 Standard moduleFrameWork

TheFrameWork module contains classes that together provide a framework for an inter-
active Macintosh application. The programmer builds an application by creating subclasses
that override various methods of the bases classes, thereby implementing the functionality
wanted. Overriding functionality can often be done on various different levels, i.e. to han-
dle clicks in a single dialog window in a non-standard way it is not necessary to override
the complete event handling.

The FrameWork is still very much work-in-progress, and the documentation describes
only the most important functionality, and not in the most logical manner at that. Examine
the source or the examples for more details.

TheFrameWork module defines the following functions:

Application()
An object representing the complete application. See below for a description of the
methods. The default init routine creates an empty window dictionary and a
menu bar with an apple menu.

MenuBar()
An object representing the menubar. This object is usually not created by the user.

Menu(bar, title [, after])
An object representing a menu. Upon creation you pass theMenuBar the menu
appears in, thetitle string and a position (1-based)after where the menu should
appear (default: at the end).

MenuItem(menu, title [, shortcut, callback])
Create a menu item object. The arguments are the menu to crate the item it, the item
title string and optionally the keyboard shortcut and a callback routine. The callback
is called with the arguments menu-id, item number within menu (1-based), current
front window and the event record.

236

In stead of a callable object the callback can also be a string. In this case menu
selection causes the lookup of a method in the topmost window and the application.
The method name is the callback string with'domenu ' prepended.
Calling theMenuBar fixmenudimstate method sets the correct dimming for
all menu items based on the current front window.

Separator(menu)
Add a separator to the end of a menu.

SubMenu(menu, label)
Create a submenu namedlabelunder menumenu. The menu object is returned.

Window(parent)
Creates a (modeless) window.Parent is the application object to which the window
belongs. The window is not displayed until later.

DialogWindow(parent)
Creates a modeless dialog window.

windowbounds(width, height)
Return a(left, top, right, bottom) tuple suitable for creation of a win-
dow of given width and height. The window will be staggered with respect to pre-
vious windows, and an attempt is made to keep the whole window on-screen. The
window will however always be exact the size given, so parts may be offscreen.

setwatchcursor()
Set the mouse cursor to a watch.

setarrowcursor()
Set the mouse cursor to an arrow.

15.13.1 Application objects

Application objects have the following methods, among others:

makeusermenus()
Override this method if you need menus in your application. Append the menus to
self.menubar .

getabouttext()
Override this method to return a text string describing your application. Alterna-
tively, override thedo about method for more elaborate about messages.

mainloop([mask, wait])
This routine is the main event loop, call it to set your application rolling.Mask
is the mask of events you want to handle,wait is the number of ticks you want to
leave to other concurrent application (default 0, which is probably not a good idea).
While raisingself to exit the mainloop is still supported it is not recommended,

237

call self. quit instead.
The event loop is split into many small parts, each of which can be overridden. The
default methods take care of dispatching events to windows and dialogs, handling
drags and resizes, Apple Events, events for non-FrameWork windows, etc.

quit()
Terminate the eventmainloop at the next convenient moment.

do char(c, event)
The user typed characterc. The complete details of the event can be found in the
eventstructure. This method can also be provided in aWindow object, which over-
rides the application-wide handler if the window is frontmost.

do dialogevent(event)
Called early in the event loop to handle modeless dialog events. The default
method simply dispatches the event to the relevant dialog (not through the the
DialogWindow object involved). Override if you need special handling of dia-
log events (keyboard shortcuts, etc).

idle(event)
Called by the main event loop when no events are available. The null-event is passed
(so you can look at mouse position, etc).

15.13.2 Window Objects

Window objects have the following methods, among others:

open()
Override this method to open a window. Store the MacOS window-id inself.wid
and callself.do postopen to register the window with the parent application.

close()
Override this method to do any special processing on window close. Call
self.do postclose to cleanup the parent state.

do postresize(width, height, macoswindowid)
Called after the window is resized. Override if more needs to be done than calling
InvalRect .

do contentclick(local, modifiers, event)
The user clicked in the content part of a window. The arguments are the coordinates
(window-relative), the key modifiers and the raw event.

do update(macoswindowid, event)
An update event for the window was received. Redraw the window.

do activate(activate, event)
The window was activated (activate==1) or deactivated (activate==0).

238

Handle things like focus highlighting, etc.

15.13.3 ControlsWindow Object

ControlsWindow objects have the following methods besides those ofWindow objects:

do controlhit(window, control, pcode, event)
Partpcode of controlcontrol was hit by the user. Tracking and such has already
been taken care of.

15.13.4 ScrolledWindow Object

ScrolledWindow objects are ControlsWindow objects with the following extra methods:

scrollbars([wantx, wanty])
Create (or destroy) horizontal and vertical scrollbars. The arguments specify which
you want (default: both). The scrollbars always have minimum0 and maximum
32767 .

getscrollbarvalues()
You must supply this method. It should return a tuplex, y giving the current po-
sition of the scrollbars (between0 and32767). You can returnNone for either to
indicate the whole document is visible in that direction.

updatescrollbars()
Call this method when
the document has changed. It will callgetscrollbarvalues and update the
scrollbars.

scrollbar callback(which, what, value)
Supplied by you and called after user interaction.Which will be 'x' or 'y' , what
will be '-' , '--' , 'set' , '++' or '+' . For 'set' , value will contain the
new scrollbar position.

scalebarvalues(absmin, absmax, curmin, curmax)
Auxiliary method to help you calculate val-
ues to return fromgetscrollbarvalues . You pass document minimum and
maximum value and topmost (leftmost) and bottommost (rightmost) visible values
and it returns the correct number orNone.

do activate(onoff, event)
Takes care of dimming/highlighting scrollbars when a window becomes frontmost
vv. If you override this method call this one at the end of your method.

do postresize(width, height, window)
Moves scrollbars to the correct position. Call this method initially if you override it.

239

do controlhit(window, control, pcode, event)
Handles scrollbar interaction. If you override it call this method first, a nonzero
return value indicates the hit was in the scrollbars and has been handled.

15.13.5 DialogWindow Objects

DialogWindow objects have the following methods besides those ofWindow objects:

open(resid)
Create the dialog window, from the DLOG resource with idresid. The dialog object
is stored inself.wid .

do itemhit(item, event)
Item numberitemwas hit. You are responsible for redrawing toggle buttons, etc.

15.14 Standard moduleMiniAEFrame

The moduleMiniAEFrameprovides a framework for an application that can function as
an OSA server, i.e. receive and process AppleEvents. It can be used in conjunction with
FrameWorkor standalone.

This module is temporary, it will eventually be replaced by a module that handles argument
names better and possibly automates making your application scriptable.

TheMiniAEFramemodule defines the following classes:

AEServer()
A class that handles AppleEvent dispatch. Your application should sub-
class this class together with eitherMiniAEFrame.MiniApplication or
FrameWork.Application . Your init method should call the init
method for both classes.

MiniApplication()
A class that is more or less compatible withFrameWork.Application but with
less functionality. Its eventloop supports the apple menu, command-dot and Ap-
pleEvents, other events are passed on to the Python interpreter and/or Sioux. Useful
if your application wants to useAEServer but does not provide its own windows,
etc.

15.14.1 AEServer Objects

installaehandler(classe, type, callback)
Installs an AppleEvent handler.Classe andtype are the four-char OSA Class and

240

Type designators,'****' wildcards are allowed. When a matching AppleEvent is
received the parameters are decoded andyour callback is invoked.

callback(object, **kwargs)
Your callback is called with the OSA Direct Object as first positional parameter.
The other parameters are passed as keyword arguments, with the 4-char designator
as name. Three extra keyword parameters are passed:class and type are the
Class and Type designators andattributes is a dictionary with the AppleEvent
attributes.
The return value of your method is packed withaetools.packevent and sent
as reply.

Note that there are some serious problems with the current design. AppleEvents which
have non-identifier 4-char designators for arguments are not implementable, and it is not
possible to return an error to the originator. This will be addressed in a future release.

241

Chapter 16

Standard Windowing Interface

The modules in this chapter are available only on those systems where the STDWIN library
is available. STDWIN runs on UNIX under X11 and on the Macintosh. See CWI report
CS-R8817.

Warning: Using STDWIN is not recommended for new applications. It has never been
ported to Microsoft Windows or Windows NT, and for X11 or the Macintosh it lacks im-
portant functionality — in particular, it has no tools for the construction of dialogs. For
most platforms, alternative, native solutions exist (though none are currently documented
in this manual): Tkinter for UNIX under X11, native Xt with Motif or Athena widgets for
UNIX under X11, Win32 for Windows and Windows NT, and a collection of native toolkit
interfaces for the Macintosh.

16.1 Built-in Module stdwin

This module defines several new object types and functions that provideaccess to the
functionality of STDWIN.

On Unix running X11, it can only be used if theDISPLAY environment variable is set or
an explicit -̀display displayname' argument is passed to the Python interpreter.

Functions have names that usually resemble their C STDWIN counterparts with the initial
`w' dropped. Points are represented by pairs of integers; rectangles by pairs of points. For
a complete description of STDWIN please refer to the documentation of STDWIN for C
programmers (aforementioned CWI report).

242

16.1.1 Functions Defined in Modulestdwin

The following functions are defined in thestdwin module:

open(title)
Open a new window whose initial title is given by the string argument. Return a
window object; window object methods are described below.1

getevent()
Wait for and return the next event. An event is returned as a triple: the first element
is the event type, a small integer; the second element is the window object to which
the event applies, orNone if it applies to no window in particular; the third element
is type-dependent. Names for event types and command codes are defined in the
standard modulestdwinevent .

pollevent()
Return the next event, if one is immediately available. If no event is available, return
() .

getactive()
Return the window that is currently active, orNone if no window is currently ac-
tive. (This can be emulated by monitoring WEACTIVATE and WE DEACTIVATE
events.)

listfontnames(pattern)
Return the list of font names in the system that match the pattern (a string). The
pattern should normally be'*' ; returns all available fonts. If the underlying window
system is X11, other patterns follow the standard X11 font selection syntax (as used
e.g. in resource definitions), i.e. the wildcard character'*' matches any sequence of
characters (including none) and'?' matches any single character. On the Macintosh
this function currently returns an empty list.

setdefscrollbars(hflag, vflag)
Set the flags controlling whether subsequently opened windows will have horizontal
and/or vertical scroll bars.

setdefwinpos(h, v)
Set the default window position for windows opened subsequently.

setdefwinsize(width, height)
Set the default window size for windows opened subsequently.

getdefscrollbars()
Return the flags controlling whether subsequently opened windows will have hori-
zontal and/or vertical scroll bars.

1The Python version of STDWIN does not support draw procedures; all drawing requests are
reported as draw events.

243

getdefwinpos()
Return the default window position for windows opened subsequently.

getdefwinsize()
Return the default window size for windows opened subsequently.

getscrsize()
Return the screen size in pixels.

getscrmm()
Return the screen size in millimeters.

fetchcolor(colorname)
Return the pixel value corresponding to the given color name. Return the default
foreground color for unknown color names. Hint: the following code tests whether
you are on a machine that supports more than two colors:

if stdwin.fetchcolor('black') <> \
stdwin.fetchcolor('red') <> \
stdwin.fetchcolor('white'):

print 'color machine'
else:

print 'monochrome machine'

setfgcolor(pixel)
Set the default foreground color. This will become the default foreground color of
windows opened subsequently, including dialogs.

setbgcolor(pixel)
Set the default background color. This will become the default background color of
windows opened subsequently, including dialogs.

getfgcolor()
Return the pixel value of the current default foreground color.

getbgcolor()
Return the pixel value of the current default background color.

setfont(fontname)
Set the current default font. This will become the default font for windows
opened subsequently, and is also used by the text measuring functionstextwidth ,
textbreak , lineheight and baseline below. This accepts two more op-
tional parameters, size and style: Size is the font size (in `points'). Style is a single
character specifying the style, as follows:'b' = bold, 'i' = italic, 'o' = bold
+ italic, 'u' = underline; default style is roman. Size and style are ignored under
X11 but used on the Macintosh. (Sorry for all this complexity — a more uniform
interface is being designed.)

244

menucreate(title)
Create a menu object referring to a global menu (a menu that appears in all windows).
Methods of menu objects are described below. Note: normally, menus are created
locally; see the window methodmenucreate below. Warning: the menu only
appears in a window as long as the object returned by this call exists.

newbitmap(width, height)
Create a new bitmap object of the given dimensions. Methods of bitmap objects are
described below. Not available on the Macintosh.

fleep()
Cause a beep or bell (or perhaps a `visual bell' or flash, hence the name).

message(string)
Display a dialog box containing the string. The user must click OK before the func-
tion returns.

askync(prompt, default)
Display a dialog that prompts the user to answer a question with yes or no. Return 0
for no, 1 for yes. If the user hits the Return key, the default (which must be 0 or 1)
is returned. If the user cancels the dialog, theKeyboardInterrupt exception is
raised.

askstr(prompt, default)
Display a dialog that prompts the user for a string. If the user hits the Return key, the
default string is returned. If the user cancels the dialog, theKeyboardInterrupt
exception is raised.

askfile(prompt, default, new)
Ask the user to specify a filename. Ifnewis zero it must be an existing file; otherwise,
it must be a new file. If the user cancels the dialog, theKeyboardInterrupt
exception is raised.

setcutbuffer(i, string)
Store the string in the system's cut buffer numberi, where it can be found (for past-
ing) by other applications. On X11, there are 8 cut buffers (numbered 0..7). Cut
buffer number 0 is the `clipboard' on the Macintosh.

getcutbuffer(i)
Return the contents of the system's cut buffer numberi.

rotatecutbuffers(n)
On X11, rotate the 8 cut buffers byn. Ignored on the Macintosh.

getselection(i)
Return X11 selection numberi. Selections are not cut buffers. Selection numbers
are defined in modulestdwinevents . SelectionWSPRIMARYis theprimary
selection (used by xterm, for instance); selectionWSSECONDARYis thesecondary
selection; selectionWSCLIPBOARDis theclipboardselection (used by xclipboard).

245

On the Macintosh, this always returns an empty string.

resetselection(i)
Reset selection numberi, if this process owns it. (See window method
setselection()).

baseline()
Return the baseline of the current font (defined by STDWIN as the vertical distance
between the baseline and the top of the characters).

lineheight()
Return the total line height of the current font.

textbreak(str, width)
Return the number of characters of the string that fit into a space ofwidthbits wide
when drawn in the curent font.

textwidth(str)
Return the width in bits of the string when drawn in the current font.

connectionnumber()
fileno()

(X11 under UNIX only) Return the “connection number” used by the underlying X11
implementation. (This is normally the file number of the socket.) Both functions
return the same value;connectionnumber() is named after the correspond-
ing function in X11 and STDWIN, whilefileno() makes it possible to use the
stdwin module as a “file” object parameter toselect.select() . Note that if
select() implies that input is possible onstdwin , this does not guarantee that
an event is ready — it may be some internal communication going on between the X
server and the client library. Thus, you should callstdwin.pollevent() until
it returnsNone to check for events if you don' t want your program to block. Be-
cause of internal buffering in X11, it is also possible thatstdwin.pollevent()
returns an event whileselect() does not findstdwin to be ready, so you should
read any pending events withstdwin.pollevent() until it returnsNone before
entering a blockingselect() call.

16.1.2 Window Objects

Window objects are created bystdwin.open() . They are closed by theirclose()
method or when they are garbage-collected. Window objects have the following methods:

begindrawing()
Return a drawing object, whose methods (described below) allow drawing in the
window.

change(rect)
Invalidate the given rectangle; this may cause a draw event.

246

gettitle()
Returns the window's title string.

getdocsize()
Return a pair of integers giving the size of the document as set bysetdocsize() .

getorigin()
Return a pair of integers giving the origin of the window with respect to the docu-
ment.

gettitle()
Return the window's title string.

getwinsize()
Return a pair of integers giving the size of the window.

getwinpos()
Return a pair of integers giving the position of the window's upper left corner (rela-
tive to the upper left corner of the screen).

menucreate(title)
Create a menu object referring to a local menu (a menu that appears only in this
window). Methods of menu objects are described below.Warning: the menu only
appears as long as the object returned by this call exists.

scroll(rect, point)
Scroll the given rectangle by the vector given by the point.

setdocsize(point)
Set the size of the drawing document.

setorigin(point)
Move the origin of the window (its upper left corner) to the given point in the docu-
ment.

setselection(i, str)
Attempt to set X11 selection numberi to the stringstr. (See stdwin method
getselection() for the meaning ofi.) Return true if it succeeds. If succeeds,
the window “owns” the selection until (a) another application takes ownership of the
selection; or (b) the window is deleted; or (c) the application clears ownership by
calling stdwin.resetselection(i) . When another application takes owner-
ship of the selection, aWELOST SEL event is received for no particular window
and with the selection number as detail. Ignored on the Macintosh.

settimer(dsecs)
Schedule a timer event for the window indsecs/10 seconds.

settitle(title)
Set the window's title string.

247

setwincursor(name)
Set the window cursor to a cursor of the given name. It raises theRuntimeError
exception if no cursor of the given name exists. Suitable names include'ibeam' ,
'arrow' , 'cross' , 'watch' and'plus' . On X11, there are many more (see
`<X11/cursorfont.h> ').

setwinpos(h, v)
Set the the position of the window's upper left corner (relative to the upper left corner
of the screen).

setwinsize(width, height)
Set the window's size.

show(rect)
Try to ensure that the given rectangle of the document is visible in the window.

textcreate(rect)
Create a text-edit object in the document at the given rectangle. Methods of text-edit
objects are described below.

setactive()
Attempt to make this window the active window. If successful, this will generate a
WE ACTIVATE event (and a WEDEACTIVATE event in case another window in
this application became inactive).

close()
Discard the window object. It should not be used again.

16.1.3 Drawing Objects

Drawing objects are created exclusively by the window methodbegindrawing() . Only
one drawing object can exist at any given time; the drawing object must be deleted to finish
drawing. No drawing object may exist whenstdwin.getevent() is called. Drawing
objects have the following methods:

box(rect)
Draw a box just inside a rectangle.

circle(center, radius)
Draw a circle with given center point and radius.

elarc(center, (rh, rv), (a1, a2))
Draw an elliptical arc with given center point.(rh, rv) gives the half sizes of the
horizontal and vertical radii.(a1, a2) gives the angles (in degrees) of the begin
and end points. 0 degrees is at 3 o' clock, 90 degrees is at 12 o' clock.

erase(rect)
Erase a rectangle.

248

fillcircle(center, radius)
Draw a filled circle with given center point and radius.

fillelarc(center, (rh, rv), (a1, a2))
Draw a filled elliptical arc; arguments as forelarc .

fillpoly(points)
Draw a filled polygon given by a list (or tuple) of points.

invert(rect)
Invert a rectangle.

line(p1, p2)
Draw a line from pointp1 to p2.

paint(rect)
Fill a rectangle.

poly(points)
Draw the lines connecting the given list (or tuple) of points.

shade(rect, percent)
Fill a rectangle with a shading pattern that is aboutpercentpercent filled.

text(p, str)
Draw a string starting at point p (the point specifies the top left coordinate of the
string).

xorcircle(center, radius)
xorelarc(center, (rh, rv), (a1, a2))
xorline(p1, p2)
xorpoly(points)

Draw a circle, an elliptical arc, a line or a polygon, respectively, in XOR mode.

setfgcolor()
setbgcolor()
getfgcolor()
getbgcolor()

These functions are similar to the corresponding functions described above for the
stdwin module, but affect or return the colors currently used for drawing instead of
the global default colors. When a drawing object is created, its colors are set to the
window's default colors, which are in turn initialized from the global default colors
when the window is created.

setfont()
baseline()
lineheight()
textbreak()

249

textwidth()
These functions are similar to the corresponding functions described above for the
stdwin module, but affect or use the current drawing font instead of the global
default font. When a drawing object is created, its font is set to the window's default
font, which is in turn initialized from the global default font when the window is
created.

bitmap(point, bitmap, mask)
Draw thebitmapwith its top left corner atpoint. If the optionalmaskargument is
present, it should be either the same object asbitmap, to draw only those bits that
are set in the bitmap, in the foreground color, orNone, to draw all bits (ones are
drawn in the foreground color, zeros in the background color). Not available on the
Macintosh.

cliprect(rect)
Set the “clipping region” to a rectangle. The clipping region limits the effect of all
drawing operations, until it is changed again or until the drawing object is closed.
When a drawing object is created the clipping region is set to the entire window.
When an object to be drawn falls partly outside the clipping region, the set of pixels
drawn is the intersection of the clipping region and the set of pixels that would be
drawn by the same operation in the absence of a clipping region.

noclip()
Reset the clipping region to the entire window.

close()
enddrawing()

Discard the drawing object. It should not be used again.

16.1.4 Menu Objects

A menu object represents a menu. The menu is destroyed when the menu object is deleted.
The following methods are defined:

additem(text, shortcut)
Add a menu item with given text. The shortcut must be a string of length 1, or
omitted (to specify no shortcut).

setitem(i, text)
Set the text of item numberi.

enable(i, flag)
Enable or disables itemi.

check(i, flag)
Set or clear thecheck markfor item i.

250

close()
Discard the menu object. It should not be used again.

16.1.5 Bitmap Objects

A bitmap represents a rectangular array of bits. The top left bit has coordinate (0, 0). A
bitmap can be drawn with thebitmap method of a drawing object. Bitmaps are currently
not available on the Macintosh.

The following methods are defined:

getsize()
Return a tuple representing the width and height of the bitmap. (This returns the
values that have been passed to thenewbitmap function.)

setbit(point, bit)
Set the value of the bit indicated bypoint to bit.

getbit(point)
Return the value of the bit indicated bypoint.

close()
Discard the bitmap object. It should not be used again.

16.1.6 Text-edit Objects

A text-edit object represents a text-edit block. For semantics, see the STDWIN documen-
tation for C programmers. The following methods exist:

arrow(code)
Pass an arrow event to the text-edit block. Thecodemust be one ofWCLEFT,
WCRIGHT, WCUPor WCDOWN(see modulestdwinevents).

draw(rect)
Pass a draw event to the text-edit block. The rectangle specifies the redraw area.

event(type, window, detail)
Pass an event gotten fromstdwin.getevent() to the text-edit block. Return
true if the event was handled.

getfocus()
Return 2 integers representing the start and end positions of the focus, usable as slice
indices on the string returned bygettext() .

getfocustext()
Return the text in the focus.

251

getrect()
Return a rectangle giving the actual position of the text-edit block. (The bottom co-
ordinate may differ from the initial position because the block automatically shrinks
or grows to fit.)

gettext()
Return the entire text buffer.

move(rect)
Specify a new position for the text-edit block in the document.

replace(str)
Replace the text in the focus by the given string. The new focus is an insert point at
the end of the string.

setfocus(i, j)
Specify the new focus. Out-of-bounds values are silently clipped.

settext(str)
Replace the entire text buffer by the given string and set the focus to(0, 0) .

setview(rect)
Set the view rectangle torect. If rect is None, viewing mode is reset. In viewing
mode, all output from the text-edit object is clipped to the viewing rectangle. This
may be useful to implement your own scrolling text subwindow.

close()
Discard the text-edit object. It should not be used again.

16.1.7 Example

Here is a minimal example of using STDWIN in Python. It creates a window and draws
the string “Hello world” in the top left corner of the window. The window will be correctly
redrawn when covered and re-exposed. The program quits when the close icon or menu
item is requested.

252

import stdwin
from stdwinevents import *

def main():
mywin = stdwin.open('Hello')
#
while 1:

(type, win, detail) = stdwin.getevent()
if type == WE_DRAW:

draw = win.begindrawing()
draw.text((0, 0), 'Hello, world')
del draw

elif type == WE_CLOSE:
break

main()

16.2 Standard Modulestdwinevents

This module defines constants used by STDWIN for event types (WEACTIVATE etc.),
command codes (WCLEFT etc.) and selection types (WSPRIMARYetc.). Read the file for
details. Suggested usage is

>>> from stdwinevents import *
>>>

16.3 Standard Modulerect

This module contains useful operations on rectangles. A rectangle is defined as in module
stdwin : a pair of points, where a point is a pair of integers. For example, the rectangle

(10, 20), (90, 80)

is a rectangle whose left, top, right and bottom edges are 10, 20, 90 and 80, respectively.
Note that the positive vertical axis points down (as instdwin).

The module defines the following objects:

253

error
The exception raised by functions in this module when they detect an error. The
exception argument is a string describing the problem in more detail.

empty
The rectangle returned when some operations return an empty result. This makes it
possible to quickly check whether a result is empty:

>>> import rect
>>> r1 = (10, 20), (90, 80)
>>> r2 = (0, 0), (10, 20)
>>> r3 = rect.intersect([r1, r2])
>>> if r3 is rect.empty: print 'Empty intersection'
Empty intersection
>>>

is empty(r)
Returns
true if the given rectangle is empty. A rectangle(left, top), (right, bottom)
is empty if left� right or top� bottom.

intersect(list)
Returns the intersection of all rectangles in the list argument. It may also be
called with a tuple argument. Raisesrect.error if the list is empty. Returns
rect.empty if the intersection of the rectangles is empty.

union(list)
Returns the smallest rectangle that contains all non-empty rectangles in the list argu-
ment. It may also be called with a tuple argument or with two or more rectangles as
arguments. Returnsrect.empty if the list is empty or all its rectangles are empty.

pointinrect(point, rect)
Returns true if the point is inside the rectangle. By definition, a point(h, v) is
inside a rectangle(left, top), (right, bottom) if left � h < right and top �
v< bottom.

inset(rect, (dh, dv))
Returns a rectangle that lies inside therect argument bydhpixels horizontally and
dv pixels vertically. Ifdhor dv is negative, the result lies outsiderect.

rect2geom(rect)
Converts a rectangle to geometry representation:(left, top), (width, height) .

geom2rect(geom)
Converts a rectangle given in geometry representation back to the standard rectangle
representation(left, top), (right, bottom) .

254

Chapter 17

SGI IRIX Specific Services

The modules described in this chapter provide interfaces to features that are unique to
SGI's IRIX operating system (versions 4 and 5).

17.1 Built-in Module al

This module providesaccess to the audio facilities of the SGI Indy and Indigo worksta-
tions. See section 3A of the IRIX man pages for details. You' ll need to read those man
pages to understand what these functions do! Some of the functions are not available in
IRIX releases before 4.0.5. Again, see the manual to check whether a specific function is
available on your platform.

All functions and methods defined in this module are equivalent to the C functions with
`AL' prefixed to their name.

Symbolic constants from the C header file `<audio.h> ' are defined in the standard mod-
uleAL, see below.

Warning: the current version of the audio library may dump core when bad argument
values are passed rather than returning an error status. Unfortunately, since the precise
circumstances under which this may happen are undocumented and hard to check, the
Python interface can provide no protection against this kind of problems. (One example is
specifying an excessive queue size — there is no documented upper limit.)

The module defines the following functions:

openport(name, direction[, config])
The name and direction arguments are strings. The optional config argument is a
configuration object as returned byal.newconfig() . The return value is anport

255

object; methods of port objects are described below.

newconfig()
The return value is a newconfiguration object; methods of configuration objects are
described below.

queryparams(device)
The device argument is an integer. The return value is a list of integers containing
the data returned by ALqueryparams().

getparams(device, list)
The device argument is an integer. The list argument is a list such as returned by
queryparams ; it is modified in place (!).

setparams(device, list)
The device argument is an integer. The list argument is a list such as returned by
al.queryparams .

17.1.1 Configuration Objects

Configuration objects (returned byal.newconfig() have the following methods:

getqueuesize()
Return the queue size.

setqueuesize(size)
Set the queue size.

getwidth()
Get the sample width.

setwidth(width)
Set the sample width.

getchannels()
Get the channel count.

setchannels(nchannels)
Set the channel count.

getsampfmt()
Get the sample format.

setsampfmt(sampfmt)
Set the sample format.

getfloatmax()
Get the maximum value for floating sample formats.

256

setfloatmax(floatmax)
Set the maximum value for floating sample formats.

17.1.2 Port Objects

Port objects (returned byal.openport() have the following methods:

closeport()
Close the port.

getfd()
Return the file descriptor as an int.

getfilled()
Return the number of filled samples.

getfillable()
Return the number of fillable samples.

readsamps(nsamples)
Read a number of samples from the queue, blocking if necessary. Return the data as
a string containing the raw data, (e.g., 2 bytes per sample in big-endian byte order
(high byte, low byte) if you have set the sample width to 2 bytes).

writesamps(samples)
Write samples into the queue, blocking if necessary. The samples are encoded as
described for thereadsamps return value.

getfillpoint()
Return the `fill point' .

setfillpoint(fillpoint)
Set the `fill point' .

getconfig()
Return a configuration object containing the current configuration of the port.

setconfig(config)
Set the configuration from the argument, a configuration object.

getstatus(list)
Get status information on last error.

17.2 Standard ModuleAL

This module defines symbolic constants needed to use the built-in moduleal (see above);
they are equivalent to those defined in the C header file `<audio.h> ' except that the

257

name prefix ÀL ' is omitted. Read the module source for a complete list of the defined
names. Suggested use:

import al
from AL import *

17.3 Built-in Module cd

This module provides an interface to the Silicon Graphics CD library. It is available only
on Silicon Graphics systems.

The way the library works is as follows. A program opens the CD-ROM de-
vice with cd.open() and creates a parser to parse the data from the CD with
cd.createparser() . The object returned bycd.open() can be used to read data
from the CD, but also to get status information for the CD-ROM device, and to get infor-
mation about the CD, such as the table of contents. Data from the CD is passed to the
parser, which parses the frames, and calls any callback functions that have previously been
added.

An audio CD is divided intotracks or programs(the terms are used interchangeably).
Tracks can be subdivided intoindices. An audio CD contains atable of contentswhich
gives the starts of the tracks on the CD. Index 0 is usually the pause before the start of a
track. The start of the track as given by the table of contents is normally the start of index
1.

Positions on a CD can be represented in two ways. Either a frame number or a tuple of
three values, minutes, seconds and frames. Most functions use the latter representation.
Positions can be both relative to the beginning of the CD, and to the beginning of the track.

Modulecd defines the following functions and constants:

createparser()
Create and return an opaque parser object. The methods of the parser object are
described below.

msftoframe(min, sec, frame)
Converts a(minutes, seconds, frames) triple representing time in abso-
lute time code into the corresponding CD frame number.

open([device[, mode]])
Open the CD-ROM device. The return value is an opaque player object; methods of
the player object are described below. The device is the name of the SCSI device
file, e.g. /dev/scsi/sc0d4l0, orNone. If omited orNone, the hardware inventory is

258

consulted to locate a CD-ROM drive. Themode, if not omited, should be the string
' r' .

The module defines the following variables:

error
Exception raised on various errors.

DATASIZE
The size of one frame's worth of audio data. This is the size of the audio data as
passed to the callback of typeaudio .

BLOCKSIZE
The size of one uninterpreted frame of audio data.

The following variables are states as returned bygetstatus :

READY
The drive is ready for operation loaded with an audio CD.

NODISC
The drive does not have a CD loaded.

CDROM
The drive is loaded with a CD-ROM. Subsequent play or read operations will return
I/O errors.

ERROR
An error aoocurred while trying to read the disc or its table of contents.

PLAYING
The drive is in CD player mode playing an audio CD through its audio jacks.

PAUSED
The drive is in CD layer mode with play paused.

STILL
The equivalent ofPAUSEDon older (non 3301) model Toshiba CD-ROM drives.
Such drives have never been shipped by SGI.

audio
pnum
index
ptime
atime
catalog
ident
control

Integer constants describing the various types of parser callbacks that can be set by
theaddcallback() method of CD parser objects (see below).

259

Player objects (returned bycd.open()) have the following methods:

allowremoval()
Unlocks the eject button on the CD-ROM drive permitting the user to eject the caddy
if desired.

bestreadsize()
Returns the best value to use for thenum frames parameter of thereadda
method. Best is defined as the value that permits a continuous flow of data from
the CD-ROM drive.

close()
Frees the resources associated with the player object. After callingclose , the meth-
ods of the object should no longer be used.

eject()
Ejects the caddy from the CD-ROM drive.

getstatus()
Returns information pertaining to the current state of the CD-ROM drive. The re-
turned information is a tuple with the following values:state , track , rtime ,
atime , ttime , first , last , scsi audio , cur block . rtime is the time
relative to the start of the current track;atime is the time relative to the beginning
of the disc;ttime is the total time on the disc. For more information on the mean-
ing of the values, see the manual for CDgetstatus. The value ofstate is one of the
following: cd.ERROR, cd.NODISC , cd.READY, cd.PLAYING , cd.PAUSED,
cd.STILL , or cd.CDROM.

gettrackinfo(track)
Returns information about the specified track. The returned information is a tuple
consisting of two elements, the start time of the track and the duration of the track.

msftoblock(min, sec, frame)
Converts a minutes, seconds, frames triple representing a time in absolute time
code into the corresponding logical block number for the given CD-ROM drive.
You should usecd.msftoframe() rather thanmsftoblock() for comparing
times. The logical block number differs from the frame number by an offset required
by certain CD-ROM drives.

play(start, play)
Starts playback of an audio CD in the CD-ROM drive at the specified track. The
audio output appears on the CD-ROM drive's headphone and audio jacks (if fitted).
Play stops at the end of the disc.start is the number of the track at which to
start playing the CD; ifplay is 0, the CD will be set to an initial paused state. The
methodtogglepause() can then be used to commence play.

playabs(min, sec, frame, play)
Like play() , except that the start is given in minutes, seconds, frames instead of a

260

track number.

playtrack(start, play)
Like play() , except that playing stops at the end of the track.

playtrackabs(track, min, sec, frame, play)
Like play() , except that playing begins at the spcified absolute time and ends at
the end of the specified track.

preventremoval()
Locks the eject button on the CD-ROM drive thus preventing the user from arbitrarily
ejecting the caddy.

readda(numframes)
Reads the specified number of frames from an audio CD mounted in the CD-ROM
drive. The return value is a string representing the audio frames. This string can be
passed unaltered to theparseframe method of the parser object.

seek(min, sec, frame)
Sets the pointer that indicates the starting point of the next read of digital audio data
from a CD-ROM. The pointer is set to an absolute time code location specified in
minutes, seconds, and frames. The return value is the logical block number to which
the pointer has been set.

seekblock(block)
Sets the pointer that indicates the starting point of the next read of digital audio data
from a CD-ROM. The pointer is set to the specified logical block number. The return
value is the logical block number to which the pointer has been set.

seektrack(track)
Sets the pointer that indicates the starting point of the next read of digital audio data
from a CD-ROM. The pointer is set to the specified track. The return value is the
logical block number to which the pointer has been set.

stop()
Stops the current playing operation.

togglepause()
Pauses the CD if it is playing, and makes it play if it is paused.

Parser objects (returned bycd.createparser()) have the following methods:

addcallback(type, func, arg)
Adds a callback for the parser. The parser has callbacks for eight different
types of data in the digital audio data stream. Constants for these types are de-
fined at thecd module level (see above). The callback is called as follows:
func(arg, type, data) , wherearg is the user supplied argument,type
is the particular type of callback, anddata is the data returned for thistype of
callback. The type of the data depends on thetype of callback as follows:

261

cd.audio : The argument is a string which can be passed unmodified to
al.writesamps() .

cd.pnum : The argument is an integer giving the program (track) number.
cd.index : The argument is an integer giving the index number.
cd.ptime : The argument is a tuple consisting of the program time in minutes,

seconds, and frames.
cd.atime : The argument is a tuple consisting of the absolute time in minutes,

seconds, and frames.
cd.catalog : The argument is a string of 13 characters, giving the catalog number

of the CD.
cd.ident : The argument is a string of 12 characters, giving the ISRC identifi-

cation number of the recording. The string consists of two characters country
code, three characters owner code, two characters giving the year, and five char-
acters giving a serial number.

cd.control : The argument is an integer giving the control bits from the CD sub-
code data.

deleteparser()
Deletes the parser and frees the memory it was using. The object should not be used
after this call. This call is done automatically when the last reference to the object is
removed.

parseframe(frame)
Parses one or more frames of digital audio data from a CD such as returned by
readda . It determines which subcodes are present in the data. If these subcodes
have changed since the last frame, thenparseframe executes a callback of the
appropriate type passing to it the subcode data found in the frame. Unlike the C
function, more than one frame of digital audio data can be passed to this method.

removecallback(type)
Removes the callback for the giventype .

resetparser()
Resets the fields of the parser used for tracking subcodes to an initial state.
resetparser should be called after the disc has been changed.

17.4 Built-in Module fl

This module provides an interface to the FORMS Library by Mark Overmars. The source
for the library can be retrieved by anonymous ftp from host `ftp.cs.ruu.nl ' , directory
`SGI/FORMS' . It was last tested with version 2.0b.

Most functions are literal translations of their C equivalents, dropping the initial `fl ' from
their name. Constants used by the library are defined in moduleFL described below.

262

The creation of objects is a little different in Python than in C: instead of the `current
form' maintained by the library to which new FORMS objects are added, all functions that
add a FORMS object to a form are methods of the Python object representing the form.
Consequently, there are no Python equivalents for the C functionsfl addto form and
fl end form , and the equivalent offl bgn form is calledfl.make form .

Watch out for the somewhat confusing terminology: FORMS uses the wordobjectfor the
buttons, sliders etc. that you can place in a form. In Python, `object' means any value.
The Python interface to FORMS introduces two new Python object types: form objects
(representing an entire form) and FORMS objects (representing one button, slider etc.).
Hopefully this isn' t too confusing...

There are no `free objects' in the Python interface to FORMS, nor is there an easy way
to add object classes written in Python. The FORMS interface to GL event handling is
available, though, so you can mix FORMS with pure GL windows.

Please note:importingfl implies a call to the GL functionforeground() and to the
FORMS routinefl init() .

17.4.1 Functions Defined in Modulefl

Modulefl defines the following functions. For more information about what they do, see
the description of the equivalent C function in the FORMS documentation:

make form(type, width, height)
Create a form with given type, width and height. This returns aform object, whose
methods are described below.

do forms()
The standard FORMS main loop. Returns a Python object representing the FORMS
object needing interaction, or the special valueFL.EVENT.

check forms()
Check for FORMS events. Returns whatdo forms above returns, orNone if there
is no event that immediately needs interaction.

set event call back(function)
Set the event callback function.

set graphics mode(rgbmode, doublebuffering)
Set the graphics modes.

get rgbmode()
Return the current rgb mode. This is the value of the C global variablefl rgbmode .

show message(str1, str2, str3)
Show a dialog box with a three-line message and an OK button.

263

show question(str1, str2, str3)
Show a dialog box with a three-line message and YES and NO buttons. It returns1
if the user pressed YES,0 if NO.

show choice(str1, str2, str3, but1[, but2, but3])
Show a dialog box with a three-line message and up to three buttons. It returns the
number of the button clicked by the user (1, 2 or 3).

show input(prompt, default)
Show a dialog box with a one-line prompt message and text field in which the user
can enter a string. The second argument is the default input string. It returns the
string value as edited by the user.

show file selector(message, directory, pattern, default)
Show a dialog box in which the user can select a file. It returns the absolute filename
selected by the user, orNone if the user presses Cancel.

get directory()
get pattern()
get filename()

These functions return the directory, pattern and filename (the tail part only) selected
by the user in the lastshow file selector call.

qdevice(dev)
unqdevice(dev)
isqueued(dev)
qtest()
qread()
qreset()
qenter(dev, val)
get mouse()
tie(button, valuator1, valuator2)

These functions are the FORMS interfaces to the corresponding GL functions. Use
these if you want to handle some GL events yourself when usingfl.do events .
When a GL event is detected that FORMS cannot handle,fl.do forms() returns
the special valueFL.EVENT and you should callfl.qread() to read the event
from the queue. Don' t use the equivalent GL functions!

color()
mapcolor()
getmcolor()

See the description in the FORMS documentation offl color , fl mapcolor
andfl getmcolor .

264

17.4.2 Form Objects

Form objects (returned byfl.make form() above) have the following methods. Each
method corresponds to a C function whose name is prefixed with `fl ' ; and whose first
argument is a form pointer; please refer to the official FORMS documentation for descrip-
tions.

All the `add . . . ' functions return a Python object representing the FORMS object. Meth-
ods of FORMS objects are described below. Most kinds of FORMS object also have some
methods specific to that kind; these methods are listed here.

show form(placement, bordertype, name)
Show the form.

hide form()
Hide the form.

redraw form()
Redraw the form.

set form position(x, y)
Set the form's position.

freeze form()
Freeze the form.

unfreeze form()
Unfreeze the form.

activate form()
Activate the form.

deactivate form()
Deactivate the form.

bgn group()
Begin a new group of objects; return a group object.

end group()
End the current group of objects.

find first()
Find the first object in the form.

find last()
Find the last object in the form.

add box(type, x, y, w, h, name)
Add a box object to the form. No extra methods.

add text(type, x, y, w, h, name)

265

Add a text object to the form. No extra methods.

add clock(type, x, y, w, h, name)
Add a clock object to the form.
Method:get clock .

add button(type, x, y, w, h, name)
Add a button object to the form.
Methods:get button , set button .

add lightbutton(type, x, y, w, h, name)
Add a lightbutton object to the form.
Methods:get button , set button .

add roundbutton(type, x, y, w, h, name)
Add a roundbutton object to the form.
Methods:get button , set button .

add slider(type, x, y, w, h, name)
Add a slider object to the form.
Methods:set slider value , get slider value , set slider bounds ,
get slider bounds , set slider return , set slider size ,
set slider precision , set slider step .

add valslider(type, x, y, w, h, name)
Add a valslider object to the form.
Methods:set slider value , get slider value , set slider bounds ,
get slider bounds , set slider return , set slider size ,
set slider precision , set slider step .

add dial(type, x, y, w, h, name)
Add a dial object to the form.
Methods:set dial value , get dial value , set dial bounds ,
get dial bounds .

add positioner(type, x, y, w, h, name)
Add a positioner object to the form.
Methods:set positioner xvalue , set positioner yvalue ,
set positioner xbounds , set positioner ybounds ,
get positioner xvalue , get positioner yvalue ,
get positioner xbounds , get positioner ybounds .

add counter(type, x, y, w, h, name)
Add a counter object to the form.
Methods:set counter value , get counter value ,
set counter bounds , set counter step , set counter precision ,
set counter return .

add input(type, x, y, w, h, name)

266

Add a input object to the form.
Methods:set input , get input , set input color ,
set input return .

add menu(type, x, y, w, h, name)
Add a menu object to the form.
Methods:set menu, get menu, addto menu.

add choice(type, x, y, w, h, name)
Add a choice object to the form.
Methods:set choice , get choice , clear choice , addto choice ,
replace choice , delete choice , get choice text ,
set choice fontsize , set choice fontstyle .

add browser(type, x, y, w, h, name)
Add a browser object to the form.
Methods:set browser topline , clear browser , add browser line ,
addto browser , insert browser line , delete browser line ,
replace browser line , get browser line , load browser ,
get browser maxline , select browser line ,
deselect browser line , deselect browser ,
isselected browser line , get browser , set browser fontsize ,
set browser fontstyle , set browser specialkey .

add timer(type, x, y, w, h, name)
Add a timer object to the form.
Methods:set timer , get timer .

Form objects have the following data attributes; see the FORMS documentation:

Name Type Meaning
window int (read-only) GL window id
w float form width
h float form height
x float form x origin
y float form y origin
deactivated int nonzero if form is deactivated
visible int nonzero if form is visible
frozen int nonzero if form is frozen
doublebuf int nonzero if double buffering on

17.4.3 FORMS Objects

Besides methods specific to particular kinds of FORMS objects, all FORMS objects also
have the following methods:

267

set call back(function, argument)
Set the object's callback function and argument. When the object needs interac-
tion, the callback function will be called with two arguments: the object, and the
callback argument. (FORMS objects without a callback function are returned by
fl.do forms() or fl.check forms() when they need interaction.) Call this
method without arguments to remove the callback function.

delete object()
Delete the object.

show object()
Show the object.

hide object()
Hide the object.

redraw object()
Redraw the object.

freeze object()
Freeze the object.

unfreeze object()
Unfreeze the object.

FORMS objects have these data attributes; see the FORMS documentation:

268

Name Type Meaning
objclass int (read-only) object class
type int (read-only) object type
boxtype int box type
x float x origin
y float y origin
w float width
h float height
col1 int primary color
col2 int secondary color
align int alignment
lcol int label color
lsize float label font size
label string label string
lstyle int label style
pushed int (read-only) (see FORMS docs)
focus int (read-only) (see FORMS docs)
belowmouse int (read-only) (see FORMS docs)
frozen int (read-only) (see FORMS docs)
active int (read-only) (see FORMS docs)
input int (read-only) (see FORMS docs)
visible int (read-only) (see FORMS docs)
radio int (read-only) (see FORMS docs)
automatic int (read-only) (see FORMS docs)

17.5 Standard ModuleFL

This module defines symbolic constants needed to use the built-in modulefl (see above);
they are equivalent to those defined in the C header file `<forms.h> ' except that the
name prefix F̀L ' is omitted. Read the module source for a complete list of the defined
names. Suggested use:

import fl
from FL import *

17.6 Standard Moduleflp

This module defines functions that can read form definitions created by the `form designer'
(fdesign) program that comes with the FORMS library (see modulefl above).

269

For now, see the file `flp.doc ' in the Python library source directory for a description.

XXX A complete description should be inserted here!

17.7 Built-in Module fm

This module providesaccess to the IRISFont Managerlibrary. It is available only on
Silicon Graphics machines. See also: 4Sight User's Guide, Section 1, Chapter 5: Using
the IRIS Font Manager.

This is not yet a full interface to the IRIS Font Manager. Among the unsupported fea-
tures are: matrix operations; cache operations; character operations (use string operations
instead); some details of font info; individual glyph metrics; and printer matching.

It supports the following operations:

init()
Initialization function. Callsfminit() . It is normally not necessary to call this
function, since it is called automatically the first time thefm module is imported.

findfont(fontname)
Return a font handle object. Callsfmfindfont(fontname) .

enumerate()
Returns a list of available font names. This is an interface tofmenumerate() .

prstr(string)
Render a string using the current font (see thesetfont() font handle method
below). Callsfmprstr(string) .

setpath(string)
Sets the font search path. Callsfmsetpath(string) . (XXX Does not work!?!)

fontpath()
Returns the current font search path.

Font handle objects support the following operations:

scalefont(factor)
Returns a handle for a scaled version of this font. Calls
fmscalefont(fh, factor) .

setfont()
Makes this font the current font. Note: the effect is undone silently when the font
handle object is deleted. Callsfmsetfont(fh) .

getfontname()
Returns this font's name. Callsfmgetfontname(fh) .

270

getcomment()
Returns the comment string associated with this font. Raises an exception if there is
none. Callsfmgetcomment(fh) .

getfontinfo()
Returns a tuple giving some pertinent data about this font. This is an
interface to fmgetfontinfo() . The returned tuple contains the fol-
lowing numbers: (printermatched, fixed width, xorig, yorig, xsize, ysize,
height, nglyphs) .

getstrwidth(string)
Returns the width, in pixels, of the string when drawn in this font. Calls
fmgetstrwidth(fh, string) .

17.8 Built-in Module gl

This module providesaccess to the Silicon GraphicsGraphics Library. It is available only
on Silicon Graphics machines.

Warning: Some illegal calls to the GL library cause the Python interpreter to dump core.
In particular, the use of most GL calls is unsafe before the first window is opened.

The module is too large to document here in its entirety, but the following should help you
to get started. The parameter conventions for the C functions are translated to Python as
follows:

� All (short, long, unsigned) int values are represented by Python integers.

� All float and double values are represented by Python floating point numbers. In
most cases, Python integers are also allowed.

� All arrays are represented by one-dimensional Python lists. In most cases, tuples are
also allowed.

� All string and character arguments are represented by Python strings, for instance,
winopen('Hi There!') androtate(900, 'z') .

� All (short, long, unsigned) integer arguments or return values that are only used to
specify the length of an array argument are omitted. For example, the C call

lmdef(deftype, index, np, props)

is translated to Python as

lmdef(deftype, index, props)

271

� Output arguments are omitted from the argument list; they are transmitted as function
return values instead. If more than one value must be returned, the return value is a
tuple. If the C function has both a regular return value (that is not omitted because of
the previous rule) and an output argument, the return value comes first in the tuple.
Examples: the C call

getmcolor(i, &red, &green, &blue)

is translated to Python as

red, green, blue = getmcolor(i)

The following functions are non-standard or have special argument conventions:

varray(argument)
Equivalent to but faster than a number ofv3d() calls. Theargumentis a list (or
tuple) of points. Each point must be a tuple of coordinates(x, y, z) or (x, y) .
The points may be 2- or 3-dimensional but must all have the same dimension. Float
and int values may be mixed however. The points are always converted to 3D double
precision points by assumingz = 0.0 if necessary (as indicated in the man page),
and for each pointv3d() is called.

nvarray()
Equivalent to but faster than a number ofn3f andv3f calls. The argument is an
array (list or tuple) of pairs of normals and points. Each pair is a tuple of a point
and a normal for that point. Each point or normal must be a tuple of coordinates
(x, y, z) . Three coordinates must be given. Float and int values may be mixed.
For each pair,n3f() is called for the normal, and thenv3f() is called for the
point.

vnarray()
Similar tonvarray() but the pairs have the point first and the normal second.

nurbssurface(s k, t k, ctl, s ord, t ord, type)
Defines a nurbs surface. The dimensions ofctl[][] are computed as follows:
[len(s k) - s ord] , [len(t k) - t ord] .

nurbscurve(knots, ctlpoints, order, type)
Defines a nurbs curve. The length of ctlpoints islen(knots) - order.

pwlcurve(points, type)
Defines a piecewise-linear curve.pointsis a list of points.typemust beN ST.

pick(n)
select(n)

272

The only argument to these functions specifies the desired size of the pick or select
buffer.

endpick()
endselect()

These functions have no arguments. They return a list of integers representing the
used part of the pick/select buffer. No method is provided to detect buffer overrun.

Here is a tiny but complete example GL program in Python:

import gl, GL, time

def main():
gl.foreground()
gl.prefposition(500, 900, 500, 900)
w = gl.winopen('CrissCross')
gl.ortho2(0.0, 400.0, 0.0, 400.0)
gl.color(GL.WHITE)
gl.clear()
gl.color(GL.RED)
gl.bgnline()
gl.v2f(0.0, 0.0)
gl.v2f(400.0, 400.0)
gl.endline()
gl.bgnline()
gl.v2f(400.0, 0.0)
gl.v2f(0.0, 400.0)
gl.endline()
time.sleep(5)

main()

17.9 Standard ModulesGLand DEVICE

These modules define the constants used by the Silicon GraphicsGraphics Librarythat C
programmers find in the header files `<gl/gl.h> ' and <̀gl/device.h> ' . Read the
module source files for details.

273

17.10 Built-in Module imgfile

The imgfile module allows python programs toaccess SGI imglib image files (also known
as .̀rgb ' files). The module is far from complete, but is provided anyway since the func-
tionality that there is is enough in some cases. Currently, colormap files are not supported.

The module defines the following variables and functions:

error
This exception is raised on all errors, such as unsupported file type, etc.

getsizes(file)
This function returns a tuple(x, y, z) wherex andy are the size of the image in
pixels andz is the number of bytes per pixel. Only 3 byte RGB pixels and 1 byte
greyscale pixels are currently supported.

read(file)
This function reads and decodes the image on the specified file, and returns it as a
python string. The string has either 1 byte greyscale pixels or 4 byte RGBA pixels.
The bottom left pixel is the first in the string. This format is suitable to pass to
gl.lrectwrite , for instance.

readscaled(file, x, y, filter [, blur])
This function is identical to read but it returns an image that is scaled to the givenx
andy sizes. If thefilter andblur parameters are omitted scaling is done by simply
dropping or duplicating pixels, so the result will be less than perfect, especially for
computer-generated images.
Alternatively, you can specify a filter to use to smoothen the image after scaling. The
filter forms supported are'impulse' , 'box' , 'triangle' , 'quadratic'
and 'gaussian' . If a filter is specifiedblur is an optional parameter specifying
the blurriness of the filter. It defaults to1.0 .
readscaled makes no attempt to keep the aspect ratio correct, so that is the users'
responsibility.

ttob(flag)
This function sets a global flag which defines whether the scan lines of the image are
read or written from bottom to top (flag is zero, compatible with SGI GL) or from
top to bottom(flag is one, compatible with X). The default is zero.

write(file, data, x, y, z)
This function writes the RGB or greyscale data indatato image filefile. x andy give
the size of the image,z is 1 for 1 byte greyscale images or 3 for RGB images (which
are stored as 4 byte values of which only the lower three bytes are used). These are
the formats returned bygl.lrectread .

274

Chapter 18

SunOS Specific Services

The modules described in this chapter provide interfaces to features that are unique to the
SunOS operating system (versions 4 and 5; the latter is also known as Solaris version 2).

18.1 Built-in Module sunaudiodev

This module allows you toaccess the sun audio interface. The sun audio hardware is
capable of recording and playing back audio data in U-LAW format with a sample rate of
8K per second. A full description can be gotten with `man audio ' .

The module defines the following variables and functions:

error
This exception is raised on all errors. The argument is a string describing what went
wrong.

open(mode)
This function opens the audio device and returns a sun audio device object. This
object can then be used to do I/O on. Themodeparameter is one of'r' for record-
only access,'w' for play-only access,'rw' for both and'control' for access to
the control device. Since only one process is allowed to have the recorder or player
open at the same time it is a good idea to open the device only for the activity needed.
See the audio manpage for details.

18.1.1 Audio Device Objects

The audio device objects are returned byopen define the following methods (except
control objects which only provide getinfo, setinfo and drain):

275

close()
This method explicitly closes the device. It is useful in situations where deleting the
object does not immediately close it since there are other references to it. A closed
device should not be used again.

drain()
This method waits until all pending output is processed and then returns. Calling
this method is often not necessary: destroying the object will automatically close the
audio device and this will do an implicit drain.

flush()
This method discards all pending output. It can be used avoid the slow response to a
user's stop request (due to buffering of up to one second of sound).

getinfo()
This method retrieves status information like input and output volume, etc. and re-
turns it in the form of an audio status object. This object has no methods but it
contains a number of attributes describing the current device status. The names and
meanings of the attributes are described in `/usr/include/sun/audioio.h '
and in the audio man page. Member names are slightly different from their C coun-
terparts: a status object is only a single structure. Members of theplay substruc-
ture have ò ' prepended to their name and members of therecord structure have
`i ' . So, the C memberplay.sample rate is accessed aso sample rate ,
record.gain asi gain andmonitor gain plainly asmonitor gain .

ibufcount()
This method returns the number of samples that are buffered on the recording side,
i.e. the program will not block on aread call of so many samples.

obufcount()
This method returns the number of samples buffered on the playback side. Unfor-
tunately, this number cannot be used to determine a number of samples that can be
written without blocking since the kernel output queue length seems to be variable.

read(size)
This method readssizesamples from the audio input and returns them as a python
string. The function blocks until enough data is available.

setinfo(status)
This method sets the audio device status parameters. Thestatusparameter is an
device status object as returned bygetinfo and possibly modified by the program.

write(samples)
Write is passed a python string containing audio samples to be played. If there is
enough buffer space free it will immediately return, otherwise it will block.

There is a companion module,SUNAUDIODEV, which defines useful symbolic con-
stants likeMIN GAIN, MAXGAIN, SPEAKER, etc. The names of the constants are the

276

same names as used in the C include file `<sun/audioio.h> ' , with the leading string
`AUDIO ' stripped.

Useability of the control device is limited at the moment, since there is no way to use the
“wait for something to happen” feature the device provides.

277

Index

==
operator, 5

builtin (built-in module), 61
dict (pickle protocol), 37
getinitargs (copy protocol), 42
getinitargs (pickle protocol),

37
getstate (copy protocol), 42
getstate (pickle protocol), 37
init (in module xdrlib), 192
init (pickle protocol), 37
main (built-in module), 61
setstate (copy protocol), 42
setstate (pickle protocol), 37

exit (in module posix), 113
quit (Application method), 238

UNIX

file control, 125
I/O control, 125

ABC

language, 5

a2b base64 (in module binascii), 190
a2b hqx (in module binascii), 190
a2b uu (in module binascii), 190
Abort (TCP stream method), 233
Abort (connection object method), 221
abort (FTP object method), 169
abs (built-in function), 19
AbstractFormatter (in module

formatter), 183
AbstractWriter (in module format-

ter), 185
accept (connection object method),

220

accept (socket method), 103
AcceptHighLevelEvent (in mod-

ule MacOS), 228
acquire (lock method), 109
activate form (form object

method), 265
ActiveOpen (TCP stream method),

232
add (Stats method), 143
add (in module audioop), 203
add box (form object method), 265
add browser (form object method),

267
add button (form object method),

266
add choice (form object method),

267
add clock (form object method), 266
add counter (form object method),

266
add dial (form object method), 266
add flowing data (formatter object

method), 181
add hor rule (formatter object

method), 181
add input (form object method), 266
add label data (formatter object

method), 181
add lightbutton (form object

method), 266
add line break (formatter object

method), 181
add literal data (formatter object

method), 181
add menu (form object method), 267

278

add positioner (form object
method), 266

add roundbutton (form object
method), 266

add slider (form object method),
266

add text (form object method), 265
add timer (form object method), 267
add valslider (form object

method), 266
addcallback (CD parser object

method), 261
additem (menu method), 250
AddrToName (in module macdnr), 223
AddrToStr (in module macdnr), 223
adpcm2lin (in module audioop), 203
adpcm32lin (in module audioop), 203
AEServer (in module MiniAEFrame),

240
AF INET (in module socket), 102
AF UNIX (in module socket), 102
aifc (aifc object method), 209
aifc (standard module), 207
aiff (aifc object method), 209
AL (standard module), 257
al (built-in module), 255
alarm (in module signal), 100
all errors (in module ftplib), 167
allocate lock (in module thread),

109
allowremoval (CD player object

method), 260
altzone (in module time), 83
amtUnackedData (TCP status at-

tribute), 233
amtUnreadData (TCP status

attribute), 233
anchor bgn (HTMLParser method),

179
anchor end (HTMLParser method),

180
and

operator, 4
append (in module array), 78

append (list method), 11
Application (in module Frame-

Work), 236
apply (built-in function), 19
argv (in module sys), 30
arithmetic, 6
array (built-in module), 74, 77
array (in module array), 78
arrays, 77
arrow (text-edit method), 251
article (NNTP object method), 174
AS IS (in module formatter), 181
as pathname (FSSpec object

method), 226
as tuple (FSSpec object method), 226
asctime (in module time), 83
askfile (in module stdwin), 245
askstr (in module stdwin), 245
AskString (in module EasyDialogs),

235
AskYesNoCancel (in module Easy-

Dialogs), 235
askync (in module stdwin), 245
asr (TCP stream attribute), 232
asr (UDP stream attribute), 233
assert line data (formatter object

method), 183
assignment

slice, 11
subscript, 11

ast2list (in module parser), 50
ast2tuple (in module parser), 50
atime (in module cd), 259
atof (in module string), 63
atoi (in module string), 63
atol (in module string), 63
AttributeError (built-in

exception), 17
audio (in module cd), 259
audioop (built-in module), 202
Available (in module macspeech),

234
available (in module ctb), 219
avg (in module audioop), 203

279

avgpp (in module audioop), 203

b2a base64 (in module binascii), 190
b2a hqx (in module binascii), 190
b2a uu (in module binascii), 190
baseline (drawing method), 249
baseline (in module stdwin), 246
basename (in module posixpath), 118
Bastion (in module Bastion), 201
Bastion (standard module), 201
bdb (in module pdb), 131
begindrawing (window method),

246
bestreadsize (CD player object

method), 260
bgn group (form object method), 265
bias (in module audioop), 203
binary (mpz method), 215
binascii (built-in module), 190
bind (socket method), 104
binhex (in module binhex), 188
binhex (standard module), 188
bit-string

operations, 8
bitmap (drawing method), 250
BLOCKSIZE(in module cd), 259
body (NNTP object method), 174
Boolean

operations, 4
type, 3

box (drawing method), 248
Break (connection object method), 221
BUFSIZ (in module macostools), 230
built-in

exceptions, 3
functions, 3
types, 3

builtin module names (in module
sys), 30

BuiltinFunctionType (in module
types), 34

BuiltinMethodType (in module
types), 34

Busy (in module macspeech), 234

byteswap (in module array), 78

C
structures, 74

C CBREAK(in module macconsole), 221
C ECHO(in module macconsole), 221
C EXTENSION(in module imp), 46
C NOECHO(in module macconsole), 221
C RAW(in module macconsole), 221
calcsize (in module struct), 74
callback (AEServer method), 241
callback (connection object

attribute), 220
capitalize (in module string), 64
capwords (in module regsub), 73
capwords (in module string), 64
casefold (in module regex), 71
catalog (in module cd), 259
cd (built-in module), 258
CDROM(in module cd), 259
ceil (built-in function), 7
center (in module string), 66
CGI

protocol, 154
cgi (standard module), 154
chaining

comparisons, 5
change (window method), 246
chdir (in module posix), 112
check (menu method), 250
check forms (in module fl), 263
chmod (in module posix), 112
choice (in module rand), 77
Choose (connection object method),

221
choose* (in module ctb), 219
choose boundary (in module mime-

tools), 187
chown (in module posix), 112
chr (built-in function), 20
cipher

DES, 213
Enigma, 216
IDEA, 213

280

circle (drawing method), 248
ClassType (in module types), 34
cleol (console window method), 222
cleos (console window method), 222
cliprect (drawing method), 250
clock (in module time), 83
Close (TCP stream method), 233
Close (connection object method), 220
Close (in module macdnr), 223
close (CD player object method), 260
close (FTP object method), 170
close (Window method), 238
close (aifc object method), 209, 210
close (audio device method), 276
close (bitmap method), 251
close (drawing method), 250
close (file method), 14
close (in module posix), 113
close (menu method), 250
close (socket method), 104
close (text-edit method), 252
close (window method), 248
close (SGMLParser method), 176
closelog (posixfile method), 130
closeport (audio port object

method), 257
cmAttn (in module ctb), 219
cmCntl (in module ctb), 219
cmd (in module pdb), 131
cmData (in module ctb), 219
cmFlagsEOM (in module ctb), 219
CMNew(in module ctb), 219
cmp (built-in function), 20
cmStatus* (in module ctb), 219
cname (dnr result object attribute), 224
code

object, 13, 42
CodeType (in module types), 34
coerce (built-in function), 20
color (in module fl), 264
commonprefix (in module posix-

path), 119
comparing

objects, 5

comparison
operator, 5

comparisons
chaining, 5

compile (built-in function), 13, 20
compile (in module regex), 70
compileast (in module parser), 50
compress (in module jpeg), 210
concatenation

operation, 9
connect (FTP object method), 168
connect (HTTP method), 165
connect (socket method), 104
connectionnumber (in module std-

win), 246
control (in module cd), 259
ConversionError (in module xdr-

lib), 194
conversions

numeric, 7
copen (in module macconsole), 222
copy (copy function), 41
copy (in module macostools), 230, 231
copy (md5 method), 214
copy (standard module), 41
copybinary (in module mimetools),

187
copyliteral (in module mimetools),

187
copytree (in module macostools),

230
count (in module string), 64
count (list method), 11
CountVoices (in module

macspeech), 234
cpuType (dnr result object attribute),

224
crc hqx (in module binascii), 190
createparser (in module cd), 258
Creator (FInfo object attribute), 228
crop (in module imageop), 206
cross (in module audioop), 203
crypt (built-in module), 122
crypt (in module grp), 122

281

crypt(1), 217
crypt(3), 122
cryptography, 213
ctb (built-in module), 219
ctime (in module time), 83
curdir (in module os), 81
cwd (FTP object method), 170
C

language, 5–7

data (FSSpec object attribute), 226
data (alias object attribute), 227
DATASIZE (in module cd), 259
daylight (in module time), 83
dbm(built-in module), 40, 122, 123
deactivate form (form object

method), 265
debugger, 32
debugging, 131
DebugStr (in module MacOS), 229
decode (in module mimetools), 187
decode (in module uu), 189
decompress (in module jpeg), 210
decrypt (rotor method), 216
decryptmore (rotor method), 216
deepcopy (copy function), 41
defpath (in module os), 81
del

statement, 11, 12
delattr (built-in function), 20
delete object (FORMS object

method), 268
deleteparser (CD parser object

method), 262
DES

cipher, 213
DEVICE (standard module), 273
DialogWindow (in module Frame-

Work), 237
dictionary

type, 11
type, operations on, 12

DictionaryType (in module types),
33

DictType (in module types), 33
digest (md5 method), 214
digits (data in module string), 62
dir (FTP object method), 170
dir (built-in function), 20
dither2grey2 (in module imageop),

207
dither2mono (in module imageop),

207
division

integer, 7
long integer, 7

divm (in module mpz), 215
divmod (built-in function), 21
do activate (ScrolledWindow

method), 239
do activate (Window method), 238
do char (Application method), 238
do contentclick (Window

method), 238
do controlhit (ControlsWindow

method), 239
do controlhit (ScrolledWindow

method), 240
do dialogevent (Application

method), 238
do forms (in module fl), 263
do itemhit (DialogWindow method),

240
do postresize (ScrolledWindow

method), 239
do postresize (Window method),

238
do update (Window method), 238
done (in module xdrlib), 193
drain (audio device method), 276
draw (text-edit method), 251
DumbWriter (in module formatter),

185
dump (in module marshal), 43
dump (in module pickle), 39
dumps (in module marshal), 43
dumps (in module pickle), 39
dup (in module posix), 113

282

dup (posixfile method), 127
dup2 (in module posix), 113
dup2 (posixfile method), 127

E2BIG (in module errno), 89
EACCES(in module errno), 90
EADDRINUSE(in module errno), 95
EADDRNOTAVAIL(in module errno),

95
EADV(in module errno), 93
EAFNOSUPPORT(in module errno), 95
EAGAIN(in module errno), 90
EALREADY(in module errno), 96
EasyDialogs (standard module), 235
EBADE(in module errno), 92
EBADF(in module errno), 90
EBADFD(in module errno), 94
EBADMSG(in module errno), 94
EBADR(in module errno), 92
EBADRQC(in module errno), 93
EBADSLT(in module errno), 93
EBFONT(in module errno), 93
EBUSY(in module errno), 90
ECHILD (in module errno), 90
echo2printer (console window

method), 223
ECHRNG(in module errno), 92
ECOMM(in module errno), 93
ECONNABORTED(in module errno), 95
ECONNREFUSED(in module errno), 96
ECONNRESET(in module errno), 96
EDEADLK(in module errno), 91
EDEADLOCK(in module errno), 93
EDESTADDRREQ(in module errno), 95
EDOM(in module errno), 91
EDOTDOT(in module errno), 94
EDQUOT(in module errno), 97
EEXIST (in module errno), 90
EFAULT(in module errno), 90
EFBIG (in module errno), 91
EHOSTDOWN(in module errno), 96
EHOSTUNREACH(in module errno), 96
EIDRM(in module errno), 92
EILSEQ (in module errno), 94

EINPROGRESS(in module errno), 96
EINTR (in module errno), 89
EINVAL (in module errno), 90
EIO (in module errno), 89
EISCONN(in module errno), 96
EISDIR (in module errno), 90
EISNAM(in module errno), 97
eject (CD player object method), 260
EL2HLT (in module errno), 92
EL2NSYNC(in module errno), 92
EL3HLT (in module errno), 92
EL3RST(in module errno), 92
elarc (drawing method), 248
ELIBACC (in module errno), 94
ELIBBAD (in module errno), 94
ELIBEXEC (in module errno), 94
ELIBMAX (in module errno), 94
ELIBSCN (in module errno), 94
Ellinghouse, Lance, 216
ELNRNG(in module errno), 92
ELOOP(in module errno), 92
EMFILE (in module errno), 91
EMLINK (in module errno), 91
empty (in module rect), 254
EMSGSIZE(in module errno), 95
EMULTIHOP(in module errno), 94
enable (menu method), 250
EnableAppswitch (in module Ma-

cOS), 229
ENAMETOOLONG(in module errno), 91
ENAVAIL (in module errno), 96
encode (in module mimetools), 187
encode (in module uu), 189
encrypt (rotor method), 216
encryptmore (rotor method), 216
end group (form object method), 265
end paragraph (formatter object

method), 181
enddrawing (drawing method), 250
endheaders (HTTP method), 166
endpick (in module gl), 273
endselect (in module gl), 273
ENETDOWN(in module errno), 95
ENETRESET(in module errno), 95

283

ENETUNREACH(in module errno), 95
ENFILE (in module errno), 90
Enigma

cipher, 216
ENOANO(in module errno), 92
ENOBUFS(in module errno), 96
ENOCSI(in module errno), 92
ENODATA(in module errno), 93
ENODEV(in module errno), 90
ENOENT(in module errno), 89
ENOEXEC(in module errno), 90
ENOLCK(in module errno), 91
ENOLINK(in module errno), 93
ENOMEM(in module errno), 90
ENOMSG(in module errno), 92
ENONET(in module errno), 93
ENOPKG(in module errno), 93
ENOPROTOOPT(in module errno), 95
ENOSPC(in module errno), 91
ENOSR(in module errno), 93
ENOSTR(in module errno), 93
ENOSYS(in module errno), 91
ENOTBLK(in module errno), 90
ENOTCONN(in module errno), 96
ENOTDIR(in module errno), 90
ENOTEMPTY(in module errno), 91
ENOTNAM(in module errno), 96
ENOTSOCK(in module errno), 95
ENOTTY(in module errno), 91
ENOTUNIQ(in module errno), 94
enumerate (in module fm), 270
environ (data in module posix), 112
ENXIO (in module errno), 89
EOFError (built-in exception), 17
EOPNOTSUPP(in module errno), 95
EOVERFLOW(in module errno), 94
EPERM(in module errno), 89
EPFNOSUPPORT(in module errno), 95
EPIPE (in module errno), 91
EPROTO(in module errno), 93
EPROTONOSUPPORT(in module er-

rno), 95
EPROTOTYPE(in module errno), 95
ERANGE(in module errno), 91

erase (drawing method), 248
EREMCHG(in module errno), 94
EREMOTE(in module errno), 93
EREMOTEIO(in module errno), 97
ERESTART(in module errno), 94
EROFS(in module errno), 91
errno (standard module), 89
ERROR(in module cd), 259
Error (in module MacOS), 228
Error (in module binascii), 191
Error (in module xdrlib), 194
error (exception in module posix), 112
error (in module audioop), 202
error (in module cd), 259
error (in module ctb), 219
error (in module dbm), 122
error (in module imageop), 206
error (in module imgfile), 274
error (in module rect), 254
error (in module regex), 71
error (in module rgbimg), 211
error (in module select), 107
error (in module socket), 102
error (in module struct), 74
error (in module sunaudiodev), 275
error (in module thread), 108
error perm (in module ftplib), 168
error perm (in module nntplib), 172
error proto (in module ftplib), 168
error proto (in module nntplib), 172
error reply (in module ftplib), 168
error reply (in module nntplib), 172
error temp (in module ftplib), 168
error temp (in module nntplib), 172
escape (in module cgi), 158
ESHUTDOWN(in module errno), 96
ESOCKTNOSUPPORT(in module er-

rno), 95
ESPIPE (in module errno), 91
ESRCH(in module errno), 89
ESRMNT(in module errno), 93
ESTALE(in module errno), 96
ESTRPIPE(in module errno), 94
ETIME (in module errno), 93

284

ETIMEDOUT(in module errno), 96
ETOOMANYREFS(in module errno), 96
ETXTBSY(in module errno), 91
EUCLEAN(in module errno), 96
EUNATCH(in module errno), 92
EUSERS(in module errno), 94
eval (built-in function), 14, 21, 63
event (text-edit method), 251
EWOULDBLOCK(in module errno), 92
exc traceback (in module sys), 30
exc type (in module sys), 30
exc value (in module sys), 30
exceptions

built-in, 3
exchange (dnr result object attribute),

224
EXDEV(in module errno), 90
exec

statement, 14
execfile (built-in function), 22
execl (in module os), 81
execle (in module os), 82
execlp (in module os), 82
execv (in module posix), 113
execve (in module posix), 113
execvp (in module os), 82
execvpe (in module os), 82
EXFULL(in module errno), 92
exists (in module posixpath), 119
exit (in module sys), 30
exit (in module thread), 109
exit thread (in module thread), 109
exitfunc (in module sys), 30
expandtabs (in module string), 64
expanduser (in module posixpath),

119
expandvars (in module posixpath),

119
expr (in module parser), 49
extract tb (in module traceback), 35

false, 4
FCNTL(standard module), 126
fcntl (built-in module), 125

fcntl (in module struct), 125
fdopen (in module posix), 113
feed (SGMLParser method), 176
fetchcolor (in module stdwin), 244
file

temporary, 88
file (console window attribute), 222
file (posixfile method), 128
file control

UNIX, 125
file name

temporary, 88
file object

posix, 126
fileno (in module stdwin), 246
fileno (socket method), 104
fileopen (in module posixfile), 127
FileType (in module types), 34
fillcircle (drawing method), 249
fillelarc (drawing method), 249
fillpoly (drawing method), 249
filter (built-in function), 22
find (in module string), 64
find first (form object method),

265
find last (form object method), 265
find module (in module imp), 44
FindApplication (in module

macfs), 226
findertools (standard module), 230
findfactor (in module audioop), 203
findfit (in module audioop), 203
FindFolder (in module macfs), 226
findfont (in module fm), 270
findmax (in module audioop), 203
FInfo (in module macfs), 225
FL (standard module), 269
fl (built-in module), 262
Flags (FInfo object attribute), 228
flags (posixfile method), 127
flattening

objects, 35
Fldr (FInfo object attribute), 228
fleep (in module stdwin), 245

285

float (built-in function), 6, 22
floating point

literals, 6
type, 6

FloatType (in module types), 33
flock (in module struct), 125
floor (built-in function), 7
flp (standard module), 269
flush (audio device method), 276
flush (file method), 14
flush softspace (formatter object

method), 182
fm (built-in module), 270
fontpath (in module fm), 270
fopen (in module macconsole), 222
fork (in module posix), 113
formatter, 179
formatter (standard module), 179,

180
formatter (HTMLParser method),

179
fp (in module rfc822), 187
frame

object, 101
FrameType (in module types), 34
FrameWork (standard module), 236
freeze form (form object method),

265
freeze object (FORMS object

method), 268
fromfd (in module socket), 103
fromfile (in module array), 78
fromlist (in module array), 79
fromstring (in module array), 79
FSSpec (in module macfs), 225
fstat (in module posix), 113
FTP, 164
FTP (in module ftplib), 167
ftplib (standard module), 167
func code (dictionary method), 13
functions

built-in, 3
FunctionType (in module types), 33

gcd (in module mpz), 215
gcdext (in module mpz), 215
gdbm (built-in module), 40, 122, 123
geom2rect (in module rect), 254
get buffer (in module xdrlib), 191
get directory (in module fl), 264
get filename (in module fl), 264
get ident (in module thread), 109
get magic (in module imp), 44
get mouse (in module fl), 264
get pattern (in module fl), 264
get position (in module xdrlib),

193
get rgbmode (in module fl), 263
get suffixes (in module imp), 44
getabouttext (Application method),

237
getactive (in module stdwin), 243
getaddr (in module rfc822), 186
getaddrlist (in module rfc822), 186
getallmatchingheaders (in mod-

ule rfc822), 185
getattr (built-in function), 22
getbgcolor (drawing method), 249
getbgcolor (in module stdwin), 244
getbit (bitmap method), 251
getchannels (audio configuration

object method), 256
getcomment (font handle method),

270
getcompname (aifc object method),

208
getcomptype (aifc object method),

208
GetConfig (connection object

method), 220
getconfig (audio port object

method), 257
GetCreatorType (FSSpec object

method), 227
getcutbuffer (in module stdwin),

245
getcwd (in module posix), 114
getdate (in module rfc822), 186

286

GetDates (FSSpec object method),
227

getdefscrollbars (in module std-
win), 243

getdefwinpos (in module stdwin),
243

getdefwinsize (in module stdwin),
244

GetDirectory (in module macfs),
226

getdocsize (window method), 247
getegid (in module posix), 114
getencoding (mimetool.Message

method), 188
GetErrorString (in module Ma-

cOS), 229
geteuid (in module posix), 114
getevent (in module stdwin), 243
getfd (audio port object method), 257
getfgcolor (drawing method), 249
getfgcolor (in module stdwin), 244
getfile (HTTP method), 166
getfillable (audio port object

method), 257
getfilled (audio port object

method), 257
getfillpoint (audio port object

method), 257
GetFInfo (FSSpec object method),

227
getfirstmatchingheader (in

module rfc822), 186
getfloatmax (audio configuration

object method), 256
getfocus (text-edit method), 251
getfocustext (text-edit method),

251
getfontinfo (font handle method),

271
getfontname (font handle method),

270
getframerate (aifc object method),

208
GetGender (voice object method), 234

getgid (in module posix), 114
getgrall (in module grp), 121
getgrgid (in module grp), 121
getgrnam (in module grp), 121
getheader (in module rfc822), 186
gethostbyaddr (in module socket),

103
gethostbyname (in module socket),

102
gethostname (in module socket), 103
GetIndVoice (in module

macspeech), 234
GetInfo (alias object method), 227
getinfo (audio device method), 276
getmaintype (mimetool.Message

method), 188
getmark (aifc object method), 208
getmarkers (aifc object method), 208
getmcolor (in module fl), 264
getnchannels (aifc object method),

208
getnframes (aifc object method), 208
getopt (standard module), 86
getorigin (window method), 247
getparam (mimetool.Message

method), 188
getparams (aifc object method), 208
getparams (in module al), 256
getpeername (socket method), 104
getpgrp (in module posix), 114
getpid (in module posix), 114
GetPitch (speech channel object

method), 235
getplist (mimetool.Message

method), 188
getppid (in module posix), 114
getpwall (in module pwd), 121
getpwnam (in module pwd), 121
getpwuid (in module pwd), 121
getqueuesize (audio configuration

object method), 256
GetRate (speech channel object

method), 235

287

getrawheader (in module rfc822),
186

getrect (text-edit method), 251
getreply (HTTP method), 166
getsampfmt (audio configuration ob-

ject method), 256
getsample (in module audioop), 203
getsampwidth (aifc object method),

208
getscrmm (in module stdwin), 244
getscrollbarvalues (Scrolled-

Window method), 239
getscrsize (in module stdwin), 244
getselection (in module stdwin),

245
getservbyname (in module socket),

103
getsignal (in module signal), 100
getsize (bitmap method), 251
getsizes (in module imgfile), 274
GetSockName (TCP stream method),

232
getsockname (socket method), 104
getsockopt (socket method), 104
getstatus (CD player object

method), 260
getstatus (audio port object

method), 257
getstrwidth (font handle method),

271
getsubtype (mimetool.Message

method), 188
gettext (text-edit method), 252
gettitle (window method), 247
gettrackinfo (CD player object

method), 260
gettype (mimetool.Message method),

188
getuid (in module posix), 114
getwelcome (FTP object method),

168
getwelcome (NNTP object method),

172

getwidth (audio configuration object
method), 256

getwinpos (window method), 247
getwinsize (window method), 247
givenpat (regex attribute), 72
GL (standard module), 273
gl (built-in module), 271
globals (built-in function), 22
gmtime (in module time), 83
Gopher, 164
gopherlib (standard module), 170
gotoxy (console window method), 223
grey22grey (in module imageop),

207
grey2grey2 (in module imageop),

207
grey2grey4 (in module imageop),

207
grey2mono (in module imageop), 206
grey42grey (in module imageop),

207
group (NNTP object method), 173
group (regex method), 71
groupindex (regex attribute), 72
grp (built-in module), 121
gsub (in module regsub), 73

handle charref (SGMLParser
method), 177

handle comment (SGMLParser
method), 177

handle data (SGMLParser
method), 177

handle endtag (SGMLParser
method), 177

handle entityref (SGMLParser
method), 177

handle image (HTMLParser
method), 180

handle starttag (SGMLParser
method), 176

HandleEvent (in module MacOS),
229

has key (dictionary method), 12

288

hasattr (built-in function), 22
hash (built-in function), 22
head (NNTP object method), 173
headers

MIME, 154
headers (in module rfc822), 187
help (NNTP object method), 173
hex (built-in function), 23
hexadecimal

literals, 6
hexbin (in module binhex), 189
hexdigits (data in module string), 62
hide (console window method), 223
hide form (form object method), 265
hide object (FORMS object

method), 268
HInfo (in module macdnr), 223
HTML, 164, 178
htmllib (standard module), 164, 176,

178
HTMLParser (in module htmllib), 179
HTTP, 164

protocol, 154
httplib (standard module), 164
hypertext, 178

I/O control
UNIX, 125
Posix, 123, 125
tty, 123, 125

ibufcount (audio device method),
276

id (built-in function), 23
IDEA

cipher, 213
ident (in module cd), 259
Idle (connection object method), 221
idle (Application method), 238
if

statement, 4
ignore (Stats method), 146
ihave (NNTP object method), 174
imageop (built-in module), 206
imgfile (built-in module), 274

imghdr (standard module), 211
imp (built-in module), 44
import, 44
ImportError (built-in exception), 17
in

operator, 5, 9
INADDR* (in module socket), 102
Incomplete (in module binascii), 191
index (in module cd), 259
index (in module string), 64
index (list method), 11
IndexError (built-in exception), 17
init (in module fm), 270
init builtin (in module imp), 44
init frozen (in module imp), 44
input (built-in function), 23
insert (in module array), 79
insert (list method), 11
inset (in module rect), 254
installaehandler (AEServer

method), 240
InstanceType (in module types), 34
int (built-in function), 6, 23
integer

division, 7
division, long, 7
literals, 6
literals, long, 6
type, 6
type, long, 6
types, 6
types, operations on, 8

Internet, 153
intersect (in module rect), 254
IntType (in module types), 33
inverse (console window method),

223
invert (drawing method), 249
IOCTL (standard module), 126
ioctl (in module struct), 125
IOError (built-in exception), 17
ip0 (dnr result object attribute), 224
ip1 (dnr result object attribute), 224
ip2 (dnr result object attribute), 224

289

ip3 (dnr result object attribute), 224
IP * (in module socket), 102
IPAddr (in module mactcp), 231
IPPORT * (in module socket), 102
IPPROTO* (in module socket), 102
is

operator, 5
is not

operator, 5
is builtin (in module imp), 44
is empty (in module rect), 254
is frozen (in module imp), 45
isabs (in module posixpath), 119
isatty (file method), 14
isdir (in module posixpath), 119
isdone (TCP stream method), 232
isdone (dnr result object method), 224
isexpr (in module parser), 51
isfile (in module posixpath), 119
islink (in module posixpath), 119
ismount (in module posixpath), 119
isqueued (in module fl), 264
issuite (in module parser), 51
itemsize (in module array), 78

join (in module posixpath), 119
join (in module string), 65
joinfields (in module string), 65
jpeg (built-in module), 210

KeyboardInterrupt (built-in ex-
ception), 17

KeyError (built-in exception), 17
keys (dictionary method), 12
kill (in module posix), 114

LambdaType (in module types), 33
language

ABC, 5
C, 5–7

last (NNTP object method), 173
last (regex attribute), 72
last traceback (in module sys), 31
last type (in module sys), 31

last value (in module sys), 31
launch (in module macostools), 230
left (macconsole option), 222
len (built-in function), 9, 12, 23
letters (data in module string), 63
lin2adpcm (in module audioop), 204
lin2adpcm3 (in module audioop), 204
lin2lin (in module audioop), 204
lin2ulaw (in module audioop), 204
line (drawing method), 249
lineheight (drawing method), 249
lineheight (in module stdwin), 246
link (in module posix), 114
list

type, 8, 10
type, operations on, 11

list (NNTP object method), 173
listdir (in module posix), 114
Listen (connection object method),

220
listen (socket method), 105
listfontnames (in module stdwin),

243
ListType (in module types), 33
literals

floating point, 6
hexadecimal, 6
integer, 6
long integer, 6
numeric, 6
octal, 6

ljust (in module string), 66
load (in module marshal), 43
load (in module pickle), 39
load compiled (in module imp), 45
load dynamic (in module imp), 45
load source (in module imp), 45
loads (in module marshal), 43
loads (in module pickle), 39
localHost (TCP status attribute), 233
localPort (TCP status attribute), 233
locals (built-in function), 23
localtime (in module time), 84
Location (FInfo object attribute), 228

290

lock (posixfile method), 127
locked (lock method), 109
lockf (in module struct), 126
login (FTP object method), 168
long

integer division, 7
integer literals, 6
integer type, 6

long (built-in function), 6, 23
longimagedata (in module rgbimg),

211
longstoimage (in module rgbimg),

211
LongType (in module types), 33
lower (in module string), 64
lowercase (data in module string), 63
lseek (in module posix), 114
lstat (in module posix), 114
lstrip (in module string), 65

mac (built-in module), 218
macconsole (built-in module), 221
macdnr (built-in module), 223
macfs (built-in module), 225
MacOS(built-in module), 228
macostools (standard module), 230
macpath (standard module), 219
macspeech (built-in module), 234
mactcp (built-in module), 231
mainloop (Application method), 237
Majewski, Steve, 122
make form (in module fl), 263
makefile (socket method), 105
maketrans (in module string), 64
makeusermenus (Application

method), 237
map(built-in function), 23
mapcolor (in module fl), 264
mapping

types, 11
types, operations on, 12

marshal (built-in module), 42
marshal (standard module), 36
marshalling

objects, 35
masking

operations, 8
match (in module regex), 70
match (regex method), 71
math (built-in module), 76
math (standard module), 7
max (built-in function), 9, 24
max (in module audioop), 204
maxpp (in module audioop), 204
md5(built-in module), 213
md5(in module md5), 214
MemoryError (built-in exception), 17
Menu (in module FrameWork), 236
MenuBar (in module FrameWork), 236
menucreate (in module stdwin), 244
menucreate (window method), 247
MenuItem (in module FrameWork),

236
Message (in module EasyDialogs), 235
Message (in module mimetools), 187
message (in module stdwin), 245
method

object, 13
MethodType (in module types), 34
MIME

headers, 154
mimetools (standard module), 187
min (built-in function), 9, 24
MiniAEFrame (standard module), 240
MiniApplication (in module Mini-

AEFrame), 240
minmax (in module audioop), 204
mkalias (in module macostools), 230
mkd (FTP object method), 170
mkdir (in module posix), 115
mkfifo (in module posix), 114
mktemp (in module tempfile), 88
mktime (in module time), 84
modules (in module sys), 31
ModuleType (in module types), 34
mono2grey (in module imageop), 207
move (in module macostools), 231
move (text-edit method), 252

291

mpz (built-in module), 214
mpz (in module mpz), 215
msftoblock (CD player object

method), 260
msftoframe (in module cd), 258
MSG* (in module socket), 102
MTU(in module mactcp), 231
mul (in module audioop), 204
mutable

sequence types, 10
sequence types, operations on, 11

MXInfo (in module macdnr), 224

name (in module os), 81
NameError (built-in exception), 18
National Security Agency, 217
ncols (macconsole option), 222
NetMask (in module mactcp), 231
new (in module md5), 214
new alignment (writer object

method), 183
new font (writer object method), 183
new margin (writer object method),

184
new module (in module imp), 45
new spacing (writer object method),

184
new styles (writer object method),

184
NewAlias (FSSpec object method),

226
NewAliasMinimal (FSSpec object

method), 227
newbitmap (in module stdwin), 245
NewChannel (voice object method),

234
newconfig (in module al), 256
newgroups (NNTP object method),

173
newnews (NNTP object method), 173
newrotor (in module rotor), 216
next (NNTP object method), 173
nice (in module posix), 115
nlst (FTP object method), 170

NNTP(in module nntplib), 172
nntplib (standard module), 171
noclip (drawing method), 250
NODISC(in module cd), 259
nofill (HTMLParser method), 179
nok builtin names (RExec object

attribute), 198
None (Built-in object), 4
NoneType (in module types), 33
normcase (in module posixpath), 120
not

operator, 4
not in

operator, 5, 9
nrows (macconsole option), 222
NSIG (in module signal), 100
NullFormatter (in module format-

ter), 183
NullWriter (in module formatter),

185
numeric

conversions, 7
literals, 6
types, 5, 6
types, operations on, 7

nurbscurve (in module gl), 272
nurbssurface (in module gl), 272
nvarray (in module gl), 272

object
code, 13, 42
frame, 101
method, 13
traceback, 30
type, 27

objects
comparing, 5
flattening, 35
marshalling, 35
persistent, 35
pickling, 35
serializing, 35

obufcount (audio device method),
276

292

oct (built-in function), 24
octal

literals, 6
octdigits (data in module string), 63
ok builtin modules (RExec object

attribute), 198
ok path (RExec object attribute), 198
ok posix names (RExec object at-

tribute), 198
ok sys names (RExec object

attribute), 198
Open (connection object method), 220
Open (in module macdnr), 223
open (DialogWindow method), 240
open (Window method), 238
open (built-in function), 14, 24
open (in module aifc), 208
open (in module cd), 258
open (in module dbm), 122
open (in module posix), 115
open (in module posixfile), 127
open (in module stdwin), 243
open (in module sunaudiodev), 275
openlog (posixfile method), 129
openport (in module al), 255
openrf (in module MacOS), 229
operation

concatenation, 9
repetition, 9
slice, 9
subscript, 9

operations
bit-string, 8
Boolean, 4
masking, 8
shifting, 8

operations on
dictionary type, 12
integer types, 8
list type, 11
mapping types, 12
mutable sequence types, 11
numeric types, 7
sequence types, 9, 11

operator
==, 5
and , 4
comparison, 5
in , 5, 9
is , 5
is not , 5
not , 4
not in , 5, 9
or , 4

options (in module macconsole), 221
or

operator, 4
ord (built-in function), 24
os (standard module), 32, 80, 112, 118
osType (dnr result object attribute),

224
OverflowError (built-in exception),

18

pack (in module struct), 74
pack array (in module xdrlib), 192
pack bytes (in module xdrlib), 192
pack double (in module xdrlib), 191
pack farray (in module xdrlib), 192
pack float (in module xdrlib), 191
pack fopaque (in module xdrlib),

192
pack fstring (in module xdrlib),

192
pack list (in module xdrlib), 192
pack opaque (in module xdrlib), 192
pack string (in module xdrlib), 192
paint (drawing method), 249
pardir (in module os), 81
parse (in module cgi), 157
parse header (in module cgi), 157
parse multipart (in module cgi),

157
parse qs (in module cgi), 157
parseframe (CD parser object

method), 262
parser (built-in module), 47
ParserError (in module parser), 52

293

parsing
URL, 174

PassiveOpen (TCP stream method),
232

path (in module os), 81
path (in module sys), 31
pathsep (in module os), 81
pause (in module signal), 100
pause atexit (macconsole option),

222
PAUSED(in module cd), 259
Pdb (in module pdb), 131
pdb (standard module), 131
persistency, 35
persistent

objects, 35
PGP, 213
pick (in module gl), 272
pickle (standard module), 35, 40, 42
Pickler (in module pickle), 38
pickling

objects, 35
PicklingError (in module pickle),

39
pipe (in module posix), 115
platform (in module sys), 31
play (CD player object method), 260
playabs (CD player object method),

260
PLAYING (in module cd), 259
playtrack (CD player object

method), 261
playtrackabs (CD player object

method), 261
plock (in module posix), 115
pm(in module pdb), 133
pnum (in module cd), 259
pointinrect (in module rect), 254
pollevent (in module stdwin), 243
poly (drawing method), 249
pop alignment (formatter object

method), 182
pop font (formatter object method),

182

pop margin (formatter object
method), 182

pop style (formatter object method),
182

popen (in module posix), 115
port (UDP stream attribute), 233
Posix

I/O control, 123, 125
posix

file object, 126
posix (built-in module), 111
posixfile (built-in module), 126
posixpath (standard module), 118
post (NNTP object method), 174
post mortem (in module pdb), 133
pow (built-in function), 24
powm(in module mpz), 215
preference (dnr result object at-

tribute), 224
preventremoval (CD player object

method), 261
Print (in module macostools), 231
print

statement, 4
print callees (Stats method), 145
print callers (Stats method), 145
print directory (in module cgi),

158
print environ (in module cgi), 158
print environ usage (in module

cgi), 158
print exc (in module traceback), 35
print exception (in module trace-

back), 35
print form (in module cgi), 158
print last (in module traceback), 35
print stats (Stats method), 145
print tb (in module traceback), 35
profile (standard module), 137
profile function, 32
profile.run (profiler function), 142
profiler, 32
ProgressBar (in module EasyDi-

alogs), 235

294

PromptGetFile (in module macfs),
226

protocol
CGI, 154
HTTP, 154

prstr (in module fm), 270
ps1 (in module sys), 31
ps2 (in module sys), 31
pstats (standard module), 137
pstats.Stats (profiler function),

143
ptime (in module cd), 259
push alignment (formatter object

method), 182
push font (formatter object method),

182
push margin (formatter object

method), 182
push style (formatter object

method), 182
putheader (HTTP method), 166
putrequest (HTTP method), 166
pwd (FTP object method), 170
pwd (built-in module), 121
pwlcurve (in module gl), 272
PY COMPILED(in module imp), 46
PY SOURCE(in module imp), 46

qdevice (in module fl), 264
qenter (in module fl), 264
qread (in module fl), 264
qreset (in module fl), 264
qtest (in module fl), 264
queryparams (in module al), 256
quit (FTP object method), 170
quit (NNTP object method), 174
quote (in module urllib), 163

r eval (RExec object method), 198
r exec (RExec object method), 199
r execfile (RExec object method),

199
r import (RExec object method), 199
r open (RExec object method), 199

r reload (RExec object method), 199
r unload (RExec object method), 199
rand (in module rand), 77
rand (standard module), 77
random (in module whrandom), 77
range (built-in function), 25
raw input (built-in function), 25
RawAlias (in module macfs), 225
RawFSSpec(in module macfs), 225
Rcv (TCP stream method), 232
Read (UDP stream method), 234
Read (connection object method), 220
read (audio device method), 276
read (file method), 15
read (in module imgfile), 274
read (in module posix), 115
readda (CD player object method),

261
readframes (aifc object method), 208
readline (file method), 15
readlines (file method), 15
readlink (in module posix), 116
readsamps (audio port object

method), 257
readscaled (in module imgfile), 274
READY(in module cd), 259
realpat (regex attribute), 72
rect (standard module), 253
rect2geom (in module rect), 254
recv (socket method), 105
recvfrom (socket method), 105
redraw form (form object method),

265
redraw object (FORMS object

method), 268
reduce (built-in function), 26
regex, 10
regex (built-in module), 66
regs (regex attribute), 72
regsub (standard module), 73
relative

URL, 174
release (lock method), 109
reload (built-in function), 26

295

remoteHost (TCP status attribute),
233

remotePort (TCP status attribute),
233

remove (in module posix), 116
remove (list method), 11
removecallback (CD parser object

method), 262
rename (FTP object method), 170
rename (in module posix), 116
repetition

operation, 9
replace (text-edit method), 252
report unbalanced

(SGMLParser method), 177
repr (built-in function), 27
Reset (connection object method), 221
reset (in module xdrlib), 191, 192
reset (SGMLParser method), 176
resetparser (CD parser object

method), 262
resetselection (in module std-

win), 246
Resolve (alias object method), 227
ResolveAliasFile (in module

macfs), 225
restart (in module macostools), 231
retrbinary (FTP object method),

169
retrlines (FTP object method), 169
reverse (in module audioop), 204
reverse (list method), 11
reverse order (Stats method), 145
rewind (aifc object method), 208
rewindbody (in module rfc822), 185
RExec (in module rexec), 197
rexec (standard module), 197
rfc822 (standard module), 166, 185
rfind (in module string), 64
rgbimg (built-in module), 211
rindex (in module string), 64
rjust (in module string), 66
rlecode hqx (in module binascii),

190

rledecode hqx (in module binascii),
190

rmdir (in module posix), 116
rms (in module audioop), 204
rotatecutbuffers (in module std-

win), 245
rotor (built-in module), 216
round (built-in function), 27
rstrip (in module string), 65
rtnCode (dnr result object attribute),

224
run (in module pdb), 132
runcall (in module pdb), 132
runeval (in module pdb), 132
RuntimeError (built-in exception),

18

s eval (RExec object method), 199
s exec (RExec object method), 199
s execfile (RExec object method),

199
s import (RExec object method), 200
s reload (RExec object method), 200
s unload (RExec object method), 200
samefile (in module posixpath), 120
save bgn (HTMLParser method),

180
save end (HTMLParser method),

180
scale (in module imageop), 206
scalebarvalues (ScrolledWindow

method), 239
scalefont (font handle method), 270
scroll (window method), 247
scrollbar callback (Scrolled-

Window method), 239
scrollbars (ScrolledWindow

method), 239
search (in module regex), 70
search (regex method), 71
SEARCHERROR(in module imp), 46
seed (in module whrandom), 77
seek (CD player object method), 261
seek (file method), 15

296

SEEKCUR(in module posixfile), 127
SEEKEND(in module posixfile), 127
SEEKSET(in module posixfile), 127
seekblock (CD player object

method), 261
seektrack (CD player object

method), 261
select (built-in module), 107
select (in module gl), 272
select (in module select), 108
select (in module stdwin), 246
Send (TCP stream method), 232
send (HTTP method), 165
send (socket method), 105
send flowing data (writer object

method), 184
send hor rule (writer object

method), 184
send label data (writer object

method), 184
send line break (writer object

method), 184
send literal data (writer object

method), 184
send paragraph (writer object

method), 184
send query (in module gopherlib),

171
send selector (in module gopher-

lib), 170
sendcmd (FTP object method), 169
sendto (socket method), 105
sendWindow (TCP status attribute),

233
sep (in module os), 81
Separator (in module FrameWork),

237
sequence

types, 8
types, mutable, 10
types, operations on, 9, 11
types, operations on mutable, 11

sequence2ast (in module parser), 49
serializing

objects, 35
server

WWW, 154
set call back (FORMS object

method), 268
set debuglevel (FTP object

method), 168
set debuglevel (HTTP method),

165
set debuglevel (NNTP object

method), 173
set event call back (in module

fl), 263
set form position (form object

method), 265
set graphics mode (in module fl),

263
set position (in module xdrlib),

193
set spacing (formatter object

method), 183
set syntax (in module regex), 70
set trace (in module pdb), 132
setactive (window method), 248
setarrowcursor (in module Frame-

Work), 237
setattr (built-in function), 27
setbgcolor (drawing method), 249
setbgcolor (in module stdwin), 244
setbit (bitmap method), 251
setblocking (socket method), 105
setchannels (audio configuration

object method), 256
setcheckinterval (in module sys),

31
setcomptype (aifc object method),

209
SetConfig (connection object

method), 221
setconfig (audio port object

method), 257
SetCreatorType (FSSpec object

method), 227

297

setcutbuffer (in module stdwin),
245

SetDates (FSSpec object method),
227

setdefscrollbars (in module std-
win), 243

setdefwinpos (in module stdwin),
243

setdefwinsize (in module stdwin),
243

setdocsize (window method), 247
setfgcolor (drawing method), 249
setfgcolor (in module stdwin), 244
setfillpoint (audio port object

method), 257
SetFInfo (FSSpec object method),

227
setfloatmax (audio configuration

object method), 257
setfocus (text-edit method), 252
SetFolder (in module macfs), 226
setfont (drawing method), 249
setfont (font handle method), 270
setfont (in module stdwin), 244
setframerate (aifc object method),

209
setgid (in module posix), 116
SetHighLevelEventHandler (in

module MacOS), 228
setinfo (audio device method), 276
setitem (menu method), 250
setkey (rotor method), 216
setliteral (SGMLParser

method), 176
setlogmask (posixfile method), 130
setmark (aifc object method), 209
setmode (console window method),

222
setnchannels (aifc object method),

209
setnframes (aifc object method), 209
setnomoretags (SGMLParser

method), 176
setoption (in module jpeg), 210

setorigin (window method), 247
setparams (aifc object method), 209
setparams (in module al), 256
setpath (in module fm), 270
setpgid (in module posix), 116
setpgrp (in module posix), 116
SetPitch (speech channel object

method), 235
setpos (aifc object method), 209
setprofile (in module sys), 32
setqueuesize (audio configuration

object method), 256
SetRate (speech channel object

method), 235
setsampfmt (audio configuration ob-

ject method), 256
setsampwidth (aifc object method),

209
SetScheduleTimes (in module Ma-

cOS), 228
setselection (window method),

247
setsid (in module posix), 116
setsockopt (socket method), 106
settabs (console window method),

222
settext (text-edit method), 252
settimer (window method), 247
settitle (window method), 247
settrace (in module sys), 31
setuid (in module posix), 116
setview (text-edit method), 252
setwatchcursor (in module Frame-

Work), 237
setwidth (audio configuration object

method), 256
setwincursor (window method),

247
setwinpos (window method), 248
setwinsize (window method), 248
SGML, 176, 179
sgmllib (standard module), 176, 179
SGMLParser (in module htmllib), 179
shade (drawing method), 249

298

shelve (standard module), 36, 40, 42
shifting

operations, 8
show (console window method), 223
show (window method), 248
show choice (in module fl), 264
show file selector (in module fl),

264
show form (form object method), 265
show input (in module fl), 264
show message (in module fl), 263
show object (FORMS object

method), 268
show question (in module fl), 263
shutdown (in module macostools),

231
shutdown (socket method), 106
SIG* (in module signal), 100
SIG DFL (in module signal), 99
SIG IGN (in module signal), 99
signal (built-in module), 98
signal (in module signal), 100
sizeofimage (in module rgbimg),

211
slave (NNTP object method), 174
sleep (in module macostools), 231
sleep (in module time), 84
slice

assignment, 11
operation, 9

SO* (in module socket), 102
SOCKDGRAM(in module socket), 102
SOCKRAW(in module socket), 102
SOCKRDM(in module socket), 102
SOCKSEQPACKET(in module socket),

102
SOCKSTREAM(in module socket), 102
socket (built-in module), 101
socket (in module select), 108
socket (in module socket), 103
SOL * (in module socket), 102
SOMAXCONN(in module socket), 102
sort (list method), 11
sort stats (Stats method), 144

SpeakString (in module
macspeech), 234

SpeakText (speech channel object
method), 235

splash (in module MacOS), 229
split (in module posixpath), 120
split (in module regsub), 73
split (in module string), 65
splitext (in module posixpath), 120
splitfields (in module string), 65
splitx (in module regsub), 73
sqrt (in module mpz), 215
sqrtrem (in module mpz), 215
srand (in module rand), 77
StandardGetFile (in module

macfs), 225
StandardPutFile (in module

macfs), 226
start new thread (in module

thread), 108
stat (NNTP object method), 173
stat (in module posix), 116
statement

del , 11, 12
exec , 14
if , 4
print , 4
while , 4

Status (TCP stream method), 233
Status (connection object method),

220
stderr (in module sys), 32
stdin (in module sys), 32
stdout (in module sys), 32
stdwin, 131
stdwin (built-in module), 242
stdwin (in module select), 108
stdwinevents (standard module),

253
STILL (in module cd), 259
Stop (speech channel object method),

235
stop (CD player object method), 261

299

storbinary (FTP object method),
169

storlines (FTP object method), 169
str (built-in function), 27
strftime (in module time), 84
string, 10

type, 8
string (standard module), 62
StringType (in module types), 33
strip (in module string), 65
strip dirs (Stats method), 143
strop (built-in module), 66
StrToAddr (in module macdnr), 223
struct (built-in module), 74, 78
structures

C, 74
sub (in module regsub), 73
SubMenu (in module FrameWork), 237
subscript

assignment, 11
operation, 9

suite (in module parser), 49
sunaudiodev (built-in module), 275
swapcase (in module string), 65
symbol table, 3
symcomp (in module regex), 71
symlink (in module posix), 117
SyntaxError (built-in exception), 18
sys (built-in module), 30
syslog (built-in module), 129
syslog (posixfile method), 129
system (in module posix), 117
SystemError (built-in exception), 18
SystemExit (built-in exception), 19

tcdrain (in module termios), 124
tcflow (in module termios), 124
tcflush (in module termios), 124
tcgetattr (in module termios), 123
tcgetpgrp (in module posix), 117
TCPCreate (in module mactcp), 231
tcsendbreak (in module termios),

124
tcsetattr (in module termios), 123

tcsetpgrp (in module posix), 117
tell (aifc object method), 209, 210
tell (file method), 15
tempdir (in module tempfile), 88
tempfile (standard module), 88
template (in module tempfile), 89
temporary

file, 88
file name, 88

TERMIOS(standard module), 125
termios (built-in module), 123
test (in module cgi), 158
tests (in module imghdr), 212
text (drawing method), 249
textbreak (drawing method), 249
textbreak (in module stdwin), 246
textcreate (window method), 248
textwidth (drawing method), 249
textwidth (in module stdwin), 246
thread (built-in module), 108
tie (in module fl), 264
time (built-in module), 82
time (in module time), 86
times (in module posix), 117
timezone (in module time), 86
title (macconsole option), 222
TMPDIR(in module tempfile), 89
tofile (in module array), 79
togglepause (CD player object

method), 261
tolist (in module array), 79
tomono (in module audioop), 205
top (macconsole option), 222
tostereo (in module audioop), 205
tostring (in module array), 79
touched (in module macostools), 230
tovideo (in module imageop), 206
trace function, 32
traceback

object, 30
traceback (standard module), 34
tracebacklimit (in module sys), 32
TracebackType (in module types),

34

300

translate (in module string), 65
translate (regex attribute), 72
true, 4
truncate (file method), 15
truth

value, 4
ttob (in module imgfile), 274
ttob (in module rgbimg), 211
tty

I/O control, 123, 125
tuple

type, 8
tuple (built-in function), 27
tuple2ast (in module parser), 50
TupleType (in module types), 33
txFont (macconsole option), 222
txSize (macconsole option), 222
txStyle (macconsole option), 222
Type (FInfo object attribute), 228
type

Boolean, 3
dictionary, 11
floating point, 6
integer, 6
list, 8, 10
long integer, 6
object, 27
operations on dictionary, 12
operations on list, 11
string, 8
tuple, 8

type (built-in function), 3, 14, 27
typecode (in module array), 78
TypeError (built-in exception), 19
types

built-in, 3
integer, 6
mapping, 11
mutable sequence, 10
numeric, 5, 6
operations on integer, 8
operations on mapping, 12
operations on mutable sequence, 11
operations on numeric, 7

operations on sequence, 9, 11
sequence, 8

types (standard module), 14, 27, 32
TypeType (in module types), 33
tzname (in module time), 86

UDPCreate (in module mactcp), 232
ulaw2lin (in module audioop), 205
umask (in module posix), 117
uname (in module posix), 117
UnboundMethodType (in module

types), 34
unfreeze form (form object

method), 265
unfreeze object (FORMS object

method), 268
union (in module rect), 254
unknown charref (SGMLParser

method), 178
unknown endtag (SGMLParser

method), 178
unknown entityref

(SGMLParser method), 178
unknown starttag (SGMLParser

method), 177
unlink (in module posix), 117
unpack (in module struct), 74
unpack array (in module xdrlib),

194
unpack bytes (in module xdrlib),

193
unpack double (in module xdrlib),

193
unpack farray (in module xdrlib),

194
unpack float (in module xdrlib),

193
unpack fopaque (in module xdrlib),

193
unpack fstring (in module xdrlib),

193
unpack list (in module xdrlib), 193
unpack opaque (in module xdrlib),

193

301

unpack string (in module xdrlib),
193

Unpickler (in module pickle), 38
unqdevice (in module fl), 264
unquote (in module urllib), 163
Update (alias object method), 227
update (md5 method), 214
updatescrollbars (ScrolledWin-

dow method), 239
upper (in module string), 66
uppercase (data in module string), 63
URL, 154, 162, 174

parsing, 174
relative, 174

urlcleanup (in module urllib), 163
urljoin (in module urlparse), 175
urllib (standard module), 162, 164
urlopen (in module urllib), 163
urlparse (in module urlparse), 175
urlparse (standard module), 164, 174
urlretrieve (in module urllib), 163
urlunparse (in module urlparse), 175
utime (in module posix), 118
uu (standard module), 189

value
truth, 4

ValueError (built-in exception), 19
varray (in module gl), 272
vars (built-in function), 28
Version (in module macspeech), 234
vnarray (in module gl), 272
voidcmd (FTP object method), 169

wait (TCP stream method), 232
wait (dnr result object method), 224
wait (in module posix), 118
waitpid (in module posix), 118
walk (in module posixpath), 120
wdb (in module pdb), 131
what (in module imghdr), 212
while

statement, 4

whitespace (data in module string),
63

whrandom (standard module), 77
Window (in module FrameWork), 237
windowbounds (in module Frame-

Work), 237
WNOHANG(in module posix), 118
World-Wide Web, 153, 162, 174
Write (UDP stream method), 234
Write (connection object method), 220
write (audio device method), 276
write (file method), 15
write (in module imgfile), 274
write (in module posix), 118
writeframes (aifc object method),

210
writeframesraw (aifc object

method), 210
writelines (file method), 16
writer (formatter object data), 181
writesamps (audio port object

method), 257
WWW, 153, 162, 174

server, 154

XDR, 191
xdrlib (standard module), 191
xhdr (NNTP object method), 174
xorcircle (drawing method), 249
xorelarc (drawing method), 249
xorline (drawing method), 249
xorpoly (drawing method), 249
xrange (built-in function), 28
XRangeType (in module types), 34

ZeroDivisionError (built-in ex-
ception), 19

zfill (in module string), 66

302

