00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00027
00028 #include "avcodec.h"
00029 #include "bitstream.h"
00030 #include "dsputil.h"
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040 #ifdef CONFIG_MPEGAUDIO_HP
00041 # define USE_HIGHPRECISION
00042 #endif
00043
00044 #include "mpegaudio.h"
00045 #include "mpegaudiodecheader.h"
00046
00047 #include "mathops.h"
00048
00049
00050 #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
00051 #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
00052
00053 #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
00054
00055
00056
00057 #define HEADER_SIZE 4
00058
00062 typedef struct MP3On4DecodeContext {
00063 int frames;
00064 int chan_cfg;
00065 MPADecodeContext *mp3decctx[5];
00066 } MP3On4DecodeContext;
00067
00068
00069 typedef struct GranuleDef {
00070 uint8_t scfsi;
00071 int part2_3_length;
00072 int big_values;
00073 int global_gain;
00074 int scalefac_compress;
00075 uint8_t block_type;
00076 uint8_t switch_point;
00077 int table_select[3];
00078 int subblock_gain[3];
00079 uint8_t scalefac_scale;
00080 uint8_t count1table_select;
00081 int region_size[3];
00082 int preflag;
00083 int short_start, long_end;
00084 uint8_t scale_factors[40];
00085 int32_t sb_hybrid[SBLIMIT * 18];
00086 } GranuleDef;
00087
00088 #include "mpegaudiodata.h"
00089 #include "mpegaudiodectab.h"
00090
00091 static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
00092 static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
00093
00094
00095 static VLC huff_vlc[16];
00096 static VLC huff_quad_vlc[2];
00097
00098 static uint16_t band_index_long[9][23];
00099
00100 #define TABLE_4_3_SIZE (8191 + 16)*4
00101 static int8_t table_4_3_exp[TABLE_4_3_SIZE];
00102 static uint32_t table_4_3_value[TABLE_4_3_SIZE];
00103 static uint32_t exp_table[512];
00104 static uint32_t expval_table[512][16];
00105
00106 static int32_t is_table[2][16];
00107 static int32_t is_table_lsf[2][2][16];
00108 static int32_t csa_table[8][4];
00109 static float csa_table_float[8][4];
00110 static int32_t mdct_win[8][36];
00111
00112
00113 static uint16_t scale_factor_modshift[64];
00114
00115 static int32_t scale_factor_mult[15][3];
00116
00117
00118 #define SCALE_GEN(v) \
00119 { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
00120
00121 static const int32_t scale_factor_mult2[3][3] = {
00122 SCALE_GEN(4.0 / 3.0),
00123 SCALE_GEN(4.0 / 5.0),
00124 SCALE_GEN(4.0 / 9.0),
00125 };
00126
00127 static DECLARE_ALIGNED_16(MPA_INT, window[512]);
00128
00133 void ff_region_offset2size(GranuleDef *g){
00134 int i, k, j=0;
00135 g->region_size[2] = (576 / 2);
00136 for(i=0;i<3;i++) {
00137 k = FFMIN(g->region_size[i], g->big_values);
00138 g->region_size[i] = k - j;
00139 j = k;
00140 }
00141 }
00142
00143 void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
00144 if (g->block_type == 2)
00145 g->region_size[0] = (36 / 2);
00146 else {
00147 if (s->sample_rate_index <= 2)
00148 g->region_size[0] = (36 / 2);
00149 else if (s->sample_rate_index != 8)
00150 g->region_size[0] = (54 / 2);
00151 else
00152 g->region_size[0] = (108 / 2);
00153 }
00154 g->region_size[1] = (576 / 2);
00155 }
00156
00157 void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
00158 int l;
00159 g->region_size[0] =
00160 band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
00161
00162 l = FFMIN(ra1 + ra2 + 2, 22);
00163 g->region_size[1] =
00164 band_index_long[s->sample_rate_index][l] >> 1;
00165 }
00166
00167 void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
00168 if (g->block_type == 2) {
00169 if (g->switch_point) {
00170
00171
00172
00173 if (s->sample_rate_index <= 2)
00174 g->long_end = 8;
00175 else if (s->sample_rate_index != 8)
00176 g->long_end = 6;
00177 else
00178 g->long_end = 4;
00179
00180 g->short_start = 2 + (s->sample_rate_index != 8);
00181 } else {
00182 g->long_end = 0;
00183 g->short_start = 0;
00184 }
00185 } else {
00186 g->short_start = 13;
00187 g->long_end = 22;
00188 }
00189 }
00190
00191
00192
00193 static inline int l1_unscale(int n, int mant, int scale_factor)
00194 {
00195 int shift, mod;
00196 int64_t val;
00197
00198 shift = scale_factor_modshift[scale_factor];
00199 mod = shift & 3;
00200 shift >>= 2;
00201 val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
00202 shift += n;
00203
00204 return (int)((val + (1LL << (shift - 1))) >> shift);
00205 }
00206
00207 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
00208 {
00209 int shift, mod, val;
00210
00211 shift = scale_factor_modshift[scale_factor];
00212 mod = shift & 3;
00213 shift >>= 2;
00214
00215 val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
00216
00217 if (shift > 0)
00218 val = (val + (1 << (shift - 1))) >> shift;
00219 return val;
00220 }
00221
00222
00223 static inline int l3_unscale(int value, int exponent)
00224 {
00225 unsigned int m;
00226 int e;
00227
00228 e = table_4_3_exp [4*value + (exponent&3)];
00229 m = table_4_3_value[4*value + (exponent&3)];
00230 e -= (exponent >> 2);
00231 assert(e>=1);
00232 if (e > 31)
00233 return 0;
00234 m = (m + (1 << (e-1))) >> e;
00235
00236 return m;
00237 }
00238
00239
00240 #define DEV_ORDER 13
00241
00242 #define POW_FRAC_BITS 24
00243 #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
00244 #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
00245 #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
00246
00247 static int dev_4_3_coefs[DEV_ORDER];
00248
00249 #if 0
00250 static int pow_mult3[3] = {
00251 POW_FIX(1.0),
00252 POW_FIX(1.25992104989487316476),
00253 POW_FIX(1.58740105196819947474),
00254 };
00255 #endif
00256
00257 static void int_pow_init(void)
00258 {
00259 int i, a;
00260
00261 a = POW_FIX(1.0);
00262 for(i=0;i<DEV_ORDER;i++) {
00263 a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
00264 dev_4_3_coefs[i] = a;
00265 }
00266 }
00267
00268 #if 0
00269
00270 static int int_pow(int i, int *exp_ptr)
00271 {
00272 int e, er, eq, j;
00273 int a, a1;
00274
00275
00276 a = i;
00277 e = POW_FRAC_BITS;
00278 while (a < (1 << (POW_FRAC_BITS - 1))) {
00279 a = a << 1;
00280 e--;
00281 }
00282 a -= (1 << POW_FRAC_BITS);
00283 a1 = 0;
00284 for(j = DEV_ORDER - 1; j >= 0; j--)
00285 a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
00286 a = (1 << POW_FRAC_BITS) + a1;
00287
00288 e = e * 4;
00289 er = e % 3;
00290 eq = e / 3;
00291 a = POW_MULL(a, pow_mult3[er]);
00292 while (a >= 2 * POW_FRAC_ONE) {
00293 a = a >> 1;
00294 eq++;
00295 }
00296
00297 while (a < POW_FRAC_ONE) {
00298 a = a << 1;
00299 eq--;
00300 }
00301
00302 #if POW_FRAC_BITS > FRAC_BITS
00303 a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
00304
00305 if (a >= 2 * (1 << FRAC_BITS)) {
00306 a = a >> 1;
00307 eq++;
00308 }
00309 #endif
00310 *exp_ptr = eq;
00311 return a;
00312 }
00313 #endif
00314
00315 static int decode_init(AVCodecContext * avctx)
00316 {
00317 MPADecodeContext *s = avctx->priv_data;
00318 static int init=0;
00319 int i, j, k;
00320
00321 s->avctx = avctx;
00322
00323 #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
00324 avctx->sample_fmt= SAMPLE_FMT_S32;
00325 #else
00326 avctx->sample_fmt= SAMPLE_FMT_S16;
00327 #endif
00328 s->error_resilience= avctx->error_resilience;
00329
00330 if(avctx->antialias_algo != FF_AA_FLOAT)
00331 s->compute_antialias= compute_antialias_integer;
00332 else
00333 s->compute_antialias= compute_antialias_float;
00334
00335 if (!init && !avctx->parse_only) {
00336
00337 for(i=0;i<64;i++) {
00338 int shift, mod;
00339
00340 shift = (i / 3);
00341 mod = i % 3;
00342 scale_factor_modshift[i] = mod | (shift << 2);
00343 }
00344
00345
00346 for(i=0;i<15;i++) {
00347 int n, norm;
00348 n = i + 2;
00349 norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
00350 scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
00351 scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
00352 scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
00353 dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
00354 i, norm,
00355 scale_factor_mult[i][0],
00356 scale_factor_mult[i][1],
00357 scale_factor_mult[i][2]);
00358 }
00359
00360 ff_mpa_synth_init(window);
00361
00362
00363 for(i=1;i<16;i++) {
00364 const HuffTable *h = &mpa_huff_tables[i];
00365 int xsize, x, y;
00366 unsigned int n;
00367 uint8_t tmp_bits [512];
00368 uint16_t tmp_codes[512];
00369
00370 memset(tmp_bits , 0, sizeof(tmp_bits ));
00371 memset(tmp_codes, 0, sizeof(tmp_codes));
00372
00373 xsize = h->xsize;
00374 n = xsize * xsize;
00375
00376 j = 0;
00377 for(x=0;x<xsize;x++) {
00378 for(y=0;y<xsize;y++){
00379 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
00380 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
00381 }
00382 }
00383
00384
00385 init_vlc(&huff_vlc[i], 7, 512,
00386 tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
00387 }
00388 for(i=0;i<2;i++) {
00389 init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
00390 mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
00391 }
00392
00393 for(i=0;i<9;i++) {
00394 k = 0;
00395 for(j=0;j<22;j++) {
00396 band_index_long[i][j] = k;
00397 k += band_size_long[i][j];
00398 }
00399 band_index_long[i][22] = k;
00400 }
00401
00402
00403
00404 int_pow_init();
00405 for(i=1;i<TABLE_4_3_SIZE;i++) {
00406 double f, fm;
00407 int e, m;
00408 f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
00409 fm = frexp(f, &e);
00410 m = (uint32_t)(fm*(1LL<<31) + 0.5);
00411 e+= FRAC_BITS - 31 + 5 - 100;
00412
00413
00414 table_4_3_value[i] = m;
00415
00416 table_4_3_exp[i] = -e;
00417 }
00418 for(i=0; i<512*16; i++){
00419 int exponent= (i>>4);
00420 double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
00421 expval_table[exponent][i&15]= llrint(f);
00422 if((i&15)==1)
00423 exp_table[exponent]= llrint(f);
00424 }
00425
00426 for(i=0;i<7;i++) {
00427 float f;
00428 int v;
00429 if (i != 6) {
00430 f = tan((double)i * M_PI / 12.0);
00431 v = FIXR(f / (1.0 + f));
00432 } else {
00433 v = FIXR(1.0);
00434 }
00435 is_table[0][i] = v;
00436 is_table[1][6 - i] = v;
00437 }
00438
00439 for(i=7;i<16;i++)
00440 is_table[0][i] = is_table[1][i] = 0.0;
00441
00442 for(i=0;i<16;i++) {
00443 double f;
00444 int e, k;
00445
00446 for(j=0;j<2;j++) {
00447 e = -(j + 1) * ((i + 1) >> 1);
00448 f = pow(2.0, e / 4.0);
00449 k = i & 1;
00450 is_table_lsf[j][k ^ 1][i] = FIXR(f);
00451 is_table_lsf[j][k][i] = FIXR(1.0);
00452 dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
00453 i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
00454 }
00455 }
00456
00457 for(i=0;i<8;i++) {
00458 float ci, cs, ca;
00459 ci = ci_table[i];
00460 cs = 1.0 / sqrt(1.0 + ci * ci);
00461 ca = cs * ci;
00462 csa_table[i][0] = FIXHR(cs/4);
00463 csa_table[i][1] = FIXHR(ca/4);
00464 csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
00465 csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
00466 csa_table_float[i][0] = cs;
00467 csa_table_float[i][1] = ca;
00468 csa_table_float[i][2] = ca + cs;
00469 csa_table_float[i][3] = ca - cs;
00470
00471
00472 }
00473
00474
00475 for(i=0;i<36;i++) {
00476 for(j=0; j<4; j++){
00477 double d;
00478
00479 if(j==2 && i%3 != 1)
00480 continue;
00481
00482 d= sin(M_PI * (i + 0.5) / 36.0);
00483 if(j==1){
00484 if (i>=30) d= 0;
00485 else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
00486 else if(i>=18) d= 1;
00487 }else if(j==3){
00488 if (i< 6) d= 0;
00489 else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
00490 else if(i< 18) d= 1;
00491 }
00492
00493 d*= 0.5 / cos(M_PI*(2*i + 19)/72);
00494
00495 if(j==2)
00496 mdct_win[j][i/3] = FIXHR((d / (1<<5)));
00497 else
00498 mdct_win[j][i ] = FIXHR((d / (1<<5)));
00499
00500 }
00501 }
00502
00503
00504
00505 for(j=0;j<4;j++) {
00506 for(i=0;i<36;i+=2) {
00507 mdct_win[j + 4][i] = mdct_win[j][i];
00508 mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
00509 }
00510 }
00511
00512 #if defined(DEBUG)
00513 for(j=0;j<8;j++) {
00514 av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
00515 for(i=0;i<36;i++)
00516 av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
00517 av_log(avctx, AV_LOG_DEBUG, "\n");
00518 }
00519 #endif
00520 init = 1;
00521 }
00522
00523 #ifdef DEBUG
00524 s->frame_count = 0;
00525 #endif
00526 if (avctx->codec_id == CODEC_ID_MP3ADU)
00527 s->adu_mode = 1;
00528 return 0;
00529 }
00530
00531
00532
00533
00534
00535 #define COS0_0 FIXHR(0.50060299823519630134/2)
00536 #define COS0_1 FIXHR(0.50547095989754365998/2)
00537 #define COS0_2 FIXHR(0.51544730992262454697/2)
00538 #define COS0_3 FIXHR(0.53104259108978417447/2)
00539 #define COS0_4 FIXHR(0.55310389603444452782/2)
00540 #define COS0_5 FIXHR(0.58293496820613387367/2)
00541 #define COS0_6 FIXHR(0.62250412303566481615/2)
00542 #define COS0_7 FIXHR(0.67480834145500574602/2)
00543 #define COS0_8 FIXHR(0.74453627100229844977/2)
00544 #define COS0_9 FIXHR(0.83934964541552703873/2)
00545 #define COS0_10 FIXHR(0.97256823786196069369/2)
00546 #define COS0_11 FIXHR(1.16943993343288495515/4)
00547 #define COS0_12 FIXHR(1.48416461631416627724/4)
00548 #define COS0_13 FIXHR(2.05778100995341155085/8)
00549 #define COS0_14 FIXHR(3.40760841846871878570/8)
00550 #define COS0_15 FIXHR(10.19000812354805681150/32)
00551
00552 #define COS1_0 FIXHR(0.50241928618815570551/2)
00553 #define COS1_1 FIXHR(0.52249861493968888062/2)
00554 #define COS1_2 FIXHR(0.56694403481635770368/2)
00555 #define COS1_3 FIXHR(0.64682178335999012954/2)
00556 #define COS1_4 FIXHR(0.78815462345125022473/2)
00557 #define COS1_5 FIXHR(1.06067768599034747134/4)
00558 #define COS1_6 FIXHR(1.72244709823833392782/4)
00559 #define COS1_7 FIXHR(5.10114861868916385802/16)
00560
00561 #define COS2_0 FIXHR(0.50979557910415916894/2)
00562 #define COS2_1 FIXHR(0.60134488693504528054/2)
00563 #define COS2_2 FIXHR(0.89997622313641570463/2)
00564 #define COS2_3 FIXHR(2.56291544774150617881/8)
00565
00566 #define COS3_0 FIXHR(0.54119610014619698439/2)
00567 #define COS3_1 FIXHR(1.30656296487637652785/4)
00568
00569 #define COS4_0 FIXHR(0.70710678118654752439/2)
00570
00571
00572 #define BF(a, b, c, s)\
00573 {\
00574 tmp0 = tab[a] + tab[b];\
00575 tmp1 = tab[a] - tab[b];\
00576 tab[a] = tmp0;\
00577 tab[b] = MULH(tmp1<<(s), c);\
00578 }
00579
00580 #define BF1(a, b, c, d)\
00581 {\
00582 BF(a, b, COS4_0, 1);\
00583 BF(c, d,-COS4_0, 1);\
00584 tab[c] += tab[d];\
00585 }
00586
00587 #define BF2(a, b, c, d)\
00588 {\
00589 BF(a, b, COS4_0, 1);\
00590 BF(c, d,-COS4_0, 1);\
00591 tab[c] += tab[d];\
00592 tab[a] += tab[c];\
00593 tab[c] += tab[b];\
00594 tab[b] += tab[d];\
00595 }
00596
00597 #define ADD(a, b) tab[a] += tab[b]
00598
00599
00600 static void dct32(int32_t *out, int32_t *tab)
00601 {
00602 int tmp0, tmp1;
00603
00604
00605 BF( 0, 31, COS0_0 , 1);
00606 BF(15, 16, COS0_15, 5);
00607
00608 BF( 0, 15, COS1_0 , 1);
00609 BF(16, 31,-COS1_0 , 1);
00610
00611 BF( 7, 24, COS0_7 , 1);
00612 BF( 8, 23, COS0_8 , 1);
00613
00614 BF( 7, 8, COS1_7 , 4);
00615 BF(23, 24,-COS1_7 , 4);
00616
00617 BF( 0, 7, COS2_0 , 1);
00618 BF( 8, 15,-COS2_0 , 1);
00619 BF(16, 23, COS2_0 , 1);
00620 BF(24, 31,-COS2_0 , 1);
00621
00622 BF( 3, 28, COS0_3 , 1);
00623 BF(12, 19, COS0_12, 2);
00624
00625 BF( 3, 12, COS1_3 , 1);
00626 BF(19, 28,-COS1_3 , 1);
00627
00628 BF( 4, 27, COS0_4 , 1);
00629 BF(11, 20, COS0_11, 2);
00630
00631 BF( 4, 11, COS1_4 , 1);
00632 BF(20, 27,-COS1_4 , 1);
00633
00634 BF( 3, 4, COS2_3 , 3);
00635 BF(11, 12,-COS2_3 , 3);
00636 BF(19, 20, COS2_3 , 3);
00637 BF(27, 28,-COS2_3 , 3);
00638
00639 BF( 0, 3, COS3_0 , 1);
00640 BF( 4, 7,-COS3_0 , 1);
00641 BF( 8, 11, COS3_0 , 1);
00642 BF(12, 15,-COS3_0 , 1);
00643 BF(16, 19, COS3_0 , 1);
00644 BF(20, 23,-COS3_0 , 1);
00645 BF(24, 27, COS3_0 , 1);
00646 BF(28, 31,-COS3_0 , 1);
00647
00648
00649
00650
00651 BF( 1, 30, COS0_1 , 1);
00652 BF(14, 17, COS0_14, 3);
00653
00654 BF( 1, 14, COS1_1 , 1);
00655 BF(17, 30,-COS1_1 , 1);
00656
00657 BF( 6, 25, COS0_6 , 1);
00658 BF( 9, 22, COS0_9 , 1);
00659
00660 BF( 6, 9, COS1_6 , 2);
00661 BF(22, 25,-COS1_6 , 2);
00662
00663 BF( 1, 6, COS2_1 , 1);
00664 BF( 9, 14,-COS2_1 , 1);
00665 BF(17, 22, COS2_1 , 1);
00666 BF(25, 30,-COS2_1 , 1);
00667
00668
00669 BF( 2, 29, COS0_2 , 1);
00670 BF(13, 18, COS0_13, 3);
00671
00672 BF( 2, 13, COS1_2 , 1);
00673 BF(18, 29,-COS1_2 , 1);
00674
00675 BF( 5, 26, COS0_5 , 1);
00676 BF(10, 21, COS0_10, 1);
00677
00678 BF( 5, 10, COS1_5 , 2);
00679 BF(21, 26,-COS1_5 , 2);
00680
00681 BF( 2, 5, COS2_2 , 1);
00682 BF(10, 13,-COS2_2 , 1);
00683 BF(18, 21, COS2_2 , 1);
00684 BF(26, 29,-COS2_2 , 1);
00685
00686 BF( 1, 2, COS3_1 , 2);
00687 BF( 5, 6,-COS3_1 , 2);
00688 BF( 9, 10, COS3_1 , 2);
00689 BF(13, 14,-COS3_1 , 2);
00690 BF(17, 18, COS3_1 , 2);
00691 BF(21, 22,-COS3_1 , 2);
00692 BF(25, 26, COS3_1 , 2);
00693 BF(29, 30,-COS3_1 , 2);
00694
00695
00696 BF1( 0, 1, 2, 3);
00697 BF2( 4, 5, 6, 7);
00698 BF1( 8, 9, 10, 11);
00699 BF2(12, 13, 14, 15);
00700 BF1(16, 17, 18, 19);
00701 BF2(20, 21, 22, 23);
00702 BF1(24, 25, 26, 27);
00703 BF2(28, 29, 30, 31);
00704
00705
00706
00707 ADD( 8, 12);
00708 ADD(12, 10);
00709 ADD(10, 14);
00710 ADD(14, 9);
00711 ADD( 9, 13);
00712 ADD(13, 11);
00713 ADD(11, 15);
00714
00715 out[ 0] = tab[0];
00716 out[16] = tab[1];
00717 out[ 8] = tab[2];
00718 out[24] = tab[3];
00719 out[ 4] = tab[4];
00720 out[20] = tab[5];
00721 out[12] = tab[6];
00722 out[28] = tab[7];
00723 out[ 2] = tab[8];
00724 out[18] = tab[9];
00725 out[10] = tab[10];
00726 out[26] = tab[11];
00727 out[ 6] = tab[12];
00728 out[22] = tab[13];
00729 out[14] = tab[14];
00730 out[30] = tab[15];
00731
00732 ADD(24, 28);
00733 ADD(28, 26);
00734 ADD(26, 30);
00735 ADD(30, 25);
00736 ADD(25, 29);
00737 ADD(29, 27);
00738 ADD(27, 31);
00739
00740 out[ 1] = tab[16] + tab[24];
00741 out[17] = tab[17] + tab[25];
00742 out[ 9] = tab[18] + tab[26];
00743 out[25] = tab[19] + tab[27];
00744 out[ 5] = tab[20] + tab[28];
00745 out[21] = tab[21] + tab[29];
00746 out[13] = tab[22] + tab[30];
00747 out[29] = tab[23] + tab[31];
00748 out[ 3] = tab[24] + tab[20];
00749 out[19] = tab[25] + tab[21];
00750 out[11] = tab[26] + tab[22];
00751 out[27] = tab[27] + tab[23];
00752 out[ 7] = tab[28] + tab[18];
00753 out[23] = tab[29] + tab[19];
00754 out[15] = tab[30] + tab[17];
00755 out[31] = tab[31];
00756 }
00757
00758 #if FRAC_BITS <= 15
00759
00760 static inline int round_sample(int *sum)
00761 {
00762 int sum1;
00763 sum1 = (*sum) >> OUT_SHIFT;
00764 *sum &= (1<<OUT_SHIFT)-1;
00765 if (sum1 < OUT_MIN)
00766 sum1 = OUT_MIN;
00767 else if (sum1 > OUT_MAX)
00768 sum1 = OUT_MAX;
00769 return sum1;
00770 }
00771
00772
00773 #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
00774
00775
00776 #define MULS(ra, rb) MUL16(ra, rb)
00777
00778 #else
00779
00780 static inline int round_sample(int64_t *sum)
00781 {
00782 int sum1;
00783 sum1 = (int)((*sum) >> OUT_SHIFT);
00784 *sum &= (1<<OUT_SHIFT)-1;
00785 if (sum1 < OUT_MIN)
00786 sum1 = OUT_MIN;
00787 else if (sum1 > OUT_MAX)
00788 sum1 = OUT_MAX;
00789 return sum1;
00790 }
00791
00792 # define MULS(ra, rb) MUL64(ra, rb)
00793 #endif
00794
00795 #define SUM8(sum, op, w, p) \
00796 { \
00797 sum op MULS((w)[0 * 64], p[0 * 64]);\
00798 sum op MULS((w)[1 * 64], p[1 * 64]);\
00799 sum op MULS((w)[2 * 64], p[2 * 64]);\
00800 sum op MULS((w)[3 * 64], p[3 * 64]);\
00801 sum op MULS((w)[4 * 64], p[4 * 64]);\
00802 sum op MULS((w)[5 * 64], p[5 * 64]);\
00803 sum op MULS((w)[6 * 64], p[6 * 64]);\
00804 sum op MULS((w)[7 * 64], p[7 * 64]);\
00805 }
00806
00807 #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
00808 { \
00809 int tmp;\
00810 tmp = p[0 * 64];\
00811 sum1 op1 MULS((w1)[0 * 64], tmp);\
00812 sum2 op2 MULS((w2)[0 * 64], tmp);\
00813 tmp = p[1 * 64];\
00814 sum1 op1 MULS((w1)[1 * 64], tmp);\
00815 sum2 op2 MULS((w2)[1 * 64], tmp);\
00816 tmp = p[2 * 64];\
00817 sum1 op1 MULS((w1)[2 * 64], tmp);\
00818 sum2 op2 MULS((w2)[2 * 64], tmp);\
00819 tmp = p[3 * 64];\
00820 sum1 op1 MULS((w1)[3 * 64], tmp);\
00821 sum2 op2 MULS((w2)[3 * 64], tmp);\
00822 tmp = p[4 * 64];\
00823 sum1 op1 MULS((w1)[4 * 64], tmp);\
00824 sum2 op2 MULS((w2)[4 * 64], tmp);\
00825 tmp = p[5 * 64];\
00826 sum1 op1 MULS((w1)[5 * 64], tmp);\
00827 sum2 op2 MULS((w2)[5 * 64], tmp);\
00828 tmp = p[6 * 64];\
00829 sum1 op1 MULS((w1)[6 * 64], tmp);\
00830 sum2 op2 MULS((w2)[6 * 64], tmp);\
00831 tmp = p[7 * 64];\
00832 sum1 op1 MULS((w1)[7 * 64], tmp);\
00833 sum2 op2 MULS((w2)[7 * 64], tmp);\
00834 }
00835
00836 void ff_mpa_synth_init(MPA_INT *window)
00837 {
00838 int i;
00839
00840
00841 for(i=0;i<257;i++) {
00842 int v;
00843 v = ff_mpa_enwindow[i];
00844 #if WFRAC_BITS < 16
00845 v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
00846 #endif
00847 window[i] = v;
00848 if ((i & 63) != 0)
00849 v = -v;
00850 if (i != 0)
00851 window[512 - i] = v;
00852 }
00853 }
00854
00855
00856
00857
00858 void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
00859 MPA_INT *window, int *dither_state,
00860 OUT_INT *samples, int incr,
00861 int32_t sb_samples[SBLIMIT])
00862 {
00863 int32_t tmp[32];
00864 register MPA_INT *synth_buf;
00865 register const MPA_INT *w, *w2, *p;
00866 int j, offset, v;
00867 OUT_INT *samples2;
00868 #if FRAC_BITS <= 15
00869 int sum, sum2;
00870 #else
00871 int64_t sum, sum2;
00872 #endif
00873
00874 dct32(tmp, sb_samples);
00875
00876 offset = *synth_buf_offset;
00877 synth_buf = synth_buf_ptr + offset;
00878
00879 for(j=0;j<32;j++) {
00880 v = tmp[j];
00881 #if FRAC_BITS <= 15
00882
00883
00884 v = av_clip_int16(v);
00885 #endif
00886 synth_buf[j] = v;
00887 }
00888
00889 memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
00890
00891 samples2 = samples + 31 * incr;
00892 w = window;
00893 w2 = window + 31;
00894
00895 sum = *dither_state;
00896 p = synth_buf + 16;
00897 SUM8(sum, +=, w, p);
00898 p = synth_buf + 48;
00899 SUM8(sum, -=, w + 32, p);
00900 *samples = round_sample(&sum);
00901 samples += incr;
00902 w++;
00903
00904
00905
00906 for(j=1;j<16;j++) {
00907 sum2 = 0;
00908 p = synth_buf + 16 + j;
00909 SUM8P2(sum, +=, sum2, -=, w, w2, p);
00910 p = synth_buf + 48 - j;
00911 SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
00912
00913 *samples = round_sample(&sum);
00914 samples += incr;
00915 sum += sum2;
00916 *samples2 = round_sample(&sum);
00917 samples2 -= incr;
00918 w++;
00919 w2--;
00920 }
00921
00922 p = synth_buf + 32;
00923 SUM8(sum, -=, w + 32, p);
00924 *samples = round_sample(&sum);
00925 *dither_state= sum;
00926
00927 offset = (offset - 32) & 511;
00928 *synth_buf_offset = offset;
00929 }
00930
00931 #define C3 FIXHR(0.86602540378443864676/2)
00932
00933
00934 static const int icos36[9] = {
00935 FIXR(0.50190991877167369479),
00936 FIXR(0.51763809020504152469),
00937 FIXR(0.55168895948124587824),
00938 FIXR(0.61038729438072803416),
00939 FIXR(0.70710678118654752439),
00940 FIXR(0.87172339781054900991),
00941 FIXR(1.18310079157624925896),
00942 FIXR(1.93185165257813657349),
00943 FIXR(5.73685662283492756461),
00944 };
00945
00946
00947 static const int icos36h[9] = {
00948 FIXHR(0.50190991877167369479/2),
00949 FIXHR(0.51763809020504152469/2),
00950 FIXHR(0.55168895948124587824/2),
00951 FIXHR(0.61038729438072803416/2),
00952 FIXHR(0.70710678118654752439/2),
00953 FIXHR(0.87172339781054900991/2),
00954 FIXHR(1.18310079157624925896/4),
00955 FIXHR(1.93185165257813657349/4),
00956
00957 };
00958
00959
00960
00961 static void imdct12(int *out, int *in)
00962 {
00963 int in0, in1, in2, in3, in4, in5, t1, t2;
00964
00965 in0= in[0*3];
00966 in1= in[1*3] + in[0*3];
00967 in2= in[2*3] + in[1*3];
00968 in3= in[3*3] + in[2*3];
00969 in4= in[4*3] + in[3*3];
00970 in5= in[5*3] + in[4*3];
00971 in5 += in3;
00972 in3 += in1;
00973
00974 in2= MULH(2*in2, C3);
00975 in3= MULH(4*in3, C3);
00976
00977 t1 = in0 - in4;
00978 t2 = MULH(2*(in1 - in5), icos36h[4]);
00979
00980 out[ 7]=
00981 out[10]= t1 + t2;
00982 out[ 1]=
00983 out[ 4]= t1 - t2;
00984
00985 in0 += in4>>1;
00986 in4 = in0 + in2;
00987 in5 += 2*in1;
00988 in1 = MULH(in5 + in3, icos36h[1]);
00989 out[ 8]=
00990 out[ 9]= in4 + in1;
00991 out[ 2]=
00992 out[ 3]= in4 - in1;
00993
00994 in0 -= in2;
00995 in5 = MULH(2*(in5 - in3), icos36h[7]);
00996 out[ 0]=
00997 out[ 5]= in0 - in5;
00998 out[ 6]=
00999 out[11]= in0 + in5;
01000 }
01001
01002
01003 #define C1 FIXHR(0.98480775301220805936/2)
01004 #define C2 FIXHR(0.93969262078590838405/2)
01005 #define C3 FIXHR(0.86602540378443864676/2)
01006 #define C4 FIXHR(0.76604444311897803520/2)
01007 #define C5 FIXHR(0.64278760968653932632/2)
01008 #define C6 FIXHR(0.5/2)
01009 #define C7 FIXHR(0.34202014332566873304/2)
01010 #define C8 FIXHR(0.17364817766693034885/2)
01011
01012
01013
01014 static void imdct36(int *out, int *buf, int *in, int *win)
01015 {
01016 int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
01017 int tmp[18], *tmp1, *in1;
01018
01019 for(i=17;i>=1;i--)
01020 in[i] += in[i-1];
01021 for(i=17;i>=3;i-=2)
01022 in[i] += in[i-2];
01023
01024 for(j=0;j<2;j++) {
01025 tmp1 = tmp + j;
01026 in1 = in + j;
01027 #if 0
01028
01029 int64_t t0, t1, t2, t3;
01030 t2 = in1[2*4] + in1[2*8] - in1[2*2];
01031
01032 t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
01033 t1 = in1[2*0] - in1[2*6];
01034 tmp1[ 6] = t1 - (t2>>1);
01035 tmp1[16] = t1 + t2;
01036
01037 t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
01038 t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
01039 t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
01040
01041 tmp1[10] = (t3 - t0 - t2) >> 32;
01042 tmp1[ 2] = (t3 + t0 + t1) >> 32;
01043 tmp1[14] = (t3 + t2 - t1) >> 32;
01044
01045 tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
01046 t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
01047 t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
01048 t0 = MUL64(2*in1[2*3], C3);
01049
01050 t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
01051
01052 tmp1[ 0] = (t2 + t3 + t0) >> 32;
01053 tmp1[12] = (t2 + t1 - t0) >> 32;
01054 tmp1[ 8] = (t3 - t1 - t0) >> 32;
01055 #else
01056 t2 = in1[2*4] + in1[2*8] - in1[2*2];
01057
01058 t3 = in1[2*0] + (in1[2*6]>>1);
01059 t1 = in1[2*0] - in1[2*6];
01060 tmp1[ 6] = t1 - (t2>>1);
01061 tmp1[16] = t1 + t2;
01062
01063 t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
01064 t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
01065 t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
01066
01067 tmp1[10] = t3 - t0 - t2;
01068 tmp1[ 2] = t3 + t0 + t1;
01069 tmp1[14] = t3 + t2 - t1;
01070
01071 tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
01072 t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
01073 t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
01074 t0 = MULH(2*in1[2*3], C3);
01075
01076 t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
01077
01078 tmp1[ 0] = t2 + t3 + t0;
01079 tmp1[12] = t2 + t1 - t0;
01080 tmp1[ 8] = t3 - t1 - t0;
01081 #endif
01082 }
01083
01084 i = 0;
01085 for(j=0;j<4;j++) {
01086 t0 = tmp[i];
01087 t1 = tmp[i + 2];
01088 s0 = t1 + t0;
01089 s2 = t1 - t0;
01090
01091 t2 = tmp[i + 1];
01092 t3 = tmp[i + 3];
01093 s1 = MULH(2*(t3 + t2), icos36h[j]);
01094 s3 = MULL(t3 - t2, icos36[8 - j]);
01095
01096 t0 = s0 + s1;
01097 t1 = s0 - s1;
01098 out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
01099 out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
01100 buf[9 + j] = MULH(t0, win[18 + 9 + j]);
01101 buf[8 - j] = MULH(t0, win[18 + 8 - j]);
01102
01103 t0 = s2 + s3;
01104 t1 = s2 - s3;
01105 out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
01106 out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
01107 buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
01108 buf[ + j] = MULH(t0, win[18 + j]);
01109 i += 4;
01110 }
01111
01112 s0 = tmp[16];
01113 s1 = MULH(2*tmp[17], icos36h[4]);
01114 t0 = s0 + s1;
01115 t1 = s0 - s1;
01116 out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
01117 out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
01118 buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
01119 buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
01120 }
01121
01122
01123 static int mp_decode_layer1(MPADecodeContext *s)
01124 {
01125 int bound, i, v, n, ch, j, mant;
01126 uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
01127 uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
01128
01129 if (s->mode == MPA_JSTEREO)
01130 bound = (s->mode_ext + 1) * 4;
01131 else
01132 bound = SBLIMIT;
01133
01134
01135 for(i=0;i<bound;i++) {
01136 for(ch=0;ch<s->nb_channels;ch++) {
01137 allocation[ch][i] = get_bits(&s->gb, 4);
01138 }
01139 }
01140 for(i=bound;i<SBLIMIT;i++) {
01141 allocation[0][i] = get_bits(&s->gb, 4);
01142 }
01143
01144
01145 for(i=0;i<bound;i++) {
01146 for(ch=0;ch<s->nb_channels;ch++) {
01147 if (allocation[ch][i])
01148 scale_factors[ch][i] = get_bits(&s->gb, 6);
01149 }
01150 }
01151 for(i=bound;i<SBLIMIT;i++) {
01152 if (allocation[0][i]) {
01153 scale_factors[0][i] = get_bits(&s->gb, 6);
01154 scale_factors[1][i] = get_bits(&s->gb, 6);
01155 }
01156 }
01157
01158
01159 for(j=0;j<12;j++) {
01160 for(i=0;i<bound;i++) {
01161 for(ch=0;ch<s->nb_channels;ch++) {
01162 n = allocation[ch][i];
01163 if (n) {
01164 mant = get_bits(&s->gb, n + 1);
01165 v = l1_unscale(n, mant, scale_factors[ch][i]);
01166 } else {
01167 v = 0;
01168 }
01169 s->sb_samples[ch][j][i] = v;
01170 }
01171 }
01172 for(i=bound;i<SBLIMIT;i++) {
01173 n = allocation[0][i];
01174 if (n) {
01175 mant = get_bits(&s->gb, n + 1);
01176 v = l1_unscale(n, mant, scale_factors[0][i]);
01177 s->sb_samples[0][j][i] = v;
01178 v = l1_unscale(n, mant, scale_factors[1][i]);
01179 s->sb_samples[1][j][i] = v;
01180 } else {
01181 s->sb_samples[0][j][i] = 0;
01182 s->sb_samples[1][j][i] = 0;
01183 }
01184 }
01185 }
01186 return 12;
01187 }
01188
01189 static int mp_decode_layer2(MPADecodeContext *s)
01190 {
01191 int sblimit;
01192 const unsigned char *alloc_table;
01193 int table, bit_alloc_bits, i, j, ch, bound, v;
01194 unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
01195 unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
01196 unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
01197 int scale, qindex, bits, steps, k, l, m, b;
01198
01199
01200 table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
01201 s->sample_rate, s->lsf);
01202 sblimit = ff_mpa_sblimit_table[table];
01203 alloc_table = ff_mpa_alloc_tables[table];
01204
01205 if (s->mode == MPA_JSTEREO)
01206 bound = (s->mode_ext + 1) * 4;
01207 else
01208 bound = sblimit;
01209
01210 dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
01211
01212
01213 if( bound > sblimit ) bound = sblimit;
01214
01215
01216 j = 0;
01217 for(i=0;i<bound;i++) {
01218 bit_alloc_bits = alloc_table[j];
01219 for(ch=0;ch<s->nb_channels;ch++) {
01220 bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
01221 }
01222 j += 1 << bit_alloc_bits;
01223 }
01224 for(i=bound;i<sblimit;i++) {
01225 bit_alloc_bits = alloc_table[j];
01226 v = get_bits(&s->gb, bit_alloc_bits);
01227 bit_alloc[0][i] = v;
01228 bit_alloc[1][i] = v;
01229 j += 1 << bit_alloc_bits;
01230 }
01231
01232 #ifdef DEBUG
01233 {
01234 for(ch=0;ch<s->nb_channels;ch++) {
01235 for(i=0;i<sblimit;i++)
01236 dprintf(s->avctx, " %d", bit_alloc[ch][i]);
01237 dprintf(s->avctx, "\n");
01238 }
01239 }
01240 #endif
01241
01242
01243 for(i=0;i<sblimit;i++) {
01244 for(ch=0;ch<s->nb_channels;ch++) {
01245 if (bit_alloc[ch][i])
01246 scale_code[ch][i] = get_bits(&s->gb, 2);
01247 }
01248 }
01249
01250
01251 for(i=0;i<sblimit;i++) {
01252 for(ch=0;ch<s->nb_channels;ch++) {
01253 if (bit_alloc[ch][i]) {
01254 sf = scale_factors[ch][i];
01255 switch(scale_code[ch][i]) {
01256 default:
01257 case 0:
01258 sf[0] = get_bits(&s->gb, 6);
01259 sf[1] = get_bits(&s->gb, 6);
01260 sf[2] = get_bits(&s->gb, 6);
01261 break;
01262 case 2:
01263 sf[0] = get_bits(&s->gb, 6);
01264 sf[1] = sf[0];
01265 sf[2] = sf[0];
01266 break;
01267 case 1:
01268 sf[0] = get_bits(&s->gb, 6);
01269 sf[2] = get_bits(&s->gb, 6);
01270 sf[1] = sf[0];
01271 break;
01272 case 3:
01273 sf[0] = get_bits(&s->gb, 6);
01274 sf[2] = get_bits(&s->gb, 6);
01275 sf[1] = sf[2];
01276 break;
01277 }
01278 }
01279 }
01280 }
01281
01282 #ifdef DEBUG
01283 for(ch=0;ch<s->nb_channels;ch++) {
01284 for(i=0;i<sblimit;i++) {
01285 if (bit_alloc[ch][i]) {
01286 sf = scale_factors[ch][i];
01287 dprintf(s->avctx, " %d %d %d", sf[0], sf[1], sf[2]);
01288 } else {
01289 dprintf(s->avctx, " -");
01290 }
01291 }
01292 dprintf(s->avctx, "\n");
01293 }
01294 #endif
01295
01296
01297 for(k=0;k<3;k++) {
01298 for(l=0;l<12;l+=3) {
01299 j = 0;
01300 for(i=0;i<bound;i++) {
01301 bit_alloc_bits = alloc_table[j];
01302 for(ch=0;ch<s->nb_channels;ch++) {
01303 b = bit_alloc[ch][i];
01304 if (b) {
01305 scale = scale_factors[ch][i][k];
01306 qindex = alloc_table[j+b];
01307 bits = ff_mpa_quant_bits[qindex];
01308 if (bits < 0) {
01309
01310 v = get_bits(&s->gb, -bits);
01311 steps = ff_mpa_quant_steps[qindex];
01312 s->sb_samples[ch][k * 12 + l + 0][i] =
01313 l2_unscale_group(steps, v % steps, scale);
01314 v = v / steps;
01315 s->sb_samples[ch][k * 12 + l + 1][i] =
01316 l2_unscale_group(steps, v % steps, scale);
01317 v = v / steps;
01318 s->sb_samples[ch][k * 12 + l + 2][i] =
01319 l2_unscale_group(steps, v, scale);
01320 } else {
01321 for(m=0;m<3;m++) {
01322 v = get_bits(&s->gb, bits);
01323 v = l1_unscale(bits - 1, v, scale);
01324 s->sb_samples[ch][k * 12 + l + m][i] = v;
01325 }
01326 }
01327 } else {
01328 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
01329 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
01330 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
01331 }
01332 }
01333
01334 j += 1 << bit_alloc_bits;
01335 }
01336
01337 for(i=bound;i<sblimit;i++) {
01338 bit_alloc_bits = alloc_table[j];
01339 b = bit_alloc[0][i];
01340 if (b) {
01341 int mant, scale0, scale1;
01342 scale0 = scale_factors[0][i][k];
01343 scale1 = scale_factors[1][i][k];
01344 qindex = alloc_table[j+b];
01345 bits = ff_mpa_quant_bits[qindex];
01346 if (bits < 0) {
01347
01348 v = get_bits(&s->gb, -bits);
01349 steps = ff_mpa_quant_steps[qindex];
01350 mant = v % steps;
01351 v = v / steps;
01352 s->sb_samples[0][k * 12 + l + 0][i] =
01353 l2_unscale_group(steps, mant, scale0);
01354 s->sb_samples[1][k * 12 + l + 0][i] =
01355 l2_unscale_group(steps, mant, scale1);
01356 mant = v % steps;
01357 v = v / steps;
01358 s->sb_samples[0][k * 12 + l + 1][i] =
01359 l2_unscale_group(steps, mant, scale0);
01360 s->sb_samples[1][k * 12 + l + 1][i] =
01361 l2_unscale_group(steps, mant, scale1);
01362 s->sb_samples[0][k * 12 + l + 2][i] =
01363 l2_unscale_group(steps, v, scale0);
01364 s->sb_samples[1][k * 12 + l + 2][i] =
01365 l2_unscale_group(steps, v, scale1);
01366 } else {
01367 for(m=0;m<3;m++) {
01368 mant = get_bits(&s->gb, bits);
01369 s->sb_samples[0][k * 12 + l + m][i] =
01370 l1_unscale(bits - 1, mant, scale0);
01371 s->sb_samples[1][k * 12 + l + m][i] =
01372 l1_unscale(bits - 1, mant, scale1);
01373 }
01374 }
01375 } else {
01376 s->sb_samples[0][k * 12 + l + 0][i] = 0;
01377 s->sb_samples[0][k * 12 + l + 1][i] = 0;
01378 s->sb_samples[0][k * 12 + l + 2][i] = 0;
01379 s->sb_samples[1][k * 12 + l + 0][i] = 0;
01380 s->sb_samples[1][k * 12 + l + 1][i] = 0;
01381 s->sb_samples[1][k * 12 + l + 2][i] = 0;
01382 }
01383
01384 j += 1 << bit_alloc_bits;
01385 }
01386
01387 for(i=sblimit;i<SBLIMIT;i++) {
01388 for(ch=0;ch<s->nb_channels;ch++) {
01389 s->sb_samples[ch][k * 12 + l + 0][i] = 0;
01390 s->sb_samples[ch][k * 12 + l + 1][i] = 0;
01391 s->sb_samples[ch][k * 12 + l + 2][i] = 0;
01392 }
01393 }
01394 }
01395 }
01396 return 3 * 12;
01397 }
01398
01399 static inline void lsf_sf_expand(int *slen,
01400 int sf, int n1, int n2, int n3)
01401 {
01402 if (n3) {
01403 slen[3] = sf % n3;
01404 sf /= n3;
01405 } else {
01406 slen[3] = 0;
01407 }
01408 if (n2) {
01409 slen[2] = sf % n2;
01410 sf /= n2;
01411 } else {
01412 slen[2] = 0;
01413 }
01414 slen[1] = sf % n1;
01415 sf /= n1;
01416 slen[0] = sf;
01417 }
01418
01419 static void exponents_from_scale_factors(MPADecodeContext *s,
01420 GranuleDef *g,
01421 int16_t *exponents)
01422 {
01423 const uint8_t *bstab, *pretab;
01424 int len, i, j, k, l, v0, shift, gain, gains[3];
01425 int16_t *exp_ptr;
01426
01427 exp_ptr = exponents;
01428 gain = g->global_gain - 210;
01429 shift = g->scalefac_scale + 1;
01430
01431 bstab = band_size_long[s->sample_rate_index];
01432 pretab = mpa_pretab[g->preflag];
01433 for(i=0;i<g->long_end;i++) {
01434 v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
01435 len = bstab[i];
01436 for(j=len;j>0;j--)
01437 *exp_ptr++ = v0;
01438 }
01439
01440 if (g->short_start < 13) {
01441 bstab = band_size_short[s->sample_rate_index];
01442 gains[0] = gain - (g->subblock_gain[0] << 3);
01443 gains[1] = gain - (g->subblock_gain[1] << 3);
01444 gains[2] = gain - (g->subblock_gain[2] << 3);
01445 k = g->long_end;
01446 for(i=g->short_start;i<13;i++) {
01447 len = bstab[i];
01448 for(l=0;l<3;l++) {
01449 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
01450 for(j=len;j>0;j--)
01451 *exp_ptr++ = v0;
01452 }
01453 }
01454 }
01455 }
01456
01457
01458 static inline int get_bitsz(GetBitContext *s, int n)
01459 {
01460 if (n == 0)
01461 return 0;
01462 else
01463 return get_bits(s, n);
01464 }
01465
01466
01467 static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
01468 if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
01469 s->gb= s->in_gb;
01470 s->in_gb.buffer=NULL;
01471 assert((get_bits_count(&s->gb) & 7) == 0);
01472 skip_bits_long(&s->gb, *pos - *end_pos);
01473 *end_pos2=
01474 *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
01475 *pos= get_bits_count(&s->gb);
01476 }
01477 }
01478
01479 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
01480 int16_t *exponents, int end_pos2)
01481 {
01482 int s_index;
01483 int i;
01484 int last_pos, bits_left;
01485 VLC *vlc;
01486 int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
01487
01488
01489 s_index = 0;
01490 for(i=0;i<3;i++) {
01491 int j, k, l, linbits;
01492 j = g->region_size[i];
01493 if (j == 0)
01494 continue;
01495
01496 k = g->table_select[i];
01497 l = mpa_huff_data[k][0];
01498 linbits = mpa_huff_data[k][1];
01499 vlc = &huff_vlc[l];
01500
01501 if(!l){
01502 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
01503 s_index += 2*j;
01504 continue;
01505 }
01506
01507
01508 for(;j>0;j--) {
01509 int exponent, x, y, v;
01510 int pos= get_bits_count(&s->gb);
01511
01512 if (pos >= end_pos){
01513
01514 switch_buffer(s, &pos, &end_pos, &end_pos2);
01515
01516 if(pos >= end_pos)
01517 break;
01518 }
01519 y = get_vlc2(&s->gb, vlc->table, 7, 3);
01520
01521 if(!y){
01522 g->sb_hybrid[s_index ] =
01523 g->sb_hybrid[s_index+1] = 0;
01524 s_index += 2;
01525 continue;
01526 }
01527
01528 exponent= exponents[s_index];
01529
01530 dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
01531 i, g->region_size[i] - j, x, y, exponent);
01532 if(y&16){
01533 x = y >> 5;
01534 y = y & 0x0f;
01535 if (x < 15){
01536 v = expval_table[ exponent ][ x ];
01537
01538 }else{
01539 x += get_bitsz(&s->gb, linbits);
01540 v = l3_unscale(x, exponent);
01541 }
01542 if (get_bits1(&s->gb))
01543 v = -v;
01544 g->sb_hybrid[s_index] = v;
01545 if (y < 15){
01546 v = expval_table[ exponent ][ y ];
01547 }else{
01548 y += get_bitsz(&s->gb, linbits);
01549 v = l3_unscale(y, exponent);
01550 }
01551 if (get_bits1(&s->gb))
01552 v = -v;
01553 g->sb_hybrid[s_index+1] = v;
01554 }else{
01555 x = y >> 5;
01556 y = y & 0x0f;
01557 x += y;
01558 if (x < 15){
01559 v = expval_table[ exponent ][ x ];
01560 }else{
01561 x += get_bitsz(&s->gb, linbits);
01562 v = l3_unscale(x, exponent);
01563 }
01564 if (get_bits1(&s->gb))
01565 v = -v;
01566 g->sb_hybrid[s_index+!!y] = v;
01567 g->sb_hybrid[s_index+ !y] = 0;
01568 }
01569 s_index+=2;
01570 }
01571 }
01572
01573
01574 vlc = &huff_quad_vlc[g->count1table_select];
01575 last_pos=0;
01576 while (s_index <= 572) {
01577 int pos, code;
01578 pos = get_bits_count(&s->gb);
01579 if (pos >= end_pos) {
01580 if (pos > end_pos2 && last_pos){
01581
01582
01583 s_index -= 4;
01584 skip_bits_long(&s->gb, last_pos - pos);
01585 av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
01586 if(s->error_resilience >= FF_ER_COMPLIANT)
01587 s_index=0;
01588 break;
01589 }
01590
01591 switch_buffer(s, &pos, &end_pos, &end_pos2);
01592
01593 if(pos >= end_pos)
01594 break;
01595 }
01596 last_pos= pos;
01597
01598 code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
01599 dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
01600 g->sb_hybrid[s_index+0]=
01601 g->sb_hybrid[s_index+1]=
01602 g->sb_hybrid[s_index+2]=
01603 g->sb_hybrid[s_index+3]= 0;
01604 while(code){
01605 static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
01606 int v;
01607 int pos= s_index+idxtab[code];
01608 code ^= 8>>idxtab[code];
01609 v = exp_table[ exponents[pos] ];
01610
01611 if(get_bits1(&s->gb))
01612 v = -v;
01613 g->sb_hybrid[pos] = v;
01614 }
01615 s_index+=4;
01616 }
01617
01618 bits_left = end_pos2 - get_bits_count(&s->gb);
01619
01620 if (bits_left < 0/* || bits_left > 500*/) {
01621 av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
01622 s_index=0;
01623 }else if(bits_left > 0 && s->error_resilience >= FF_ER_AGGRESSIVE){
01624 av_log(NULL, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
01625 s_index=0;
01626 }
01627 memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
01628 skip_bits_long(&s->gb, bits_left);
01629
01630 i= get_bits_count(&s->gb);
01631 switch_buffer(s, &i, &end_pos, &end_pos2);
01632
01633 return 0;
01634 }
01635
01636
01637
01638
01639 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
01640 {
01641 int i, j, len;
01642 int32_t *ptr, *dst, *ptr1;
01643 int32_t tmp[576];
01644
01645 if (g->block_type != 2)
01646 return;
01647
01648 if (g->switch_point) {
01649 if (s->sample_rate_index != 8) {
01650 ptr = g->sb_hybrid + 36;
01651 } else {
01652 ptr = g->sb_hybrid + 48;
01653 }
01654 } else {
01655 ptr = g->sb_hybrid;
01656 }
01657
01658 for(i=g->short_start;i<13;i++) {
01659 len = band_size_short[s->sample_rate_index][i];
01660 ptr1 = ptr;
01661 dst = tmp;
01662 for(j=len;j>0;j--) {
01663 *dst++ = ptr[0*len];
01664 *dst++ = ptr[1*len];
01665 *dst++ = ptr[2*len];
01666 ptr++;
01667 }
01668 ptr+=2*len;
01669 memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
01670 }
01671 }
01672
01673 #define ISQRT2 FIXR(0.70710678118654752440)
01674
01675 static void compute_stereo(MPADecodeContext *s,
01676 GranuleDef *g0, GranuleDef *g1)
01677 {
01678 int i, j, k, l;
01679 int32_t v1, v2;
01680 int sf_max, tmp0, tmp1, sf, len, non_zero_found;
01681 int32_t (*is_tab)[16];
01682 int32_t *tab0, *tab1;
01683 int non_zero_found_short[3];
01684
01685
01686 if (s->mode_ext & MODE_EXT_I_STEREO) {
01687 if (!s->lsf) {
01688 is_tab = is_table;
01689 sf_max = 7;
01690 } else {
01691 is_tab = is_table_lsf[g1->scalefac_compress & 1];
01692 sf_max = 16;
01693 }
01694
01695 tab0 = g0->sb_hybrid + 576;
01696 tab1 = g1->sb_hybrid + 576;
01697
01698 non_zero_found_short[0] = 0;
01699 non_zero_found_short[1] = 0;
01700 non_zero_found_short[2] = 0;
01701 k = (13 - g1->short_start) * 3 + g1->long_end - 3;
01702 for(i = 12;i >= g1->short_start;i--) {
01703
01704 if (i != 11)
01705 k -= 3;
01706 len = band_size_short[s->sample_rate_index][i];
01707 for(l=2;l>=0;l--) {
01708 tab0 -= len;
01709 tab1 -= len;
01710 if (!non_zero_found_short[l]) {
01711
01712 for(j=0;j<len;j++) {
01713 if (tab1[j] != 0) {
01714 non_zero_found_short[l] = 1;
01715 goto found1;
01716 }
01717 }
01718 sf = g1->scale_factors[k + l];
01719 if (sf >= sf_max)
01720 goto found1;
01721
01722 v1 = is_tab[0][sf];
01723 v2 = is_tab[1][sf];
01724 for(j=0;j<len;j++) {
01725 tmp0 = tab0[j];
01726 tab0[j] = MULL(tmp0, v1);
01727 tab1[j] = MULL(tmp0, v2);
01728 }
01729 } else {
01730 found1:
01731 if (s->mode_ext & MODE_EXT_MS_STEREO) {
01732
01733
01734 for(j=0;j<len;j++) {
01735 tmp0 = tab0[j];
01736 tmp1 = tab1[j];
01737 tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
01738 tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
01739 }
01740 }
01741 }
01742 }
01743 }
01744
01745 non_zero_found = non_zero_found_short[0] |
01746 non_zero_found_short[1] |
01747 non_zero_found_short[2];
01748
01749 for(i = g1->long_end - 1;i >= 0;i--) {
01750 len = band_size_long[s->sample_rate_index][i];
01751 tab0 -= len;
01752 tab1 -= len;
01753
01754 if (!non_zero_found) {
01755 for(j=0;j<len;j++) {
01756 if (tab1[j] != 0) {
01757 non_zero_found = 1;
01758 goto found2;
01759 }
01760 }
01761
01762 k = (i == 21) ? 20 : i;
01763 sf = g1->scale_factors[k];
01764 if (sf >= sf_max)
01765 goto found2;
01766 v1 = is_tab[0][sf];
01767 v2 = is_tab[1][sf];
01768 for(j=0;j<len;j++) {
01769 tmp0 = tab0[j];
01770 tab0[j] = MULL(tmp0, v1);
01771 tab1[j] = MULL(tmp0, v2);
01772 }
01773 } else {
01774 found2:
01775 if (s->mode_ext & MODE_EXT_MS_STEREO) {
01776
01777
01778 for(j=0;j<len;j++) {
01779 tmp0 = tab0[j];
01780 tmp1 = tab1[j];
01781 tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
01782 tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
01783 }
01784 }
01785 }
01786 }
01787 } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
01788
01789
01790
01791 tab0 = g0->sb_hybrid;
01792 tab1 = g1->sb_hybrid;
01793 for(i=0;i<576;i++) {
01794 tmp0 = tab0[i];
01795 tmp1 = tab1[i];
01796 tab0[i] = tmp0 + tmp1;
01797 tab1[i] = tmp0 - tmp1;
01798 }
01799 }
01800 }
01801
01802 static void compute_antialias_integer(MPADecodeContext *s,
01803 GranuleDef *g)
01804 {
01805 int32_t *ptr, *csa;
01806 int n, i;
01807
01808
01809 if (g->block_type == 2) {
01810 if (!g->switch_point)
01811 return;
01812
01813 n = 1;
01814 } else {
01815 n = SBLIMIT - 1;
01816 }
01817
01818 ptr = g->sb_hybrid + 18;
01819 for(i = n;i > 0;i--) {
01820 int tmp0, tmp1, tmp2;
01821 csa = &csa_table[0][0];
01822 #define INT_AA(j) \
01823 tmp0 = ptr[-1-j];\
01824 tmp1 = ptr[ j];\
01825 tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
01826 ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
01827 ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
01828
01829 INT_AA(0)
01830 INT_AA(1)
01831 INT_AA(2)
01832 INT_AA(3)
01833 INT_AA(4)
01834 INT_AA(5)
01835 INT_AA(6)
01836 INT_AA(7)
01837
01838 ptr += 18;
01839 }
01840 }
01841
01842 static void compute_antialias_float(MPADecodeContext *s,
01843 GranuleDef *g)
01844 {
01845 int32_t *ptr;
01846 int n, i;
01847
01848
01849 if (g->block_type == 2) {
01850 if (!g->switch_point)
01851 return;
01852
01853 n = 1;
01854 } else {
01855 n = SBLIMIT - 1;
01856 }
01857
01858 ptr = g->sb_hybrid + 18;
01859 for(i = n;i > 0;i--) {
01860 float tmp0, tmp1;
01861 float *csa = &csa_table_float[0][0];
01862 #define FLOAT_AA(j)\
01863 tmp0= ptr[-1-j];\
01864 tmp1= ptr[ j];\
01865 ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
01866 ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
01867
01868 FLOAT_AA(0)
01869 FLOAT_AA(1)
01870 FLOAT_AA(2)
01871 FLOAT_AA(3)
01872 FLOAT_AA(4)
01873 FLOAT_AA(5)
01874 FLOAT_AA(6)
01875 FLOAT_AA(7)
01876
01877 ptr += 18;
01878 }
01879 }
01880
01881 static void compute_imdct(MPADecodeContext *s,
01882 GranuleDef *g,
01883 int32_t *sb_samples,
01884 int32_t *mdct_buf)
01885 {
01886 int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
01887 int32_t out2[12];
01888 int i, j, mdct_long_end, v, sblimit;
01889
01890
01891 ptr = g->sb_hybrid + 576;
01892 ptr1 = g->sb_hybrid + 2 * 18;
01893 while (ptr >= ptr1) {
01894 ptr -= 6;
01895 v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
01896 if (v != 0)
01897 break;
01898 }
01899 sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
01900
01901 if (g->block_type == 2) {
01902
01903 if (g->switch_point)
01904 mdct_long_end = 2;
01905 else
01906 mdct_long_end = 0;
01907 } else {
01908 mdct_long_end = sblimit;
01909 }
01910
01911 buf = mdct_buf;
01912 ptr = g->sb_hybrid;
01913 for(j=0;j<mdct_long_end;j++) {
01914
01915 out_ptr = sb_samples + j;
01916
01917 if (g->switch_point && j < 2)
01918 win1 = mdct_win[0];
01919 else
01920 win1 = mdct_win[g->block_type];
01921
01922 win = win1 + ((4 * 36) & -(j & 1));
01923 imdct36(out_ptr, buf, ptr, win);
01924 out_ptr += 18*SBLIMIT;
01925 ptr += 18;
01926 buf += 18;
01927 }
01928 for(j=mdct_long_end;j<sblimit;j++) {
01929
01930 win = mdct_win[2] + ((4 * 36) & -(j & 1));
01931 out_ptr = sb_samples + j;
01932
01933 for(i=0; i<6; i++){
01934 *out_ptr = buf[i];
01935 out_ptr += SBLIMIT;
01936 }
01937 imdct12(out2, ptr + 0);
01938 for(i=0;i<6;i++) {
01939 *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
01940 buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
01941 out_ptr += SBLIMIT;
01942 }
01943 imdct12(out2, ptr + 1);
01944 for(i=0;i<6;i++) {
01945 *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
01946 buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
01947 out_ptr += SBLIMIT;
01948 }
01949 imdct12(out2, ptr + 2);
01950 for(i=0;i<6;i++) {
01951 buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
01952 buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
01953 buf[i + 6*2] = 0;
01954 }
01955 ptr += 18;
01956 buf += 18;
01957 }
01958
01959 for(j=sblimit;j<SBLIMIT;j++) {
01960
01961 out_ptr = sb_samples + j;
01962 for(i=0;i<18;i++) {
01963 *out_ptr = buf[i];
01964 buf[i] = 0;
01965 out_ptr += SBLIMIT;
01966 }
01967 buf += 18;
01968 }
01969 }
01970
01971 #if defined(DEBUG)
01972 void sample_dump(int fnum, int32_t *tab, int n)
01973 {
01974 static FILE *files[16], *f;
01975 char buf[512];
01976 int i;
01977 int32_t v;
01978
01979 f = files[fnum];
01980 if (!f) {
01981 snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
01982 fnum,
01983 #ifdef USE_HIGHPRECISION
01984 "hp"
01985 #else
01986 "lp"
01987 #endif
01988 );
01989 f = fopen(buf, "w");
01990 if (!f)
01991 return;
01992 files[fnum] = f;
01993 }
01994
01995 if (fnum == 0) {
01996 static int pos = 0;
01997 av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
01998 for(i=0;i<n;i++) {
01999 av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
02000 if ((i % 18) == 17)
02001 av_log(NULL, AV_LOG_DEBUG, "\n");
02002 }
02003 pos += n;
02004 }
02005 for(i=0;i<n;i++) {
02006
02007 v = tab[i] << (23 - FRAC_BITS);
02008 fwrite(&v, 1, sizeof(int32_t), f);
02009 }
02010 }
02011 #endif
02012
02013
02014
02015 static int mp_decode_layer3(MPADecodeContext *s)
02016 {
02017 int nb_granules, main_data_begin, private_bits;
02018 int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
02019 GranuleDef granules[2][2], *g;
02020 int16_t exponents[576];
02021
02022
02023 if (s->lsf) {
02024 main_data_begin = get_bits(&s->gb, 8);
02025 private_bits = get_bits(&s->gb, s->nb_channels);
02026 nb_granules = 1;
02027 } else {
02028 main_data_begin = get_bits(&s->gb, 9);
02029 if (s->nb_channels == 2)
02030 private_bits = get_bits(&s->gb, 3);
02031 else
02032 private_bits = get_bits(&s->gb, 5);
02033 nb_granules = 2;
02034 for(ch=0;ch<s->nb_channels;ch++) {
02035 granules[ch][0].scfsi = 0;
02036 granules[ch][1].scfsi = get_bits(&s->gb, 4);
02037 }
02038 }
02039
02040 for(gr=0;gr<nb_granules;gr++) {
02041 for(ch=0;ch<s->nb_channels;ch++) {
02042 dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
02043 g = &granules[ch][gr];
02044 g->part2_3_length = get_bits(&s->gb, 12);
02045 g->big_values = get_bits(&s->gb, 9);
02046 if(g->big_values > 288){
02047 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
02048 return -1;
02049 }
02050
02051 g->global_gain = get_bits(&s->gb, 8);
02052
02053
02054 if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
02055 MODE_EXT_MS_STEREO)
02056 g->global_gain -= 2;
02057 if (s->lsf)
02058 g->scalefac_compress = get_bits(&s->gb, 9);
02059 else
02060 g->scalefac_compress = get_bits(&s->gb, 4);
02061 blocksplit_flag = get_bits1(&s->gb);
02062 if (blocksplit_flag) {
02063 g->block_type = get_bits(&s->gb, 2);
02064 if (g->block_type == 0){
02065 av_log(NULL, AV_LOG_ERROR, "invalid block type\n");
02066 return -1;
02067 }
02068 g->switch_point = get_bits1(&s->gb);
02069 for(i=0;i<2;i++)
02070 g->table_select[i] = get_bits(&s->gb, 5);
02071 for(i=0;i<3;i++)
02072 g->subblock_gain[i] = get_bits(&s->gb, 3);
02073 ff_init_short_region(s, g);
02074 } else {
02075 int region_address1, region_address2;
02076 g->block_type = 0;
02077 g->switch_point = 0;
02078 for(i=0;i<3;i++)
02079 g->table_select[i] = get_bits(&s->gb, 5);
02080
02081 region_address1 = get_bits(&s->gb, 4);
02082 region_address2 = get_bits(&s->gb, 3);
02083 dprintf(s->avctx, "region1=%d region2=%d\n",
02084 region_address1, region_address2);
02085 ff_init_long_region(s, g, region_address1, region_address2);
02086 }
02087 ff_region_offset2size(g);
02088 ff_compute_band_indexes(s, g);
02089
02090 g->preflag = 0;
02091 if (!s->lsf)
02092 g->preflag = get_bits1(&s->gb);
02093 g->scalefac_scale = get_bits1(&s->gb);
02094 g->count1table_select = get_bits1(&s->gb);
02095 dprintf(s->avctx, "block_type=%d switch_point=%d\n",
02096 g->block_type, g->switch_point);
02097 }
02098 }
02099
02100 if (!s->adu_mode) {
02101 const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
02102 assert((get_bits_count(&s->gb) & 7) == 0);
02103
02104 dprintf(s->avctx, "seekback: %d\n", main_data_begin);
02105
02106
02107 memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
02108 s->in_gb= s->gb;
02109 init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
02110 skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
02111 }
02112
02113 for(gr=0;gr<nb_granules;gr++) {
02114 for(ch=0;ch<s->nb_channels;ch++) {
02115 g = &granules[ch][gr];
02116 if(get_bits_count(&s->gb)<0){
02117 av_log(NULL, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skipping granule %d\n",
02118 main_data_begin, s->last_buf_size, gr);
02119 skip_bits_long(&s->gb, g->part2_3_length);
02120 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
02121 if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
02122 skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
02123 s->gb= s->in_gb;
02124 s->in_gb.buffer=NULL;
02125 }
02126 continue;
02127 }
02128
02129 bits_pos = get_bits_count(&s->gb);
02130
02131 if (!s->lsf) {
02132 uint8_t *sc;
02133 int slen, slen1, slen2;
02134
02135
02136 slen1 = slen_table[0][g->scalefac_compress];
02137 slen2 = slen_table[1][g->scalefac_compress];
02138 dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
02139 if (g->block_type == 2) {
02140 n = g->switch_point ? 17 : 18;
02141 j = 0;
02142 if(slen1){
02143 for(i=0;i<n;i++)
02144 g->scale_factors[j++] = get_bits(&s->gb, slen1);
02145 }else{
02146 for(i=0;i<n;i++)
02147 g->scale_factors[j++] = 0;
02148 }
02149 if(slen2){
02150 for(i=0;i<18;i++)
02151 g->scale_factors[j++] = get_bits(&s->gb, slen2);
02152 for(i=0;i<3;i++)
02153 g->scale_factors[j++] = 0;
02154 }else{
02155 for(i=0;i<21;i++)
02156 g->scale_factors[j++] = 0;
02157 }
02158 } else {
02159 sc = granules[ch][0].scale_factors;
02160 j = 0;
02161 for(k=0;k<4;k++) {
02162 n = (k == 0 ? 6 : 5);
02163 if ((g->scfsi & (0x8 >> k)) == 0) {
02164 slen = (k < 2) ? slen1 : slen2;
02165 if(slen){
02166 for(i=0;i<n;i++)
02167 g->scale_factors[j++] = get_bits(&s->gb, slen);
02168 }else{
02169 for(i=0;i<n;i++)
02170 g->scale_factors[j++] = 0;
02171 }
02172 } else {
02173
02174 for(i=0;i<n;i++) {
02175 g->scale_factors[j] = sc[j];
02176 j++;
02177 }
02178 }
02179 }
02180 g->scale_factors[j++] = 0;
02181 }
02182 #if defined(DEBUG)
02183 {
02184 dprintf(s->avctx, "scfsi=%x gr=%d ch=%d scale_factors:\n",
02185 g->scfsi, gr, ch);
02186 for(i=0;i<j;i++)
02187 dprintf(s->avctx, " %d", g->scale_factors[i]);
02188 dprintf(s->avctx, "\n");
02189 }
02190 #endif
02191 } else {
02192 int tindex, tindex2, slen[4], sl, sf;
02193
02194
02195 if (g->block_type == 2) {
02196 tindex = g->switch_point ? 2 : 1;
02197 } else {
02198 tindex = 0;
02199 }
02200 sf = g->scalefac_compress;
02201 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
02202
02203 sf >>= 1;
02204 if (sf < 180) {
02205 lsf_sf_expand(slen, sf, 6, 6, 0);
02206 tindex2 = 3;
02207 } else if (sf < 244) {
02208 lsf_sf_expand(slen, sf - 180, 4, 4, 0);
02209 tindex2 = 4;
02210 } else {
02211 lsf_sf_expand(slen, sf - 244, 3, 0, 0);
02212 tindex2 = 5;
02213 }
02214 } else {
02215
02216 if (sf < 400) {
02217 lsf_sf_expand(slen, sf, 5, 4, 4);
02218 tindex2 = 0;
02219 } else if (sf < 500) {
02220 lsf_sf_expand(slen, sf - 400, 5, 4, 0);
02221 tindex2 = 1;
02222 } else {
02223 lsf_sf_expand(slen, sf - 500, 3, 0, 0);
02224 tindex2 = 2;
02225 g->preflag = 1;
02226 }
02227 }
02228
02229 j = 0;
02230 for(k=0;k<4;k++) {
02231 n = lsf_nsf_table[tindex2][tindex][k];
02232 sl = slen[k];
02233 if(sl){
02234 for(i=0;i<n;i++)
02235 g->scale_factors[j++] = get_bits(&s->gb, sl);
02236 }else{
02237 for(i=0;i<n;i++)
02238 g->scale_factors[j++] = 0;
02239 }
02240 }
02241
02242 for(;j<40;j++)
02243 g->scale_factors[j] = 0;
02244 #if defined(DEBUG)
02245 {
02246 dprintf(s->avctx, "gr=%d ch=%d scale_factors:\n",
02247 gr, ch);
02248 for(i=0;i<40;i++)
02249 dprintf(s->avctx, " %d", g->scale_factors[i]);
02250 dprintf(s->avctx, "\n");
02251 }
02252 #endif
02253 }
02254
02255 exponents_from_scale_factors(s, g, exponents);
02256
02257
02258 huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
02259 #if defined(DEBUG)
02260 sample_dump(0, g->sb_hybrid, 576);
02261 #endif
02262 }
02263
02264 if (s->nb_channels == 2)
02265 compute_stereo(s, &granules[0][gr], &granules[1][gr]);
02266
02267 for(ch=0;ch<s->nb_channels;ch++) {
02268 g = &granules[ch][gr];
02269
02270 reorder_block(s, g);
02271 #if defined(DEBUG)
02272 sample_dump(0, g->sb_hybrid, 576);
02273 #endif
02274 s->compute_antialias(s, g);
02275 #if defined(DEBUG)
02276 sample_dump(1, g->sb_hybrid, 576);
02277 #endif
02278 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
02279 #if defined(DEBUG)
02280 sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
02281 #endif
02282 }
02283 }
02284 if(get_bits_count(&s->gb)<0)
02285 skip_bits_long(&s->gb, -get_bits_count(&s->gb));
02286 return nb_granules * 18;
02287 }
02288
02289 static int mp_decode_frame(MPADecodeContext *s,
02290 OUT_INT *samples, const uint8_t *buf, int buf_size)
02291 {
02292 int i, nb_frames, ch;
02293 OUT_INT *samples_ptr;
02294
02295 init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
02296
02297
02298 if (s->error_protection)
02299 skip_bits(&s->gb, 16);
02300
02301 dprintf(s->avctx, "frame %d:\n", s->frame_count);
02302 switch(s->layer) {
02303 case 1:
02304 nb_frames = mp_decode_layer1(s);
02305 break;
02306 case 2:
02307 nb_frames = mp_decode_layer2(s);
02308 break;
02309 case 3:
02310 default:
02311 nb_frames = mp_decode_layer3(s);
02312
02313 s->last_buf_size=0;
02314 if(s->in_gb.buffer){
02315 align_get_bits(&s->gb);
02316 i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
02317 if(i >= 0 && i <= BACKSTEP_SIZE){
02318 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
02319 s->last_buf_size=i;
02320 }else
02321 av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
02322 s->gb= s->in_gb;
02323 s->in_gb.buffer= NULL;
02324 }
02325
02326 align_get_bits(&s->gb);
02327 assert((get_bits_count(&s->gb) & 7) == 0);
02328 i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
02329
02330 if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
02331 av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
02332 i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
02333 }
02334 assert(i <= buf_size - HEADER_SIZE && i>= 0);
02335 memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
02336 s->last_buf_size += i;
02337
02338 break;
02339 }
02340 #if defined(DEBUG)
02341 for(i=0;i<nb_frames;i++) {
02342 for(ch=0;ch<s->nb_channels;ch++) {
02343 int j;
02344 dprintf(s->avctx, "%d-%d:", i, ch);
02345 for(j=0;j<SBLIMIT;j++)
02346 dprintf(s->avctx, " %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
02347 dprintf(s->avctx, "\n");
02348 }
02349 }
02350 #endif
02351
02352 for(ch=0;ch<s->nb_channels;ch++) {
02353 samples_ptr = samples + ch;
02354 for(i=0;i<nb_frames;i++) {
02355 ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
02356 window, &s->dither_state,
02357 samples_ptr, s->nb_channels,
02358 s->sb_samples[ch][i]);
02359 samples_ptr += 32 * s->nb_channels;
02360 }
02361 }
02362 #ifdef DEBUG
02363 s->frame_count++;
02364 #endif
02365 return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
02366 }
02367
02368 static int decode_frame(AVCodecContext * avctx,
02369 void *data, int *data_size,
02370 const uint8_t * buf, int buf_size)
02371 {
02372 MPADecodeContext *s = avctx->priv_data;
02373 uint32_t header;
02374 int out_size;
02375 OUT_INT *out_samples = data;
02376
02377 retry:
02378 if(buf_size < HEADER_SIZE)
02379 return -1;
02380
02381 header = AV_RB32(buf);
02382 if(ff_mpa_check_header(header) < 0){
02383 buf++;
02384
02385 av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
02386 goto retry;
02387 }
02388
02389 if (ff_mpegaudio_decode_header(s, header) == 1) {
02390
02391 s->frame_size = -1;
02392 return -1;
02393 }
02394
02395 avctx->channels = s->nb_channels;
02396 avctx->bit_rate = s->bit_rate;
02397 avctx->sub_id = s->layer;
02398 switch(s->layer) {
02399 case 1:
02400 avctx->frame_size = 384;
02401 break;
02402 case 2:
02403 avctx->frame_size = 1152;
02404 break;
02405 case 3:
02406 if (s->lsf)
02407 avctx->frame_size = 576;
02408 else
02409 avctx->frame_size = 1152;
02410 break;
02411 }
02412
02413 if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
02414 return -1;
02415 *data_size = 0;
02416
02417 if(s->frame_size<=0 || s->frame_size > buf_size){
02418 av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
02419 return -1;
02420 }else if(s->frame_size < buf_size){
02421 av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
02422 buf_size= s->frame_size;
02423 }
02424
02425 out_size = mp_decode_frame(s, out_samples, buf, buf_size);
02426 if(out_size>=0){
02427 *data_size = out_size;
02428 avctx->sample_rate = s->sample_rate;
02429
02430 }else
02431 av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n");
02432 s->frame_size = 0;
02433 return buf_size;
02434 }
02435
02436 static void flush(AVCodecContext *avctx){
02437 MPADecodeContext *s = avctx->priv_data;
02438 memset(s->synth_buf, 0, sizeof(s->synth_buf));
02439 s->last_buf_size= 0;
02440 }
02441
02442 #ifdef CONFIG_MP3ADU_DECODER
02443 static int decode_frame_adu(AVCodecContext * avctx,
02444 void *data, int *data_size,
02445 const uint8_t * buf, int buf_size)
02446 {
02447 MPADecodeContext *s = avctx->priv_data;
02448 uint32_t header;
02449 int len, out_size;
02450 OUT_INT *out_samples = data;
02451
02452 len = buf_size;
02453
02454
02455 if (buf_size < HEADER_SIZE) {
02456 *data_size = 0;
02457 return buf_size;
02458 }
02459
02460
02461 if (len > MPA_MAX_CODED_FRAME_SIZE)
02462 len = MPA_MAX_CODED_FRAME_SIZE;
02463
02464
02465 header = AV_RB32(buf) | 0xffe00000;
02466
02467 if (ff_mpa_check_header(header) < 0) {
02468 *data_size = 0;
02469 return buf_size;
02470 }
02471
02472 ff_mpegaudio_decode_header(s, header);
02473
02474 avctx->sample_rate = s->sample_rate;
02475 avctx->channels = s->nb_channels;
02476 avctx->bit_rate = s->bit_rate;
02477 avctx->sub_id = s->layer;
02478
02479 avctx->frame_size=s->frame_size = len;
02480
02481 if (avctx->parse_only) {
02482 out_size = buf_size;
02483 } else {
02484 out_size = mp_decode_frame(s, out_samples, buf, buf_size);
02485 }
02486
02487 *data_size = out_size;
02488 return buf_size;
02489 }
02490 #endif
02491
02492 #ifdef CONFIG_MP3ON4_DECODER
02493
02494 static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2};
02495 static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4};
02496
02497 static int chan_offset[9][5] = {
02498 {0},
02499 {0},
02500 {0},
02501 {2,0},
02502 {2,0,3},
02503 {4,0,2},
02504 {4,0,2,5},
02505 {4,0,2,6,5},
02506 {0,2}
02507 };
02508
02509
02510 static int decode_init_mp3on4(AVCodecContext * avctx)
02511 {
02512 MP3On4DecodeContext *s = avctx->priv_data;
02513 int i;
02514
02515 if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
02516 av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
02517 return -1;
02518 }
02519
02520 s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
02521 s->frames = mp3Frames[s->chan_cfg];
02522 if(!s->frames) {
02523 av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
02524 return -1;
02525 }
02526 avctx->channels = mp3Channels[s->chan_cfg];
02527
02528
02529
02530
02531
02532
02533
02534 s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
02535
02536 avctx->priv_data = s->mp3decctx[0];
02537 decode_init(avctx);
02538
02539 avctx->priv_data = s;
02540 s->mp3decctx[0]->adu_mode = 1;
02541
02542
02543
02544
02545 for (i = 1; i < s->frames; i++) {
02546 s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
02547 s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
02548 s->mp3decctx[i]->adu_mode = 1;
02549 s->mp3decctx[i]->avctx = avctx;
02550 }
02551
02552 return 0;
02553 }
02554
02555
02556 static int decode_close_mp3on4(AVCodecContext * avctx)
02557 {
02558 MP3On4DecodeContext *s = avctx->priv_data;
02559 int i;
02560
02561 for (i = 0; i < s->frames; i++)
02562 if (s->mp3decctx[i])
02563 av_free(s->mp3decctx[i]);
02564
02565 return 0;
02566 }
02567
02568
02569 static int decode_frame_mp3on4(AVCodecContext * avctx,
02570 void *data, int *data_size,
02571 const uint8_t * buf, int buf_size)
02572 {
02573 MP3On4DecodeContext *s = avctx->priv_data;
02574 MPADecodeContext *m;
02575 int len, out_size = 0;
02576 uint32_t header;
02577 OUT_INT *out_samples = data;
02578 OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
02579 OUT_INT *outptr, *bp;
02580 int fsize;
02581 const unsigned char *start2 = buf, *start;
02582 int fr, i, j, n;
02583 int off = avctx->channels;
02584 int *coff = chan_offset[s->chan_cfg];
02585
02586 len = buf_size;
02587
02588
02589 if (buf_size < HEADER_SIZE) {
02590 *data_size = 0;
02591 return buf_size;
02592 }
02593
02594
02595 outptr = s->frames == 1 ? out_samples : decoded_buf;
02596
02597 for (fr = 0; fr < s->frames; fr++) {
02598 start = start2;
02599 fsize = (start[0] << 4) | (start[1] >> 4);
02600 start2 += fsize;
02601 if (fsize > len)
02602 fsize = len;
02603 len -= fsize;
02604 if (fsize > MPA_MAX_CODED_FRAME_SIZE)
02605 fsize = MPA_MAX_CODED_FRAME_SIZE;
02606 m = s->mp3decctx[fr];
02607 assert (m != NULL);
02608
02609
02610 header = AV_RB32(start) | 0xfff00000;
02611
02612 if (ff_mpa_check_header(header) < 0) {
02613 *data_size = 0;
02614 return buf_size;
02615 }
02616
02617 ff_mpegaudio_decode_header(m, header);
02618 mp_decode_frame(m, decoded_buf, start, fsize);
02619
02620 n = MPA_FRAME_SIZE * m->nb_channels;
02621 out_size += n * sizeof(OUT_INT);
02622 if(s->frames > 1) {
02623
02624 bp = out_samples + coff[fr];
02625 if(m->nb_channels == 1) {
02626 for(j = 0; j < n; j++) {
02627 *bp = decoded_buf[j];
02628 bp += off;
02629 }
02630 } else {
02631 for(j = 0; j < n; j++) {
02632 bp[0] = decoded_buf[j++];
02633 bp[1] = decoded_buf[j];
02634 bp += off;
02635 }
02636 }
02637 }
02638 }
02639
02640
02641 avctx->sample_rate = s->mp3decctx[0]->sample_rate;
02642 avctx->frame_size= buf_size;
02643 avctx->bit_rate = 0;
02644 for (i = 0; i < s->frames; i++)
02645 avctx->bit_rate += s->mp3decctx[i]->bit_rate;
02646
02647 *data_size = out_size;
02648 return buf_size;
02649 }
02650 #endif
02651
02652 #ifdef CONFIG_MP2_DECODER
02653 AVCodec mp2_decoder =
02654 {
02655 "mp2",
02656 CODEC_TYPE_AUDIO,
02657 CODEC_ID_MP2,
02658 sizeof(MPADecodeContext),
02659 decode_init,
02660 NULL,
02661 NULL,
02662 decode_frame,
02663 CODEC_CAP_PARSE_ONLY,
02664 .flush= flush,
02665 };
02666 #endif
02667 #ifdef CONFIG_MP3_DECODER
02668 AVCodec mp3_decoder =
02669 {
02670 "mp3",
02671 CODEC_TYPE_AUDIO,
02672 CODEC_ID_MP3,
02673 sizeof(MPADecodeContext),
02674 decode_init,
02675 NULL,
02676 NULL,
02677 decode_frame,
02678 CODEC_CAP_PARSE_ONLY,
02679 .flush= flush,
02680 };
02681 #endif
02682 #ifdef CONFIG_MP3ADU_DECODER
02683 AVCodec mp3adu_decoder =
02684 {
02685 "mp3adu",
02686 CODEC_TYPE_AUDIO,
02687 CODEC_ID_MP3ADU,
02688 sizeof(MPADecodeContext),
02689 decode_init,
02690 NULL,
02691 NULL,
02692 decode_frame_adu,
02693 CODEC_CAP_PARSE_ONLY,
02694 .flush= flush,
02695 };
02696 #endif
02697 #ifdef CONFIG_MP3ON4_DECODER
02698 AVCodec mp3on4_decoder =
02699 {
02700 "mp3on4",
02701 CODEC_TYPE_AUDIO,
02702 CODEC_ID_MP3ON4,
02703 sizeof(MP3On4DecodeContext),
02704 decode_init_mp3on4,
02705 NULL,
02706 decode_close_mp3on4,
02707 decode_frame_mp3on4,
02708 .flush= flush,
02709 };
02710 #endif