
eCos User’s Guide

August 2000

Copying terms
Copyright © 1998, 1999, 2000 Red Hat Inc.

Copying terms
The contents of this manual are subject to the Red Hat eCos Public License Version
1.1 (the "License"); you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.redhat.com/
Software distributed under the License is distributed on an "AS IS" basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the
specific language governing rights and limitations under the License.
The Original Code is eCos - Embedded Configurable Operating System, released
September 30, 1998.
The Initial Developer of the Original Code is Red Hat. Portions created by Red Hat
are Copyright © 1998, 1999, 2000 Red Hat Inc. All Rights Reserved.

Trademarks
Java , Sun®, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc.
SPARC® is a registered trademark of SPARC International, Inc.
UNIX is a trademark of The Open Group.
Microsoft®, Windows NT®, Windows 95®, Windows 98® and Windows 2000® are
registered trademarks of Microsoft Corporation.
Linux® is a registered trademark of Linus Torvalds.
Intel® is a registered trademark of Intel Corporation.
eCos is a trademark of Red Hat, Inc.
Red Hat® is a registered trademark of Red Hat, Inc.

300-400-1010049-03
2 ■ eCos User’s Guide eCos

Contents

eCos User’s Guide...1
Copying terms..2
Trademarks ..2

Part I: The eCos Configuration Tool 1

Getting Started ..2
Introduction..2
Invoking the eCos Configuration Tool ..2
The Component Repository ...3
eCos Configuration Tool Documents ..4

Getting Help...8
Context-sensitive Help for Dialogs ...8
Context-sensitive Help for Other Windows9
Context-sensitive Help for Configuration Items..............................9
Methods of Displaying HTML Help ...9

Customization..11
Screen Layout..14
Updating the Configuration ...23

Adding and Removing Packages ...23
Platform Selection ...24
Using Templates ..27
eCos eCos User’s Guide ■ iii

Contents
Searching..31
Building ..32

Selecting Build Tools ..33
Selecting User Tools ..34

Execution..35
Properties ...35

Creating a Shell ...41
Keyboard Accelerators ..42

Part II: eCos Programming Concepts and Techniques 44

CDL Concepts ...45
The Component Repository and Working Directories................50

Component Repository ..50
Build Tree ..52
Install Tree ...53
Application Build Tree ..54

Compiler and Linker Options..55
Compiling a C Application ..55
Compiling a C++ Application ...56

Debugging Techniques..57
Tracing ...57
Kernel Instrumentation ..59

Part III: Configuration and the Package Repository ...63

Manual Configuration ..64
Directory Tree Structure ..64
Creating the Build Tree ...65
Building the System...71
Packages ..72
Coarse-grained Configuration ...72
Fine-grained Configuration ...73
Editing an eCos Savefile..74
Editing the Sources ..91
Modifying the Memory Layout ...92

Managing the Package Repository ..95
Package Installation ...95
iv ■ eCos User’s Guide eCos

Contents
Package Structure ..97

Part IV: Special Topics ... 100

Real-time Characterization..101
Methodology ..102
Using these Measurements ..103
Influences on Performance ..103
Measured Items..104
Sample Numbers..112

Index ...117
eCos eCos User’s Guide ■ v

Contents
vi ■ eCos User’s Guide eCos

Part I: The eCos Configuration
Tool
eCos eCos User’s Guide ■ 1

Getting Started
Getting Started

Introduction
The eCos Configuration Tool is used to tailor eCos at source level, prior to
compilation or assembly, and provides a configuration file and a set of files used to
build user applications. The sources and other files used for building a configuration
are provided in a component repository, which is loaded when the eCos Configuration
Tool is invoked. The component repository includes a set of files defining the
structure of relationships between the Configuration Tool and other components, and
is written in a Component Definition Language (CDL). For a description of the
concepts underlying component configuration, see “CDL Concepts” on page 45.

Invoking the eCos Configuration
Tool

There are two ways in which to invoke the eCos Configuration Tool:

■ from the desktop explorer or program set up at installation time (by default
Start->Programs->Red Hat eCos->Configuration Tool).

■ type (at a command prompt or in the Start menu’s Run item):
<foldername>\ConfigTool.exe where <foldername> is the full path of the
directory in which you installed the eCos Configuration Tool.

❒ The Configuration Tool will be displayed (see Figure 1).

1

2 ■ eCos User’s Guide eCos

Getting Started
Figure 1: Configuration Tool

The Component Repository
When you invoke the eCos Configuration Tool, it accesses the Component
Repository, a read-only location of configuration information. For an explanation of
“Component Repository” see “CDL Concepts” on page 45.

The eCos Configuration Tool will look for a component repository using (in
descending order of preference):

■ The component repository most recently used by the current user

■ A default location set by the installation procedure

■ User input

The final case above will normally only occur if the previous repository has been
moved or installation information stored in the NT registry has been modified; it will
result in a dialog box being displayed that allows you to specify the repository
location:
eCos eCos User’s Guide ■ 3

Getting Started
Figure 2: Repository relocation dialog box

Note that in order to use the eCos Configuration Tool you are obliged to provide a
valid repository location.

In the rare event that you subsequently wish to change the component location, select
Build->Repository and the above dialog box will then be displayed.

eCos Configuration Tool Documents
Configuration Save File

eCos configuration settings and other information (such as disabled conflicts) that are
set using the eCos Configuration Tool are saved to a file between sessions. By default,
when the eCos Configuration Tool is first invoked, it reads and displays information
from the Component Registry and displays the information in an untitled blank
document. You can perform the following operations on a document:

Save the currently active document
Use the “File->Save” menu item or click the Save Document icon on the toolbar; if
the current document is unnamed, you will be prompted to supply a name for the
configuration save file.
4 ■ eCos User’s Guide eCos

Getting Started
Figure 3: Save As dialog box

Open an existing document
Select File->Open, or click the Open Document icon on the toolbar. You will be
prompted to supply a name for the configuration save file.
eCos eCos User’s Guide ■ 5

Getting Started
Figure 4: Open dialog box

Open a document you have used recently
Click its name at the bottom of the File menu.

Documents may also be opened by:

■ dragging and dropping a Configuration Save File from the desktop explorer to the
eCos Configuration Tool

■ double-clicking a Configuration Save File in the desktop explorer

■ invoke the eCos Configuration Tool with the name of a Configuration File as
command-line argument, or by creating a shortcut to the eCos Configuration Tool
with such an argument.

Create a new blank document based on the Component
Registry

Select File->New, or click the New Document icon on the toolbar.

Save to a different file name
Select File->Save As. You will be prompted to supply a new name for the
configuration save file.
6 ■ eCos User’s Guide eCos

Getting Started
Build and Install Trees
The location of the build and install trees are derived from the eCos save file name as
illustrated in the following example:

Save file name = “c:\My eCos\config1.ecc”

Install tree folder = “c:\My eCos\config1_install”

Build tree folder = “c:\My eCos\config1_build”

These names are automatically generated from the name of the save file.

See also “CDL Concepts” on page 45.
eCos eCos User’s Guide ■ 7

Getting Help
Getting Help

The eCos Configuration Tool contains several methods for accessing online help.

Context-sensitive Help for Dialogs
Most dialogs displayed by the eCos Configuration Tool are supplied with
context-sensitive help. You can then get help relating to any control within the current
dialog box by

■ Right-clicking the control (or pressing F1)

A “What’s This?” popup menu will be displayed. Click the menu to display a
brief description of the function of the selected control.

■ Clicking the help (question mark) icon in the dialog caption bar

A question mark cursor will be displayed. Click on any control to display a brief
description of its function.

Some dialogs may have a Help button. You can press this to display a more general
description of the function of the dialog box as a whole. This help will be in HTML
form; for more information, see below.

2

8 ■ eCos User’s Guide eCos

Getting Help
Context-sensitive Help for Other
Windows

In the Help menu, click eCos Configuration Tool Help (or press F1). A HTML page
describing the general operation of the currently active window will be displayed.
This help will normally be in HTML format; for more information, see “Methods of
Displaying HTML Help”.

Context-sensitive Help for
Configuration Items

In the configuration window, right-click on a configuration item (or use Shift+F10).
A context menu will be displayed; select Visit Documentation to display the page in
the eCos documentation that most closely corresponds to the selected item.

Methods of Displaying HTML Help
By default, help in HTML form is displayed using an HTML Help viewer built in to
the eCos Configuration Tool. This form of help will be familiar to Windows 98 or
Windows 2000 users: it takes the form of a 3-pane floating window comprising
Toolbar, Navigation and Topic windows. The Navigation Window provides access
to Table of Contents (TOC), Index, and Search facilities. A toolbar is provided to
allow quick access to related internet sites, including the Red Hat home page and net
distribution sites.
eCos eCos User’s Guide ■ 9

Getting Help
Figure 5: HTML Help viewer

If you wish, you may choose to have HTML Help displayed in a browser of your
choice. To do this, select View->Settings and use the controls in the View
Documentation group to select the replacement browser. Note that the Navigation
facilities of the built-in HTML Help system will be unavailable if you choose this
method of displaying help.
10 ■ eCos User’s Guide eCos

Customization
Customization

The following visual aspects of the eCos Configuration Tool can be changed to suit
individual preferences. These aspects are saved on a per-user basis, so that when the
eCos Configuration Tool is next invoked by the same user, the appearance will be as
set in the previous session.

Window Placement
The relative sizes of all windows in the eCos Configuration Tool may be adjusted by
dragging the splitter bars that separate the windows. The chosen sizes will be used the
next time the eCos Configuration Tool is invoked by the current user.

All windows except the Configuration Window may be shown or hidden by using

the commands under the View menu (for example, View->Memory Layout) or the
corresponding keyboard accelerators (Alt+1 to Alt+5). By default the memory layout
and conflicts window are hidden.

Your chosen set of windows (and their relative sizes) will be preserved between
invocations of the eCos Configuration Tool.

Toolbars
Select View->Toolbars: each of the standard and Memory Layout toolbars may be
hidden or shown.

3

eCos eCos User’s Guide ■ 11

Customization
Settings
To change other visual aspects, select View->Settings. The Settings dialog box will
be displayed that allows you to customize the following options:

Displaying Header Files
You can change the viewer used to display header files.

View Documentation
You can change the browser used to display HTML Help (see “Methods of Displaying
HTML Help” on page 9).

Configuration Item Labels
In the configuration window, you can choose to have either descriptive names (the
default) or macro names displayed as tree item labels. Descriptive names are generally
more comprehensible, but macro names are used in some contexts such as conflict
resolution and may be directly related to the source code of the configuration. Note
that it is possible to search for an item in the configuration view by selecting
Find->Edit (see “Searching” on page 31). Both descriptive names and macro names
can be searched.

Configuration Item Integer Format
You can choose to have integer items in the Configuration Window displayed in
decimal or hexadecimal format.

Fonts
The font used in each window of the eCos Configuration Tool may be changed
independently. To use this feature, select the window whose font is to be changed in
the drop-list labeled “Window” and press the “Change Font” button.
12 ■ eCos User’s Guide eCos

Customization
eCos eCos User’s Guide ■ 13

Screen Layout
Screen Layout

The following windows are available within the eCos Configuration Tool:

■ Configuration Window

■ Properties Window

■ Short Description

■ Memory Layout

■ Conflicts

■ Output

The layout of the windows my be adjusted to suit your preferences: see “Settings”
on page 12.

Configuration Window

This is the principal window used to configure eCos. It takes the form of a tree-based
representation of the configuration items within the currently loaded eCos packages.

In the case of items whose values may be changed, controls are available to set the
item values. These either take the form of check boxes or radio buttons within the tree
itself or cells to the right of the thin vertical splitter bar. Controls in the tree may be
used in the usual way; cells, however, must first be activated.

To activate a cell, simply click on it: it will assume a sunken appearance and data can
then be edited in the cell. To terminate in-cell editing, click elsewhere in the
configuration window or press ENTER. To discard the partial results of in-cell
editing and revert to the previous value, press ESCAPE. Note that an asterisk appears

4

14 ■ eCos User’s Guide eCos

Screen Layout
against configuration items which have changed since the configuration was last
saved.

Cells come in three varieties, according to the type of data they accept:

In the case of string cells, you can double-click the cell to display a dialog box
containing a larger region in which to edit the string value. This is useful in the case of
long strings, or those spanning multiple lines.

Disabled items
Some items will appear disabled. In this case the item label and any associated
controls and cells will be grayed. It is not be possible to change the values of disabled
items.

Right-Clicking
You can right-click on an item in the configuration window item to display a pop-up
menu which (depending on the type of the item selected) allows you to:

Table 1:

Cell Type Data Accepted

������� ���	
�����������	
��������

�����	����	�� �����	����	��������

���	�� ���
eCos eCos User’s Guide ■ 15

Screen Layout
■ Properties – information relating to the currently selected item is displayed. The
information is equivalent to that displayed in the Properties Window.

■ Restore Defaults - the default value of the currently selected item is restored.

■ Visit Documentation - causes the HTML page most closely relating to the
currently selected item to be displayed. This has the same effect as
double-clicking the URL property in the Properties Window.

■ View Header File – this causes the file containing the items to be displayed. This
is equivalent to double-clicking on the File property in the Properties Window.
The viewer used for this purpose may be changed using the View->Settings menu
item (see “Settings” on page 12). Note that this operation is only possible when
the current configuration is saved, in order to avoid the possibility of changing the
source repository.

■ Unload Package - this is equivalent to using the Build->Packages menu item to
select and unload the package in question.

Conflicts Window
This window exists to display any configuration item conflicts. Conflicts are the result
of failures to meet the requirements between configuration items expressed in the
CDL. See “Conflicts” in “CDL Concepts” on page 45.

The window comprises three columns:

■ Item

This is the macro name of the first item involved in the conflict.

■ Conflict

This is a description of the conflict type. The currently supported types are
“unresolved”, “illegal value”, “evaluation exception”, “goal unsatisfied” and “bad
data”.

■ Property

This contains a description of the configuration item’s property that caused the
16 ■ eCos User’s Guide eCos

Screen Layout
conflict.

Within the conflicts window you can right-click on any item to display a context menu
which allows you to choose from one of the following options:

■ Locate the item involved in the conflict – this will cause the configuration
window to display the item relating most closely to the selected conflict.

You can use the Tools->Resolve Conflicts menu item to resolve conflicts – see
“Resolving conflicts” on page 27.

Output Window
This window displays any output generated by execution of external tools and any
error messages that are not suitable for display in other forms (for example, as
message boxes).

Within the output window you can right-click to display a context menu which allows
you to:

■ Save the contents of the window to a file

■ Clear the contents of the window

Properties Window
This window displays the CDL properties of the item currently selected in the
configuration window. The same information may be displayed by right-clicking the
item and selecting “properties”.

Two properties may be double-clicked as follows:

■ URL – double-clicking on a URL property causes the referenced HTML page to
be displayed. This has the same effect as right-clicking on the item and choosing
“Visit Documentation”.
eCos eCos User’s Guide ■ 17

Screen Layout
■ File – double-clicking on a File property in a saved configuration causes the File
to be displayed. The viewer used for this purpose may be changed using the
View->Settings menu item. Note that this operation is only possible when the
current configuration is saved, in order to avoid the possibility of changing the
source repository.

Short Description Window
This window displays a short description of the item currently selected in the
configuration window. More extensive documentation may be available by
right-clicking on the item and choosing “Visit Documentation”.

Memory Layout Window
The memory layout window presents a graphical view of the memory layout of the
currently selected combination of target architecture, platform and start-up type. Each
memory region is represented by a horizontal bar within the window. Each bar is
further divided into a number of blocks representing memory sections. Unused parts
of a memory section are represented using hatching. All numeric information is
presented in hexadecimal format:

Default memory layouts are provided for all supported platforms; you do not need to
edit these layouts in order to begin development on standard, supported, eCos
platforms. However, you may need to modify the memory layouts at certain times, for
example when additional memory is installed on an evaluation board. When the
memory layout is modified, a new linker script fragment is generated to allow the
linker to make use of the new memory.

Layout Manipulation
The memory layout window includes controls to create, delete and modify the
properties of both memory regions and memory sections (collectively referred to as
memory items). These manipulation functions are accessible from both memory items
and from the memory layout toolbar, which may be shown or hidden by the
View->Toolbars->Memory Layout menu item. When modifying or deleting an item,
it is necessary to first select it with your mouse. The currently selected item is
18 ■ eCos User’s Guide eCos

Screen Layout
displayed with a focus rectangle (as section rodata above). Creation and modification
of a memory item is achieved using a property sheet. The property sheet for a memory
item may also be accessed by double-clicking on the item in the memory window.

Memory Regions
Details of a memory region may be specified using the region properties sheet,
displayed by double-clicking on the name of the memory region in the memory layout
display. The general settings page of this sheet allows editing of the region
parameters:

The name of each memory region is arbitrary, but should not contain spaces or
punctuation characters. The start address and size of each memory region is specified
in bytes and entered as hexadecimal numbers. The Read Only check box should be
checked where the memory region represents a block of read-only memory. This
information is used to verify that the initial and final locations of any relocating
memory sections are within appropriate memory regions.

The Note page of the region properties sheet may be used to keep notes concerning
the memory regions. These notes are saved with the memory layout in the build tree.
eCos eCos User’s Guide ■ 19

Screen Layout
Memory sections
Details of a memory section may be specified or modified using the section properties
sheet. The general settings page of this sheet allows editing of the parameters which
are common to all sections:

Each memory section is either linker-defined or user-defined. The name of a
linker-defined section is selected from a drop-down list appropriate for the currently
selected target architecture. Only those names which are not currently in use are
presented. The name of a user-defined section must not contain spaces or punctuation
characters. The size of a user-defined section may also be specified by checking the
Known Size check box. The size should then be entered as a hexadecimal number.
User-defined sections of unknown size are assumed to occupy all available space up
to the next section or the end of the memory region.

The final memory location after relocation (also known as VMA) of a memory section
may be defined using an absolute start address or by specifying another section which
it follows in the memory map. Where an absolute address is required, this should be
entered as a hexadecimal number.
20 ■ eCos User’s Guide eCos

Screen Layout
Alternatively, the preceding section may be selected from a drop-down list of
appropriate existing sections. In this case, the alignment of the section in terms of an
n-byte boundary should also be selected.

The relocation settings page allows editing of the parameters which are specific to
relocating sections:

The relocation of a memory section at system start-up is enabled by checking the
Relocate Section check box. The initial size to which the memory section is loaded
(also known as the LMA) may be defined using an absolute start address or by
specifying another section which it follows in the memory map. Where an absolute
address is required, this should be entered as a hexadecimal number. The address must
lie within a read-only memory region. Alternatively, the preceding section may be
selected from a drop-down list of appropriate existing sections. The initial location of
the preceding section must be a location in a read-only memory region.

The note page of the section properties sheet may be used to keep notes concerning
the memory section. These notes are saved with the memory layout in the build tree.
eCos eCos User’s Guide ■ 21

Screen Layout
Memory access
User-defined memory sections may be accessed using C preprocessor macros defined
in a memory layout header file exported by the eCos Configuration Tool. The name of
the memory layout header file appropriate for the current configuration is defined by
the CYGHWR_MEMORY_LAYOUT configuration item.

Macros specifying the start address and size are defined for each user-defined memory
section and may be accessed as demonstrated in the following example:

Table 2: Accessing a user-defined memory section named
example

#include <pkgconf/system.h>
#include CYGHWR_MEMORY_LAYOUT_H

int main ()
{
 // use the memory section as an integer array
 int * array = (int *) CYGMEM_SECTION_example;
 unsigned int array_size = CYGMEM_SECTION_example_SIZE / sizeof (int);

 // initialize each array element
 unsigned int count;
 for (count = 0; count < array_size; ++count)
 array [count] = 0;

 return 0;
}

22 ■ eCos User’s Guide eCos

Updating the Configuration
Updating the Configuration

Adding and Removing Packages
To add or remove packages from the configuration, select Build->Packages. The
following dialog box will be displayed:

5

eCos eCos User’s Guide ■ 23

Updating the Configuration
Figure 6: Packages dialog box

The left list shows those packages that are available to be loaded. The right-hand list
shows those that are currently loaded. In order to transfer packages from one list to
another (that is, to load or unload packages) double-click the selection or click the
Add or Remove buttons.

The version drop-list displays the versions of the selected packages. When loading
packages, this control may be used to load versions other than the most recent
(current). Note that if more than one package is selected, the version drop-list will
display only the versions in common to all the selected packages.

The bottommost window in the dialog displays a brief description of the selected
package. If more than one package is selected, this window will be blank.

Platform Selection
To add, modify or remove entries in the list of platforms used for running tests, select
Tools->Platforms. The following dialog will be displayed:
24 ■ eCos User’s Guide eCos

Updating the Configuration
Figure 7: Platforms dialog box

You may add, modify or remove platform entries as you wish, but in order to run tests,
a platform must be defined to correspond to the currently loaded hardware template.
The information associated with each platform name is used to run tests.

To modify a platform, click the Modify button with the appropriate platform selected,
or double-click on an entry in the list. A dialog will be displayed that allows you to
change the command prefix, platform type and arguments for GDB.
eCos eCos User’s Guide ■ 25

Updating the Configuration
Figure 8: Platform Modify dialog box

To add a new platform, click the Add button. A similar dialog will be displayed that
allows you to define a new platform. To remove a platform, click the Delete button or
press the DEL key with the appropriate platform selected.

Figure 9: New Platform dialog box

The command prefix is used when running tests in order to determine the names of the
executables (such as gdb) to be used. For example, if the gdb executable name is
“arm-elf-gdb.exe” the prefix should be set to “arm-elf”.

The platform type indicates the capabilities of the platform - whether it is hardware or
a simulator, and whether breakpoints are supported.

The arguments for the GDB field allow additional arguments to be passed to gdb
when it is used to run a test. This is typically used in the case of simulators linked to
gdb in order to define memory layout.
26 ■ eCos User’s Guide eCos

Updating the Configuration
Using Templates
To load a configuration based on a template, select Build->Templates.

The following dialog box will be displayed:

Figure 10: Templates dialog box

Change the hardware template, the packages template, or both. To select a hardware
template, choose from the first drop-list. To choose a packages template, choose from
the second. Brief descriptions of each kind of template are provided in the
corresponding edit boxes.

Resolving conflicts
During the process of configuring eCos it is possible that conflicts will be created. For
more details of the meaning of conflicts, see “CDL Concepts” on page 45.

The Conflicts Window displays all conflicts in the current configuration.
Additionally, a window in the status bar displays a count of the conflicts. Because the
resolution of conflicts can be time-consuming, a mechanism exists whereby conflicts
can be resolved automatically.

You can choose to have a conflicts resolution dialog box displayed by means of the
Tools->Options menu item.
eCos eCos User’s Guide ■ 27

Updating the Configuration
Figure 11: Options

You can choose to have conflicts checked under the following circumstances:

■ After any item is changed (in other words, as soon as the conflict is created)

■ Before saving the configuration (including building)

■ Never

The method you chose depends on how much you need your configuration to be free
of conflicts. You may want to avoid having to clean up all the conflicts at once, or you
may want to keep the configuration consistent at all times. If you have major changes
to implement, which may resolve the conflicts, then you might want to wait until after
you have completed these changes before you check for conflicts.
NOTE If you choose to check conflicts after any item is changed, only newly

arising conflicts are displayed. If you choose to check for conflicts
before saving the configuration, the complete set is displayed.

Automatic resolution
If you check the “Automatically suggest fixes” check box, a conflicts resolution
dialog box will be displayed whenever new conflicts are created. The same dialog box
may be displayed at any stage by means of the Tools->Resolve Conflicts menu item.

The conflicts resolution dialog box contains two major windows.
28 ■ eCos User’s Guide eCos

Updating the Configuration
Figure 12: Resolve conflicts window

The upper contains the set of conflicts to be addressed; the format of the data being as
that of the Conflicts Window. The lower window contains a set of proposed
resolutions – each entry is a suggested configuration item value change that as a whole
may be expected to lead to the currently selected conflict being resolved.

Note that there is no guarantee:

■ that automatic resolutions will be determinable for every conflict.

■ that the resolutions for separate conflicts will be independent. In other words, the
resolution of one conflict may serve to prevent the resolution of another.

■ that the resolution conflicts will not create further conflicts.

The above warnings are, however, conservative. In practice (so long as the number
and extent of conflicts are limited) automatic conflict resolution may be used to good
effect to correct problems without undue amounts of programmer intervention.

In order to select the conflicts to be applied, select or clear the check boxes against the
resolutions for each proposed resolution. By default all resolutions are selected; you
can return to the default state (in other words, cause all check boxes for each conflict
to again become checked) by pressing the “Reset” button. Note that multiple selection
may be used in the resolutions control to allow ranges of check boxes to be toggled in
one gesture.
eCos eCos User’s Guide ■ 29

Updating the Configuration
When you are happy to apply the selected resolutions for each conflict displayed, click
Apply; this will apply the resolutions. Alternatively you may cancel from the dialog
box without any resolutions being applied.
30 ■ eCos User’s Guide eCos

Searching
Searching

Select Edit --> Find. You will be presented with a Find dialog box:

Figure 13: Find dialog box

Using this dialog box you can search for an exact text string in any one of three ways,
as specified by your selection in the “Search in” drop-list:

■ Macro names - the search is for a text match within configuration item macro
names

■ Item names - the search is for a text match within configuration item descriptive
names

■ Short descriptions - the search is for a text match within configuration item short
descriptions

Note that to invoke Find you can also click the Find icon on the toolbar.

6

eCos eCos User’s Guide ■ 31

Building
Building

When you have configured eCos, you may build the configuration.

On the Build menu, click:

■ Library (or click the Build Library icon on the toolbar) – this causes the eCos
configuration to be built. The result of a successful build will be (among other
things) a library against which user code can be linked

■ Tests – this causes the eCos configuration to be built, and additionally builds the
relevant test cases linked against the eCos library

■ Clean – this removes all intermediate files, thus causing a subsequent
build/library or build/tests operation to cause recompilation of all relevant files.

■ Stop – this causes a currently executing build (any of the above steps) to be
interrupted

Build options may be displayed by using the Build->Options menu item. This
displays a dialog box containing a drop-list control and two windows. The drop-list
control allows you to select the type of build option to be displayed (for example
“LDFLAGS” are the options applied at link-time. The left-hand window is a tree view
of the packages loaded in the current configuration. The right-hand window is a list of
the build options that will be used for the currently selected package.

Note that this dialog box currently affords only read-only access to the build options.
In order to change build options you must edit the relevant string configuration item.

A single level of inheritance is supported: each package’s build options are combined
with the global options (these are to be found in the “Global build options” folder in
the configuration view).

7

32 ■ eCos User’s Guide eCos

Building
Selecting Build Tools
Normally the installation process will supply the information required for the eCos
Configuration Tool to locate the build tools (compiler, linker, etc…) necessary to
perform a build. However if this information is not registered, or it is necessary to
specify the location manually (for example, when a new toolchain installation has
been made), select Tools->Paths->Build Tools. The following dialog box will be
displayed:
eCos eCos User’s Guide ■ 33

Building
Figure 14: Build tools

This dialog box allows you to locate the folder containing the build tools.

Selecting User Tools
Normally the installation process will supply the information required for the eCos
Configuration Tool to locate the user tools (cat, ls, etc…) necessary to perform a
build. However if this information is not registered, or it is necessary to specify the
location manually (for example, when a new toolchain installation has been made),
select Tools->Paths->User Tools. The following dialog box will be displayed:

Figure 15: User tools
34 ■ eCos User’s Guide eCos

Execution
Execution

Test executables that have been linked using the Build/Tests operation against the
current configuration can be executed by selecting Tools->Run Tests.

When tests are run, the Configuration Tool looks for a platform name corresponding
to the currently loaded hardware template. If no such platform is found, a dialog will
be displayed for you to define one; this dialog is similar to that displayed by the Add
function in the Tools->Platforms dialog, but in this case the platform name cannot be
changed.

When a test run is invoked, a property sheet is displayed, comprising three tabs:
Executables, Output and Summary.

Note that the property sheet is resizable.

Three buttons appear on the property sheet itself: Run/Stop, Close and Properties.

The Run button is used to initiate a test run. Those tests selected on the Executables
tab are run, and the output recorded on the Output and Summary tabs. During the
course of a run, the Run button changes to “Stop”. The button may be used to
interrupt a test run at any point.

Properties
The Properties button is used to change the connectivity properties for the test run.

8

eCos eCos User’s Guide ■ 35

Execution
Figure 16: Properties dialog box

Download Timeout
This group of controls serves to set the maximum time that is allowed for
downloading a test to the target board. If the time is exceeded, the test will be deemed
to have failed for reason of “Download Timeout” and the execution of that particular
test will be abandoned. This option only applies to tests run on hardware, not to those
executed in a simulator. Times are in units of elapsed seconds.

Three options are available using the drop-down list:

■ Calculated from file size - an estimate of the maximum time required for
download is made using the (stripped) executable size and the currently used baud
rate

■ Specified - a user-specified value may be entered in the adjacent edit box

■ None - no maximum download time is to be applied.

Run time Timeout
This group of controls serves to set the maximum time that is allowed for executing a
test on the target board or in a simulator. If the time is exceeded, the test will be
deemed to have failed for reason of “Timeout” and the execution of that particular test
will be abandoned. In the case of hardware, the time is measured in elapsed seconds:
in the case of a simulator it is in CPU seconds.

Three options are available using the drop-down list:
36 ■ eCos User’s Guide eCos

Execution
■ None - no maximum download time is to be applied.

■ Specified - a user-specified value may be entered in the adjacent edit box

■ Default - a default value of 30 seconds is used

Connection
The Connection button may be used to specify how the target board is to be accessed:

Figure 17: Connection dialog box

If the target board is connected using a serial cable, the Serial radio button should be
checked. In this case you can select a port (COM1, COM2, …) and an appropriate
baud rate using drop-list boxes.

If the target board is accessed remotely using GDB remote protocol, the “TCP/IP”
radio button should be checked. In this case you can select a host name and TCP/IP
port number using edit boxes.

Executables Tab
This is used to adjust the set of tests available for execution. A check box against each
executable name indicates whether that executable will be included when the Run
button is pressed. The Check All and Uncheck All buttons may be used to check or
uncheck all items.

When the property sheet is first displayed, it will be pre-populated with those test
executables that have been linked using the Build/Tests operation against the current
configuration.
eCos eCos User’s Guide ■ 37

Execution
Figure 18: Run tests

You can right-click in the window to display a context menu containing Add and
Remove items. Clicking Remove will remove those executables selected. Clicking
Add will display a dialog box that allows you to add to the set of items. Equivalently
the Add button may be used to add executables, and the DEL key may be used to
remove them.

You can use the Add from Folder button to add a number of executables in a
specified folder (optionally including subfolders).
38 ■ eCos User’s Guide eCos

Execution
Figure 19: Add files from folder

The “Add from subfolders” check box should be checked if you wish the search for
executables to descend into subfolders (in the example above the whole of the C drive
would be searched).

The “Files of type” edit box should be used to specify the extension of those files to be
matched [for example, “*.exe”].

Output Tab
This tab is used to display the output from running tests. The output can be saved to a
file or cleared by means of the popup menu displayed when you right-click in the
window.

Summary Tab
This tab is used to display a record, in summary form, of those tests executed. For
each execution, the following information is displayed:

■ Time - the date and time of execution

■ Host - the host name of the machine from which the test was downloaded

■ Platform - the platform on which the test was executed

■ Executable - the executable (file name) of the test executed
eCos eCos User’s Guide ■ 39

Execution
■ Status - the result of executing the test. This will be one of the following:

❒ Not started

❒ No result

❒ Inapplicable

❒ Pass

❒ DTimeout

❒ Timeout

❒ Cancelled

❒ Fail

❒ Assert fail

■ Size - the size [stripped/unstripped] of the test executed

■ Download - the download time [mm:ss/mm:ss] used. The first of the two times
displayed represents the actual time used: the second the limit time.

■ Elapsed - the elapsed time [mm:ss] used.

■ Execution - the execution time [mm:ss/mm:ss] used. The first of the two times
displayed represents the actual time used: the second the limit time.

The output can be saved to a file or cleared by means of the popup menu displayed
when you right-click in the window.
40 ■ eCos User’s Guide eCos

Creating a Shell
Creating a Shell

To call up a shell window, select Tools->Shell:

9

eCos eCos User’s Guide ■ 41

Creating a Shell
Keyboard Accelerators
The following table presents the list of keyboard accelerators that can be used with the
Configuration Tool.

Table 3: Keyboard accelerators

Accelerator Action Remarks

Alt+1 hide/show properties window

Alt+2 hide/show documentation window

Alt+3 hide/show short description
window

Alt+4 hide/show memory layout window

Alt+5 hide/show output window

Ctrl+A select all output window and in-cell
editing

Ctrl+C copy output window and in-cell
editing

Ctrl+F Edit->Find

Ctrl+N File->New

Ctrl+O File->Open

Ctrl+S File->Save

Ctrl+V Paste in-cell editing only

Ctrl+X Cut in-cell-editing only

Ctrl+Z Undo in-cell editing only

F1 Context-sensitive help

F3 Find next

F7 Build->Library

Shift+F7 Build->Tests

Alt+F6 View->Next window

Shift+Alt+0 View->Previous window

Shift+Ins Paste in-cell editing only
42 ■ eCos User’s Guide eCos

Creating a Shell
Shift+F10 Display context menu Configuration window

Alt+Enter Display properties dialog box Configuration window

> Increment item value Configuration window

< Decrement item value Configuration window

Space Toggle item value Configuration window

Accelerator Action Remarks
eCos eCos User’s Guide ■ 43

Creating a Shell
Part II: eCos Programming
Concepts and Techniques

Programming with eCos is somewhat different from programming in more traditional
environments. eCos is a configurable open source system, and you are able to
configure and build a system specifically to meet the needs of your application.

Various different directory hierarchies are involved in configuring and building the
system: the component repository, the build tree, and the install tree. These directories
exist in addition to the ones used to develop applications.
44 ■ eCos User’s Guide eCos

CDL Concepts
CDL Concepts

About this Chapter
This chapter serves as a brief introduction to the concepts involved in eCos
(Embedded Configurable Operating System). It describes the configuration
architecture and the underlying technology to a level required for the embedded
systems developer to configure eCos. It does not describe in detail aspects such as
how to write reusable components for eCos: this information is given in the CDL
Writer’s Guide.

Background
Software solutions for the embedded space place particularly stringent demands on
the developer, typically represented as requirements for small memory footprint, high
performance and robustness. These demands are addressed in eCos by providing the
ability to perform compile-time specialization: the developer can tailor the operating
system to suit the needs of the application. In order to make this process manageable,
eCos is built in the context of a Configuration Infrastructure: a set of tools including a
Configuration Tool and a formal description of the process of configuration by means
of a Component Definition Language.

10
eCos eCos User’s Guide ■ 45

CDL Concepts
Configurations
eCos is tailored at source level (that is, before compilation or assembly) in order to
create an eCos configuration. In concrete terms, an eCos configuration takes the form
of a configuration save file (with extension .ecc) and set of files used to build user
applications (including, when built, a library file against which the application is
linked).

Component Repository
eCos is shipped in source in the form of a component repository - a directory
hierarchy that contains the sources and other files which are used to build a
configuration. The component repository can be added to by, for example,
downloading from the net.

Component Definition Language
Part of the component repository is a set of files containing a definition of its structure.
The form used for this purpose is the Component Definition Language (CDL). CDL
defines the relationships between components and other information used by tools
such as the eCos Configuration Tool. CDL is generally formulated by the writers of
components: it is not necessary to write or understand CDL in order for the embedded
systems developer to construct an eCos configuration.

Packages
The building blocks of an eCos configuration are called packages. Packages are the
units of software distribution. A set of core packages (such as kernel, C library and
math library) is provided by Red Hat: additional third-party packages will be available
in future.

A package may exist in one of a number of versions. The default version is the
current version. Only one version of a given package may be present in the
component repository at any given time.

Packages are organized in a tree hierarchy. Each package is either at the top-level or
is the child of another package.

The eCos Administration Tool can be used to add or remove packages from the
component repository. The eCos Configuration Tool can be used to include or
exclude packages from the configuration being built.
46 ■ eCos User’s Guide eCos

CDL Concepts
 Configuration Items
Configuration items are the individual entities that form a configuration. Each item
corresponds to the setting of a C pre-processor macro (for example,
CYGHWR_HAL_ARM_PID_GDB_BAUD). The code of eCos itself is written to
test such preprocessor macros so as to tailor the code. User code can do likewise.

Configuration items come in the following flavors:

■ None: such entities serve only as placeholders in the hierarchy, allowing other
entities to be grouped more easily.

■ Boolean entities are the most common flavor; they correspond to units of
functionality that can be either enabled or disabled. If the entity is enabled then
there will be a #define; code will check the setting using, for example, #ifdef

■ Data entities encapsulate some arbitrary data. Other properties such as a set or
range of legal values can be used to constrain the actual values, for example to an
integer or floating point value within a certain range.

■ Booldata entities combine the attributes of Boolean and Data: they can be enabled
or disabled and, if enabled, will hold a data value.

Like packages, configuration items exist in a tree-based hierarchy: each configuration
item has a parent which may be another configuration item or a package. Under some
conditions (such as when packages are added or removed from a configuration), items
may be “re-parented” such that their position in the tree changes.

Expressions
Expressions are relationships between CDL items. There are three types of expression
in CDL:

Properties
Each configuration item has a set of properties. The following table describes the
most commonly used:

A complete description of properties is contained in the CDL Writer’s Guide.

Table 4: CDL Expressions

Expression Type Result Common Use [see
Table 2]

Ordinary A single value legal_values property

List A range of values (for
example “1 to 10”)

legal_values property

Goal True or False requires and active_if
properties
eCos eCos User’s Guide ■ 47

CDL Concepts
Inactive Items
Descendants of an item that is disabled are inactive: their values may not be changed.
Items may also become inactive if an active_if expression is used to make the item
dependent on an expression involving other items.

Conflicts
Not all settings of configuration items will lead to a coherent configuration; for
example, the use of a timeout facility might require the existence of timer support, so
if the one is required the other cannot be removed. Coherence is policed by means of
consistency rules (in particular, the goal expressions that appear as CDL items
requires and active_if attributes [see above]). A violation of consistency rules creates
a conflict, which must be resolved in order to ensure a consistent configuration.
Conflict resolution can be performed manually or with the assistance of the eCos
tools. Conflicts come in the following flavors:

■ An unresolved conflict means that there is a reference to an entity that is not yet in
the current configuration

■ An illegal value conflict is caused when a configuration item is set to a value that
is not permitted (that is, a legal_values goal expression is failing)

Table 5: Configuration properties

Property Use

Flavor The “type” of the item, as described above

Enabled Whether the item is enabled

Current_value The current value of the item

Default_value An ordinary expression defining the default value of the item

Legal_values A list expression defining the values the item may hold (for example,
1 to10)

Active_if A goal expression denoting the requirement for this item to be active
(see below: Inactive Items)

Requires A goal expression denoting requirements this item places on others
(see below: Conflicts)

Calculated Whether the item as non-modifiable

Macro The corresponding C pre-processor macro

File The C header file in which the macro is defined

URL The URL of a documentation page describing the item

Hardware Indicates that a particular package is related to specific hardware
48 ■ eCos User’s Guide eCos

CDL Concepts
■ An evaluation exception conflict is caused when the evaluation of an expression
would fail (for example, because of a division by zero)

■ An unsatisfied goal conflict is caused by a failing requires goal expression

■ A bad data conflict arises only rarely, and corresponds to badly constructed CDL.
Such a conflict can only be resolved by reference to the CDL writer.

Templates
A template is a saved configuration - that is, a set of packages and configuration item
settings. Templates are provided with eCos to allow you to get started quickly by
instantiating (copying) a saved configuration corresponding to one of a number of
common scenarios; for example, a basic eCos configuration template is supplied that
contains the infrastructure, kernel, C and math libraries, plus their support packages.
eCos eCos User’s Guide ■ 49

The Component Repository and Working Directories
The Component Repository and
Working Directories

Each of the file trees involved in eCos development has a different role.

Component Repository
The eCos component repository contains directories for all the packages that are
shipped with eCos or provided by third parties.

The component repository should not be modified as part of application development.

11
50 ■ eCos User’s Guide eCos

The Component Repository and Working Directories
Figure 20: Component repository
eCos eCos User’s Guide ■ 51

The Component Repository and Working Directories
Purpose
The component respository is the master copy of source code for all system and third
party components. It also contains some files needed to administer and build the
system, such as ecosadmin.tcl.

How is it modified?
You modify it by importing new versions of packages from a distribution or removing
existing packages. These activities are undertaken using the eCos Package
Administration Tool.

When is it edited manually?
Files in the component repository should only be edited manually as determined by
the component maintainer.

User applications
User application source code should not go into the component repository.

Examples of files in this hierarchy:
BASE_DIR/doc/ref/ecos-ref.html

The top level HTML file for the eCos Reference Manual.

BASE_DIR/prebuilt/pid/tests/kernel/v1_3_x/tests/thread_gdb.exe

BASE_DIR/prebuilt/linux/tests/kernel/v1_3_x/tests/thread_gdb.exe

Prebuilt tests for the supported platforms, and the synthetic Linux target.

BASE_DIR/examples/twothreads.c

One of the example programs.

BASE_DIR/ecosadmin.tcl

The Tcl program which is used to import new versions of packages from a
distribution or remove existing packages.

BASE_DIR/packages/language/c/libm/v1_3_x/src/double/portable-api/s_tanh.c

Implementation of the hyperbolic tangent function in the standard math library.

BASE_DIR/pkgconf/rules.mak

A file with make rules, used by the makefile.

Build Tree
The build tree is the directory hierarchy in which all generated files are placed.
Generated files consist of the makefile, the compiled object files, and a dependency
file (with a .d extension) for each source file.
52 ■ eCos User’s Guide eCos

Purpose
The build tree is where all intermediate object files are placed.

How is it modified?
Recompiling can modify the object files.

User applications
User application source or binary code should not go in the build tree.

Examples of files in this hierarchy
ecos-work/language/c/libc/v1_3_x/src

The directory in which object files for the C library are built.

Install Tree
The install tree is the location for all files needed for application development. The
libtarget.a library, which contains the custom-built eCos kernel and other
components, is placed in the install tree, along with all packages’ public header files.
If you build the tests, the test executable programs will also be placed in the install
tree.

By default, the install tree is created by ecosconfig in a subdirectory of the build tree
called install. This can be modified with the --prefix option (see “Manual
Configuration” on page 64).

Purpose
The install tree is where the custom-built libtarget.a library, which contains the
eCos kernel and other components, is located. The install tree is also the location for
all the header files that are part of a published interface for their component.

How is it modified?
Recompiling can replace libtarget.a and the test executables.

When is it edited manually?
Where a memory layout requires modification without use of the eCos Configuration
Tool, the memory layout files must be edited directly in the install tree. These files are
located at install/include/pkgconf/mlt_*.*. Note that subsequent modification
of the install tree using the Configuration Tool will result in such manual edits being
lost.
eCos eCos User’s Guide ■ 53

The Component Repository and Working Directories
User applications
User application source or binary code should not go in the install tree.

Examples of files in this hierarchy
install/lib/libtarget.a

The library containing the kernel and other components.

install/include/cyg/kernel/kapi.h

The header file for the kernel C language API.

install/include/pkgconf/mlt_arm_pid_ram.ldi

The linker script fragment describing the memory layout for linking applications
intended for execution on an ARM PID development board using RAM startup.

install/include/stdio.h

The C library header file for standard I/O.

Application Build Tree
This tree is not part of eCos itself: it is the directory in which eCos end users write
their own applications.

Example applications and their Makefile are located in the component repository, in
the directory BASE_DIR/examples.

There is no imposed format on this directory, but there are certain compiler and linker
flags that must be used to compile an eCos application. The basic set of flags is shown
in the example Makefile, and additional details can be found in “Compiler and Linker
Options” on page 55.
54 ■ eCos User’s Guide eCos

Compiler and Linker Options
Compiler and Linker Options

eCos is built using the GNU C and C++ compilers. The versions of the tools Red Hat
has prepared for this release have some enhancements, such as constructor priority
ordering and selective linking, which will eventually become part of the standard
distribution.

Some GCC options are required for eCos, and others can be useful. This chapter gives
a brief description of the required options as well as some recommended
eCos-specific options. All other GCC options (described in the GNUPro manuals)
are available.

Compiling a C Application
The following command lines demonstrate the minimum set of options required to
compile and link an eCos program written in C.
NOTE Remember that when this manual shows gcc you should type the full

name of the cross compile,e.g. mn10300-elf-gcc,
mips-tx39-elf-gcc, powerpc-eabi-gcc, sparclite-elf-gcc,
arm-elf-gcc, mips64vr4300-elf-gcc, or sh-elf-gcc. When
compiling for the synthetic Linux target, use the native gcc which
must have the features required by eCos.

$ gcc -c -IINSTALL_DIR/include file.c
$ gcc -o program file.o -LINSTALL_DIR/lib -Ttarget.ld -nostdlib

12
eCos eCos User’s Guide ■ 55

Compiler and Linker Options
NOTE

■ Certain targets may require extra options, for example the SPARClite
architectures require the option -mcpu=sparclite. Examine the
BASE_DIR/packages/targets file or BASE_DIR/examples/Makefile or the
“Global compiler flags” option (CYGBLD_GLOBAL_CFLAGS) in your
generated eCos configuration) to see if any extra options are required, and if so,
what they are.

The following command lines use some other options which are recommended
because they use the selective linking feature:

$ gcc -c -IINSTALL_DIR/include -I. -ffunction-sections -fdata-sections -g -O2
file.c
$ gcc -o program file.o -ffunction-sections -fdata-sections -Wl,--gc-sections
-g -O2 -LINSTALL_DIR/lib -Ttarget.ld -nostdlib

Compiling a C++ Application
The following command lines demonstrate the minimum set of options required to
compile and link an eCos program written in C++.
NOTE

■ Remember that when this manual shows g++ you should type the full name of the
cross compiler: mn10300-elf-g++, mips-tx39-elf-g++, powerpc-eabi-g++,
sparclite-elf-g++, arm-elf-g++, mips64vr4300-elf-g++, or sh-elf-g++.
When compiling for the synthetic Linux target, use the native g++ which must
have the features required by eCos.

$ g++ -c -IINSTALL_DIR/include -fno-rtti -fno-exceptions file.cxx
$ g++ -o program file.o -LINSTALL_DIR/lib -Ttarget.ld -nostdlib

NOTE

■ Certain targets may require extra options, for example the SPARClite
architectures require the option -mcpu=sparclite. Examine the
BASE_DIR/packages/targets file or BASE_DIR/examples/Makefile or the
“Global compiler flags” option (CYGBLD_GLOBAL_CFLAGS) in your
generated eCos configuration) to see if any extra options are required, and if so,
what they are.

The following command lines use some other options which are recommended
because they use the selective linking feature:

$ g++ -c -IINSTALL_DIR/include -I. -ffunction-sections -fdata-sections
-fno-rtti -fno-exceptions -fvtable-gc -finit-priority -g -O2 file.cxx
$ g++ -o program file.o -W1,--gc-sections -g -O2 -LINSTALL_DIR/lib -Ttarget.ld
-nostdlib
56 ■ eCos User’s Guide eCos

Debugging Techniques
Debugging Techniques

eCos applications and components can be debugged in traditional ways, with printing
statements and debugger single-stepping, but there are situations in which these
techniques cannot be used. One example of this is when a program is getting data at a
high rate from a real-time source, and cannot be slowed down or interrupted.

eCos’s infrastructure module provides a tracing formalism, allowing the kernel’s
tracing macros to be configured in many useful ways. eCos’s kernel provides
instrumentation buffers which also collect specific (configurable) data about the
system’s history and performance.

Tracing
To use eCos’s tracing facilities you must first configure your system to use tracing.
You should enable the Asserts and Tracing component (CYGPKG_INFRA_DEBUG)
and the Use tracing component within it (CYGDBG_USE_TRACING). These options
can be enabled with the Configuration Tool or by editing the file
BUILD_DIR/pkgconf/infra.h manually.

You should then examine all the tracing-related options in the Package: Infrastructure
chapter of the eCos Reference Manual. One useful set of configuration options are:
CYGDBG_INFRA_DEBUG_FUNCTION_REPORTS and
CYGDBG_INFRA_DEBUG_TRACE_MESSAGE, which are both enabled by default
when tracing is enabled.

13
eCos eCos User’s Guide ■ 57

Debugging Techniques
The following “Hello world with tracing” shows the output from running the hello
world program (from the programming tutorial in Getting Started with eCos) that was
built with tracing enabled:

Table 6: Hello world with tracing
$ mips-tx39-elf-run --board=jmr3904 hello
Hello, eCos world!
ASSERT FAIL: <2>cyg_trac.h [623]
Cyg_TraceFunction_Report_::set_exitvoid()
exitvoid used in typed function
TRACE: <1>mlqueue.cxx [395] Cyg_ThreadQueue_Implementation::enqueue()
{{enter
TRACE: <1>mlqueue.cxx [395] Cyg_ThreadQueue_Implementation::enqueue()
}}RETURNING UNSET!
TRACE: <1>mlqueue.cxx [126] Cyg_Scheduler_Implementation::add_thread()
}}RETURNING UNSET!
TRACE: <1>thread.cxx [654] Cyg_Thread::resume()
}}return void
TRACE: <1>cstartup.cxx [160] cyg_iso_c_start()
}}return void
TRACE: <1>startup.cxx [142] cyg_package_start()
}}return void
TRACE: <1>startup.cxx [150] cyg_user_start()
{{enter
TRACE: <1>startup.cxx [150] cyg_user_start()
(((void)))
TRACE: <1>startup.cxx [153] cyg_user_start()
’This is the system default cyg_user_start()’
TRACE: <1>startup.cxx [157] cyg_user_start()
}}return void
TRACE: <1>sched.cxx [212] Cyg_Scheduler::start()
{{enter
TRACE: <1>mlqueue.cxx [102] Cyg_Scheduler_Implementation::schedule()
{{enter
TRACE: <1>mlqueue.cxx [437] Cyg_ThreadQueue_Implementation::highpri()
{{enter
TRACE: <1>mlqueue.cxx [437] Cyg_ThreadQueue_Implementation::highpri()
}}RETURNING UNSET!
TRACE: <1>mlqueue.cxx [102] Cyg_Scheduler_Implementation::schedule()
}}RETURNING UNSET!
TRACE: <2>intr.cxx [450] Cyg_Interrupt::enable_interrupts()
{{enter
TRACE: <2>intr.cxx [450] Cyg_Interrupt::enable_interrupts()
}}RETURNING UNSET!
TRACE: <2>thread.cxx [69] Cyg_HardwareThread::thread_entry()
{{enter
TRACE: <2>cstartup.cxx [127] invoke_main()
{{enter
TRACE: <2>cstartup.cxx [127] invoke_main()
((argument is ignored))
TRACE: <2>dummyxxmain.cxx [60] __main()
{{enter
TRACE: <2>dummyxxmain.cxx [60] __main()
(((void)))
TRACE: <2>dummyxxmain.cxx [63] __main()
’This is the system default __main()’
TRACE: <2>dummyxxmain.cxx [67] __main()
}}return void
58 ■ eCos User’s Guide eCos

Debugging Techniques
TRACE: <2>memcpy.c [112] _memcpy()
{{enter
TRACE: <2>memcpy.c [112] _memcpy()
((dst=80002804, src=BFC14E58, n=19))
TRACE: <2>memcpy.c [164] _memcpy()
}}returning 80002804
TRACE: <2>cstartup.cxx [137] invoke_main()
’main() has returned with code 0. Calling exit()’
TRACE: <2>exit.cxx [71] __libc_exit()
{{enter
TRACE: <2>exit.cxx [71] __libc_exit()
((status=0))
TRACE: <2>atexit.cxx [84] cyg_libc_invoke_atexit_handlers()
{{enter
TRACE: <2>atexit.cxx [84] cyg_libc_invoke_atexit_handlers()
(((void)))

Scheduler:

Lock: 0
Current Thread: <null>

Threads:

Idle Thread pri = 31 state = R id = 1
 stack base = 800021F0 ptr = 80002510 size = 00000400
 sleep reason NONE wake reason NONE
 queue = 80000C54 wait info = 00000000

<null> pri = 0 state = R id = 2
 stack base = 80002A48 ptr = 8000A968 size = 00008000
 sleep reason NONE wake reason NONE
 queue = 80000BD8 wait info = 00000000

Kernel Instrumentation
Instrument buffers can be used to find out how many events of a given type happened
in the kernel during execution of a program.

You can monitor a class of several types of events, or you can just look at individual
events.

Examples of events that can be monitored are:

■ scheduler events

■ thread operations

■ interrupts

■ mutex operations

■ binary semaphore operations
eCos eCos User’s Guide ■ 59

Debugging Techniques
■ counting semaphore operations

■ clock ticks and interrupts

Examples of fine-grained scheduler event types are:

■ scheduler lock

■ scheduler unlock

■ rescheduling

■ time slicing

Information about the events is stored in an event record. The structure that defines
this record has type struct Instrument_Record:

The list of records is stored in an array called instrument_buffer, which you can let
the kernel provide or you can provide yourself by setting the configuration option
CYGVAR_KERNEL_INSTRUMENT_EXTERNAL_BUFFER.

To write a program that examines the instrumentation buffers:

1. Enable instrumentation buffers in the eCos kernel configuration. The component
macro is CYGPKG_KERNEL_INSTRUMENT.

2. To allocate the buffers yourself, enable the configuration option
CYGVAR_KERNEL_INSTRUMENT_EXTERNAL_BUFFER.

3. Include the header file cyg/kernel/instrmnt.h.
#include <cyg/kernel/instrmnt.h>

4. The Instrumentation_Record structure is not published in the kernel
header file. In the future there will be a cleaner mechanism to access it, but for
now you should paste into your code in the following lines:
struct Instrument_Record
{
 CYG_WORD16 type; // record type
 CYG_WORD16 thread; // current thread id
 CYG_WORD timestamp; // 32 bit timestamp
 CYG_WORD arg1; // first arg
 CYG_WORD arg2; // second arg
};

5. Enable the events you want to record using cyg_instrument_enable(), and
disable them later. Look at cyg/kernel/instrmnt.h and the examples below to
see what events can be enabled.

6. Place the code you want to debug between the matching functions
cyg_instrument_enable() and cyg_instrument_disable().

7. Examine the buffer. For now you need to look at the data in there (the example
program below shows how to do that), and future versions of eCos will include a
host-side tool to help you understand the data.
60 ■ eCos User’s Guide eCos

Debugging Techniques
Table 7: Using instrument buffers

This program is also provided in the examples directory.
/* this is a program which uses eCos instrumentation buffers; it needs
 to be linked with a kernel which was compiled with support for
 instrumentation */

#include <stdio.h>
#include <pkgconf/kernel.h>
#include <cyg/kernel/instrmnt.h>
#include <cyg/kernel/kapi.h>

#ifndef CYGVAR_KERNEL_INSTRUMENT_EXTERNAL_BUFFER
error You must configure eCos with CYGVAR_KERNEL_INSTRUMENT_EXTERNAL_BUFFER
#endif

struct Instrument_Record
{
 CYG_WORD16 type; // record type
 CYG_WORD16 thread; // current thread id
 CYG_WORD timestamp; // 32 bit timestamp
 CYG_WORD arg1; // first arg
 CYG_WORD arg2; // second arg
};

struct Instrument_Record instrument_buffer[20];
cyg_uint32 instrument_buffer_size = 20;

int main(void)
{
 int i;

 cyg_instrument_enable(CYG_INSTRUMENT_CLASS_CLOCK, 0);
 cyg_instrument_enable(CYG_INSTRUMENT_CLASS_THREAD, 0);
 cyg_instrument_enable(CYG_INSTRUMENT_CLASS_ALARM, 0);

 printf("Program to play with instrumentation buffer\n");

 cyg_thread_delay(2);

 cyg_instrument_disable(CYG_INSTRUMENT_CLASS_CLOCK, 0);
 cyg_instrument_disable(CYG_INSTRUMENT_CLASS_THREAD, 0);
 cyg_instrument_disable(CYG_INSTRUMENT_CLASS_ALARM, 0);

 for (i = 0; i < instrument_buffer_size; ++i) {
 printf("Record %02d: type 0x%04x, thread %d, ",

i, instrument_buffer[i].type, instrument_buffer[i].thread);
 printf("time %5d, arg1 0x%08x, arg2 0x%08x\n",

instrument_buffer[i].timestamp, instrument_buffer[i].arg1,
instrument_buffer[i].arg2);

 }
 return 0;
}

Here is how you could compile and run this program in the examples directory, using
(for example) the MN10300 compiler:
eCos eCos User’s Guide ■ 61

Debugging Techniques
$ make XCC=mn10300-elf-gcc PKG_INSTALL_DIR=/tmp/ecos-work-mn10300/install
instrument-test
mn10300-elf-gcc -c -o instrument-test.o -g -Wall
-I/tmp/ecos-work-mn10300/install/include -ffunction-sections -fdata-sections
instrument-test.c
mn10300-elf-gcc -nostartfiles -L/tmp/ecos-work-mn10300/install/lib
-W1,--gc-sections -o instrument-test instrument-test.o -Ttarget.ld -nostdlib
$ mn10300-elf-run --board=stdeval1 instrument-test

Table 8: Instrument buffer output

Here is the output of the instrument-test program. Notice that in little over 2
seconds, and with very little activity, and with few event types enabled, it gathered 17
records. In larger programs it will be necessary to select very few event types for
debugging.

Program to play with instrumentation buffer
Record 00: type 0x0207, thread 2, time 6057, arg1 0x48001cd8, arg2 0x00000002
Record 01: type 0x0202, thread 2, time 6153, arg1 0x48001cd8, arg2 0x00000000
Record 02: type 0x0904, thread 2, time 6358, arg1 0x48001d24, arg2 0x00000000
Record 03: type 0x0905, thread 2, time 6424, arg1 0x00000002, arg2 0x00000000
Record 04: type 0x0906, thread 2, time 6490, arg1 0x00000000, arg2 0x00000000
Record 05: type 0x0901, thread 2, time 6608, arg1 0x48009d74, arg2 0x48001d24
Record 06: type 0x0201, thread 2, time 6804, arg1 0x48001cd8, arg2 0x480013e0
Record 07: type 0x0803, thread 1, time 94, arg1 0x00000000, arg2 0x00000000
Record 08: type 0x0801, thread 1, time 361, arg1 0x00000000, arg2 0x00000000
Record 09: type 0x0802, thread 1, time 548, arg1 0x00000001, arg2 0x00000000
Record 10: type 0x0803, thread 1, time 94, arg1 0x00000000, arg2 0x00000000
Record 11: type 0x0801, thread 1, time 361, arg1 0x00000001, arg2 0x00000000
Record 12: type 0x0903, thread 1, time 513, arg1 0x48009d74, arg2 0x48001d24
Record 13: type 0x0208, thread 1, time 588, arg1 0x00000000, arg2 0x00000000
Record 14: type 0x0203, thread 1, time 697, arg1 0x48001cd8, arg2 0x480013e0
Record 15: type 0x0802, thread 1, time 946, arg1 0x00000002, arg2 0x00000000
Record 16: type 0x0201, thread 1, time 1083, arg1 0x480013e0, arg2 0x48001cd8
Record 17: type 0x0000, thread 0, time 0, arg1 0x00000000, arg2 0x00000000
Record 18: type 0x0000, thread 0, time 0, arg1 0x00000000, arg2 0x00000000
Record 19: type 0x0000, thread 0, time 0, arg1 0x00000000, arg2 0x00000000
62 ■ eCos User’s Guide eCos

Debugging Techniques
Part III: Configuration and the
Package Repository

The following chapters contain information on running ecosconfig (the command
line tool that manipulates configurations and constructs build trees) and on managing
a source repository across multiple versions of eCos.
eCos eCos User’s Guide ■ 63

Manual Configuration
Manual Configuration

eCos developers using a Windows NT host will generally use the graphical
Configuration Tool for configuring an eCos system and building the target library. At
present there is no equivalent to this tool available for developers using a UNIX host,
so command line tools have to be used instead. These command line tools can also be
used for batch operations on all platforms, for example as part of a nightly rebuild
procedure.

In the current release of the system the command line tools do not provide exactly the
same functionality as the graphical tool. Most importantly, there is no facility to
resolve configuration conflicts interactively.

The eCos configuration system, both graphical and command line tools, are under
constant development and enhancement. Developers should note that the procedures
described may change considerably in future releases.

Directory Tree Structure
When building eCos there are three main directory trees to consider: the source tree,
the build tree, and the install tree.

The source tree, also known as the component repository, is read-only. It is possible to
use a single component repository for any number of different configurations, and it is
also possible to share a component repository between multiple users by putting it on
a network drive.

14
64 ■ eCos User’s Guide eCos

Manual Configuration
The build tree contains everything that is specific to a particular configuration,
including header and other files that contain configuration data, and the object files
that result from compiling the system sources for this configuration.

The install tree is usually located in the install subdirectory of the build tree. Once
an eCos system has been built, the install tree contains all the files needed for
application development including the header files and the target library. By making
copies of the install tree after a build it is possible to separate application development
and system configuration, which may be desirable for some organizations.

Creating the Build Tree
Generating a build tree is a non-trivial operation and should not be attempted
manually. Instead, eCos is shipped with a tool called ecosconfig that should be used
to create a build tree.

Usually ecosconfig will be run inside the build tree itself. If you are creating a new
build tree then typically you will create a new empty directory using the mkdir
command, cd into that directory, and then invoke ecosconfig to create a
configuration. By default, the configuration is stored in a file ecos.ecc in the current
directory. The configuration may be modified by editing this file directly. ecosconfig
itself deals with a number of coarse-grained configuration options such as the target
platform and the packages that should be used.

The ecosconfig tool is also used subsequently to generate a build tree for a
configuration. Once a build tree exists, it is possible to run ecosconfig again inside
the same build tree. This will be neccessary if your wish to change some of the
configuration options.

ecosconfig does not generate the top-level directory of the build tree; you must do
this yourself.
$ mkdir ecos-work
$ cd ecos-work

The next step is to run ecosconfig:
$ ecosconfig <qualifiers> <command>

ecosconfig qualifiers
The available command line qualifiers for ecosconfig are as follows. Multiple
qualifiers may be used on the command line:

--help

Provides basic usage guidelines for the available commands and qualifiers. All
other qualifiers and commands are ignored if --help is used.
eCos eCos User’s Guide ■ 65

Manual Configuration
--config=<file>

Specifies an eCos configuration save file for use by the tool. By default, the file
ecos.ecc in the current directory is used. Developers may prefer to use a common
location for all their eCos configurations rather than keep the configuration
information in the base of the build tree.

--prefix=<dir>

Specifies an alternative location for the install tree. By default, the install tree
resides inside the install directory in the build tree. Developers may prefer to
locate the build tree in a temporary file hierarchy but keep the install tree in a
more permanent location.

--srcdir=<dir>

Specifies the location of the component repository. By default, the tool uses the
location specified in the ECOS_REPOSITORY environment variable. Developers
may prefer to use of this qualifier if they are working with more than one
repository.

--no-resolve

Disables the implicit resolution of conflicts while manipulating the configuration
data. developers may prefer to reslove conflicts by editing the eCos configuration
save file manually The check command implicitely uses --no-resolve.

--ignore-errors
-i

By default, ecosconfig will exit with an error code if the current configuration
contains any conflicts, and it is not possible to generate or update a build tree for
such configurations. This qualifier causes ecosconfig to ignore such problems,
and hence it is possible to generate a build tree even if there are still conflicts. Of
course, there are no guarantees that the resulting system will actually do anything
useful.

--verbose
-v

Display more information.
-q

Display less information.

The --config, --prefix and srcdir qualifiers can also be written with two arguments, for
example:
ecosconfig --srcdir <dir> ...

This simplifies filename completion with some shells.
66 ■ eCos User’s Guide eCos

Manual Configuration
ecosconfig commands
The available commands for ecosconfig are as follows:

list

Lists the available packages, targets and templates as installed in the eCos
repository. Aliases and package versions are also reported.

new <target> [<template> [<version>]]

Creates a new eCos configuration for the specified target hardware and saves it. A
software template may also be specified. By default, the template named ‘default’
is used. If the template version is not specified, the latest version is used.

target <target>

Changes the target hardware selection for the eCos configuration. This has the
effect of unloading packages supporting the target selected previously and loading
the packages which support the new hardware. This command will be used
typically when switching between a simulator and real hardware.

template <template> [<version>]

Changes the template selection for the eCos configuration. This has the effect of
unloading packages specified by the template selected previously and loading the
packages specified by the new template. By default, the latest version of the
specified template is used.

remove <packages>

Removes the specified packages from the eCos configuration. This command will
be used typically when the template on which a configuration is based contains
packages which are not required.

add <packages>

Adds the specified packages to the eCos configuration. This command will be
used typically when the template on which a configuration is based does not
contain all the packages which are required. For example, add-on packages
provided by third parties will not be known to the standard templates so they will
have to be added explicitely.

version <version> <packages>

Selects the specified version of a number of packages in the eCos configuration.
By default, the most recent version of each package is used. This command will
be used typically when an older version of a package is required.

check

Presents the following information concerning the current configuration:

1. the selected target hardware
eCos eCos User’s Guide ■ 67

Manual Configuration
2. the selected template

3. additional packages

4. removed packages

5. the selected version of packages where this is not the most recent version

6. conflicts in the current configuration

The check command will never perform automatic conflict resolution, so there is
no need to use --no-resolve.

resolve

Resolves conflicts identified in the current eCos configuration by invoking an
inference capability. Resolved conflicts are reported, but not all conflicts may be
resolvable. This command will be used typically following manual editing of the
configuration.

export <file>

Exports a minimal eCos configurastion save file with the specified name. This file
contains only those options which do not have their default value. Such files are
used typically to transfer option values from one configuration to another.

import <file>

Imports a minimal eCos configuration save file with the specified name. The
values of those options specified in the file are applied to the current
configuration.

tree

Generates a build tree based on the current eCos configuration. This command
will be used typically just before building eCos. Normally a build tree can only be
generated if the configuration has no unresolved conflicts, but --ignore-errors can
be used to override this.

Conflicts and Constraints
Configuration options are not completely independent. For example the C library’s
strtod() and atof() functions rely on the math library package to provide certain
functionality. If the math library package is removed then the C library can no longer
provide these functions. Each package describes constraints like these in CDL
“requires” properties. If a constraint is not satisfied then the configuration contains a
conflict. For any given conflict there can be several ways of resolving a conflict. For
example, it would be possible to add the math library package back to the
configuration, or to disable the strtod() and atof() functions.
68 ■ eCos User’s Guide eCos

Manual Configuration
The eCos configuration tools will report any conflicts in the current configuration. If
there are any such conflicts then the configuration is usually unsafe and it makes no
sense to build and run eCos in such circumstances, in fact any attempt at building
eCos is likely to fail. In exceptional cases it is possible to override this by using e.g.
the --ignore-errors qualifier with ecosconfig.

Many constraints are fairly simple in nature, and the configuration tools contain an
inference engine which can resolve the associated conflicts automatically. For
example, if the math library package is removed then the inference engine can resolve
the resulting conflict by disabling the configuration option for strtod() and atof(). All
such changes will be reported. Sometimes the inference engine cannot resolve a
conflict, for example it is not allowed to override a change that has been made
explicitly by the user. Sometimes it will find a solution which does not match the
application’s requirements.

A typical session involving conflicts would look something like this:
 $ ecosconfig new <target>

This creates a new configuration with the default template. For most targets this will
not result in any conflicts, because the default settings for the various options meet the
requirements of the default template. For some targets there may be conflicts, and the
inference engine would come into play.
$ ecosconfig remove libm
U CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT, new inferred value 0
U CYGFUN_LIBC_strtod, new inferred value 0
U CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT, new inferred value 0

ecosconfig reports that this change caused three conflicts, all in the C library. The
inference engine was able to resolve all the conflicts and update the relevant
configuration options accordingly.

To suppress the inference engine --no-resolve can be used:
$ ecosconfig new <target>
$ ecosconfig --no-resolve remove libm
C CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT, “requires” constraint not
 satisfied: CYGPKG_LIBM
C CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT, “requires” constraint
 not satisfied: CYGPKG_LIBM
C CYGFUN_LIBC_strtod, “requires” constraint not satisfied:
 CYGPKG_LIBM

Three unresolved conflicts are reported. The check command can be used to get the
current state of the configuration, and the --verbose qualifier will provide additional
information:
$ ecosconfig --srcdir /home/bartv/ecc/ecc --verbose check
Target: pid
Template: default
Removed:
 CYGPKG_LIBM
3 conflict(s):
eCos eCos User’s Guide ■ 69

Manual Configuration
C CYGFUN_LIBC_strtod, “requires” constraint not satisfied:
CYGPKG_LIBM
Possible solution:
 CYGFUN_LIBC_strtod -> 0
 CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT -> 0
C CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT, “requires” constraint
not satisfied: CYGPKG_LIBM
Possible solution:
 CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT -> 0
C CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT, “requires” constraint not
satisfied: CYGPKG_LIBM
Possible solution:
 CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT -> 0

If the proposed solutions are acceptable, the resolve command can be used to apply
them:
$ ecosconfig resolve
U CYGSEM_LIBC_STDIO_SCANF_FLOATING_POINT, new inferred value 0
U CYGFUN_LIBC_strtod, new inferred value 0
U CYGSEM_LIBC_STDIO_PRINTF_FLOATING_POINT, new inferred value 0

The current configuration is again conflict-free and it is possible to generate a build
tree. The --quiet qualifier can be used to suppress the change messages, if desired.

When changing individual configuration options by editing the ecos.ecc file (as
described below), the resulting system should be checked and any problems should be
resolved. For example, if CYGFUN_LIBC_strtod is explicitly enabled in the savefile:
$ <edit ecos.ecc>
$ ecosconfig check
Target: pid
Template: default
Removed:
 CYGPKG_LIBM
1 conflict(s):
C CYGFUN_LIBC_strtod, “requires” constraint not satisfied:
CYGPKG_LIBM
$ ecosconfig resolve
C CYGFUN_LIBC_strtod, “requires” constraint not satisfied:
CYGPKG_LIBM

In this case the inference engine cannot resolve the conflict automatically because that
would involve changing a user setting. Any attempt to generate a build tree will fail:
$ ecosconfig --srcdir /home/bartv/ecc/ecc tree
C CYGFUN_LIBC_strtod, “requires” constraint not satisfied:
CYGPKG_LIBM

Unable to generate build tree, this configuration still contains
conflicts. Either resolve the conflicts or use --ignore-errors

It is still possible to generate a build tree:
$ ecosconfig --srcdir /home/bartv/ecc/ecc --ignore-errors tree
C CYGFUN_LIBC_strtod, “requires” constraint not satisfied:
CYGPKG_LIBM
$ make
70 ■ eCos User’s Guide eCos

Manual Configuration
In this case eCos will fail to build. In other cases of unresolved conflicts eCos may
build, but may not run. In general all conflicts should be resolved by editing the
ecos.ecc file, by letting the inference engine make appropriate changes, or by other
means, before any attempt is made to build or run eCos.

Building the System
Once a build tree has been generated with ecosconfig, building eCos is
straightforward:
$ make

The build tree contains the subdirectories, makefiles, and everything else that is
needed to generate the default configuration for the selected architecture and platform.
The only requirement is that the tools needed for that architecture, for example
powerpc-eabi-g++, are available using the standard search path. If this is not the case
then the make will fail with an error message. If you have a multiprocessor system
then it may be more efficient to use:

$ make -j n

where n is equal to the number of processors on your system.

Once the make process has completed, the install tree will contain the header files and
the target library that are needed for application development.

It is also possible to build the system’s test cases for the current configuration:
$ make tests

The resulting test executables will end up in a tests subdirectory of the install tree.

If disk space is scarce then it is possible to make the copy of the install tree for
application development purposes, and then use:
$ make clean

The build tree will now use up a minimum of disk space — the bulk of what is left
consists of configuration header files that you may have edited and hence should not
be deleted automatically. However, it is possible to rebuild the system at any time
without reinvoking ecosconfig, just by running make again.

Under exceptional circumstances it may be necessary to run make clean for other
reasons, such as when a new release of the toolchain is installed. The toolchain
includes a number of header files which are closely tied to the compiler, for example
limits.h, and these header files are not and should not be duplicated by eCos. The
makefiles perform header file dependency analysis, so that when a header file is
changed all affected sources will be rebuilt during the next make. This is very useful
when the configuration header files are changed, but it also means that a build tree
containing information about the locations of header files must be rebuilt. If a new
eCos eCos User’s Guide ■ 71

Manual Configuration
version of the toolchain is installed and the old version is removed then this location
information is no longer accurate, and make will complain that certain dependencies
cannot be satisfied. Under such circumstances it is necessary to do a make clean first.

Packages
eCos is a component architecture. The system comes as a number of packages which
can be enabled or disabled as required, and new packages can be added as they
become available. Unfortunately, the packages are not completely independent: for
example the µITRON compatibility package relies almost entirely on functionality
provided by the kernel package, and it would not make sense to try to build µITRON
if the kernel was disabled. The C library has fewer dependencies: some parts of the C
library rely on kernel functionality, but it is possible to disable these parts and thus
build a system that has the C library but no kernel. The ecosconfig tool has the
capability of checking that all the dependencies are satisfied, but it may still be
possible to produce configurations that will not build or (conceivably) that will build
but not run. Developers should be aware of this and take appropriate care.

By default, ecosconfig will include all packages that are appropriate for the specified
hardware in the configuration. The common HAL package and the eCos infrastructure
must be present in every configuration. In addition, it is always necessary to have one
architectural HAL package and one platform HAL package. Other packages are
optional, and can be added or removed from a configuration as required.

The application may not require all of the packages; for example, it might not need the
µITRON compatibility package, or the floating point support provided by the math
library. There is a slight overhead when eCos is built because the packages will get
compiled, and there is also a small disk space penalty. However, any unused facilities
will get stripped out at link-time, so having redundant packages will not affect the
final executable.

Coarse-grained Configuration
Coarse-grained configuration of an eCos system means making configuration changes
using the ecosconfig tool. These changes include:

1. switching to different target hardware

2. switching to a different template

3. adding or removing a package

4. changing the version of a package
72 ■ eCos User’s Guide eCos

Manual Configuration
Whenever ecosconfig generates or updates an eCos configuration, it generates a
configuration save file.

Suppose that the configuration was first created using the following command line:
$ ecosconfig new stdeval1

To change the target hardware to the Cogent CMA28x PowerPC board, the following
command would be needed:
$ ecosconfig target cma28x

To switch to the PowerPC simulator instead:
$ ecosconfig target psim

As the hardware changes, hardware-related packages such as the HAL packages and
device drivers will be added to and removed from the configuration as appropriate.

To remove any package from the current configuration, use the remove command:
$ ecosconfig remove uitron

You can disable multiple packages using multiple arguments, for example:
$ ecosconfig remove uitron libm

If this turns out to have been a mistake then you can reenable one or more packages
with the add command:
$ ecosconfig add libm

Changing the desired version for a package is also straightforward:
$ ecosconfig version v1_3_x kernel

where x may be a one or two digit number.

It is necessary to regenerate the build tree and header files following any changes to
the configuration before rebuilding eCos:
$ ecosconfig tree

Fine-grained Configuration
ecosconfig only provides coarse-grained control over the configuration: the
hardware, the template and the packages that should be built. Unlike the
Configuration Tool, ecosconfig does not provide any facilities for manipulating
finer-grained configuration options such as how many priority levels the scheduler
should support. There are hundreds of these options, and manipulating them by means
of command line arguments would not be sensible.

In the current system fine-grained configuration options may be manipulated by
manual editing of the configuration file. When a file has been edited in this way, the
ecosconfig tool should be used to check the configuration for any conflicts which
may have been introduced:
$ ecosconfig check
eCos eCos User’s Guide ■ 73

Manual Configuration
The check command will list all conflicts and will also rewrite the configuration file,
propogating any changes which affect other options. The user may choose to resolve
the conflicts either by re-editing the configuration file manually or by invoking the
inference engine using the resolve command:
$ ecosconfig resolve

The resolve command will list all conflicts which can be resolved and save the
resulting changes to the configuration.

It is necessary to regenerate the build tree and header files following any changes to
the configuration before rebuilding eCos:
$ ecosconfig tree

All the configuration options and their descriptions are listed in the eCos Reference
Manual.

Editing an eCos Savefile
The eCos configuration information is held in a single savefile, typically ecos.ecc,
which can be generated by either the GUI configuration tool or by the command line
ecosconfig tool. The file normally exists at the toplevel of the build tree. It is a text
file, allowing the various configurations options to be edited inside a suitable text
editor or by other programs or scripts, as well as in the GUI config tool.

An eCos savefile is actually a script in the Tcl programming language, so any
modifications to the file need to preserve Tcl syntax. For most configuration options,
any modifications will be trivial and there is no need to worry about Tcl syntax. For
example, changing a 1 to a 0 to disable an option. For more complicated options, for
example CYGDAT_UITRON_TASK_EXTERNS , which involves some lines of C
code, more care has to be taken. If an edited savefile is no longer a valid Tcl script
then the configuration tools will be unable to read back the data for further processing,
for example to generate a build tree. An outline of Tcl syntax is given below. One
point worth noting here is that a line that begins with a “#” is usually a comment, and
the bulk of an eCos savefile actually consists of such comments, to make it easier to
edit.

Header
An eCos savefile begins with a header, which typically looks something like this:

eCos saved configuration
---- commands --
This section contains information about the savefile format.
It should not be edited. Any modifications made to this section
may make it impossible for the configuration tools to read
the savefile.
74 ■ eCos User’s Guide eCos

Manual Configuration
cdl_savefile_version 1;
cdl_savefile_command cdl_savefile_version {};
cdl_savefile_command cdl_savefile_command {};
cdl_savefile_command
cdl_configuration { description hardware template package };
cdl_savefile_command cdl_package { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_component { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_option { value_source user_value wizard_value inferred_value };
cdl_savefile_command cdl_interface { value_source user_value wizard_value inferred_value };

This section of the savefile is intended for use by the configuration system, and should
not be edited. If this section is edited then the various configuration tools may no
longer be able to read in the modified savefile.

Toplevel Section
The header is followed by a section that defines the configuration as a whole. A
typical example would be:

---- toplevel --
This section defines the toplevel configuration object. The only
values that can be changed are the name of the configuration and
the description field. It is not possible to modify the target,
the template or the set of packages simply by editing the lines
below because these changes have wide-ranging effects. Instead
the appropriate tools should be used to make such modifications.

cdl_configuration eCos {
description ““ ;

These fields should not be modified.
hardware pid ;
template uitron ;
package -hardware CYGPKG_HAL_ARM current ;
package -hardware CYGPKG_HAL_ARM_PID current ;
package -hardware CYGPKG_IO_SERIAL current ;
package -template CYGPKG_HAL current ;
package -template CYGPKG_IO current ;
package -template CYGPKG_INFRA current ;
package -template CYGPKG_KERNEL current ;
package -template CYGPKG_UITRON current ;
package -template CYGPKG_LIBC current ;
package -template CYGPKG_LIBM current ;
package -template CYGPKG_DEVICES_WALLCLOCK current ;
package -template CYGPKG_ERROR current ;
};

This section allows the configuration tools to reload the various packages that make
up the configuration. Most of the information should not be edited. If it is necessary to
add a new package or to remove an existing one then the appropriate tools should be
used for this, for example:
$ ecosconfig remove CYGPKG_LIBM
eCos eCos User’s Guide ■ 75

Manual Configuration
There are two fields which can be edited. Configurations have a name; in this case
eCos. They can also have a description, which is some arbitrary text. The
configuration tools do not make use of these fields, they exist so that users can store
additional information about a configuration.

Conflicts Section
The toplevel section is followed by details of all the conflicts (if any) in the
configuration, for example:

---- conflicts ---
There are 2 conflicts.

option CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSET
Property LegalValues
Illegal current value 100000
Legal values are: -90000 to 90000

option CYGSEM_LIBC_TIME_CLOCK_WORKING
Property Requires
Requires constraint not satisfied: CYGFUN_KERNEL_THREADS_TIMER

When editing a configuration you may end up with something that is invalid. Any
problems in the configuration will be reported in the conflicts section. In this case
there are two conflicts. The option
CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSET has been given an illegal value:
typically this would be fixed by searching for the definition of that option later on in
the savefile and modifying the value. The second conflict is more interesting, an
unsatisfied requires constraint. Configuration options are not independent: disabling
some functionality in, say, the kernel, can have an impact elsewhere; in this case the C
library. The various dependencies between the options are specified by the component
developers and checked by the configuration system. In this case there are two
obvious ways in which the conflict could be resolved: re-enabling
CYGFUN_KERNEL_THREADS_TIMER, or disabling
CYGSEM_LIBC_TIME_CLOCK_WORKING. Both of these options will be listed
later on in the file.

Some care has to be taken when modifying configuration options, to avoid introducing
new conflict. For instance it is possible that there might be other options in the system
which have a dependency on CYGSEM_LIBC_TIME_CLOCK_WORKING, so
disabling that option may not be the best way to resolve the conflict. Details of all
such dependencies are provided in the appropriate places in the savefile.

It is not absolutely required that a configuration be conflict-free before generating a
build tree and building eCos. It is up to the developers of each component to decide
what would happen if an attempt is made to build eCos while there are still conflicts.
76 ■ eCos User’s Guide eCos

Manual Configuration
In serious cases there is likely to be a compile-time failure, or possibly a link-time
failure. In less serious cases the system may build happily and the application can be
linked with the resulting library, but the component may not quite function as intended
- although it may still be good enough for the specific needs of the application. It is
also possible that everything builds and links, but once in a while the system will
unaccountably crash. Using a configuration that still has conflicts is done entirely at
the user’s risk.

Data Section
The bulk of the savefile lists the various packages, components, and options, including
their values and the various dependencies. A number of global options come first,
especially those related to the build process such as compiler flags. These are followed
by the various packages, and the components and options within those packages, in
order.

Packages, components and options are organized in a hierarchy. If a particular
component is disabled then all options and sub-components below it will be inactive:
any changes made to these will have no effect. The savefile contains information
about the hierarchy in the form of comments, for example:

cdl_package CYGPKG_KERNEL ...
>
cdl_component CYGPKG_KERNEL_EXCEPTIONS ...
>
cdl_option CYGSEM_KERNEL_EXCEPTIONS_DECODE ...
cdl_option CYGSEM_KERNEL_EXCEPTIONS_GLOBAL ...
<
cdl_component CYGPKG_KERNEL_SCHED ...
>
cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE ...
cdl_option CYGSEM_KERNEL_SCHED_BITMAP ...
<
<

This corresponds to the following hierarchy:
 CYGPKG_KERNEL
 CYGPKG_KERNEL_EXCEPTIONS
 CYGSEM_KERNEL_EXCEPTIONS_DECODE
 CYGSEM_KERNEL_EXCEPTIONS_GLOBAL
 CYGPKG_KERNEL_SCHED
 CYGSEM_KERNEL_SCHED_MLQUEUE
 CYGSEM_KERNEL_SCHED_BITMAP
eCos eCos User’s Guide ■ 77

Manual Configuration
Providing the hierarchy information in this way allows programs or scripts to analyze
the savefile and readily determine the hierarchy. It could also be used by a sufficiently
powerful editor to support structured editing of eCos savefiles. The information is not
used by the configuration tools themselves since they obtain the hierarchy from the
original CDL scripts.

Each configurable entity is preceded by a comment, of the following form:

Kernel schedulers
doc: ref/ecos-ref/ecos-kernel-overview.html#THE-SCHEDULER
The eCos kernel provides a choice of schedulers. In addition
there are a number of configuration options to control the
detailed behaviour of these schedulers.
cdl_component CYGPKG_KERNEL_SCHED {
...
};

This provides a short textual alias Kernel schedulers for the component. If online
documentation is available for the configurable entity then this will come next. Finally
there is a short description of the entity as a whole. All this information is provided by
the component developers.

Each configurable entity takes the form:
<type> <name> {
 <data>
};

Configurable entities may not be active. This can be either because the parent is
disabled or inactive, or because there are one or more active_if properties. Modifying
the value of an inactive entity has no effect on the configuration, so this information is
provided first:

cdl_option CYGSEM_KERNEL_EXCEPTIONS_DECODE {
This option is not active
The parent CYGPKG_KERNEL_EXCEPTIONS is disabled
...
};

...

cdl_option CYGIMP_IDLE_THREAD_YIELD {
This option is not active
ActiveIf constraint: (CYGNUM_KERNEL_SCHED_PRIORITIES == 1)
CYGNUM_KERNEL_SCHED_PRIORITIES == 32
--> 0
...
};
78 ■ eCos User’s Guide eCos

For CYGIMP_IDLE_THREAD_YIELD the savefile lists the expression that must be
satisfied if the option is to be active, followed by the current value of all entities that
are referenced in the expression, and finally the result of evaluating that expression.

Not all options are directly modifiable in the savefile. First, the value of packages
(which is the version of that package loaded into the configuration) cannot be
modified here.

cdl_package CYGPKG_KERNEL {
Packages cannot be added or removed, nor can their version be changed,
simply by editing their value. Instead the appropriate configuration
should be used to perform these actions. .
..;
}

The version of a package can be changed using e.g.:
$ ecosconfig version 1.3 CYGPKG_KERNEL

Even though a package’s value cannot be modified here, it is still important for the
savefile to contain the details. In particular packages may impose constraints on other
configurable entities and may be referenced by other configurable entities. Also it
would be difficult to understand or extract the configuration’s hierarchy if the
packages were not listed in the appropriate places in the savefile.

Some components (or, conceivably, options) do not have any associated data.
Typically they serve only to introduce another level in the hierarchy, which can be
useful in the context of the GUI configuration tool.

cdl_component CYGPKG_HAL_COMMON_INTERRUPTS {
There is no associated value.
};

Other components or options have a calculated value. These are not user-modifiable,
but typically the value will depend on other options which can be modified. Such
calculated options can be useful when controlling what gets built or what ends up in
the generated configuration header files. A calculated value may also effect other parts
of the configuration, for instance, via a requires constraint.

cdl_option BUFSIZ {
Calculated value: CYGSEM_LIBC_STDIO_WANT_BUFFERED_IO ? CYGNUM_LIBC_STDIO_BUFSIZE : 0
CYGSEM_LIBC_STDIO_WANT_BUFFERED_IO == 1
CYGNUM_LIBC_STDIO_BUFSIZE == 256
Current_value: 256
};
eCos eCos User’s Guide ■ 79

Manual Configuration
A special type of calculated value is the interface. The value of an interface is the
number of active and enabled options which implement that interface. Again the value
of an interface cannot be modified directly; only by modifying the options which
implement the interface. However, an interface can be referenced by other parts of the
configuration.

cdl_interface CYGINT_KERNEL_SCHEDULER {
Implemented by CYGSEM_KERNEL_SCHED_MLQUEUE, active, enabled
Implemented by CYGSEM_KERNEL_SCHED_BITMAP, active, disabled
This value cannot be modified here.
Current_value: 1
Requires: 1 == CYGINT_KERNEL_SCHEDULER
CYGINT_KERNEL_SCHEDULER == 1
--> 1

The following properties are affected by this value
interface CYGINT_KERNEL_SCHEDULER
Requires: 1 == CYGINT_KERNEL_SCHEDULER
};

If the configurable entity is modifiable then there will be lines like the following:

cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE {
...
Flavor: bool
No user value, uncomment the following line to provide one.
user_value 1
value_source default
Default value: 1
...
};

Configurable entities can have one of four different flavors: none, bool, data and
booldata. Flavor none indicates that there is no data associated with the entity,
typically it just acts as a placeholder in the overall hierarchy. Flavor bool is the most
common, it is a simple yes-or-no choice. Flavor data is for more complicated
configuration choices, for instance the size of an array or the name of a device. Flavor
booldata is a combination of bool and data: the option can be enabled or disabled, and
there is some additional data associated with the option as well.

In the above example the user has not modified this particular option, as indicated by
the comment and by the commented-out user_value line. To disable this option the
file should be edited to:

cdl_option CYGSEM_KERNEL_SCHED_MLQUEUE {
...
Flavor: bool
No user value, uncomment the following line to provide one.
user_value 0
value_source default
Default value: 1
...
}
80 ■ eCos User’s Guide eCos

Manual Configuration
The comment preceding the user_value 0 line can be removed if desired, otherwise
it will be removed automatically the next time the file is read and updated by the
configuration tools.

Much the same process should be used for options with the data flavor, for example:

cdl_option CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSET {
Flavor: data
No user value, uncomment the following line to provide one.
user_value 3600
value_source default
Default value: 3600
Legal values: -90000 to 90000
};

can be changed to:

cdl_option CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSET {
Flavor: data
user_value 7200
value_source default
Default value: 3600
Legal values: -90000 to 90000 };

Note that the original text provides the default value in the user_value comment, on
the assumption that the desired new value is likely to be similar to the default value.
The value_source comment does not need to be updated, it will be fixed up if the
savefile is fed back into the configuration system and regenerated.

For options with the booldata flavor, the user_value line needs take two arguments.
The first argument is for the boolean part, the second for the data part. For example:

cdl_component CYGNUM_LIBM_COMPATIBILITY {
Flavor: booldata
No user value, uncomment the following line to provide one.
user_value 1 POSIX
value_source default
Default value: 1 POSIX
Legal values: “POSIX” “IEEE” “XOPEN” “SVID”
...
};

could be changed to:

cdl_component CYGNUM_LIBM_COMPATIBILITY {
Flavor: booldata
user_value 1 IEEE
value_source default
Default value: 1 POSIX
Legal values: “POSIX” “IEEE” “XOPEN” “SVID”
...
eCos eCos User’s Guide ■ 81

Manual Configuration
};

or alternatively, if the whole component should be disabled, to:

cdl_component CYGNUM_LIBM_COMPATIBILITY {
Flavor: booldata
user_value 0 POSIX
value_source default
Default value: 1 POSIX
Legal values: “POSIX” “IEEE” “XOPEN” “SVID”
...
};

Some options take values that span multiple lines. An example would be:

cdl_option CYGDAT_UITRON_MEMPOOLVAR_INITIALIZERS {
Flavor: data
No user value, uncomment the following line to provide one.
user_value \
“CYG_UIT_MEMPOOLVAR(vpool1, 2000), \\
CYG_UIT_MEMPOOLVAR(vpool2, 2000), \\
CYG_UIT_MEMPOOLVAR(vpool3, 2000),”
value_source default
Default value: \
“CYG_UIT_MEMPOOLVAR(vpool1, 2000), \\
CYG_UIT_MEMPOOLVAR(vpool2, 2000), \\
CYG_UIT_MEMPOOLVAR(vpool3, 2000),”
};

Setting a user value for this option involves uncommenting and modifying all relevant
lines, for example:

cdl_option CYGDAT_UITRON_MEMPOOLVAR_INITIALIZERS {
Flavor: data
user_value \
“CYG_UIT_MEMPOOLVAR(vpool1, 4000), \\
CYG_UIT_MEMPOOLVAR(vpool2, 4000),”
value_source default
Default value: \
“CYG_UIT_MEMPOOLVAR(vpool1, 2000), \\
CYG_UIT_MEMPOOLVAR(vpool2, 2000), \\
CYG_UIT_MEMPOOLVAR(vpool3, 2000),”
};

In such cases appropriate care has to be taken to preserve Tcl syntax, as discussed
below.

The configuration system has the ability to keep track of several different values for
any given option. All options start off with a default value, in other words their value
source is set to default. If a configuration involves conflicts and the configuration
system’s inference engine is allowed to resolve these automatically then it may
provide an inferred value instead, for example:
82 ■ eCos User’s Guide eCos

Manual Configuration
cdl_option CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {
Flavor: bool
No user value, uncomment the following line to provide one.
user_value 1
The inferred value should not be edited directly.
inferred_value 0
value_source inferred
Default value: 1
...
};

Inferred values are calculated by the configuration system and should not be edited by
the user. If the inferred value is not correct then a user value should be substituted
instead:

cdl_option CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {
Flavor: bool
user_value 1
The inferred value should not be edited directly.
inferred_value 0
value_source inferred
Default value: 1
...
};

The inference engine will not override a user value with an inferred one. Making a
change like this may well re-introduce a conflict, since the inferred value was only
calculated to resolve a conflict. Another run of the inference engine may find a
different and more acceptable way of resolving the conflict, but this is not guaranteed
and it may be up to the user to examine the various dependencies and work out an
acceptable solution.

Inferred values are listed in the savefile because the exact inferred value may depend
on the order in which changes were made and conflicts were resolved. If the inferred
values were absent then it is possible that reloading a savefile would not exactly
restore the configuration. Default values on the other hand are entirely deterministic
so there is no actual need for the values to be listed in the savefile. However, the
default value can be very useful information so it is provided in a comment.

Occasionally the user will want to do some experimentation, and temporarily switch
an option from a user value back to a default or inferred one to see what the effect
would be. This could be achieved by simply commenting out the user value. For
instance, if the current savefile contains:

cdl_option CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {
Flavor: bool
user_value 1
The inferred value should not be edited directly.
inferred_value 0
value_source user
eCos eCos User’s Guide ■ 83

Manual Configuration
Default value: 1
...
};

then the inferred value could be restored by commenting out or removing the
user_value line:

cdl_option CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {
Flavor: bool
user_value 1
The inferred value should not be edited directly.
inferred_value 0
value_source user
Default value: 1
...
};

This is fine for simple values. However if the value is complicated then there is a
problem: commenting out the user_value line or lines means that the user value
becomes invisible to the configuration system, so if the savefile is loaded and then
regenerated the information will be lost. An alternative approach is to keep the
user_value but explicitly set the value_source line, for example:

cdl_option CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT {
Flavor: bool
user_value 1
The inferred value should not be edited directly.
inferred_value 0
value_source inferred
Default value: 1
...
};

In this case the configuration system will use the inferred value for the purposes of
dependency analysis etc., even though a user value is present. To restore the user
value the value_source line can be commented out again. If there is no explicit
value_source then the configuration system will just use the highest priority one: the
user value if it exists; otherwise the inferred value if it exists; otherwise the default
value which always exists.

The default value for an option can be a simple constant, or it can be an expression
involving other options. In the latter case the expression will be listed, together with
the values for all options referenced in the expression and the current result of
evaluating that expression. This is for informational purposes only, the default value is
always recalculated deterministically when loading in a savefile.

cdl_option CYGBLD_GLOBAL_COMMAND_PREFIX {
Flavor: data
No user value, uncomment the following line to provide one.
84 ■ eCos User’s Guide eCos

Manual Configuration
user_value arm-elf
value_source default
Default value: CYGHWR_THUMB ? “thumb-elf” : “arm-elf”
CYGHWR_THUMB == 0
--> arm-elf
};

For options with the data or booldata flavor, there are likely to be constraints on the
possible values. If the value is supposed to be a number in a given range and a user
value of “hello world” is provided instead then there are likely to be compile-time
failures. Component developers can specify constraints on the legal values, and these
will be listed in the savefile.

cdl_option X_TLOSS {
Flavor: data
No user value, uncomment the following line to provide one.
user_value 1.41484755040569E+16
value_source default
Default value: 1.41484755040569E+16
Legal values: 1 to 1e308
};

cdl_component CYGNUM_LIBM_COMPATIBILITY {
Flavor: booldata
No user value, uncomment the following line to provide one.
user_value 1 POSIX
value_source default
Default value: 1 POSIX
Legal values: “POSIX” “IEEE” “XOPEN” “SVID”
...
};

In some cases the legal values list may be an expression involving other options. If so
then the current values of the referenced options will be listed, together with the result
of evaluating the list expression, just as for default value expressions.

If an illegal value is provided then this will result in a conflict, listed in the conflicts
section of the savefile. For more complicated options a simple legal values list is not
sufficient to allow the current value to be validated, and the configuration system will
be unable to flag conflicts. This issue will be addressed in future releases of the
configuration system.

Following the value-related fields for a given option, any requires constraints
belonging to this option will be listed. These constraints are only effective if the
option is active and, for bool and booldata flavors, enabled. If some aspect of eCos
functionality is inactive or disabled then it cannot impose any constraints on the rest of
the system. As usual, the full expression will be listed followed by the current values
of all options that are referenced and the result of evaluating the expression:

cdl_option CYGSEM_LIBC_TIME_TIME_WORKING {
eCos eCos User’s Guide ■ 85

Manual Configuration
...
Requires: CYGPKG_DEVICES_WALLCLOCK
CYGPKG_DEVICES_WALLCLOCK == current
--> 1
};

When modifying the value of an option it is useful to know not only what constraints
the option imposes on the rest of the system but also what other options in the system
depend in some way on this one. The savefile provides this information:

cdl_option CYGFUN_KERNEL_THREADS_TIMER {
...
The following properties are affected by this value
option CYGMFN_KERNEL_SYNCH_CONDVAR_TIMED_WAIT
Requires: CYGFUN_KERNEL_THREADS_TIMER
option CYGIMP_UITRON_STRICT_CONFORMANCE
Requires: CYGFUN_KERNEL_THREADS_TIMER
option CYGSEM_LIBC_TIME_CLOCK_WORKING
Requires: CYGFUN_KERNEL_THREADS_TIMER
};

 Tcl Syntax
eCos savefiles are implemented as Tcl scripts, and are read in by running the data
through a standard Tcl interpreter that has been extended with a small number of
additional commands such as cdl_option and cdl_configuration. In many cases
this is an implementation detail that can be safely ignored while editing a savefile:
simply replacing a 1 with a 0 to disable some functionality is not going to affect
whether or not the savefile is still a valid Tcl script and can be processed by a Tcl
interpreter. However, there are more complicated cases where an understanding of Tcl
syntax is at least desirable, for example:

cdl_option CYGDAT_UITRON_MEMPOOLVAR_EXTERNS {
 # Flavor: data
 user_value \
 “static char vpool1\[2000 \], \\
 vpool2\[2000 \], \\
 vpool3\[2000 \];”
value_source default
Default value: \
 # “static char vpool1\[2000 \], \\
 # vpool2\[2000 \], \\
 # vpool3\[2000 \];”
};

The backslash at the end of the user_value line is processed by the Tcl interpreter as
a line continuation character. The quote marks around the user data are also
interpreted by the Tcl interpreter and serve to turn the entire data field into a single
argument. The backslashes preceding the opening and closing square brackets prevent
86 ■ eCos User’s Guide eCos

Manual Configuration
the Tcl interpreter from treating these characters specially, otherwise there would be
an attempt at command substitution as described below. The double backslashes at the
end of each line of the data will be turned into a single backslash by the Tcl
interpreter, rather than escaping the newline character, so that the actual data seen by
the configuration system is:

static char vpool1[2000], \
 vpool2[2000], \
 vpool3[2000];

This is of course the data that should end up in the µITRON configuration header file.
The opening and closing braces surrounding the entire body of the option data are also
significant and cause this body to be passed as a single argument to the cdl_option
command. The closing semicolon is optional in this example, but provides a small
amount of additional robustness if the savefile is edited such that it is no longer a valid
Tcl script. If the data contained any $ characters then these would have to be treated
specially as well, via a backslash escape.

In spite of what all the above might seem to suggest, Tcl is actually a very simple yet
powerful scripting language: the syntax is defined by just eleven rules. On occasion
this simplicity means that Tcl’s behaviour is subtly different from other languages,
which can confuse newcomers.

When the Tcl interpreter is passed some data such as puts Hello, it splits this data
into a command and its arguments. The command will be terminated by a newline or
by a semicolon, unless one of the quoting mechanisms is used. The command and
each of its arguments are separated by white space. So in the following example:
puts Hello
set x 42

will result in two separate commands being executed. The first command is puts and
is passed a single argument, Hello. The second command is set and is passed two
arguments, x and 42. The intervening newline character serves to terminate the first
command, and a semi-colon separator could be used instead:
puts Hello;set x 42

Any white space surrounding the semicolon is just ignored because it does not serve to
separate arguments.

Now consider the following:
set x Hello world

This is not valid Tcl. It is an attempt to invoke the set command with three
arguments: x, Hello, and world. The set only takes two arguments, a variable name
and a value, so it is necessary to combine the data into a single argument by quoting:
set x “Hello world”
eCos eCos User’s Guide ■ 87

Manual Configuration
When the Tcl interpreter encounters the first quote character it treats all subsequent
data up to but not including the closing quote as part of the current argument. The
quote marks are removed by the interpreter, so the second argument passed to the set
command is just Hello world without the quote characters. This can be significant in
the context of eCos savefiles. For instance, consider the following configuration
option:

cdl_option CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE {
Flavor: data
No user value, uncomment the following line to provide one.
user_value “\”/dev/ttydiag\””
value_source default
Default value: “\”/dev/ttydiag\””
};

The desired value of the configuration option should be a valid C string, complete
with quote characters. If the savefile was edited to:

cdl_option CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE {
Flavor: data
user_value “/dev/ttydiag”
value_source default
Default value: “\”/dev/ttydiag\””
};

then the Tcl interpreter would remove the quote marks when the savefile is read back
in, so the option’s value would not have any quote marks and would not be a valid C
string. The configuration system is not yet able to perform the required validation so
the following #define would be generated in the configuration header file:
#define CYGDAT_LIBC_STDIO_DEFAULT_CONSOLE /dev/ttydiag

This is likely to cause a compile-time failure when building eCos.

A quoted argument continues until the closing quote character is encountered, which
means that it can span multiple lines. This can also be encountered in eCos savefiles,
for instance, in the CYGDAT_UITRON_MEMPOOLVAR_EXTERNS example
mentioned earlier. Newline or semicolon characters do not terminate the current
command in such cases.

The Tcl interpreter supports much the same forms of backslash substitution as other
common programming languages. Some backslash sequences such as \n will be
replaced by the appropriate character. The sequence \\ will be replaced by a single
backslash. A backslash at the very end of a line will cause that backslash, the newline
character, and any white space at the start of the next line to be replaced by a single
space. Hence the following two Tcl commands are equivalent:
puts “Hello\nworld\n”
puts \
“Hello
88 ■ eCos User’s Guide eCos

Manual Configuration
world
“

In addition to quote and backslash characters, the Tcl interpreter treats square
brackets, the $ character, and braces specially. Square brackets are used for command
substitution, for example:
puts “The answer is [expr 6 * 9]”

When the Tcl interpreter encounters the square brackets it will treat the contents as
another command that should be executed first, and the result of executing that is used
when continuing to process the script. In this case the Tcl interpreter will execute the
command expr 6 * 9, yielding a result of 54, and then the Tcl interpreter will execute
puts “The answer is 54”. It should be noted that the interpreter contains only one
level of substitution: if the result of performing command substitution performs
further special characters such as square brackets then these will not be treated
specially.

Command line substitution is very unlikely to prove useful in the context of an eCos
savefile, but it is part of the Tcl language and hence cannot be easily suppressed while
reading in a savefile. As a result care has to be taken when savefile data involves
square brackets. Consider the following:

cdl_option CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS {
 ...
 user_value \
“static char fpool1[2000],
fpool2[2000];”
 ...
};

The Tcl interpreter will interpret the square brackets as an attempt at command
substitution and hence it will attempt to execute the command 2000 with no
arguments. No such command is defined by the Tcl language or by the savefile-related
extensions provided by the configuration system, so this will result in an error when
an attempt is made to read back the savefile. Instead it is necessary to
backslash-escape the square brackets and thus suppress command substitution:

cdl_option CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS {
 ...
 user_value \
“static char fpool1\[2000 \],
fpool2\[2000 \];”
 ...
};

Similarly the $ character is used in Tcl scripts to perform variable substitution:
set x [expr 6 * 9]
puts “The answer is $x”
eCos eCos User’s Guide ■ 89

Manual Configuration
Variable substitution, like command substitution, is very unlikely to prove useful in
the context of an eCos savefile. Should it be necessary to have a $ character in
configuration data then again a backslash escape needs to be used.

cdl_option FOODAT_MONITOR_PROMPT {
 ...
 user_value “\$ “
 ...
};

Braces are used to collect a sequence of characters into a single argument, just like
quotes. The difference is that variable, command and backslash substitution do not
occur inside braces (with the sole exception of backslash substitution at the end of a
line). So, for example, the
CYGDAT_UITRON_MEMPOOL_EXTERNFIXED_EXTERNS value could be written
as:

cdl_option CYGDAT_UITRON_MEMPOOLFIXED_EXTERNS {
 ...
 user_value \
{static char fpool1[2000],
fpool2[2000];}
 ...
};

The configuration system does not use this when generating savefiles because for
simple edits of a savefile by inexperienced users the use of brace characters is likely to
be a little bit more confusing than the use of quotes.

At this stage it is worth noting that the basic format of each configuration option in the
savefile makes use of braces:
cdl_option <name> {
 ...
};

The configuration system extends the Tcl language with a small number of additional
commands such as cdl_option. These commands take two arguments, a name and a
body, where the body consists of all the text between the braces. First a check is made
that the specified option is actually present in the configuration. Then the body is
executed in a recursive invocation of the Tcl interpreter, this time with additional
commands such as user_value and value_source. If, after editing, the braces are not
correctly matched up then the savefile will no longer be a valid Tcl script and errors
will be reported when the savefile is loaded again.

Comments in Tcl scripts are introduced by a hash character #. However, a hash
character only introduces a comment if it occurs where a command is expected.
Consider the following:
This is a comment
puts “Hello” # world
90 ■ eCos User’s Guide eCos

Manual Configuration
The first line is a valid comment, since the hash character occurs right at the start
where a command name is expected. The second line does not contain a comment.
Instead it is an attempt to invoke the puts command with three arguments: Hello, #
and world. These are not valid arguments for the puts command so an error will be
raised.

If the second line was rewritten as:
puts “Hello”; # world

then this is a valid Tcl script. The semicolon identifies the end of the current
command, so the hash character occurs at a point where the next command would start
and hence it is interpreted as the start of a comment.

This handling of comments can lead to subtle behaviour. Consider the following:
cdl_option WHATEVER {
 # This is a comment }
 user_value 42
 ...
}

Consider the way the Tcl interpreter processes this. The command name and the first
argument do not pose any special difficulties. The opening brace is interpreted as the
start of the next argument, which continues until a closing brace is encountered. In this
case the closing brace occurs on the second line, so the second argument passed to
cdl_option is \n # This is a comment . This second argument is processed in
a recursive invocation of the Tcl interpreter and does not contain any commands, just
a comment. Toplevel savefile processing then resumes, and the next command that is
encountered is user_value. Since the relevant savefile code is not currently
processing a configuration option this is an error. Later on the Tcl interpreter would
encounter a closing brace by itself, which is also an error. Fortunately this sequence of
events is very unlikely to occur when editing generated savefiles.

This should be sufficient information about Tcl to allow for safe editing of eCos
savefiles. Further information is available from a wide variety of sources, for example
the book Tcl and the Tk Toolkit by John K Ousterhout.

Editing the Sources
For many users, controlling the packages and manipulating the available configuration
options will be sufficient to create an embedded operating system that meets the
application’s requirements. However, since eCos is shipped entirely in source form, it
is possible to go further when necessary: you can edit the eCos sources themselves.
This requires some understanding of the way the eCos build system works.
eCos eCos User’s Guide ■ 91

Manual Configuration
The most obvious place to edit the source code is directly in the component repository.
For example, you could edit the file kernel/v1_3_x/src/sync/mutex.cxx to change
the way kernel mutexes work, or possibly just to add some extra diagnostics or
assertions. Once the file has been edited, it is possible to invoke make at the top level
of the build tree and the target library will be rebuilt as required. A small optimization
is possible: the build tree is largely a mirror of the component repository, so it too will
contain a subdirectory kernel/v1_3_x; if make is invoked in this directory then it will
only check for changes to the kernel sources, which is a bit more efficient than
checking for changes throughout the component repository.

Editing a file in the component repository is fine if this tree is used for only one eCos
configuration. If the repository is used for several different configurations, however,
and especially if it is shared by multiple users, then making what may be experimental
changes to the master sources would be a bad idea. The build system provides an
alternative. It is possible to make a copy of the file in the build tree, in other words
copy mutex.cxx from the kernel/v1_3_x/src/sync directory in the component
repository to kernel/v1_3_x/src/sync in the build tree, and edit the file in the build
tree. When make is invoked it will pick up local copies of any of the sources in
preference to the master versions in the component repository. Once you have finished
modifying the eCos sources you can install the final version back in the component
repository. If the changes were temporary in nature and only served to aid the
debugging process, then you can discard the modified version of the sources.

The situation is slightly more complicated for the header files that a package may
export, such as the C library’s stdio.h header file, which can be found in the
directory language/c/libc/v1_3_x/include. If such a header file is changed, either
directly in the component repository or after copying it to the build tree, then make
must be invoked at the top level of the build tree. In cases like this it is not safe to
rebuild just the C library because other packages may depend on the contents of
stdio.h.

Modifying the Memory Layout
Each eCos platform package is supplied with linker script fragments which describe
the location of memory regions on the evaluation board and the location of memory
sections within these regions. The correct linker script fragment is selected and
included in the eCos linker script target.ld when eCos is built.

It is not necessary to modify the default memory layouts in order to start development
with eCos. However, it will be necessary to edit a linker script fragment when the
memory map of the evaluation board is changed. For example, if additional memory is
added, the linker must be notified that the new memory is available for use. As a
92 ■ eCos User’s Guide eCos

Manual Configuration
minimum, this would involve modifying the length of the corresponding memory
region. Where the available memory is non-contiguous, it may be necessary to declare
a new memory region and reassign certain linker output sections to the new region.

Linker script fragments and memory layout header files should be edited within the
eCos install tree. They are located at include/pkgconf/mlt_*.*. Where multiple
start-up types are in use, it will be necessary to edit multiple linker script fragments
and header files. The information provided in the header file and the corresponding
linker script fragment must always match. A typical linker script fragment is shown
below:

Table 9: eCos linker script fragment
MEMORY
{
 rom : ORIGIN = 0x40000000, LENGTH = 0x80000
 ram : ORIGIN = 0x48000000, LENGTH = 0x200000
}

SECTIONS
{
 SECTIONS_BEGIN
 SECTION_rom_vectors (rom, 0x40000000, LMA_EQ_VMA)
 SECTION_text (rom, ALIGN (0x1), LMA_EQ_VMA)
 SECTION_fini (rom, ALIGN (0x1), LMA_EQ_VMA)
 SECTION_rodata (rom, ALIGN (0x1), LMA_EQ_VMA)
 SECTION_rodata1 (rom, ALIGN (0x1), LMA_EQ_VMA)
 SECTION_fixup (rom, ALIGN (0x1), LMA_EQ_VMA)
 SECTION_gcc_except_table (rom, ALIGN (0x1), LMA_EQ_VMA)
 SECTION_data (ram, 0x48000000, FOLLOWING (.gcc_except_table))
 SECTION_bss (ram, ALIGN (0x4), LMA_EQ_VMA)
 SECTIONS_END
}

The file consists of two blocks, the MEMORY block contains lines describing the address
(ORIGIN) and the size (LENGTH) of each memory region. The MEMORY block is followed
by the SECTIONS block which contains lines describing each of the linker output
sections. Each section is represented by a macro call. The arguments of these macros
are ordered as follows:

1. The memory region in which the section will finally reside.

2. The final address (VMA) of the section. This is expressed using one of the following
forms:

n

at the absolute address specified by the unsigned integer n

ALIGN (n)

following the final location of the previous section with alignment to the next
n-byte boundary
eCos eCos User’s Guide ■ 93

Manual Configuration
3. The initial address (LMA) of the section. This is expressed using one of the
following forms:

LMA_EQ_VMA

the LMA equals the VMA (no relocation)

AT (n)

at the absolute address specified by the unsigned integer n

FOLLOWING (.name)

following the initial location of section name

In order to maintain compatibility with linker script fragments and header files
exported by the eCos Configuration Tool, the use of other expressions within these
files is not recommended.

Note that the names of the linker output sections will vary between target
architectures. A description of these sections can be found in the specific GNUPro
Toolkit Reference manual for your architecture.
94 ■ eCos User’s Guide eCos

Managing the Package Repository
Managing the Package
Repository

A source distribution of eCos consists of a number of packages, such as the kernel, the
C library, and the µITRON subsystems. These are individually versioned in the tree
structure of the source code, to support distribution on a per-package basis and to
support third party packages whose versioning systems might be different. The eCos
Package Administration Tool is used to manage the installation and removal of
packages from a variety of sources with potentially multiple versions.

The presence of the version information in the source tree structure might be a
hindrance to the use of a separate source control system such as CVS or
SourceSafe . To work in this way, you can rename all the version components to
some common name (such as “current”) thus unifying the structure of source trees
from distinct eCos releases.

The eCos build system will treat any such name as just another version of the
package(s), and support building in exactly the same way. However, performing this
rename invalidates any existing build trees that referred to the versioned source tree,
so do the rename first, before any other work, and do a complete rebuild afterwards.

Package Installation
Package installation and removal is performed using the eCos Package
Adminstration Tool. This tool is a Tcl script named ecosadmin.tcl which allows the
user to add new eCos packages and new versions of existing packages to an eCos

15
eCos eCos User’s Guide ■ 95

Managing the Package Repository
repository. Such packages must be distributed as a single file in the eCos package
distribution format. Unwanted packages may also be removed from the repository
using this tool. A graphical version of the tool is provided as part of the eCos
Developer’s Kit.

Using the Administration Tool
The graphical version of the eCos Package Administration Tool, provided as part of
the eCos Developer's Kit, provides functions equivalent to the command-line version
for those who prefer a Windows-based interface.

It may be invoked in one of two ways:

■ from the start menu (by default Start->Programs->Red Hat eCos->Package
Administration Tool)

■ from the eCos Configuration Tool via the Tools->Administration menu item

The main window of the tool displays the packages which are currently installed in the
form of a tree. The installed versions of each package may be examined by expanding
the tree.
96 ■ eCos User’s Guide eCos

Managing the Package Repository
Packages may be added to the eCos repository by clicking on the Add button. The
eCos package distribution file to be added is then selected via a File Open dialog box.

Packages may be removed by selecting a package in the tree and then clicking on the
Remove button. If a package node is selected, all versions of the selected package will
be removed. If a package version node is selected, only the selected version of the
package will be removed.

Using the command line
The ecosadmin.tcl script is located in the base of the eCos repository. Use a
command of the following form under versions of UNIX:
$ tclsh ecosadmin.tcl <command>

Under Windows, a command of the following form may be used at the Cygwin
command line prompt:
$ cygtclsh80 ecosadmin.tcl <command>

The following commands are available:

add <file>

Adds the packages contained with the specified package distribution file to the
eCos repository and updates the package database accordingly. By convention,
eCos package distribution files are given the .epk suffix.

remove <package> [--version=<version>]

Removes the specified package from the eCos repository and updates the package
database accordingly. Where the optional version qualifier is used, only the
specified version of the package is removed.

list

Produces a list of the packages which are currently installed and their versions.
The available templates and hardware targets are also listed.

Note that is is possible to remove critical packages such as the common HAL package
using this tool. Users should take care to avoid such errors since core eCos packages
may only be re-installed in the context of a complete re-installation of eCos.

Package Structure
The files in an installed eCos source tree are organized in a natural tree structure,
grouping together files which work together into Packages. For example, the kernel
files are all together in:
BASE_DIR/kernel/v1_3_x/include/
BASE_DIR/kernel/v1_3_x/src/
BASE_DIR/kernel/v1_3_x/tests/
eCos eCos User’s Guide ■ 97

Managing the Package Repository
and µITRON compatibility layer files are in:
BASE_DIR/compat/uitron/v1_3_x/include/
BASE_DIR/compat/uitron/v1_3_x/src/
BASE_DIR/compat/uitron/v1_3_x/tests/

The feature of these names which is of interest here is the v1_3_x near the end. If you
start using eCos after the Version 1.2 release, you might see a different name here, e.g.
v1_4 for version 1.4; if you received pre-release Beta versions you might have seen
v0_2 or v0_3 for versions 0.2 and 0.3.

It may seem odd to place a version number deep in the path, rather than having
something like BASE_DIR/v1_3_x/...everything...

or leaving it up to you to choose a different install-place when a new release of the
system arrives.

There is a rationale for this organization: as indicated, the kernel and the µITRON
compatibility subsystem are examples of software packages. For the first few releases
of eCos, all the Red Hat packages will move along in step, i.e. Release 1.3.x will
feature Version 1.3.x of every package, and so forth. But in future, especially when
third party packages become available, it is intended that the package be the unit of
software distribution, so it will be possible to build a system from a selection of
packages with different version numbers, and even differing versioning schemes. A
Tcl script ecosadmin.tcl is provided in the eCos repository to manage the
installation and removal of packages in this way.

Many users will have their own source code control system, version control system or
equivalent, and will want to use it with eCos sources. In that case, since a new release
of eCos comes with different pathnames for all the source files, a bit of work is
necessary to import a new release into your source repository.

One way of handling the import is to rename all the version parts to some common
name, for example “current”, and continue to work. “current” is suggested because
ecosconfig recognizes it and places it first in any list of versions. In the future, Red
Hat may provide a tool to help with this, or an option in the install wizard.
Alternatively, in a POSIX shell environment (Linux or Cygwin on Windows) use the
following command:
find . -name v1_3_x -type d -printf ’mv %p %h/current\n’ | sh

Having carried out such a renaming operation, your source tree will now look like
this:
BASE_DIR/kernel/current/include/
BASE_DIR/kernel/current/src/
BASE_DIR/kernel/current/tests/
...
98 ■ eCos User’s Guide eCos

Managing the Package Repository
BASE_DIR/compat/uitron/current/include/
BASE_DIR/compat/uitron/current/src/
BASE_DIR/compat/uitron/current/tests/

which is a suitable format for import into your own source code control system. When
you get a subsequent release of eCos, do the same thing and use your own source code
control system to manage the new source base, by importing the new version from

NEW_BASE_DIR/kernel/current/include/

and so on.

The eCos build tool will now offer only the “current” version of each package; select
this for the packages you wish to use.

Making such a change has implications for any build trees you already have in use. A
configured build tree contains information about the selected packages and their
selected versions. Changing the name of the “versioning” folder in the source tree
invalidates this information, and in consequence it also invalidates any local
configuration options you have set up in this build tree. So if you want to change the
version information in the source tree, do it first, before investing any serious time in
configuring and building your system. When you create a new build tree to deal with
the new source layout, it will contain default settings for all the configuration options,
just like the old build tree did before you configured it. You will need to redo that
configuration work in the new tree.

Moving source code around also invalidates debugging information in any programs
or libraries built from the old tree; these will need to be rebuilt.
eCos eCos User’s Guide ■ 99

Managing the Package Repository
Part IV: Special Topics
100 ■ eCos User’s Guide eCos

Real-time Characterization
Real-time Characterization

When building a real-time system, care must be taken to ensure that the system will be
able to perform properly within the constraints of that system. One of these constraints
may be how fast certain operations can be performed. Another might be how
deterministic the overall behavior of the system is. Lastly the memory footprint (size)
and unit cost may be important.

One of the major problems encountered while evaluating a system will be how to
compare it with possible alternatives. Most manufacturers of real-time systems
publish performance numbers, ostensibly so that users can compare the different
offerings. However, what these numbers mean and how they were gathered is often
not clear. The values are typically measured on a particular piece of hardware, so in
order to truly compare, one must obtain measurements for exactly the same set of
hardware that were gathered in a similar fashion.

Two major items need to be present in any given set of measurements. First, the raw
values for the various operations; these are typically quite easy to measure and will be
available for most systems. Second, the determinacy of the numbers; in other words
how much the value might change depending on other factors within the system. This
value is affected by a number of factors: how long interrupts might be masked,
whether or not the function can be interrupted, even very hardware-specific effects
such as cache locality and pipeline usage. It is very difficult to measure the
determinacy of any given operation, but that determinacy is fundamentally important
to proper overall characterization of a system.

In the discussion and numbers that follow, three key measurements are provided. The
first measurement is an estimate of the interrupt latency: this is the length of time from
when a hardware interrupt occurs until its Interrupt Service Routine (ISR) is called.

16
eCos eCos User’s Guide ■ 101

Real-time Characterization
The second measurement is an estimate of overall interrupt overhead: this is the length
of time average interrupt processing takes, as measured by the real-time clock
interrupt (other interrupt sources will certainly take a different amount of time, but this
data cannot be easily gathered). The third measurement consists of the timings for the
various kernel primitives.

Methodology
Key operations in the kernel were measured by using a simple test program which
exercises the various kernel primitive operations. A hardware timer, normally the one
used to drive the real-time clock, was used for these measurements. In most cases this
timer can be read with quite high resolution, typically in the range of a few
microseconds. For each measurement, the operation was repeated a number of times.
Time stamps were obtained directly before and after the operation was performed. The
data gathered for the entire set of operations was then analyzed, generating average
(mean), maximum and minimum values. The sample variance (a measure of how
close most samples are to the mean) was also calculated. The cost of obtaining the
real-time clock timer values was also measured, and was subtracted from all other
times.

Most kernel functions can be measured separately. In each case, a reasonable number
of iterations are performed. Where the test case involves a kernel object, for example
creating a task, each iteration is performed on a different object. There is also a set of
tests which measures the interactions between multiple tasks and certain kernel
primitives. Most functions are tested in such a way as to determine the variations
introduced by varying numbers of objects in the system. For example, the mailbox
tests measure the cost of a ’peek’ operation when the mailbox is empty, has a single
item, and has multiple items present. In this way, any effects of the state of the object
or how many items it contains can be determined.

There are a few things to consider about these measurements. Firstly, they are quite
micro in scale and only measure the operation in question. These measurements do not
adequately describe how the timings would be perturbed in a real system with
multiple interrupting sources. Secondly, the possible aberration incurred by the
real-time clock (system heartbeat tick) is explicitly avoided. Virtually all kernel
functions have been designed to be interruptible. Thus the times presented are typical,
but best case, since any particular function may be interrupted by the clock tick
processing. This number is explicitly calculated so that the value may be included in
any deadline calculations required by the end user. Lastly, the reported measurements
were obtained from a system built with all options at their default values. Kernel
instrumentation and asserts are also disabled for these measurements. Any number of
102 ■ eCos User’s Guide eCos

Real-time Characterization
configuration options can change the measured results, sometimes quite dramatically.
For example, mutexes are using priority inheritance in these measurements. The
numbers will change if the system is built with priority inheritance on mutex variables
turned off.

The final value that is measured is an estimate of interrupt latency. This particular
value is not explicitly calculated in the test program used, but rather by instrumenting
the kernel itself. The raw number of timer ticks that elapse between the time the timer
generates an interrupt and the start of the timer ISR is kept in the kernel. These values
are printed by the test program after all other operations have been tested. Thus this
should be a reasonable estimate of the interrupt latency over time.

Using these Measurements
These measurements can be used in a number of ways. The most typical use will be to
compare different real-time kernel offerings on similar hardware, another will be to
estimate the cost of implementing a task using eCos (applications can be examined to
see what effect the kernel operations will have on the total execution time). Another
use would be to observe how the tuning of the kernel affects overall operation.

Influences on Performance
A number of factors can affect real-time performance in a system. One of the most
common factors, yet most difficult to characterize, is the effect of device drivers and
interrupts on system timings. Different device drivers will have differing requirements
as to how long interrupts are suppressed, for example. The eCos system has been
designed with this in mind, by separating the management of interrupts (ISR handlers)
and the processing required by the interrupt (DSR—Deferred Service Routine—
handlers). However, since there is so much variability here, and indeed most device
drivers will come from the end users themselves, these effects cannot be reliably
measured. Attempts have been made to measure the overhead of the single interrupt
that eCos relies on, the real-time clock timer. This should give you a reasonable idea
of the cost of executing interrupt handling for devices.
eCos eCos User’s Guide ■ 103

Real-time Characterization
Measured Items
This section describes the various tests and the numbers presented. All tests use the C
kernel API (available by way of cyg/kernel/kapi.h). There is a single main thread
in the system that performs the various tests. Additional threads may be created as part
of the testing, but these are short lived and are destroyed between tests unless
otherwise noted. The terminology “lower priority” means a priority that is less
important, not necessarily lower in numerical value. A higher priority thread will run
in preference to a lower priority thread even though the priority value of the higher
priority thread may be numerically less than that of the lower priority thread.

Thread Primitives
Create thread

This test measures the cyg_thread_create() call. Each call creates a totally new
thread. The set of threads created by this test will be reused in the subsequent
thread primitive tests.

Yield thread

This test measures the cyg_thread_yield() call. For this test, there are no other
runnable threads, thus the test should just measure the overhead of trying to give
up the CPU.

Suspend [suspended] thread

This test measures the cyg_thread_suspend() call. A thread may be suspended
multiple times; each thread is already suspended from its initial creation, and is
suspended again.

Resume thread

This test measures the cyg_thread_resume() call. All of the threads have a
suspend count of 2, thus this call does not make them runnable. This test just
measures the overhead of resuming a thread.

Set priority

This test measures the cyg_thread_set_priority() call. Each thread, currently
suspended, has its priority set to a new value.

Get priority

This test measures the cyg_thread_get_priority() call.

Kill [suspended] thread

This test measures the cyg_thread_kill() call. Each thread in the set is killed.
All threads are known to be suspended before being killed.
104 ■ eCos User’s Guide eCos

Real-time Characterization
Yield [no other] thread

This test measures the cyg_thread_yield() call again. This is to demonstrate
that the cyg_thread_yield() call has a fixed overhead, regardless of whether
there are other threads in the system.

Resume [suspended low priority] thread

This test measures the cyg_thread_resume() call again. In this case, the thread
being resumed is lower priority than the main thread, thus it will simply become
ready to run but not be granted the CPU. This test measures the cost of making a
thread ready to run.

Resume [runnable low priority] thread

This test measures the cyg_thread_resume() call again. In this case, the thread
being resumed is lower priority than the main thread and has already been made
runnable, so in fact the resume call has no effect.

Suspend [runnable] thread

This test measures the cyg_thread_suspend() call again. In this case, each
thread has already been made runnable (by previous tests).

Yield [only low priority] thread

This test measures the cyg_thread_yield() call. In this case, there are many
other runnable threads, but they are all lower priority than the main thread, thus no
thread switches will take place.

Suspend [runnable->not runnable] thread

This test measures the cyg_thread_suspend() call again. The thread being
suspended will become non-runnable by this action.

Kill [runnable] thread

This test measures the cyg_thread_kill() call again. In this case, the thread
being killed is currently runnable, but lower priority than the main thread.

Resume [high priority] thread

This test measures the cyg_thread_resume() call. The thread being resumed is
higher priority than the main thread, thus a thread switch will take place on each
call. In fact there will be two thread switches; one to the new higher priority
thread and a second back to the test thread. The test thread exits immediately.

Thread switch

This test attempts to measure the cost of switching from one thread to another.
Two equal priority threads are started and they will each yield to the other for a
number of iterations. A time stamp is gathered in one thread before the
cyg_thread_yield() call and after the call in the other thread.
eCos eCos User’s Guide ■ 105

Real-time Characterization
Scheduler Primitives
Scheduler lock

This test measures the cyg_scheduler_lock() call.

Scheduler unlock [0 threads]

This test measures the cyg_scheduler_unlock() call. There are no other threads
in the system and the unlock happens immediately after a lock so there will be no
pending DSR’s to run.

Scheduler unlock [1 suspended thread]

This test measures the cyg_scheduler_unlock() call. There is one other thread
in the system which is currently suspended.

Scheduler unlock [many suspended threads]

This test measures the cyg_scheduler_unlock() call. There are many other
threads in the system which are currently suspended. The purpose of this test is to
determine the cost of having additional threads in the system when the scheduler
is activated by way of cyg_scheduler_unlock().

Scheduler unlock [many low priority threads]

This test measures the cyg_scheduler_unlock() call. There are many other
threads in the system which are runnable but are lower priority than the main
thread. The purpose of this test is to determine the cost of having additional
threads in the system when the scheduler is activated by way of
cyg_scheduler_unlock().

Mutex Primitives
Init mutex

This test measures the cyg_mutex_init() call. A number of separate mutex
variables are created. The purpose of this test is to measure the cost of creating a
new mutex and introducing it to the system.

Lock [unlocked] mutex

This test measures the cyg_mutex_lock() call. The purpose of this test is to
measure the cost of locking a mutex which is currently unlocked. There are no
other threads executing in the system while this test runs.

Unlock [locked] mutex

This test measures the cyg_mutex_unlock() call. The purpose of this test is to
measure the cost of unlocking a mutex which is currently locked. There are no
other threads executing in the system while this test runs.
106 ■ eCos User’s Guide eCos

Real-time Characterization
Trylock [unlocked] mutex

This test measures the cyg_mutex_trylock() call. The purpose of this test is to
measure the cost of locking a mutex which is currently unlocked. There are no
other threads executing in the system while this test runs.

Trylock [locked] mutex

This test measures the cyg_mutex_trylock() call. The purpose of this test is to
measure the cost of locking a mutex which is currently locked. There are no other
threads executing in the system while this test runs.

Destroy mutex

This test measures the cyg_mutex_destroy() call. The purpose of this test is to
measure the cost of deleting a mutex from the system. There are no other threads
executing in the system while this test runs.

Unlock/Lock mutex

This test attempts to measure the cost of unlocking a mutex for which there is
another higher priority thread waiting. When the mutex is unlocked, the higher
priority waiting thread will immediately take the lock. The time from when the
unlock is issued until after the lock succeeds in the second thread is measured,
thus giving the round-trip or circuit time for this type of synchronizer.

Mailbox Primitives
Create mbox

This test measures the cyg_mbox_create() call. A number of separate mailboxes
is created. The purpose of this test is to measure the cost of creating a new
mailbox and introducing it to the system.

Peek [empty] mbox

This test measures the cyg_mbox_peek() call. An attempt is made to peek the
value in each mailbox, which is currently empty. The purpose of this test is to
measure the cost of checking a mailbox for a value without blocking.

Put [first] mbox

This test measures the cyg_mbox_put() call. One item is added to a currently
empty mailbox. The purpose of this test is to measure the cost of adding an item to
a mailbox. There are no other threads currently waiting for mailbox items to
arrive.

Peek [1 msg] mbox

This test measures the cyg_mbox_peek() call. An attempt is made to peek the
value in each mailbox, which contains a single item. The purpose of this test is to
measure the cost of checking a mailbox which has data to deliver.
eCos eCos User’s Guide ■ 107

Real-time Characterization
Put [second] mbox

This test measures the cyg_mbox_put() call. A second item is added to a mailbox.
The purpose of this test is to measure the cost of adding an additional item to a
mailbox. There are no other threads currently waiting for mailbox items to arrive.

Peek [2 msgs] mbox

This test measures the cyg_mbox_peek() call. An attempt is made to peek the
value in each mailbox, which contains two items. The purpose of this test is to
measure the cost of checking a mailbox which has data to deliver.

Get [first] mbox

This test measures the cyg_mbox_get() call. The first item is removed from a
mailbox that currently contains two items. The purpose of this test is to measure
the cost of obtaining an item from a mailbox without blocking.

Get [second] mbox

This test measures the cyg_mbox_get() call. The last item is removed from a
mailbox that currently contains one item. The purpose of this test is to measure the
cost of obtaining an item from a mailbox without blocking.

Tryput [first] mbox

This test measures the cyg_mbox_tryput() call. A single item is added to a
currently empty mailbox. The purpose of this test is to measure the cost of adding
an item to a mailbox.

Peek item [non-empty] mbox

This test measures the cyg_mbox_peek_item() call. A single item is fetched from
a mailbox that contains a single item. The purpose of this test is to measure the
cost of obtaining an item without disturbing the mailbox.

Tryget [non-empty] mbox

This test measures the cyg_mbox_tryget() call. A single item is removed from a
mailbox that contains exactly one item. The purpose of this test is to measure the
cost of obtaining one item from a non-empty mailbox.

Peek item [empty] mbox

This test measures the cyg_mbox_peek_item() call. An attempt is made to fetch
an item from a mailbox that is empty. The purpose of this test is to measure the
cost of trying to obtain an item when the mailbox is empty.

Tryget [empty] mbox

This test measures the cyg_mbox_tryget() call. An attempt is made to fetch an
item from a mailbox that is empty. The purpose of this test is to measure the cost
of trying to obtain an item when the mailbox is empty.
108 ■ eCos User’s Guide eCos

Real-time Characterization
Waiting to get mbox

This test measures the cyg_mbox_waiting_to_get() call. The purpose of this test
is to measure the cost of determining how many threads are waiting to obtain a
message from this mailbox.

Waiting to put mbox

This test measures the cyg_mbox_waiting_to_put() call. The purpose of this test
is to measure the cost of determining how many threads are waiting to put a
message into this mailbox.

Delete mbox

This test measures the cyg_mbox_delete() call. The purpose of this test is to
measure the cost of destroying a mailbox and removing it from the system.

Put/Get mbox

In this round-trip test, one thread is sending data to a mailbox that is being
consumed by another thread. The time from when the data is put into the mailbox
until it has been delivered to the waiting thread is measured. Note that this time
will contain a thread switch.

Semaphore Primitives
Init semaphore

This test measures the cyg_semaphore_init() call. A number of separate
semaphore objects are created and introduced to the system. The purpose of this
test is to measure the cost of creating a new semaphore.

Post [0] semaphore

This test measures the cyg_semaphore_post() call. Each semaphore currently
has a value of 0 and there are no other threads in the system. The purpose of this
test is to measure the overhead cost of posting to a semaphore. This cost will
differ if there is a thread waiting for the semaphore.

Wait [1] semaphore

This test measures the cyg_semaphore_wait() call. The semaphore has a current
value of 1 so the call is non-blocking. The purpose of the test is to measure the
overhead of “taking” a semaphore.

Trywait [0] semaphore

This test measures the cyg_semaphore_trywait() call. The semaphore has a
value of 0 when the call is made. The purpose of this test is to measure the cost of
seeing if a semaphore can be “taken” without blocking. In this case, the answer
would be no.
eCos eCos User’s Guide ■ 109

Real-time Characterization
Trywait [1] semaphore

This test measures the cyg_semaphore_trywait() call. The semaphore has a
value of 1 when the call is made. The purpose of this test is to measure the cost of
seeing if a semaphore can be “taken” without blocking. In this case, the answer
would be yes.

Peek semaphore

This test measures the cyg_semaphore_peek() call. The purpose of this test is to
measure the cost of obtaining the current semaphore count value.

Destroy semaphore

This test measures the cyg_semaphore_destroy() call. The purpose of this test is
to measure the cost of deleting a semaphore from the system.

Post/Wait semaphore

In this round-trip test, two threads are passing control back and forth by using a
semaphore. The time from when one thread calls cyg_semaphore_post() until
the other thread completes its cyg_semaphore_wait() is measured. Note that
each iteration of this test will involve a thread switch.

Counters
Create counter

This test measures the cyg_counter_create() call. A number of separate
counters are created. The purpose of this test is to measure the cost of creating a
new counter and introducing it to the system.

Get counter value

This test measures the cyg_counter_current_value() call. The current value of
each counter is obtained.

Set counter value

This test measures the cyg_counter_set_value() call. Each counter is set to a
new value.

Tick counter

This test measures the cyg_counter_tick() call. Each counter is “ticked” once.

Delete counter

This test measures the cyg_counter_delete() call. Each counter is deleted from
the system. The purpose of this test is to measure the cost of deleting a counter
object.
110 ■ eCos User’s Guide eCos

Real-time Characterization
Alarms
Create alarm

This test measures the cyg_alarm_create() call. A number of separate alarms
are created, all attached to the same counter object. The purpose of this test is to
measure the cost of creating a new counter and introducing it to the system.

Initialize alarm

This test measures the cyg_alarm_initialize() call. Each alarm is initialized to
a small value.

Disable alarm

This test measures the cyg_alarm_disable() call. Each alarm is explicitly
disabled.

Enable alarm

This test measures the cyg_alarm_enable() call. Each alarm is explicitly
enabled.

Delete alarm

This test measures the cyg_alarm_delete() call. Each alarm is destroyed. The
purpose of this test is to measure the cost of deleting an alarm and removing it
from the system.

Tick counter [1 alarm]

This test measures the cyg_counter_tick() call. A counter is created that has a
single alarm attached to it. The purpose of this test is to measure the cost of
“ticking” a counter when it has a single attached alarm. In this test, the alarm is
not activated (fired).

Tick counter [many alarms]

This test measures the cyg_counter_tick() call. A counter is created that has
multiple alarms attached to it. The purpose of this test is to measure the cost of
“ticking” a counter when it has many attached alarms. In this test, the alarms are
not activated (fired).

Tick & fire counter [1 alarm]

This test measures the cyg_counter_tick() call. A counter is created that has a
single alarm attached to it. The purpose of this test is to measure the cost of
“ticking” a counter when it has a single attached alarm. In this test, the alarm is
activated (fired). Thus the measured time will include the overhead of calling the
alarm callback function.

Tick & fire counter [many alarms]

This test measures the cyg_counter_tick() call. A counter is created that has
eCos eCos User’s Guide ■ 111

Real-time Characterization
multiple alarms attached to it. The purpose of this test is to measure the cost of
“ticking” a counter when it has many attached alarms. In this test, the alarms are
activated (fired). Thus the measured time will include the overhead of calling the
alarm callback function.

Alarm latency [0 threads]

This test attempts to measure the latency in calling an alarm callback function.
The time from the clock interrupt until the alarm function is called is measured. In
this test, there are no threads that can be run, other than the system idle thread,
when the clock interrupt occurs (all threads are suspended).

Alarm latency [2 threads]

This test attempts to measure the latency in calling an alarm callback function.
The time from the clock interrupt until the alarm function is called is measured. In
this test, there are exactly two threads which are running when the clock interrupt
occurs. They are simply passing back and forth by way of the
cyg_thread_yield() call. The purpose of this test is to measure the variations in
the latency when there are executing threads.

Alarm latency [many threads]

This test attempts to measure the latency in calling an alarm callback function.
The time from the clock interrupt until the alarm function is called is measured. In
this test, there are a number of threads which are running when the clock interrupt
occurs. They are simply passing back and forth by way of the
cyg_thread_yield() call. The purpose of this test is to measure the variations in
the latency when there are many executing threads.

Sample Numbers
For sample results, see Appendix 1 of Getting Started with eCos
112 ■ eCos User’s Guide eCos

Real-time Characterization
eCos eCos User’s Guide ■ 113

Real-time Characterization
114 ■ eCos User’s Guide eCos

Real-time Characterization
eCos eCos User’s Guide ■ 115

Real-time Characterization
116 ■ eCos User’s Guide eCos

Index

A
application build tree 54

B
Build and Install Trees 7
build tools 33
build tree 52

application 54
creating manually 65

build tree (application) 54
building 32, 71
building eCos 71

C
compiler options 55
compiling

C applications 55
C++ applications 56

Component Repository 3
component repository 50, 64, 92
configuration

coarse-grained 72
fine-grained 73
updating 23

configuration item integer format 12
configuration item labels 12
Configuration Tool

documents 4
Getting Started 2
Introduction 2
invoking 2
keyboard accelerators 42

configuration window 14
conflicts 27
conflicts window 16
connection 37
customization 11

D
debugging 57
Deferred Service Routine (DSR) 103
download timeout 36

E
eCos

sources, editing 91
ecosconfig 63
ecosconfig commands 67
ecosconfig qualifiers 65
event record 60
events

monitoring 59
example programs

accessing a user-defined memory section 22
eCos eCos User’s Guide ■ 117

eCos linker script fragment 93
hello world with tracing 58
instrument buffer output 62
using instrument buffers 61

executables tab 37
execution 35

F
fonts 12

H
Hardware Abstraction Layer (HAL) 72
Help 8

I
install tree 53

tests subdirectory 71
instrumentation buffers 57, 59
Interrupt Service Routine (ISR) 101

K
kernel instrumentation buffers 59
keyboard accelerators 42

L
linker scripts

editing 93
example linker script fragment 93
target.ld 92

M
measuring

kernel functions 102
methodology 102
sample numbers 112
system performance 101
tests peformed 104

memory
layout

modifying 92
memory access 22
memory layout window 18

memory regions 19
memory sections 20
monitoring

events 59

O
output tab 39
output window 17

P
package repository 95
packages 72

adding and removing 23
performance

sample numbers 112
system

influences on 103
measuring 101
tests performed 104

pkgconf.tcl 65, 72
--builddir 68, 97
--defaults 68
--disable 67
--enable 67
--help 65
--packages 67
--platform 67
--prefix 66
--srcdir 66
--target, --targets 66, 67
---version 67

properties (connectivity) 35
properties window 17

R
real-time characterization 101
run time timeout 36
running tests 35

S
Save File 4
screen layout 14
searching 31
selective linking
118 ■ eCos User’s Guide eCos

g++ 56
gcc 56

shell
creating 41

short description window 18
summary tab 39
system performance

influences on 103
measuring 101
sample numbers 112
tests performed 104

T
templates 27
test execution 35
tests

alarms 111

counters 110
mailbox primitives 107
mutex primitives 106
scheduler primitives 106
semaphore primitives 109
thread primitives 104

Toolbars 11
tracing 57

U
updating configuration 23
user tools 34

W
window placement 11
eCos eCos User’s Guide ■ 119

120 ■ eCos User’s Guide eCos

	eCos‘User’s Guide
	Contents
	Part I: The eCos Configuration Tool
	Getting Started
	Getting Help
	Customization
	Screen Layout
	Updating the Configuration
	Searching
	Building
	Execution
	Creating a Shell

	Part II: eCos Programming Concepts and Techniques
	CDL Concepts
	The Component Repository and Working Directories
	Compiler and Linker Options
	Debugging Techniques

	Part III: Configuration and the Package Repository
	Manual Configuration
	Managing the Package Repository

	Part IV: Special Topics
	Real-time Characterization
	Index

