& redhat I €COS)

eCosllUser’'s Guide

August 2000

Copying terms

Copyright © 1998, 1999, 2000 Red Hat Inc.

Copying terms

The contents of this manual are subject to the Red Hat eCos Public License Version
1.1 (the "License"); you may not use thisfile except in compliance with the License.
Y ou may obtain a copy of the License at http://www.redhat.com/

Software distributed under the Licenseis distributed on an "AS IS' basis, WITHOUT
WARRANTY OF ANY KIND, either express or implied. See the License for the
specific language governing rights and limitations under the License.

The Original Codeis eCos- Embedded Configurable Operating System, released
September 30, 1998.

The Initial Developer of the Original Code is Red Hat. Portions created by Red Hat
are Copyright © 1998, 1999, 2000 Red Hat Inc. All Rights Reserved.

Trademarks

Javall, Sun®, and Solaris] are trademarks or registered trademarks of Sun
Microsystems, Inc.

SPARC® isaregistered trademark of SPARC International, Inc.
UNIXDO isatrademark of The Open Group.

Microsoft®, Windows NT®, Windows 95®, Windows 98® and Windows 2000® are
registered trademarks of Microsoft Corporation.

Linux® is aregistered trademark of Linus Torvalds.

Intel® isaregistered trademark of Intel Corporation.
eCosl] isatrademark of Red Hat, Inc.

Red Hat® is aregistered trademark of Red Hat, Inc.

300-400-1010049-03

2 m eCos User’s Guide eCos

Contents

ECOSTUSEN ' SGUITE.....ceeeeee ettt 1
COPYING LEIMS....cviitiieeiieierie ettt nne s 2
TrAOEMAIKS ...t 2

Part I: TheeCos Configuration ToOlccceevveriveeireennn. 1

GEttiNG SEArTE ..o 2
INEFOAUCTION. ... e 2
Invoking the eCos Configuration TOOlccccoevvenernienenicnienen 2
The Component REPOSITONYccccverrieereeiieeseeseeseeseesreesreesseeneeens 3
eCos Configuration TOol DOCUMENLS..........ccereririeneeeneriesieneniennes 4

LCT= (AT ol 5 1= 1 o TS 8
Context-sensitive Help for Dialogscocvveeeerevereeeeese e 8
Context-sensitive Help for Other Windowscccccevvevvveeieennene, 9
Context-sensitive Help for Configuration Items..........ccccccevevveenen. 9
Methods of Displaying HTML Help ... 9

(G101 o011 1= |11] o FS 11

S o == = Y01 | S 14

Updating the Configurationccoocervneeneneneeese e 23
Adding and Removing Packages..........ccevvrererenneneneneeeeniee 23
Platform SEIECtIONcoeiiieeeeee e 24
USING TEMPIELEScuiieiiiieieriesie et 27

eCos eCos User’'s Guide = iii

Contents

SEAN CNING..c.vi e 31
BUITAING ...t 32
SAecting BUild TOOIScoceevie e 33
SEleCting USEr TOOIS. ..ot 34
EXECULION....c.eieiiie ettt 35
(0] 1= = RO 35
Creating @ SNEllcc.ooeic e 41
Keyboard ACCEIEratorsS.........ccviieeviee e 42

Part I1: eCos Programming Concepts and Techniques 44

L1 B 1 I @] [0 o £ 45
The Component Repository and Working Directories................ 50
ComponeNnt REPOSITONYcccceerieieriieree e e s e see e sreesneeseeens 50
2 TUTH o B I == PSR 52
L= I == 53
Application BUild Tree......ccccvviiiieeccresereeere s 54
Compiler and Linker Options..........cocoeieeereneneneeieieeesee e 55
Compiling aC ApPPliCatON........cccceeveereerie e 55
Compiling @ C++ APPlICALIONcoeeiririiireeesee e 56
Debugging TEChNIQUES.........coeiuiiririreieee e 57
I = o1 o 57
Kernd INStrumentationccceceeeeiesieieeseese e e sese e 59

Manual Configurationcccceeverieerinsie e e 64
DiIrectory Tree SITUCLUIE.......cceiiieieiriesie e 64
Creating the BUild Treecocev e 65
Building the System.........cccvviiiiicreeee e 71
0 = 0 [72
Coarse-grained Configurationccoueerrerereneneeiesese s 72
Fine-grained Configurationccccveeevieeiieeveesiense e 73
Editing an eCos SaVEfile.........cooeiiiirecee e 74
Editing the SOUICES........cccce i 91
Modifying the Memory LayoOutccccovreeerenenenieneeienesee s 92

Managing the Package REPOSITOrYccccovvveecevinseee e 95
Package INStallationccoooveereereiereee e 95

iv m eCos User’s Guide

eCos

Contents

Package SITUCIUNE ..o 97

Part [V: Special TOPICSccccvveviieeceeccee e 100
Real-time Characterizationc..eeeeeeeeeeeeeeee e 101

V/1=11 700 (0] o |V 2 102

Using these MeasUremMentS.........cooveeerenerieneeeseesesee e 103
INfFluENCES ON PEfOrMANCEoeee et 103
MEASUIEA TTEIMS......eeeeeeeeee e e et e e e e e e e e eeereeeeean 104

SaMPIE NUMDETS......c.eoiiiieccee et seeas 112

LMK et e e ————————— 117

eCos eCos User's Guide m v

Contents

vi m eCos User’s Guide eCos

Part I: The eCos Configuration
Tool

eCos eCos User's Guide = 1

Getting Started

Getting Started

Introduction

The eCos Configuration Tool is used to tailor eCos at source level, prior to
compilation or assembly, and provides a configuration file and a set of files used to
build user applications. The sources and other files used for building a configuration
are provided in acomponent repository, which is loaded when the eCos Configuration
Tool isinvoked. The component repository includes a set of files defining the
structure of relationships between the Configuration Tool and other components, and
iswritten in a Component Definition Language (CDL). For a description of the
concepts underlying component configuration, see “CDL Concepts’ on page 45.

Invoking the eCos Configuration
Tool

There are two ways in which to invoke the eCos Configuration Tool:

« from the desktop explorer or program set up at installation time (by default
Sart->Programs->Red Hat eCos->Configuration Toal).

« type(at acommand prompt or in the Sart menu’s Run item):
<foldername>\ConfigTool.exe where <foldername> is the full path of the
directory in which you installed the eCos Configuration Tool.

o The Configuration Tool will be displayed (see Figure 1).

2 = eCos User's Guide eCos

Getting Started

Figure 1: Configuration Tool

Untitled - eCos Configuration Tool

Global build options URL ref/ecos-ref/the-ecos-hardware-abstraction-layer-hal. html
Serial device drivers v1_3 Macro CvGPEG_HaL
HeL vl3 File includetpkaconfshalh
iy 140 sub-system vl 3 Value 13
gy Infrastucture v1_3 ?:;Uk ;:rinag
EE_DS kenel w13 Inchudelir cyg/hal
C liprary vl3 Doc ref/ecas-refithe-ecas-hardware-abstraction-layer-hal.htrl
ey Math library w1 3 Compile generic-stub. ¢ thread-packets. ¢ hal_stub.c drv_api.c
by walclock device w3 Compile -library=libextras.a dummy.c

18" Common eror code support |13 Make -pricrity 250 <PREFI=>/lib/extras.o: <PREFIX: /lib/libextras. a $[CC] $ICFLAL
DefineProc

The eCos HAL package provide a porting layer for higherlevel parts of the spstem such as the kemel
land the C library. Each installation should have HAL packages far one or more architectures, and far
each architecture there may be one o more supported platfoims. |t iz necessary bo select one taiget
architecture and one platform for that architecture. There are also a number of configuration options
that are common to all HAL packages.

The Component Repository

When you invoke the eCos Configuration Tooal, it accesses the Component
Repository, aread-only location of configuration information. For an explanation of
“Component Repository” see “CDL Concepts’ on page 45.

The eCos Configuration Tool will look for a component repository using (in
descending order of preference):

« The component repository most recently used by the current user

»« A default location set by the installation procedure

» Userinput

Thefina case above will normally only occur if the previous repository has been
moved or installation information stored in the NT registry has been modified; it will

result in adialog box being displayed that allows you to specify the repository
location:

eCos eCos User's Guide = 3

Getting Started

Figure 2: Repository relocation dialog box

Choose folder for eCos reposzitory

Note that in order to use the eCos Configuration Tool you are obliged to provide a
valid repository location.

In the rare event that you subsequently wish to change the component location, select
Build->Repository and the above dialog box will then be displayed.

eCos Configuration Tool Documents

Configuration Save File

eCos configuration settings and other information (such as disabled conflicts) that are
set using the eCos Configuration Tool are saved to afile between sessions. By defaullt,
when the eCos Configuration Tool isfirst invoked, it reads and displays information
from the Component Registry and displays the information in an untitled blank
document. Y ou can perform the following operations on a document:

Save the currently active document

Usethe “File->Save’ menu item or click the Save Document icon on the toolbar; if
the current document is unnamed, you will be prompted to supply a name for the
configuration savefile.

4 m eCos User’s Guide eCos

Getting Started

Figure 3: Save Asdialog box

Save Az

Cesktop

E' Hermes
i My Documents
B3 My Brisfoase

eCiog Configurations [*.ecc] I

Open an existing document

Select File->Open, or click the Open Document icon on the toolbar. Y ou will be
prompted to supply a name for the configuration save file.

eCos eCos User's Guide = 5

Getting Started

Figure 4: Open dialog box

&4 My Documents |

|1 My Pictures

Open

eCiog Configurations [*.ecc] I

Open adocument you have used recently

Click its name at the bottom of the File menu.
Documents may also be opened by:

» dragging and dropping a Configuration Save File from the desktop explorer to the
eCos Configuration Taool

» double-clicking a Configuration Save File in the desktop explorer

« invoke the eCos Configuration Tool with the name of a Configuration File as
command-line argument, or by creating a shortcut to the eCos Configuration Tool
with such an argument.

Create a new blank document based on the Component
Registry

Select File->New, or click the New Document icon on the toolbar.
Save to a different file name

Select File->Save As. Y ou will be prompted to supply a new name for the
configuration savefile.

6 = eCos User's Guide eCos

Getting Started

Build and Install Trees

The location of the build and install trees are derived from the eCos save file name as
illustrated in the following example:

Save file name = “c:\My eCos\configl.ecc”

Install tree folder = “c:\My eCos\configl install”

Build tree folder = “c:\My eCos\configl build”

These names are automatically generated from the name of the savefile.
See also “CDL Concepts’ on page 45.

eCos eCos User's Guide m 7

Getting Help

Getting Help

The eCos Configuration Tool contains several methods for accessing online help.

Context-sensitive Help for Dialogs

Most dialogs displayed by the eCos Configuration Tool are supplied with
context-sensitive help. Y ou can then get help relating to any control within the current
dialog box by
« Right-clicking the control (or pressing F1)
A “What's This?" popup menu will be displayed. Click the menu to display a
brief description of the function of the selected control.
» Clicking the help (question mark) icon in the dialog caption bar
A question mark cursor will be displayed. Click on any control to display a brief
description of its function.
Some dialogs may have a Help button. Y ou can press thisto display a more general
description of the function of the dialog box as awhole. This help will bein HTML
form; for more information, see below.

8 m eCos User's Guide eCos

Getting Help

Context-sensitive Help for Other
Windows

Inthe Help menu, click eCos Configuration Tool Help (or pressF1). A HTML page
describing the general operation of the currently active window will be displayed.
This help will normally bein HTML format; for more information, see “Methods of
Displaying HTML Help”.

Context-sensitive Help for
Configuration Items

In the configuration window, right-click on a configuration item (or use Shift+F10).
A context menu will be displayed; select Visit Documentation to display the pagein
the eCos documentation that most closely corresponds to the selected item.

Methods of Displaying HTML Help

By default, help in HTML form is displayed using an HTML Help viewer built into
the eCos Configuration Tool. Thisform of help will be familiar to Windows 98 or
Windows 2000 users: it takes the form of a 3-pane floating window comprising
Toolbar, Navigation and Topic windows. The Navigation Window provides access
to Table of Contents (TOC), Index, and Search facilities. A toolbar is provided to
allow quick access to related internet sites, including the Red Hat home page and net
distribution sites.

eCos eCos User's Guide = 9

Getting Help

Figure 5: HTML Help viewer

E? eCos Documentation

Component Witer's Guide
Q eCos Reference Manual

eCos 1.3 Documentation

Getting Started with eCos

s Table of Contents

Foreword

Documentation Eoadmap
Fart L Felease Motes

Part IT: Installation Guide

Part IIT: Programming Tutorial
Part IV: Appendoes

If you wish, you may choose to have HTML Help displayed in a browser of your
choice. To do this, select View->Settings and use the controlsin the View
Documentation group to select the replacement browser. Note that the Navigation
facilities of the built-in HTML Help system will be unavailable if you choose this
method of displaying help.

10 = eCos User’s Guide eCos

Customization

Customization

Thefollowing visual aspects of the eCos Configuration Tool can be changed to suit
individual preferences. These aspects are saved on a per-user basis, so that when the
eCos Configuration Tool is next invoked by the same user, the appearance will be as
set in the previous session.

Window Placement

Therelative sizes of all windows in the eCos Configuration Tool may be adjusted by
dragging the splitter bars that separate the windows. The chosen sizes will be used the
next time the eCos Configuration Tool isinvoked by the current user.

All windows except the Configuration Window may be shown or hidden by using

the commands under the View menu (for example, View->M emory L ayout) or the
corresponding keyboard accelerators (Alt+1 to Alt+5). By default the memory layout
and conflicts window are hidden.

Y our chosen set of windows (and their relative sizes) will be preserved between
invocations of the eCos Configuration Tool.

Toolbars

Select View->Toolbars. each of the standard and Memory Layout toolbars may be
hidden or shown.

eCos eCos User's Guide = 11

Customization

Settings

To change other visual aspects, select View->Settings. The Settings dialog box will
be displayed that allows you to customize the following options:

Displaying Header Files

Y ou can change the viewer used to display header files.

View Documentation

Y ou can change the browser used to display HTML Help (see “Methods of Displaying
HTML Help” on page 9).

Configuration Item Labels

In the configuration window, you can choose to have either descriptive names (the
default) or macro names displayed astreeitem labels. Descriptive names are generally
more comprehensible, but macro names are used in some contexts such as conflict
resolution and may be directly related to the source code of the configuration. Note
that it is possible to search for an item in the configuration view by selecting
Find->Edit (see" Searching” on page 31). Both descriptive names and macro names
can be searched.

Configuration Item Integer Format

Y ou can choose to have integer items in the Configuration Window displayed in
decimal or hexadecimal format.

Fonts

Thefont used in each window of the eCos Configuration Tool may be changed
independently. To use this feature, select the window whose font isto be changed in
the drop-list labeled “Window” and press the “ Change Font” button.

12 = eCos User’s Guide eCos

Customization

Settings

8 S T e R

| o o) G

ok | _ Conedl |

eCos eCos User's Guide = 13

Screen Layout

Screen Layout

The following windows are available within the eCos Configuration Tool:
« Configuration Window

« Properties Window

» Short Description

« Memory Layout

« Conflicts

= Output

The layout of the windows my be adjusted to suit your preferences. see “ Settings’
on page 12.

Configuration Window

Thisisthe principal window used to configure eCos. It takes the form of atree-based
representation of the configuration items within the currently loaded eCos packages.

In the case of items whose values may be changed, controls are avail able to set the
item values. These either take the form of check boxes or radio buttons within the tree
itself or cellsto the right of the thin vertical splitter bar. Controlsin the tree may be
used in the usual way; cells, however, must first be activated.

To activate acell, simply click on it: it will assume a sunken appearance and data can
then be edited in the cell. To terminate in-cell editing, click elsewhere in the
configuration window or press ENTER. To discard the partial results of in-cell
editing and revert to the previous value, press ESCAPE. Note that an asterisk appears

14 = eCos User’s Guide eCos

Screen Layout

against configuration items which have changed since the configuration was last
saved.

= [23 Configuration
(23 Global build options
 Senial device divers w1 3

= =
f= =Cos HAL v1_3
B 140 subesystem v1_3
B Infrastucture v1_3
B eCos kemel v1_3
& Clibrany v1_3
5 Math librany v1_3
 walclock device v1_3

& Common error code support | +1_3

Cells comein three varieties, according to the type of datathey accept:

Table 1:
Cdl Type Data Accepted
Integer Decimal or hexadecimal values

Floating Point Floating point values

String Any

In the case of string cells, you can double-click the cell to display a dialog box
containing alarger region in which to edit the string value. Thisis useful in the case of
long strings, or those spanning multiple lines.

Disabled items

Some items will appear disabled. In this case the item label and any associated
controls and cellswill be grayed. It is not be possible to change the values of disabled
items.

Right-Clicking

Y ou can right-click on an item in the configuration window item to display a pop-up
menu which (depending on the type of the item selected) allows you to:

eCos

eCos User’'s Guide = 15

Screen Layout

Properties —information relating to the currently selected item is displayed. The
information is equivalent to that displayed in the Properties Window.

Restore Defaults - the default value of the currently selected item is restored.

Visit Documentation - causes the HTML page most closely relating to the
currently selected item to be displayed. This has the same effect as
double-clicking the URL property in the Properties Window.

View Header File— this causes the file containing the itemsto be displayed. This
is equivalent to double-clicking on the File property in the Properties Window.
The viewer used for this purpose may be changed using the View->Settings menu
item (see “ Settings” on page 12). Note that this operation is only possible when
the current configuration is saved, in order to avoid the possibility of changing the
source repository.

Unload Package - thisis equivalent to using the Build->Packages menu item to
select and unload the package in question.

Conflicts Window

Thiswindow exists to display any configuration item conflicts. Conflicts are the result
of failures to meet the requirements between configuration items expressed in the
CDL. See “Conflicts’ in “CDL Concepts’ on page 45.

Item | Conflict | Froperty |
CYGSEM_HAL_STATIC_MMU_TABLES Unsatisfied Requires CYGSEM_HAL_INSTALL M...

The window comprises three columns;

[tem
Thisisthe macro name of thefirst item involved in the conflict.
Conflict

Thisisadescription of the conflict type. The currently supported types are
“unresolved”, “illegal value’, “evaluation exception”, “goal unsatisfied” and “bad
data’.

Property
This contains a description of the configuration item’s property that caused the

16 = eCos User’s Guide eCos

Screen Layout

conflict.

Within the conflicts window you can right-click on any item to display a context menu

which allows you to choose from one of the following options:

« Locatetheitem involved in the conflict —thiswill cause the configuration
window to display the item relating most closely to the selected conflict.

Y ou can use the Tools->Resolve Conflicts menu item to resolve conflicts — see
“Resolving conflicts’ on page 27.

Output Window

Thiswindow displays any output generated by execution of external tools and any
error messages that are not suitable for display in other forms (for example, as
message boxes).

Within the output window you can right-click to display a context menu which allows
you to:

=« Savethe contents of the window to afile
= Clear the contents of the window

Properties Window

Thiswindow displaysthe CDL properties of the item currently selected in the
configuration window. The same information may be displayed by right-clicking the
item and selecting “ properties’.

Froperty | WValue -

LRL ref/ecos-ref/the-ecos-hardware-abstraction-layer-hal. htrl

File include’pkgconfihal. b

Macro CvYGPEG_HAL

Walue w1 3

Drefault w1 3

Type Shing

IncludeDir cyg/hal

Doc ref/ecos-ref/the-ecos-hardware-abstraction-layer-hal. htrl b
Compile generic-stub. ¢ thread-packets.c hal_stub.c drv_api.c

E?mpile -library=libextras.a dummy.c | _ILI
4 3

Two properties may be double-clicked as follows:

»« URL —double-clicking on a URL property causes the referenced HTML pageto
be displayed. This has the same effect as right-clicking on the item and choosing
“Visit Documentation”.

eCos

eCos User’'s Guide = 17

Screen Layout

« File—double-clicking on aFile property in a saved configuration causes the File
to be displayed. The viewer used for this purpose may be changed using the
View->Settings menu item. Note that this operation is only possible when the
current configuration is saved, in order to avoid the possibility of changing the
source repository.

Short Description Window

Thiswindow displays a short description of the item currently selected in the
configuration window. More extensive documentation may be available by
right-clicking on the item and choosing “Visit Documentation”.

Memory Layout Window

The memory layout window presents a graphical view of the memory layout of the
currently selected combination of target architecture, platform and start-up type. Each
memory region is represented by a horizontal bar within the window. Each bar is
further divided into a number of blocks representing memory sections. Unused parts
of amemory section are represented using hatching. All numeric information is
presented in hexadecimal format:

ram (04010000-043FFFFF)

vectors e goc_except_t.. data 135 V
align 8 align 4 align 4 align 8 align 8 align 8 align 8 align 8 align 8 %

04070000

Default memory layouts are provided for all supported platforms; you do not need to
edit these layouts in order to begin development on standard, supported, eCos
platforms. However, you may need to modify the memory layouts at certain times, for
example when additional memory isinstalled on an evaluation board. When the
memory layout is modified, a new linker script fragment is generated to allow the
linker to make use of the new memory.

Layout Manipulation

The memory layout window includes controls to create, delete and modify the
properties of both memory regions and memory sections (collectively referred to as
memory items). These manipulation functions are accessible from both memory items
and from the memory layout toolbar, which may be shown or hidden by the
View->Toolbars->Memory Layout menu item. When modifying or deleting an item,
it is necessary to first select it with your mouse. The currently selected itemis

18 = eCos User’s Guide eCos

Screen Layout

displayed with afocus rectangle (as section rodata above). Creation and modification
of amemory item is achieved using a property sheet. The property sheet for amemory
item may also be accessed by double-clicking on the item in the memory window.

Memory Regions

Details of a memory region may be specified using the region properties sheet,
displayed by double-clicking on the name of the memory region in the memory layout
display. The general settings page of this sheet allows editing of the region
parameters:

ram - Hegion Properties

040710000
3F0000

The name of each memory region is arbitrary, but should not contain spaces or
punctuation characters. The start address and size of each memory region is specified
in bytes and entered as hexadecimal numbers. The Read Only check box should be
checked where the memory region represents a block of read-only memory. This
information is used to verify that the initial and final locations of any relocating
memory sections are within appropriate memory regions.

The Note page of the region properties sheet may be used to keep notes concerning
the memory regions. These notes are saved with the memory layout in the build tree.

eCos

eCos User’'s Guide = 19

Screen Layout

Memory sections

Details of amemory section may be specified or modified using the section properties
sheet. The general settings page of this sheet allows editing of the parameters which
are common to all sections:

ram_vectors - Section Properties

Each memory section is either linker-defined or user-defined. The name of a
linker-defined section is selected from a drop-down list appropriate for the currently
selected target architecture. Only those names which are not currently in use are
presented. The name of a user-defined section must not contain spaces or punctuation
characters. The size of a user-defined section may also be specified by checking the
Known Size check box. The size should then be entered as a hexadecimal number.
User-defined sections of unknown size are assumed to occupy all available space up
to the next section or the end of the memory region.

Thefina memory location after relocation (also known asVMA) of amemory section
may be defined using an absolute start address or by specifying another section which
it followsin the memory map. Where an absolute address is required, this should be
entered as a hexadecimal number.

20 = eCos User’s Guide eCos

Screen Layout

Alternatively, the preceding section may be selected from a drop-down list of
appropriate existing sections. In this case, the alignment of the section in terms of an
n-byte boundary should also be selected.

The relocation settings page allows editing of the parameters which are specific to
relocating sections:

rodata - Section Properties

o R e

B Fellleisineg

The relocation of amemory section at system start-up is enabled by checking the
Relocate Section check box. The initial size to which the memory section is loaded
(also known as the LMA) may be defined using an absol ute start address or by
specifying another section which it follows in the memory map. Where an absolute
addressisrequired, this should be entered as a hexadecimal number. The address must
lie within aread-only memory region. Alternatively, the preceding section may be
selected from a drop-down list of appropriate existing sections. The initial location of
the preceding section must be a location in aread-only memory region.

The note page of the section properties sheet may be used to keep notes concerning
the memory section. These notes are saved with the memory layout in the build tree.

eCos

eCos User’'s Guide = 21

Screen Layout

Memory access

User-defined memory sections may be accessed using C preprocessor macros defined
inamemory layout header file exported by the eCos Configuration Tool. The name of
the memory layout header file appropriate for the current configuration is defined by

the CYGHWR_MEMORY_LAYOUT configuration item.

M acros specifying the start address and size are defined for each user-defined memory
section and may be accessed as demonstrated in the following example:

Table 2: Accessing a user-defined memory section named
example
#i ncl ude <pkgconf/system h>
#i ncl ude CYGAMR_MEMORY_LAYOUT_H
int min ()

/1 use the menmory section as an integer array
int * array = (int *) CYGQVEM SECTI ON_exanpl e;
unsigned int array_size = CYGQVEM SECTI ON_exanpl e_SI ZE / sizeof (int);

/1 initialize each array el ement

unsi gned int count;

for (count = 0; count < array_size; ++count)
array [count] =0

return O;

22 m eCos User’s Guide eCos

Updating the Configuration

5

Updating the Configuration

Adding and Removing Packages

To add or remove packages from the configuration, select Build->Packages. The
following dialog box will be displayed:

eCos eCos User's Guide = 23

Updating the Configuration

Figure 6: Packages dialog box

Packages

AR evaluation board [SER-T]

Cirruz Logic development board
Cogent Cha230/222 board
Cogent Cha236/287 board
Cyghdon support via eloz
Fujitzu MEEEE00-MADT board
Hitachi SH?T0S board

i2386 common HAL

1386 PC target

Intel EBSAZ85 StrongARM boar
Linus synthetic target
fatsuzhita STE board

ARM common HAL

ARM development board [PID]
 libram

Comman ermar code support
eCiog commaon HAL

eCiog kemel

[0 sub-gystem
|nfrastructure

b ath librarn

Senal device drivers
Wallclock device code

The left list shows those packages that are available to be loaded. The right-hand list
shows those that are currently loaded. In order to transfer packages from one list to
another (that is, to load or unload packages) double-click the selection or click the

Add or Remove buttons.

The version drop-list displays the versions of the selected packages. When loading

packages, this control may be used to load versions other than the most recent

(current). Note that if more than one package is selected, the version drop-list will
display only the versionsin common to all the selected packages.

The bottommost window in the dialog displays a brief description of the selected
package. If more than one package is selected, this window will be blank.

Platform Selection

To add, modify or remove entriesin the list of platforms used for running tests, select
Tools->Platforms. The following dialog will be displayed:

24 m eCos User’s Guide

eCos

Updating the Configuration

Figure 7: Platforms dialog box

Platforms

amal_sim
crmaz3l
crmatds
ebzaa5
edb P
fadz

jmr 3304
liria

b

pc

pid

pzim

sh7 708
zleh
zparclite_zim
zth
shdevall
k39 _zim
vicd 373

arm-elf

rnin 1 02300-lf
arrn-lf
powelpc-eahi
arm-elf

armn-elf
powerpc-eahi
mips-tw33-elf
IERE-pc-linus-griu
powerpe-eahi
i386-elf

arrn-lf
powerpc-eabi
zh-elf
zparclite-elf
sparclite-elf
ran10300-elf

rnin 1 02300-lf
mipz-tw33-elf
ripz64yerd 300-elf

target gim --board=z...

target zim -0 'YHadd...

target gim -nfp -zpar...

target gim --board=|...

Hardware with brea...
Sirnulatar

Hardware with brea...
Hardware with brea...
Hardware with brea...
Hardware with brea...
Hardware with brea...
Hardware with brea...
Synthetic target
Hardware with brea...
Hardware with brea...
Hardware with brea...
Sirnulatar

Hardware with brea...
Hardware with brea...
Simnulator

Hardware with brea...
Hardware with brea...
Sirnulator

Hardware with brea...

Y ou may add, modify or remove platform entries as you wish, but in order to run tests,
aplatform must be defined to correspond to the currently loaded hardware template.
The information associated with each platform nameis used to run tests.

To modify aplatform, click the M odify button with the appropriate platform selected,
or double-click on an entry in thelist. A dialog will be displayed that allows you to
change the command prefix, platform type and arguments for GDB.

eCos

eCos User’'s Guide = 25

Updating the Configuration

Figure 8: Platform M odify dialog box

Modify EEB |
Platfarrn parne: I-"-“-H M-EDET211
Command prefis: I‘E'"T"Elf j

Flatform bype: Hardware with break, park

Argurents for GOE: I
ak. I Cancel

To add a new platform, click the Add button. A similar dialog will be displayed that
alowsyou to define anew platform. To remove a platform, click the Delete button or
press the DEL key with the appropriate platform selected.

Figure 9: New Platform dialog box

Mew Platform 7] |
Platfarm narme: Iedl:u?:-::-c:-:
Command prefis; IE'"'""Elf j

Platfarm bype: Hardwsare with break)

Arguments for GDE: I

The command prefix isused when running testsin order to determine the names of the
executables (such as gdb) to be used. For example, if the gdb executable nameis
“arm-elf-gdb.exe” the prefix should be set to “arm-elf”.

The platform type indicates the capabilities of the platform - whether it is hardware or
asimulator, and whether breakpoints are supported.

The arguments for the GDB field alow additional arguments to be passed to gdb
whenitisusedtorun atest. Thisistypically used in the case of simulatorslinked to
gdb in order to define memory layout.

26 m eCos User’s Guide eCos

Updating the Configuration

Using Templates

To load a configuration based on atemplate, select Build->Templates.
The following dialog box will be displayed:

Figure 10: Templates dialog box

Templates

Cirruz Logic development board

Change the hardware template, the packages template, or both. To select a hardware
template, choose from the first drop-list. To choose a packages template, choose from
the second. Brief descriptions of each kind of template are provided in the
corresponding edit boxes.

Resolving conflicts

During the process of configuring eCosit is possible that conflicts will be created. For
more details of the meaning of conflicts, see “ CDL Concepts’ on page 45.

The Conflicts Window displays all conflictsin the current configuration.
Additionally, awindow in the status bar displays a count of the conflicts. Because the
resolution of conflicts can be time-consuming, a mechanism exists whereby conflicts
can be resolved automatically.

Y ou can choose to have a conflicts resolution dialog box displayed by means of the
Tools->Options menu item.

eCos

eCos User’'s Guide = 27

Updating the Configuration

Figure 11: Options

Options T HE|
Check far conflicts:
¥ After any item changed

[Before zaving configuration

v dfutamnatically suggest fixes

k. I Cancel

Y ou can choose to have conflicts checked under the following circumstances:
« After any itemis changed (in other words, as soon as the conflict is created)

« Before saving the configuration (including building)
« Never

The method you chose depends on how much you need your configuration to be free
of conflicts. Y ou may want to avoid having to clean up all the conflicts at once, or you
may want to keep the configuration consistent at al times. If you have major changes
to implement, which may resolve the conflicts, then you might want to wait until after
you have completed these changes before you check for conflicts.

NOTE If you choose to check conflicts after any item is changed, only newly
arising conflicts are displayed. If you choose to check for conflicts
before saving the configuration, the complete set is displayed.

Automatic resolution
If you check the “ Automatically suggest fixes’ check box, a conflicts resolution

dialog box will be displayed whenever new conflicts are created. The same dialog box
may be displayed at any stage by means of the Tools->Resolve Conflicts menu item.

The conflicts resolution dialog box contains two major windows.

28 m eCos User’s Guide eCos

Updating the Configuration

Figure 12: Resolve conflicts window

Resolve Conflicts

CYGSEM_LIBC_INVOKE_DEFAULT_STATIC_COMSTRUCTORS Enabled

The upper contains the set of conflicts to be addressed; the format of the databeing as
that of the Conflicts Window. The lower window contains a set of proposed
resolutions— each entry is a suggested configuration item value change that as awhole
may be expected to lead to the currently selected conflict being resolved.

Note that there is no guarantee:
« that automatic resolutions will be determinable for every conflict.

« that the resolutions for separate conflicts will be independent. In other words, the
resolution of one conflict may serve to prevent the resolution of another.

= that the resolution conflicts will not create further conflicts.

The above warnings are, however, conservative. In practice (so long as the number
and extent of conflicts are limited) automatic conflict resolution may be used to good
effect to correct problems without undue amounts of programmer intervention.

In order to select the conflicts to be applied, select or clear the check boxes against the
resolutions for each proposed resolution. By default all resolutions are selected; you
can return to the default state (in other words, cause all check boxes for each conflict
to again become checked) by pressing the “ Reset” button. Note that multiple selection
may be used in the resolutions control to allow ranges of check boxes to be toggled in
one gesture.

eCos

eCos User’'s Guide = 29

Updating the Configuration

When you are happy to apply the selected resolutions for each conflict displayed, click
Apply; thiswill apply the resolutions. Alternatively you may cancel from the dialog
box without any resolutions being applied.

30 = eCos User’s Guide eCos

Searching

Searching

Select Edit --> Find. Y ou will be presented with a Find dialog box:
Figure 13: Find dialog box

M acro names

Using this dialog box you can search for an exact text string in any one of three ways,
as specified by your selection in the “Search in” drop-list:

« Macro names - the search isfor atext match within configuration item macro

names
» Item names - the search is for atext match within configuration item descriptive
names
= Short descriptions - the search is for atext match within configuration item short
descriptions

Note that to invoke Find you can also click the Find icon on the toolbar.

eCos eCos User’'s Guide = 31

Building

Building

When you have configured eCos, you may build the configuration.
On the Build menu, click:

« Library (or click the Build Library icon on the toolbar) — this causes the eCos
configuration to be built. The result of a successful build will be (among other
things) alibrary against which user code can be linked

« Tests—this causes the eCos configuration to be built, and additionally builds the
relevant test cases linked against the eCos library

« Clean —thisremoves al intermediate files, thus causing a subsequent
build/library or build/tests operation to cause recompilation of all relevant files.

« Sop —this causes a currently executing build (any of the above steps) to be
interrupted

Build options may be displayed by using the Build->Options menu item. This
displays a dialog box containing a drop-list control and two windows. The drop-list
control allows you to select the type of build option to be displayed (for example
“LDFLAGS’ arethe options applied at link-time. The left-hand window isatree view
of the packages|oaded in the current configuration. The right-hand window isalist of
the build options that will be used for the currently selected package.

Note that this dialog box currently affords only read-only access to the build options.
In order to change build options you must edit the relevant string configuration item.

A single level of inheritance is supported: each package’s build options are combined
with the global options (these are to be found in the “Global build options” folder in
the configuration view).

32 m eCos User’s Guide eCos

Building

Options

tionh -mepu=army tdmi
& 40

5 'I ice dii A all
];.:41' EE!: H':rce et A pointer-arith

dztict-prototypes
A 140 sub-system Swdinling
A Imfrastructure “afundef
42 eCos kemel Afoverloaded-virtual
A C library '%2
4 Math lib Hurction-sect
gy Manihary ffunction-sections
B Walclock device -fdata-zections
A Common error code suppart Ano-thi
frio-exceptiong
-fetable-go
-firut-pricrity

Selecting Build Tools

Normally theinstallation process will supply the information required for the eCos
Configuration Tool to locate the build tools (compiler, linker, etc...) necessary to
perform abuild. However if thisinformation is not registered, or it is necessary to
specify the location manually (for example, when a new toolchain installation has
been made), select Tools->Paths->Build Tools. The following dialog box will be

displayed:

eCos eCos User’'s Guide = 33

Building

Figure 14: Build tools

Build Tools

This dialog box allows you to locate the folder containing the build tools.

Selecting User Tools

Normally theinstallation process will supply the information required for the eCos
Configuration Tool to locate the user tools (cat, Is, etc...) necessary to perform a
build. However if thisinformation is not registered, or it is necessary to specify the
location manually (for example, when a new toolchain installation has been made),
select Tools->Paths->User Tools. The following dialog box will be displayed:

Figure 15: User tools

User Tools

34 m eCos User’s Guide eCos

Execution

Execution

Test executables that have been linked using the Build/Tests operation against the
current configuration can be executed by selecting Tools->Run Tests.

When tests are run, the Configuration Tool looks for a platform name corresponding
to the currently loaded hardware template. If no such platform isfound, a dialog will
be displayed for you to define one; this dialog is similar to that displayed by the Add
function in the Tools->Platfor ms dialog, but in this case the platform name cannot be
changed.

When atest run isinvoked, a property sheet is displayed, comprising three tabs:
Executables, Output and Summary.

Note that the property sheet isresizable.
Three buttons appear on the property sheet itself: Run/Sop, Close and Properties.

The Run button is used to initiate atest run. Those tests selected on the Executables
tab are run, and the output recorded on the Output and Summary tabs. During the
course of arun, the Run button changesto “ Stop”. The button may be used to
interrupt atest run at any point.

Properties

The Properties button is used to change the connectivity properties for the test run.

eCos eCos User's Guide = 35

Execution

Figure 16: Propertiesdialog box

Properties Ei

ARM-PID

’V Calculated from file size | =

| Er—|
{g) Bemoe
Comecton]] ok | Concd |

Download Timeout

This group of controls serves to set the maximum time that is allowed for
downloading atest to the target board. If the timeis exceeded, the test will be deemed
to have failed for reason of “Download Timeout” and the execution of that particular
test will be abandoned. This option only applies to tests run on hardware, not to those
executed in asimulator. Times are in units of elapsed seconds.

Three options are available using the drop-down list:

» Calculated from file size - an estimate of the maximum time required for
download is made using the (stripped) executable size and the currently used baud
rate

» Specified - auser-specified value may be entered in the adjacent edit box
» None - no maximum download time is to be applied.

Run time Timeout

This group of controls serves to set the maximum time that is allowed for executing a
test on the target board or in asimulator. If the time is exceeded, the test will be
deemed to havefailed for reason of “Timeout” and the execution of that particular test
will be abandoned. In the case of hardware, the timeis measured in elapsed seconds:
in the case of asimulator it isin CPU seconds.

Three options are available using the drop-down list:

36 m eCos User’s Guide eCos

Execution

= None - no maximum download time is to be applied.
» Specified - auser-specified value may be entered in the adjacent edit box
» Default - adefault value of 30 secondsis used

Connection

The Connection button may be used to specify how the target board is to be accessed:

Figure 17: Connection dialog box

Connection

If the target board is connected using a serial cable, the Serial radio button should be
checked. In this case you can select aport (COM1, COM?2, ...) and an appropriate
baud rate using drop-list boxes.

If the target board is accessed remotely using GDB remote protocol, the “TCP/I1P’
radio button should be checked. In this case you can select a host name and TCP/IP
port number using edit boxes.

Executables Tab

Thisisused to adjust the set of tests available for execution. A check box against each
executable name indicates whether that executable will be included when the Run
button is pressed. The Check All and Uncheck All buttons may be used to check or
uncheck all items.

When the property sheet isfirst displayed, it will be pre-populated with those test
executables that have been linked using the Build/Tests operation against the current
configuration.

eCos

eCos User’'s Guide = 37

Execution

Figure 18: Run tests

“% Run Tests

Y ou can right-click in the window to display a context menu containing Add and
Removeitems. Clicking Remove will remove those executables selected. Clicking
Add will display a dialog box that allows you to add to the set of items. Equivalently
the Add button may be used to add executables, and the DEL key may be used to
remove them.

Y ou can use the Add from Folder button to add a number of executablesin a
specified folder (optionally including subfolders).

38 m eCos User’s Guide eCos

Execution

Figure 19: Add files from folder
Add Files from Folder

& D)

“E’,‘ My D ocuments

The“Add from subfolders’ check box should be checked if you wish the search for
executables to descend into subfolders (in the example above the whole of the C drive
would be searched).

The“Files of type” edit box should be used to specify the extension of those filesto be
matched [for example, “*.exe’].

Output Tab

Thistab is used to display the output from running tests. The output can be saved to a
file or cleared by means of the popup menu displayed when you right-click in the
window.

Summary Tab
Thistab isused to display arecord, in summary form, of those tests executed. For
each execution, the following information is displayed:
« Time - the date and time of execution
» Host - the host name of the machine from which the test was downloaded
» Platform - the platform on which the test was executed
« Executable - the executable (file name) of the test executed

eCos eCos User’'s Guide = 39

Execution

« Satus - the result of executing the test. Thiswill be one of the following:

u]

O

O

u]

O

O

« Sze- thesize [stripped/unstripped] of the test executed

Not started
No result
Inapplicable
Pass
DTimeout
Timeout
Cancelled
Fail

Assert fail

» Download - the download time [mm:ss/mm:ss]| used. Thefirst of the two times

displayed represents the actual time used: the second the limit time.
» Elapsed - the elapsed time [mm:ss] used.

« Execution - the execution time [mm:ss/mm;:ss] used. The first of the two times

displayed represents the actual time used: the second the limit time.

The output can be saved to afile or cleared by means of the popup menu displayed

when you right-click in the window.

40 m eCos User’s Guide

eCos

Creating a Shell

Creating a Shell

To cal up ashell window, select Tools->Shell:

E bash
"C:/Cyguinsbhinshash.exe™-2.835 _

eCos eCos User's Guide = 41

Creating a Shell

Keyboard Accelerators

Thefollowing table presentsthe list of keyboard accelerators that can be used with the

Configuration Tooal.

Table 3: Keyboard accelerators

Accelerator
Alt+1
Alt+2
Alt+3

Alt+4
Alt+5
Ctrl+A

Ctrl+C

Ctrl+F
Ctrl+N
Ctrl+O
Ctrl+S
Ctrl+Vv
Ctrl+X
Ctrl+z
F1

F3

F7
Shift+F7
Alt+F6
Shift+Alt+0
Shift+Ins

Action Remarks
hide/show properties window
hide/show documentation window

hide/show short description
window

hide/show memory layout window
hide/show output window

select al output window and in-cell
editing

copy output window and in-cell
editing

Edit->Find

File->New

File->Open

File->Save

Paste in-cell editing only

Cut in-cell-editing only

Undo in-cell editing only

Context-sensitive help

Find next

Build->Library

Build->Tests

View->Next window
View->Previous window
Paste in-cell editing only

42 m eCos User’s Guide

eCos

Creating a Shell

Accelerator
Shift+F10
Alt+Enter
>

<

Space

Action

Display context menu
Display properties dialog box
Increment item value
Decrement item value
Toggle item value

Remarks

Configuration window
Configuration window
Configuration window
Configuration window
Configuration window

eCos

eCos User’'s Guide = 43

Creating a Shell

Part Il: eCos Programming
Concepts and Techniques

Programming with eCos is somewhat different from programming in more traditional
environments. eCos is a configurable open source system, and you are able to
configure and build a system specifically to meet the needs of your application.

Various different directory hierarchies are involved in configuring and building the
system: the component repository, the build tree, and theinstall tree. These directories
exist in addition to the ones used to develop applications.

44 m eCos User’s Guide eCos

CDL Concepts

10

CDL Concepts

About this Chapter

This chapter serves as a brief introduction to the concepts involved in eCos
(Embedded Configurable Operating System). It describes the configuration
architecture and the underlying technology to alevel required for the embedded
systems devel oper to configure eCos. It does not describe in detail aspects such as
how to write reusable components for eCos. this information is given in the CDL
Writer’s Guide.

Background

Software solutions for the embedded space place particularly stringent demands on
the devel oper, typically represented as requirements for small memory footprint, high
performance and robustness. These demands are addressed in eCos by providing the
ability to perform compile-time specialization: the devel oper can tailor the operating
system to suit the needs of the application. In order to make this process manageable,
eCosisbuilt in the context of a Configuration Infrastructure: a set of toolsincluding a
Configuration Tool and aformal description of the process of configuration by means
of a Component Definition Language.

eCos eCos User's Guide m 45

CDL Concepts

Configurations

eCosistailored at source level (that is, before compilation or assembly) in order to
create an eCos configuration. In concrete terms, an eCos configuration takes the form
of aconfiguration save file (with extension .ecc) and set of files used to build user
applications (including, when built, alibrary file against which the application is
linked).

Component Repository

eCos is shipped in source in the form of a component repository - a directory
hierarchy that contains the sources and other files which are used to build a
configuration. The component repository can be added to by, for example,
downloading from the net.

Component Definition Language

Part of the component repository isaset of files containing adefinition of its structure.
The form used for this purpose is the Component Definition Language (CDL). CDL
defines the rel ationships between components and other information used by tools
such as the eCos Configuration Tool. CDL is generally formulated by the writers of
components: it is not necessary to write or understand CDL in order for the embedded
systems devel oper to construct an eCos configuration.

Packages

The building blocks of an eCos configuration are called packages. Packages are the
units of software distribution. A set of core packages (such as kernel, C library and
math library) is provided by Red Hat: additional third-party packageswill be available
in future.

A package may exist in one of a number of versions. The default version isthe
current version. Only one version of a given package may be present in the
component repository at any given time.

Packages are organized in atree hierarchy. Each packageis either at the top-level or
isthe child of another package.

The eCos Administration Tool can be used to add or remove packages from the
component repository. The eCos Configuration Tool can be used to include or
exclude packages from the configuration being built.

46 m eCos User’s Guide eCos

CDL Concepts

Configuration Items

Configuration items are the individual entities that form a configuration. Each item
corresponds to the setting of a C pre-processor macro (for example,
CYGHWR_HAL_ARM_PID_GDB_BAUD). The code of eCositself iswritten to
test such preprocessor macros so asto tailor the code. User code can do likewise.

Configuration items come in the following flavors:
= None: such entities serve only as placeholdersin the hierarchy, allowing other
entities to be grouped more easily.

« Boolean entities are the most common flavor; they correspond to units of
functionality that can be either enabled or disabled. If the entity is enabled then
there will be a#define; code will check the setting using, for example, #ifdef

« Data entities encapsulate some arbitrary data. Other properties such as a set or
range of legal values can be used to constrain the actual values, for exampleto an
integer or floating point value within a certain range.

« Booldata entities combine the attributes of Boolean and Data: they can be enabled
or disabled and, if enabled, will hold a data value.

Like packages, configuration items exist in atree-based hierarchy: each configuration
item has a parent which may be another configuration item or a package. Under some
conditions (such as when packages are added or removed from a configuration), items
may be “re-parented” such that their position in the tree changes.

Expressions

Expressions are relationships between CDL items. There are three types of expression
in CDL:

Table4: CDL Expressions

Expression Type Result Common Use[see
Table 2]

Ordinary A single value legal_values property

List A range of values (for legal_values property

example“1to 10”)

Goal True or False requires and active _if

properties
Properties

Each configuration item has a set of properties. The following table describes the
most commonly used:

A complete description of propertiesis contained in the CDL Writer’s Guide.

eCos eCos User's Guide = 47

CDL Concepts

Table 5: Configuration properties

Property
Flavor
Enabled
Current_value
Default_value
Legal_values

Active if
Requires

Calculated
Macro
File

URL
Hardware

Inactive Items

Descendants of an item that is disabled are inactive: their values may not be changed.
Items may also become inactiveif an active_if expression is used to make the item
dependent on an expression involving other items.

Conflicts

Not all settings of configuration items will lead to a coherent configuration; for
example, the use of atimeout facility might require the existence of timer support, so
if the oneisrequired the other cannot be removed. Coherenceis policed by means of
consistency rules (in particular, the goal expressions that appear as CDL items
requires and active_if attributes [see above]). A violation of consistency rules creates
a conflict, which must be resolved in order to ensure a consistent configuration.
Conflict resolution can be performed manually or with the assistance of the eCos
tools. Conflicts comein the following flavors:

Anunresolved conflict meansthat there is areference to an entity that isnot yetin
the current configuration

Anillegal value conflict is caused when a configuration item is set to a value that
isnot permitted (that is, alegal _values goal expression isfailing)

Use

The “type” of the item, as described above

Whether the item is enabled

The current value of the item

An ordinary expression defining the default value of the item

A list expression defining the valuesthe item may hold (for example,
1t010)

A goal expression denoting the requirement for thisitem to be active
(see below: Inactive Items)

A goal expression denoting requirements this item places on others
(see below: Conflicts)

Whether the item as non-modifiable

The corresponding C pre-processor macro

The C header file in which the macro is defined

The URL of a documentation page describing the item

Indicates that a particular package is related to specific hardware

48 m eCos User’s Guide

eCos

CDL Concepts

« Anevaluation exception conflict is caused when the evaluation of an expression
would fail (for example, because of adivision by zero)

« Anunsatisfied goal conflict is caused by afailing requires goal expression

« A bad data conflict arises only rarely, and correspondsto badly constructed CDL.
Such a conflict can only be resolved by reference to the CDL writer.

Templates

A template is asaved configuration - that is, a set of packages and configuration item
settings. Templates are provided with eCos to alow you to get started quickly by
instantiating (copying) a saved configuration corresponding to one of a number of
common scenarios; for example, a basic eCos configuration template is supplied that
contains the infrastructure, kernel, C and math libraries, plus their support packages.

eCos eCos User's Guide = 49

The Component Repository and Working Directories

11

The Component Repository and
Working Directories

Each of thefile treesinvolved in eCos development has a different role.

Component Repository

The eCos component repository contains directories for all the packages that are
shipped with eCos or provided by third parties.

The component repository should not be modified as part of application development.

50 = eCos User’s Guide eCos

The Component Repository and Working Directories

Figure 20: Component repository

=3 eCos
=3 doc

E@ guides
i EHER gnupro-guides
F-E3 userguides

E% ref
| E-EA ecosref

M-E3 gnupro-ref
=3 tutarials

F-E3 ecos-tutarial

M3 ecos-98rpE

{23 examples
EI@ lnaders

{23 am-ash
-2 am-pid

- sparclite-sleb
ST WA%mr3904

I:—]@ packages

-2 compat

© E-ER uiton
=3 cygmon
R
L——_I@ devs

H@ wallclock,
E-Z3 watchdog
EI@ eror
R
=-E3 hal

E-E am

E3 commaon
3 286

&3 mips
B-EA mn10300

M-E3 sparclite
2-E3 infra
©OEER w13
EI% in
@ COMMmorn
=3 pei
@ zernal
-2 kemel
-
E@ language
B3 ¢
{23 phkgconf
B-E3 templates

=3 prebuil

@ sleb

-3 tools

-E3 mn10300-stdevall
@ powerpc-cogent

eCos

eCos User’'s Guide = 51

The Component Repository and Working Directories

Purpose

The component respository is the master copy of source code for al system and third
party components. It also contains some files needed to administer and build the
system, such asecosadni n. tcl .

How is it modified?
Y ou modify it by importing new versions of packagesfrom adistribution or removing

existing packages. These activities are undertaken using the eCos Package
Administration Tool.

When is it edited manually?

Files in the component repository should only be edited manually as determined by
the component maintainer.

User applications
User application source code should not go into the component repository.
Examples of files in this hierarchy:
BASE_DI R/doc/ref/ecos-ref.html
Thetop level HTML file for the eCos Reference Manual.
BASE_DI R/prebuilt/pid/testgkernel/vl 3 x/tests/thread gdb.exe
BASE_DI R/prebuilt/linux/tests/kernel/vl_3 x/teststhread gdb.exe
Prebuilt tests for the supported platforms, and the synthetic Linux target.
BASE_DI R/examples/twothreads.c
One of the example programs.
BASE_ DI R/ecosadmin.tcl

The Tcl program which isused to import new versions of packages from a
distribution or remove existing packages.

BASE_DI R/packages/language/c/libmivi_3_x/src/double/portable-api/s tanh.c
Implementation of the hyperbolic tangent function in the standard math library.
BASE_DI R/pkgconf/rules.mak
A file with make rules, used by the nakefi | e.

Build Tree

The build treeisthe directory hierarchy in which all generated files are placed.
Generated files consist of the makef i | e, the compiled object files, and a dependency
file (with a. d extension) for each sourcefile.

52 m eCos User’s Guide eCos

Purpose
The build treeiswhere al intermediate object files are placed.
How is it modified?
Recompiling can modify the object files.
User applications
User application source or binary code should not go in the build tree.
Examples of files in this hierarchy
ecos-work/language/c/libc/vl 3 x/src
The directory in which object filesfor the C library are built.

Install Tree

Theinstall treeisthe location for all files needed for application development. The
l'i btar get . a library, which contains the custom-built eCos kernel and other
components, is placed in theinstall tree, along with al packages’ public header files.
If you build the tests, the test executable programs will aso be placed in the install
tree.

By default, the install treeis created by ecosconf i g in asubdirectory of the build tree
calledi nst al I . This can be modified with the - - pr ef i x option (see “Manual
Configuration” on page 64).

Purpose

Theinstall tree is where the custom-built I i bt ar get . a library, which contains the
eCos kernel and other components, is located. The install tree is also the location for
all the header filesthat are part of a published interface for their component.

How is it modified?
Recompiling can replace | i bt ar get . a and the test executables.
When is it edited manually?

Where amemory layout requires modification without use of the eCos Configuration
Tool, the memory layout files must be edited directly in theinstall tree. Thesefilesare
located ati nstal | /i ncl ude/ pkgconf/m t _*. *. Note that subsequent modification
of theinstall tree using the Configuration Tool will result in such manual edits being
lost.

eCos

eCos User’'s Guide = 53

The Component Repository and Working Directories

User applications
User application source or binary code should not go in the install tree.
Examples of files in this hierarchy
install/lib/libtarget.a

The library containing the kernel and other components.
install/include/cyg/kernel/kapi.h

The header file for the kernel C language API.
install/include/pkgconf/mit_arm pid_ram.Idi

The linker script fragment describing the memory layout for linking applications
intended for execution on an ARM PID development board using RAM startup.
install/include/stdio.h

The C library header file for standard 1/0.

Application Build Tree

Thistree is not part of eCos itself: it is the directory in which eCos end users write
their own applications.

Example applications and their Makef i | e are located in the component repository, in
the directory BASE_DI R/ exanpl es.

There is no imposed format on this directory, but there are certain compiler and linker
flags that must be used to compile an eCos application. The basic set of flagsis shown
in the example Makef i | e, and additional details can befoundin*“Compiler and Linker
Options” on page 55.

54 m eCos User’s Guide eCos

Compiler and Linker Options

12

Compiler and Linker Options

eCos is built using the GNU C and C++ compilers. The versions of the tools Red Hat
has prepared for this release have some enhancements, such as constructor priority
ordering and selective linking, which will eventually become part of the standard
distribution.

Some GCC options arerequired for eCos, and others can be useful. This chapter gives
abrief description of the required options as well as some recommended
eCos-specific options. All other GCC options (described in the GNUPro manuals)
are available.

Compiling a C Application

The following command lines demonstrate the minimum set of options required to
compile and link an eCos program written in C.

NOTE Remember that when this manual shows gcc you should type the full
name of the cross compile,e.g. m10300-el f - gcc,
m ps-tx39-el f-gcc, power pc-eabi -gcc, sparclite-el f-gcc,
armel f-gcc, m ps64vr4300-el f-gec, or sh-el f-gecc. When
compiling for the synthetic Linux target, use the native gcc which
must have the features required by eCos.

$ gcc -¢ -1 INSTALL_DIR/include file.c
$ gcc -o programfile.o -LINSTALL DIR/1ib -Ttarget.ld -nostdlib

eCos eCos User's Guide = 55

Compiler and Linker Options

NOTE
»« Certain targets may require extra options, for example the SPARClite
architectures require the option - ncpu=spar cl i t e. Examine the
BASE DIR/ packages/ t ar get s fileor BASE _DIR/ exanpl es/ Makef i | e or the
“Global compiler flags’ option (CYGBLD_GLOBAL_CFLAGS) in your
generated eCos configuration) to seeif any extra options are required, and if so,
what they are.

The following command lines use some other options which are recommended
because they use the selective linking feature:

$ gcc -¢ -IINSTALL DIR/include -1. -ffunction-sections -fdata-sections -g -2
file.c
$ gcc -0 programfile.o -ffunction-sections -fdata-sections -W, --gc-sections

-g -@ -LINSTALL DIR/Iib -Ttarget.ld -nostdlib
Compiling a C++ Application

The following command lines demonstrate the minimum set of options required to

compile and link an eCos program written in C++.

NOTE

« Remember that when this manual shows g++ you should type the full name of the
cross compiler: m10300- el f - g++, mi ps-t x39- el f - g++, power pc- eabi - g++,
sparclite-el f-g++,armel f-g++, m ps64vr4300-el f-g++, or sh-el f-g++.
When compiling for the synthetic Linux target, use the native g++ which must
have the features required by eCos.

$ g++ -¢ -1 INSTALL DIR/include -fno-rtti -fno-exceptions file.cxx
$ g++ -0 programfile.o -LINSTALL DIR/1ib -Ttarget.ld -nostdlib

NOTE
»« Certain targets may require extra options, for example the SPARClite
architectures require the option - ncpu=spar cl i t e. Examine the
BASE DIR/ packages/ t ar get s fileor BASE _DIR/ exanpl es/ Makef i | e or the
“Global compiler flags’ option (CYGBLD_GLOBAL_CFLAGS) in your
generated eCos configuration) to seeif any extra options are required, and if so,
what they are.

The following command lines use some other options which are recommended
because they use the selective linking feature:
$ g++ -c¢ -1INSTALL DIR/include -1. -ffunction-sections -fdata-sections
-fno-rtti -fno-exceptions -fvtable-gc -finit-priority -g -Q2 file.cxx
$ g++ -0 programfile.o -W, --gc-sections -g -@ -LINSTALL DIR/1ib -Ttarget.Id
-nostdlib

56 m eCos User’s Guide eCos

Debugging Techniques

13

Debugging Techniques

eCos applications and components can be debugged in traditional ways, with printing
statements and debugger single-stepping, but there are situations in which these
techniques cannot be used. One example of thisiswhen a program is getting dataat a
high rate from areal-time source, and cannot be slowed down or interrupted.

eCos's infrastructure module provides a tracing formalism, allowing the kernel’s
tracing macros to be configured in many useful ways. eCos's kernel provides
instrumentation buffers which also collect specific (configurable) data about the
system'’ s history and performance.

Tracing

To use eCos s tracing facilities you must first configure your system to use tracing.

Y ou should enable the Asserts and Tracing component (CYGPKG_INFRA DEBUG)
and the Use tracing component within it (CYGDBG_USE_TRACING). These options
can be enabled with the Configuration Tool or by editing the file

BUILD_DIR/ pkgconf/i nfra. h manually.

Y ou should then examine all the tracing-rel ated optionsin the Package: Infrastructure
chapter of the eCos Reference Manual. One useful set of configuration options are:
CYGDBG_INFRA DEBUG_FUNCTION REPORTSand

CYGDBG_INFRA DEBUG_TRACE_MESSAGE, which are both enabled by default
when tracing is enabled.

eCos

eCos User’'s Guide = 57

Debugging Techniques

Thefollowing “Hello world with tracing” shows the output from running the hello
world program (from the programming tutorial in Getting Started with eCos) that was
built with tracing enabled:

Table 6: Hello world with tracing

$ mps-tx39-elf-run --board=j nr3904 hello

Hel | o, eCos worl d!

ASSERT FAIL: <2>cyg_trac.h [623]
Cyg_TraceFunction_Report_::set_exitvoid()

exitvoid used in typed function

TRACE: <1>m queue. cxx [395] Cyg_ThreadQueue_I npl enent ati on: : enqueue()
{{enter

TRACE: <1>m queue. cxx [395] Cyg_ThreadQueue_I npl enent ati on: : enqueue()
} } RETURNI NG UNSET!

TRACE: <1>m queue. cxx [126] Cyg_Schedul er _| npl ement ati on: : add_t hr ead()
} } RETURNI NG UNSET!

TRACE: <1>t hr ead. cxx [654] Cyg_Thread: : resumne()

}}return void

TRACE: <1>cstartup. cxx [160] cyg_iso_c_start()

}}return void

TRACE: <1>startup. cxx [142] cyg_package_start ()

}}return void

TRACE: <1>startup. cxx [150] cyg_user_start ()

{{enter

TRACE: <l1>startup. cxx [150] cyg_user_start ()

(((void)))

TRACE: <l1>startup. cxx [153] cyg_user_start ()

"This is the systemdefault cyg user_start()’

TRACE: <l1>startup. cxx [157] cyg_user_start ()

}}return void

TRACE: <1>sched. cxx [212] Cyg_Schedul er::start ()

{{enter

TRACE: <1>m queue. cxx [102] Cyg_Schedul er _I nmpl erent at i on: : schedul e()
{{enter

TRACE: <1>m queue. cxx [437] Cyg_ThreadQueue_I npl enment ati on: : hi ghpri ()
{{enter

TRACE: <1>m queue. cxx [437] Cyg_ThreadQueue_I npl enment ati on: : hi ghpri ()
} } RETURNI NG UNSET!

TRACE: <1>m queue. cxx [102] Cyg_Schedul er _I npl ement at i on: : schedul e()
}} RETURNI NG UNSET!

TRACE: <2>intr.cxx [450] Cyg_Interrupt::enable_interrupts()
{{enter

TRACE: <2>intr.cxx [450] Cyg_Interrupt::enable_interrupts()

}} RETURNI NG UNSET!

TRACE: <2>t hread. cxx [69] Cyg_Hardwar eThread: : t hread_entry()
{{enter

TRACE: <2>cstartup. cxx [127] i nvoke_mai n()

{{enter

TRACE: <2>cstartup. cxx [127] i nvoke_mai n()

((argunent is ignored))

TRACE: <2>dummyxxmai n.cxx [60] __main()

{{enter

TRACE: <2>dummyxxmai n. cxx [60] __main()

(((void))) _ _

TRACE: <2>dummyxxmai n.cxx [63] __main()

"This is the systemdefault _ main()’

TRACE: <2>dummyxxmai n.cxx [67] __main()

}}return void

58 m eCos User’s Guide eCos

Debugging Techniques

TRACE: <2>menctpy. c [112] _mencpy()
{{enter

TRACE: <2>nentpy. c [112] _mentpy()
((dst =80002804, src=BFC14E58, n=19))
TRACE: <2>nentpy. c [164] _mentpy()

}}returning 80002804
TRACE: <2>cst artup. cxx [137] i nvoke_mai n()
"main() has returned with code 0. Calling exit()’

TRACE: <2>exit.cxx [71] __libc_exit()
{{enter
TRACE: <2>exit.cxx [71] __libc_exit()

((status=0))
TRACE: <2>atexit.cxx [84] cyg_libc_invoke_atexit_handl ers()

{{enter

TRACE: <2>atexit.cxx [84] cyg_libc_invoke_atexit_handl ers()

(((void)))

Schedul er:

Lock:

Current Thread: <nul | >

Thr eads:

Idl e Thread pri = 31 state = R id= 1
stack base = 800021F0 ptr = 80002510 size = 00000400
sl eep reason NONE wake reason NONE
queue = 80000C54 wait info = 00000000

<nul | > pri = 0 state = R id = 2
stack base = 80002A48 ptr = 8000A968 size = 00008000
sl eep reason NONE wake reason NONE
queue = 80000BD8 wait info = 00000000

Kernel Instrumentation

Instrument buffers can be used to find out how many events of a given type happened
in the kernel during execution of a program.

Y ou can monitor a class of several types of events, or you can just look at individual
events.

Examples of events that can be monitored are:
» scheduler events

» thread operations

« interrupts

= mutex operations

« binary semaphore operations

eCos eCos User's Guide = 59

Debugging Techniques

= counting semaphore operations

« clock ticks and interrupts

Examples of fine-grained scheduler event types are:
« scheduler lock

» scheduler unlock

« rescheduling

« timesdlicing

Information about the events is stored in an event record. The structure that defines
thisrecord hastype st ruct | nstrunent _Record:

Thelist of recordsis stored in an array called i nst r ument _buf f er, which you can let
the kernel provide or you can provide yourself by setting the configuration option
CYGVAR _KERNEL_INSTRUMENT EXTERNAL_ BUFFER.

To write a program that examines the instrumentation buffers:

1. Enableinstrumentation buffersin the eCos kernd configuration. The component
macro is CYGPKG_KERNEL_INSTRUMENT.

2. Toalocate the buffers yourself, enable the configuration option
CYGVAR_KERNEL_INSTRUMENT_EXTERNAL_BUFFER.

3. Includethe header filecyg/ kernel /i nst rmmt . h.
#i ncl ude <cyg/ kernel/instrmt. h>

4. Thel nstrunent ati on_Recor d structureis not published in the kernel
header file. In the future there will be a cleaner mechanism to accessit, but for
now you should paste into your code in the following lines:
struct |nstrunent_Record

{
CYG WORD16 type; // record type

CYG WORD16 thread; // current thread id

CYG WORD tinestanp; // 32 bit tinestanp

CYG WORD argl; // first arg

CYG WORD arg2; // second arg

}

5. Enable the events you want to record using cyg_i nst r ument _enabl e() , and
disable them later. Look at cyg/ ker nel /i nst rmt . h and the examples below to
see what events can be enabled.

6. Place the code you want to debug between the matching functions
cyg_instrument _enabl e() andcyg_i nstrument _di sabl e().

7. Examinethe buffer. For now you need to ook at the data in there (the example
program below shows how to do that), and future versions of eCos will include a
host-side tool to help you understand the data.

60 = eCos User’s Guide eCos

Debugging Techniques

Table 7: Using instrument buffers

This program is also provided in the exanpl es directory.

/* this is a program which uses eCos instrumentation buffers; it needs
to be linked with a kernel which was conpiled with support for
instrunentation */

#i ncl ude <stdi o. h>

#i ncl ude <pkgconf/kernel . h>

#i ncl ude <cyg/ kernel/instrmt. h>
#i ncl ude <cyg/ ker nel / kapi . h>

#i fndef CYGVAR _KERNEL_| NSTRUMVENT EXTERNAL_BUFFER
error You nust configure eCos with CYGVYAR _KERNEL_I NSTRUMENT EXTERNAL_BUFFER
#endi f

struct |nstrunent_Record

{

CYG WORD16 type; // record type

CYG WORD16 thread; // current thread id
CYG WORD tinestanp; // 32 bit tinmestanp
CYG WORD argl; // first arg

CYG WORD arg2; // second arg

h

struct Instrunment_Record instrunent_buffer[20];
cyg_uint32 instrument _buffer_size = 20;

int main(void)
int i;
cyg_i nstrunent _enabl e(CYG_| NSTRUVENT_CLASS _CLOCK, 0);

cyg_i nstrument _enabl e(CYG_| NSTRUVENT_CLASS THREAD, 0)
cyg_i nstrunent _enabl e(CYG_| NSTRUVENT_CLASS ALARM 0);

printf("Programto play with instrunmentation buffer\n");
cyg_thread_del ay(2);

cyg_i nstrunent _di sabl e(CYG_| NSTRUMENT_CLASS_CLOCK, 0);
cyg_i nstrunment _di sabl e(CYG_| NSTRUVENT_CLASS_THREAD, 0)
cyg_i nstrunent _di sabl e(CYG_| NSTRUVENT_CLASS _ALARM 0);

for (i =0; i < instrument_buffer_size;, ++i) {
printf("Record 992d: type Ox%4x, thread %, ",
i, instrument_buffer[i].type, instrunent_buffer[i].thread);
printf("tinme %%bd, argl O0x%©8x, arg2 Ox%08x\n",
instrunent _buffer[i].tinmestanp, instrument_buffer[i].argl,
instrunment _buffer[i].arg2);

return O;

Here is how you could compile and run this program in the exanpl es directory, using
(for example) the MN10300 compiler:

eCos eCos User's Guide = 61

Debugging Techniques

$ make XCC=nm10300-el f-gcc PKG_INSTALL DIR=/t np/ ecos- wor k- n10300/ i nst al |
i nstrunent -test

m10300-el f-gcc -c -0 instrunent-test.o -g -Vl

-1/t np/ ecos-wor k- mMm10300/i nstal l/include -ffunction-sections -fdata-sections
instrunent-test.c

m10300-el f-gcc -nostartfiles -L/tnp/ecos-work-m10300/install/lib

-WL, --gc-sections -o instrunent-test instrunent-test.o -Ttarget.ld -nostdlib
$ Mm10300-el f-run --board=stdeval 1 instrunent-test

Table 8: Instrument buffer output

Here isthe output of thei nstrunent -t est program. Noticethat in little over 2
seconds, and with very little activity, and with few event types enabled, it gathered 17
records. In larger programsit will be necessary to select very few event types for
debugging.

Programto play with instrumentation buffer

Record 00: type 0x0207, thread ti 6057, argl 0x48001cd8, arg2 0x00000002
Record 01: type 0x0202, thread ti 6153, argl 0x48001cd8, arg2 0x00000000
Record 02: type 0x0904, thread ti 6358, argl 0x48001d24, arg2 0x00000000
Record 03: type 0x0905, thread ti 6424, argl 0x00000002, arg2 0x00000000
Record 04: type 0x0906, thread ti 6490, argl 0x00000000, arg2 0x00000000
Record 05: type 0x0901, thread ti 6608, argl 0x48009d74, arg2 0x48001d24
Record 06: type 0x0201, thread ti 6804, argl 0x48001cd8, arg2 0x480013e0
Record 07: type 0x0803, thread ti 94, argl 0x00000000, arg2 0x00000000
Record 08: type 0x0801, thread ti 361, argl 0x00000000, arg2 0x00000000
Record 09: type 0x0802, thread ti 548, argl 0x00000001, arg2 0x00000000
Record 10: type 0x0803, thread ti 94, argl 0x00000000, arg2 0x00000000
Record 11: type 0x0801, thread ti 361, argl 0x00000001, arg2 0x00000000
Record 12: type 0x0903, thread ti 513, argl 0x48009d74, arg2 0x48001d24
Record 13: type 0x0208, thread ti 588, argl 0x00000000, arg2 0x00000000
Record 14: type 0x0203, thread ti 697, argl 0x48001cd8, arg2 0x480013e0
Record 15: type 0x0802, thread ti 946, argl 0x00000002, arg2 0x00000000
Record 16: type 0x0201, thread ti 1083, argl 0x480013e0, arg2 0x48001cd8
Record 17: type 0x0000, thread ti 0, argl 0x00000000, arg2 0x00000000
Record 18: type 0x0000, thread ti 0, argl 0x00000000, arg2 0x00000000
Record 19: type 0x0000, thread ti 0, argl 0x00000000, arg2 0x00000000

EEEEEEEEEEEEEEEEEEEE

62 m eCos User’s Guide eCos

Debugging Techniques

Part lll: Configuration and the
Package Repository

The following chapters contain information on running ecosconf i g (the command
line tool that manipulates configurations and constructs build trees) and on managing
asource repository across multiple versions of eCos.

eCos eCos User's Guide = 63

Manual Configuration

14

Manual Configuration

eCos developers using aWindows NT host will generally use the graphical
Configuration Tool for configuring an eCos system and building the target library. At
present there is no equivaent to this tool available for developers using a UNIX host,
so command line tools have to be used instead. These command line tools can also be
used for batch operations on all platforms, for example as part of a nightly rebuild
procedure.

In the current release of the system the command line tools do not provide exactly the
same functionality as the graphical tool. Most importantly, thereis no facility to
resolve configuration conflicts interactively.

The eCos configuration system, both graphical and command line tools, are under
constant development and enhancement. Developers should note that the procedures
described may change considerably in future releases.

Directory Tree Structure

When building eCos there are three main directory trees to consider: the source tree,
the build tree, and the install tree.

The source tree, also known as the component repository, isread-only. It is possible to
use asingle component repository for any number of different configurations, anditis
also possible to share a component repository between multiple users by putting it on
anetwork drive.

64 m eCos User’s Guide eCos

Manual Configuration

The build tree contains everything that is specific to a particular configuration,
including header and other filesthat contain configuration data, and the object files
that result from compiling the system sources for this configuration.

Theinstall tree isusually located in thei nst al I subdirectory of the build tree. Once
an eCos system has been built, the install tree contains all the files needed for
application development including the header files and the target library. By making
copies of theinstall tree after abuild it is possible to separate application devel opment
and system configuration, which may be desirable for some organizations.

Creating the Build Tree

Generating a build tree is a non-trivial operation and should not be attempted
manually. Instead, eCos is shipped with atool called ecosconfi g that should be used
to create abuild tree.

Usually ecosconf i g will beruninside the build tree itself. If you are creating a new
build tree then typically you will create a new empty directory using the nkdi r
command, cd into that directory, and then invoke ecosconfi g to create a
configuration. By default, the configuration is stored in afile ecos. ecc in the current
directory. The configuration may be modified by editing thisfiledirectly. ecosconfi g
itself deals with a number of coarse-grained configuration options such as the target
platform and the packages that should be used.

Theecosconfi g tool is aso used subsequently to generate a build tree for a
configuration. Once abuild tree exigts, it is possible to run ecosconf i g again inside
the same build tree. Thiswill be neccessary if your wish to change some of the
configuration options.

ecosconf i g does not generate the top-level directory of the build tree; you must do
this yourself.

$ nkdir ecos-work
$ cd ecos-work

The next step isto run ecosconfi g:
$ ecosconfig <qualifiers> <command>

ecosconfig qualifiers
The available command line qualifiersfor ecosconfi g are asfollows. Multiple
qualifiers may be used on the command line:
--help

Provides basic usage guidelines for the available commands and qualifiers. All
other qualifiers and commands are ignored if --help is used.

eCos eCos User's Guide = 65

Manual Configuration

--config=<file>
Specifies an eCos configuration save file for use by the tool. By default, the file
ecos. ecc inthecurrent directory is used. Developers may prefer to use acommon
location for all their eCos configurations rather than keep the configuration
information in the base of the build tree.

--prefix=<dir>
Specifies an aternative location for the install tree. By default, the install tree
residesinsidethei nstal | directory inthe build tree. Developers may prefer to
locate the build tree in atemporary file hierarchy but keep the install treein a
more permanent |ocation.

--srcdir=<dir>
Specifies the location of the component repository. By default, the tool uses the
location specified in the ECOS REPOS TORY environment variable. Developers
may prefer to use of this quaifier if they are working with more than one
repository.

--no-resol ve

Disables the implicit resolution of conflicts while manipulating the configuration
data. devel opers may prefer to reslove conflicts by editing the eCos configuration
save file manually The check command implicitely uses --no-resolve.

--ignore-errors
-1
By default, ecosconfig will exit with an error code if the current configuration
contains any conflicts, and it is not possible to generate or update a build tree for
such configurations. This qualifier causes ecosconfig to ignore such problems,
and hence it is possible to generate a build tree even if there are still conflicts. Of
course, there are no guarantees that the resulting system will actually do anything
useful.

--verbose
-V

Display more information.

-q

Display less information.

The --config, --prefix and srcdir qualifiers can also be written with two arguments, for

example:

ecosconfig --srcdir <dir> ...
This simplifies filename completion with some shells.

66 m eCos User’s Guide eCos

Manual Configuration

ecosconfig commands

The available commands for ecosconf i g are as follows:

list
Lists the avail able packages, targets and templates asinstalled in the eCos
repository. Aliases and package versions are also reported.

new <target> [<tenpl ate> [<version>]]
Creates anew eCos configuration for the specified target hardware and savesit. A
software template may also be specified. By default, the template named ‘ default’
isused. If the template version is not specified, the latest version is used.

target <target>

Changes the target hardware selection for the eCos configuration. This hasthe
effect of unloading packages supporting the target selected previously and loading
the packages which support the new hardware. This command will be used
typically when switching between a simulator and real hardware.

tenplate <tenpl ate> [<version>]

Changes the template selection for the eCos configuration. This has the effect of
unloading packages specified by the template selected previousy and loading the
packages specified by the new template. By default, the latest version of the
specified template is used.

renove <packages>
Removes the specified packages from the eCos configuration. This command will
be used typically when the template on which a configuration is based contains
packages which are not required.

add <packages>

Adds the specified packages to the eCos configuration. This command will be
used typically when the template on which a configuration is based does not
contain all the packages which are required. For example, add-on packages
provided by third parties will not be known to the standard templates so they will
have to be added explicitely.

ver sion <versi on> <packages>
Selects the specified version of anumber of packages in the eCos configuration.
By default, the most recent version of each package is used. This command will
be used typically when an older version of a package is required.

check
Presents the following information concerning the current configuration:
1. the selected target hardware

eCos

eCos User’'s Guide = 67

Manual Configuration

the selected template

additional packages

removed packages

the selected version of packages where thisis not the most recent version
conflictsin the current configuration

The check command will never perform automatic conflict resolution, so there is
no need to use --no-resolve.

o U wWN

resol ve

Resolves conflicts identified in the current eCos configuration by invoking an
inference capability. Resolved conflicts are reported, but not al conflicts may be
resolvable. This command will be used typically following manual editing of the
configuration.
export <file>
Exports aminimal eCos configurastion save file with the specified name. Thisfile
contains only those options which do not have their default value. Such files are
used typically to transfer option values from one configuration to another.
import <file>
Imports aminimal eCos configuration save file with the specified name. The
values of those options specified in the file are applied to the current
configuration.

tree

Generates a build tree based on the current eCos configuration. This command
will be used typically just before building eCos. Normally abuild tree can only be
generated if the configuration has no unresolved conflicts, but --ignore-errors can
be used to override this.

Conflicts and Constraints

Configuration options are not completely independent. For example the C library’s
strtod() and atof() functions rely on the math library package to provide certain
functionality. If the math library package is removed then the C library can no longer
provide these functions. Each package describes constraints like these in CDL
“requires’ properties. If aconstraint is not satisfied then the configuration contains a
conflict. For any given conflict there can be several ways of resolving a conflict. For
example, it would be possible to add the math library package back to the
configuration, or to disable the strtod() and atof() functions.

68 m eCos User’s Guide eCos

Manual Configuration

The eCos configuration tools will report any conflictsin the current configuration. If
there are any such conflicts then the configuration is usually unsafe and it makes no
sense to build and run eCos in such circumstances, in fact any attempt at building
eCosislikely to fail. In exceptional casesit is possible to override this by using e.g.
the --ignore-errors qualifier with ecosconfig.

Many constraints are fairly simple in nature, and the configuration tools contain an
inference engine which can resolve the associated conflicts automatically. For
example, if the math library package isremoved then the inference engine can resolve
the resulting conflict by disabling the configuration option for strtod() and atof(). All
such changes will be reported. Sometimes the inference engine cannot resolve a
conflict, for exampleit is not allowed to override a change that has been made
explicitly by the user. Sometimes it will find a solution which does not match the
application’ s requirements.

A typical session involving conflicts would look something like this:
$ ecosconfig new <target >

This creates a new configuration with the default template. For most targets this will
not result in any conflicts, because the default settings for the various options meet the
requirements of the default template. For some targets there may be conflicts, and the
inference engine would come into play.

$ ecosconfig renove |ibm

U CYGSEM LI BC STDI O SCANF_FLOATI NG PO NT, new inferred value 0O
U CYGFUN_LIBC strtod, new inferred value 0O

U CYGSEM LI BC _STDI O PRI NTF_FLOATI NG PO NT, new inferred value 0O

ecosconfig reports that this change caused three conflicts, all in the C library. The
inference engine was able to resolve all the conflicts and update the relevant
configuration options accordingly.

To suppress the inference engine --no-resolve can be used:

$ ecosconfig new <target>

$ ecosconfig --no-resolve renove |ibm

C CYGSEM LI BC_STDI O _SCANF_FLQATI NG_PO NT, “requires” constraint not
satisfied: CYGPKG_LIBM

C CYGSEM LI BC_STDI O PRI NTF_FLOATI NG_PO NT, “requires” constraint
not satisfied: CYGPKG_ LI BM

C CYGFUN_LIBC strtod, “requires” constraint not satisfied:

CYGPKG_LI BM

Three unresolved conflicts are reported. The check command can be used to get the
current state of the configuration, and the --verbose qualifier will provide additional
information:

$ ecosconfig --srcdir /home/bartv/ecc/ecc --verbose check
Target: pid
Templ ate: defaul t
Renoved:
CYGPKG_LI BM
3 conflict(s):

eCos

eCos User’'s Guide = 69

Manual Configuration

C CYGFUN_LIBC strtod, “requires” constraint not satisfied:
CYGPKG LI BM
Possi bl e sol ution:

CYGFUN_LIBC strtod -> 0

CYGSEM LI BC_STDI O SCANF_FLQATI NG PO NT -> 0
C CYGSEM LI BC_STDI O PRI NTF_FLOATI NG_PO NT, “requires” constraint
not satisfied: CYGPKG_LIBM
Possi bl e sol ution:

CYGSEM LI BC_STDI O PRI NTF_FLOATI NG POINT -> 0
C CYGSEM LI BC_STDI O_SCANF_FLQATI NG_PO NT, “requires” constraint not
sati sfied: CYGPKG_LIBM
Possi bl e sol ution:

CYGSEM LI BC_STDI O SCANF_FLQATI NG PO NT -> 0

If the proposed sol utions are acceptabl e, the resolve command can be used to apply
them:

$ ecosconfig resolve

U CYGSEM LI BC STDI O SCANF_FLOATI NG PO NT, new inferred value 0O
U CYGFUN_LIBC strtod, new inferred value 0O

U CYGSEM LI BC _STDI O PRI NTF_FLOATI NG PO NT, new inferred value 0

The current configuration is again conflict-free and it is possible to generate a build
tree. The --quiet qualifier can be used to suppress the change messages, if desired.

When changing individual configuration options by editing the ecos.ecc file (as
described below), the resulting system should be checked and any problems should be
resolved. For example, if CYGFUN_LIBC_strtod is explicitly enabled in the savefile:

$ <edit ecos.ecc>
$ ecosconfig check
Target: pid
Tenpl ate: defaul t
Renoved:
CYGPKG_LI BM
1 conflict(s):
C CYGFUN_LIBC strtod, “requires” constraint not satisfied:
CYGPKG_LI BM
$ ecosconfig resolve
C CYGFUN_LIBC strtod, “requires” constraint not satisfied:
CYGPKG_LTBM

In this case the inference engine cannot resol ve the conflict automatically because that

would involve changing a user setting. Any attempt to generate a build tree will fail:

$ ecosconfig --srcdir /hone/bartv/ecc/ecc tree
C CYGFUN_LIBC strtod, “requires” constraint not satisfied:

CYGPKG LTBM

Unabl e to generate build tree, this configuration still contains

conflicts. Ei ther resolve the conflicts or use --ignore-errors
Itis still possible to generate a build tree:

$ ecosconfig --srcdir /home/bartv/ecc/ecc --ignore-errors tree

C CYGFUN_LIBC strtod, “requires” constraint not satisfied:

CYGPKG_LI BM

$ make

70 m eCos User’s Guide eCos

Manual Configuration

In this case eCos will fail to build. In other cases of unresolved conflicts eCos may
build, but may not run. In general all conflicts should be resolved by editing the
ecos.ecc file, by letting the inference engine make appropriate changes, or by other
means, before any attempt is made to build or run eCos.

Building the System

Once a build tree has been generated with ecosconf i g, building eCosis
straightforward:

$ make
The build tree contains the subdirectories, makefiles, and everything else that is
needed to generate the default configuration for the selected architecture and platform.
The only requirement is that the tools needed for that architecture, for example
power pc- eabi - g++, are available using the standard search path. If thisis not the case
then the make will fail with an error message. If you have a multiprocessor system
then it may be more efficient to use:

$ nmake -j n
where n is equal to the number of processors on your system.

Once the make process has completed, the install tree will contain the header files and
the target library that are needed for application development.

It is aso possible to build the system’ stest cases for the current configuration:
$ nmake tests

The resulting test executables will end up in at est s subdirectory of theinstall tree.

If disk spaceisscarce then it is possible to make the copy of theinstall tree for
application development purposes, and then use:

$ make clean
The build tree will now use up a minimum of disk space — the bulk of what is left
consists of configuration header files that you may have edited and hence should not
be deleted automatically. However, it is possible to rebuild the system at any time
without reinvoking ecosconfi g, just by running make again.

Under exceptional circumstances it may be necessary to run nmake cl ean for other
reasons, such as when a new release of the toolchain isinstalled. The toolchain
includes a number of header files which are closely tied to the compiler, for example
limts. h, and these header files are not and should not be duplicated by eCos. The
makefiles perform header file dependency analysis, so that when a header fileis
changed al affected sources will be rebuilt during the next nake. Thisis very useful
when the configuration header files are changed, but it also means that a build tree
containing information about the locations of header files must be rebuilt. If anew

eCos

eCos User’'s Guide = 71

Manual Configuration

version of the toolchain isinstalled and the old version is removed then this location
information is no longer accurate, and nake will complain that certain dependencies
cannot be satisfied. Under such circumstancesit is necessary to do anake cl ean first.

Packages

eCos is a component architecture. The system comes as a number of packages which
can be enabled or disabled as required, and new packages can be added as they
become available. Unfortunately, the packages are not completely independent: for
example the WITRON compatibility package relies aimost entirely on functionality
provided by the kernel package, and it would not make senseto try to build ul TRON
if the kernel was disabled. The C library has fewer dependencies. some parts of the C
library rely on kernel functionality, but it is possible to disable these parts and thus
build a system that has the C library but no kernel. The ecosconfi g tool hasthe
capability of checking that al the dependencies are satisfied, but it may still be
possible to produce configurations that will not build or (conceivably) that will build
but not run. Developers should be aware of this and take appropriate care.

By default, ecosconfi g will include all packages that are appropriate for the specified
hardware in the configuration. The common HAL package and the eCosinfrastructure
must be present in every configuration. In addition, it is always necessary to have one
architectural HAL package and one platform HAL package. Other packages are
optional, and can be added or removed from a configuration as required.

The application may not require al of the packages; for example, it might not need the
MITRON compatibility package, or the floating point support provided by the math
library. Thereisadlight overhead when eCosiis built because the packages will get
compiled, and thereis also a small disk space penalty. However, any unused facilities
will get stripped out at link-time, so having redundant packages will not affect the
final executable.

Coarse-grained Configuration

Coarse-grained configuration of an eCos system means making configuration changes
using the ecosconfi g tool. These changes include:

1. switching to different target hardware
2. switching to adifferent template

3. adding or removing a package

4. changing the version of a package

72 m eCos User’s Guide eCos

Manual Configuration

Whenever ecosconf i g generates or updates an eCos configuration, it generates a
configuration savefile.

Suppose that the configuration was first created using the following command line:

$ ecosconfig new stdeval 1
To change the target hardware to the Cogent CM A 28x PowerPC board, the following
command would be needed:

$ ecosconfig target cma28x
To switch to the PowerPC simulator instead:

$ ecosconfig target psim
Asthe hardware changes, hardware-related packages such as the HAL packages and
device drivers will be added to and removed from the configuration as appropriate.

To remove any package from the current configuration, use the r enove command:
$ ecosconfig renove uitron
Y ou can disable multiple packages using multiple arguments, for example:
$ ecosconfig renove uitron |ibm
If this turns out to have been a mistake then you can reenable one or more packages
with the add command:
$ ecosconfig add |ibm
Changing the desired version for a package is also straightforward:
$ ecosconfig version vl_3_x kernel
where x may be aone or two digit number.
It is necessary to regenerate the build tree and header files following any changes to

the configuration before rebuilding eCos:
$ ecosconfig tree

Fine-grained Configuration

ecosconfi g only provides coarse-grained control over the configuration: the
hardware, the template and the packages that should be built. Unlike the
Configuration Tool, ecosconf i g does not provide any facilities for manipul ating
finer-grained configuration options such as how many priority levels the schedul er
should support. There are hundreds of these options, and manipulating them by means
of command line arguments would not be sensible.

In the current system fine-grained configuration options may be manipulated by
manual editing of the configuration file. When afile has been edited in thisway, the
ecosconfi g tool should be used to check the configuration for any conflicts which
may have been introduced:

$ ecosconfig check

eCos

eCos User’'s Guide = 73

Manual Configuration

The check command will list al conflicts and will also rewrite the configuration file,
propogating any changes which affect other options. The user may choose to resolve
the conflicts either by re-editing the configuration file manually or by invoking the
inference engine using ther esol ve command:

$ ecosconfig resol ve
The resol ve command will list al conflicts which can be resolved and save the
resulting changes to the configuration.

It is necessary to regenerate the build tree and header files following any changes to
the configuration before rebuilding eCos:

$ ecosconfig tree
All the configuration options and their descriptions are listed in the eCos Reference
Manual.

Editing an eCos Savefile

The eCos configuration information is held in asingle savefile, typicaly ecos. ecc,
which can be generated by either the GUI configuration tool or by the command line
ecosconfig tool. The file normally exists at the toplevel of the build tree. It isatext
file, alowing the various configurations options to be edited inside a suitable text
editor or by other programs or scripts, as well asin the GUI config tool.

An eCos savefileis actualy ascript in the Tcl programming language, so any
modifications to the file need to preserve Tcl syntax. For most configuration options,
any modifications will be trivial and there is no need to worry about Tcl syntax. For
example, changing a1 to a0 to disable an option. For more complicated options, for
example CYGDAT _UITRON_TASK EXTERNS, which involves somelines of C
code, more care has to be taken. If an edited savefile is no longer avalid Tcl script
then the configuration tools will be unable to read back the data for further processing,
for example to generate abuild tree. An outline of Tcl syntax is given below. One
point worth noting here is that aline that beginswith a“#” is usually a comment, and
the bulk of an eCos savefile actually consists of such comments, to make it easier to
edit.

Header

An eCos savefile begins with a header, which typically looks something like this:

eCos saved configuration

H#ooe-

CONMBNGS == = = = = = = = = = =" mm o & f o e f f e e e e e e e meeeeoooo-

This section contains information about the savefile format

1t should not be edited. Any nodifications made to this section
may make it inpossible for the configuration tools to read
the savefile

74 m eCos User’s Guide eCos

Manual Configuration

cdl _savefile_version 1;

cdl _savefil e_command cdl _savefile_version {};
cdl _savefil e_command cdl _savefile_conmand {};
cdl _savefil e_command

cdl

configuration { description hardware tenpl ate package }

cdl _savefil e_comand cdl _package { val ue_source user_val ue wi zar d_val ue inferred_val ue };

cdl _savefil e_command cdl _conponent { val ue_source user_val ue wi zard_val ue inferred_val ue };

cdl _savefil e_command cdl _option { val ue_source user_val ue wi zard_val ue inferred_val ue };

cdl _savefile_command cdl _interface { val ue_source user_val ue wi zard_val ue inferred_val ue };
This section of the savefileisintended for use by the configuration system, and should
not be edited. If this section is edited then the various configuration tools may no
longer be able to read in the modified savefile.

Toplevel Section

The header is followed by a section that defines the configuration asawhole. A
typical example would be:

#o---- toplevel ---- e

This section defines the toplevel configuration object. The only

values that can be changed are the nane of the configuration and

the description field. It is not possible to nodify the target,

the tenplate or the set of packages sinply by editing the Iines

bel ow because these changes have w de-rangi ng effects. Instead

the appropriate tools should be used to make such nodifications.

cdl _configuration eCos {

description ;

These fields should not be nodifi ed.

har dwar e pid ;

tenplate uitron ;

package -hardware CYGPKG HAL_ARM current ;
package -hardware CYGPKG HAL_ARM PI D current ;
package -hardware CYGPKG | O SERI AL current ;
package -tenpl ate CYGPKG HAL current ;

package -templ ate CYGPKG | O current ;

package -tenpl ate CYGPKG | NFRA current ;
package -templ ate CYGPKG KERNEL current ;
package -tenplate CYGPKG U TRON current ;
package -templ ate CYGPKG LI BC current ;
package -tenpl ate CYGPKG LI BM current ;
package -tenmpl ate CYGPKG DEVI CES WALLCLOCK current ;
package -tenpl ate CYGPKG ERROR current ;

This section alows the configuration tools to reload the various packages that make
up the configuration. Most of the information should not be edited. If it is necessary to
add a new package or to remove an existing one then the appropriate tools should be
used for this, for example:

$ ecosconfig remobve CYGPKG LI BM

eCos eCos User's Guide = 75

Manual Configuration

There are two fields which can be edited. Configurations have a name; in this case
eCos. They can also have a description, which is some arbitrary text. The
configuration tools do not make use of these fields, they exist so that users can store
additional information about a configuration.

Conflicts Section

The toplevel section isfollowed by details of all the conflicts (if any) in the
configuration, for example:

- conNflicCts —---mmmm e
There are 2 conflicts.

option CYGNUM LI BC TI ME_DST_DEFAULT_OFFSET
Property Legal Val ues
Il'legal current val ue 100000
Legal val ues are: -90000 to 90000

option CYGSEM LI BC Tl ME_CLOCK_WORKI NG
Property Requires
Requi res constraint not satisfied: CYGFUN_KERNEL_THREADS Tl MER

HHEHFEHHFHHRRHHRHH

When editing a configuration you may end up with something that isinvalid. Any
problemsin the configuration will be reported in the conflicts section. In this case
there are two conflicts. The option
CYGNUM_LIBC_TIME_DST_DEFAULT_OFFSET has been given anillegal value:
typically thiswould be fixed by searching for the definition of that option later on in
the savefile and modifying the value. The second conflict is more interesting, an
unsatisfied requires constraint. Configuration options are not independent: disabling
some functionality in, say, the kernel, can have an impact elsewhere; in this casethe C
library. The various dependencies between the options are specified by the component
developers and checked by the configuration system. In this case there are two
obvious ways in which the conflict could be resolved: re-enabling
CYGFUN_KERNEL_THREADS TIMER, or disabling
CYGSEM_LIBC_TIME_CLOCK_WORKING. Both of these options will be listed
later on in the file.

Some care has to be taken when modifying configuration options, to avoid introducing
new conflict. For instance it is possible that there might be other optionsin the system
which have a dependency on CYGSEM_LIBC _TIME_CLOCK_WORKING, so
disabling that option may not be the best way to resolve the conflict. Details of all
such dependencies are provided in the appropriate placesin the savefile.

It is not absolutely required that a configuration be conflict-free before generating a
build tree and building eCos. It is up to the devel opers of each component to decide
what would happen if an attempt is made to build eCos while there are till conflicts.

76 m eCos User’s Guide eCos

Manual Configuration

In serious cases there is likely to be a compile-time failure, or possibly alink-time
failure. In less serious cases the system may build happily and the application can be
linked with the resulting library, but the component may not quite function asintended
- although it may still be good enough for the specific needs of the application. It is
also possible that everything builds and links, but once in awhile the system will
unaccountably crash. Using a configuration that still has conflictsis done entirely at
the user’ srisk.

Data Section

Thebulk of the savefilelists the various packages, components, and options, including
their values and the various dependencies. A number of global options come first,
especially those related to the build process such as compiler flags. These arefollowed
by the various packages, and the components and options within those packages, in
order.

Packages, components and options are organized in a hierarchy. If a particular
component is disabled then all options and sub-components below it will be inactive:
any changes made to these will have no effect. The savefile contains information
about the hierarchy in the form of comments, for example:

cdl _package CYGPKG_KERNEL ...
>

cdl _conponent CYGPKG_KERNEL_EXCEPTIONS . ..

>

cdl _opti on CYGSEM KERNEL_EXCEPTI ONS_DECCDE . . .
cdl _opti on CYGSEM KERNEL_EXCEPTI ONS_GLOBAL . ..
<

cdl _conponent CYGPKG_KERNEL_SCHED . ..

>

cdl _option CYGSEM KERNEL_SCHED M.QUELE . ..

cdl _opti on CYGSEM KERNEL_SCHED Bl TMAP . . .

<

<

This corresponds to the following hierarchy:

CYGPKG_KERNEL
CYGPKG_KERNEL_EXCEPTI ONS
CYGSEM KERNEL_EXCEPT| ONS_DECODE
CYGSEM_KERNEL_EXCEPTI ONS_GLOBAL
CYGPKG_KERNEL_SCHED
CYGSEM KERNEL_SCHED M.QUEUE
CYGSEM_KERNEL_SCHED_BI TMAP

eCos eCos User's Guide m 77

Manual Configuration

Providing the hierarchy information in thisway allows programs or scriptsto analyze
the savefile and readily determine the hierarchy. It could aso be used by a sufficiently
powerful editor to support structured editing of eCos savefiles. The information is not
used by the configuration tools themselves since they obtain the hierarchy from the
original CDL scripts.

Each configurable entity is preceded by a comment, of the following form:

Kernel schedul ers

doc: ref/ecos-ref/ecos-kernel -overview. ht M #THE- SCHEDULER

The eCos kernel provides a choice of schedulers. In addition
there are a nunber of configuration options to control the
detail ed behavi our of these schedul ers.

cdl _component CYGPKG_KERNEL_SCHED ({

I

This provides a short textual aliasKer nel schedul er s for the component. If online
documentation is available for the configurable entity then thiswill come next. Finally
there isashort description of the entity asawhole. All thisinformation is provided by
the component devel opers.

Each configurable entity takes the form:

<type> <nane> {
<dat a>

Configurable entities may not be active. This can be either because the parent is
disabled or inactive, or because there are one or more active_if properties. Modifying
the value of an inactive entity has no effect on the configuration, so thisinformationis
provided first:

cdl _option CYGSEM KERNEL_EXCEPTI ONS_DECODE {
This option is not active
The parent CYGPKG _KERNEL_EXCEPTI ONS i s disabl ed

I

cdl _option CYG MP_I DLE_THREAD_YI ELD {

This option is not active

Activelf constraint: (CYGNUM KERNEL_SCHED PRI ORI TI ES == 1)
CYGNUM _KERNEL_SCHED PRI ORI TI ES == 32

-->0

b

78 m eCos User’s Guide eCos

For CYGIMP_IDLE_THREAD _YIELD the savefile lists the expression that must be
satisfied if the option is to be active, followed by the current value of all entities that
are referenced in the expression, and finally the result of evaluating that expression.

Not all options are directly modifiable in the savefile. First, the value of packages
(which isthe version of that package loaded into the configuration) cannot be
modified here.

cdl _package CYGPKG _KERNEL {

Packages cannot be added or renoved, nor can their version be changed,
sinmply by editing their value. Instead the appropriate configuration
shoul d be used to performthese actions. .

The version of a package can be changed using e.g.:

$ ecosconfig version 1.3 CYGPKG_KERNEL
Even though a package’ s value cannot be modified here, it is still important for the
savefile to contain the details. In particular packages may impose constraints on other
configurable entities and may be referenced by other configurable entities. Also it
would be difficult to understand or extract the configuration’s hierarchy if the
packages were not listed in the appropriate places in the savefile.

Some components (or, conceivably, options) do not have any associated data.
Typically they serve only to introduce another level in the hierarchy, which can be
useful in the context of the GUI configuration tool.

cdl _conponent CYGPKG_HAL_COVMON_| NTERRUPTS {
There is no associ ated val ue.

h

Other components or options have a calculated value. These are not user-modifiable,
but typically the value will depend on other options which can be modified. Such
calculated options can be useful when controlling what gets built or what ends up in
the generated configuration header files. A calculated value may also effect other parts
of the configuration, for instance, via a requires constraint.

cdl _option BUFSIZ {

| cul at ed val ue: CYGSEM LI BC_STDI O WANT_BUFFERED | O ? CYGNUM LI BC_STDI O BUFSI ZE : 0
CYGSEM LI BC_STDI O WANT_BUFFERED | O == 1

CYGNUM LI BC_STDI O_BUFSI ZE == 256

Current_val ue: 256

}

eCos eCos User's Guide = 79

Manual Configuration

A special type of calculated valueisthe interface. The value of an interface is the
number of active and enabled options which implement that interface. Again the value
of an interface cannot be modified directly; only by modifying the options which
implement the interface. However, an interface can be referenced by other parts of the
configuration.

dl _interface CYG NT_KERNEL_ SCHEDULER {
I mpl ement ed by CYGSEM KERNEL_SCHED M_QUEUE, active, enabl ed
I npl erent ed by CYGSEM KERNEL_SCHED Bl TMAP, active, disabled
Thi s val ue cannot be nodified here.
Current _value: 1
Requires: 1 == CYQ NT_KERNEL_SCHEDULER
CYG NT_KERNEL_SCHEDULER ==
-->1

The followi ng properties are affected by this val ue
interface CYQ NT_KERNEL_SCHEDULER

Requires: 1 == CYG NT_KERNEL_ SCHEDULER

CHHH O HHHEHEHERHO

If the configurable entity is modifiable then there will be lines like the following:

cdl _option CYGSEM KERNEL SCHED M.QUEUE {

Fl avor: bool

No user value, uncomment the following line to provide one.
user _value 1

val ue_source default

Default value: 1

b

Configurable entities can have one of four different flavors. none, bool, data and
booldata. Flavor none indicates that there is no data associated with the entity,
typically it just acts as a placeholder in the overall hierarchy. Flavor bool isthe most
common, it is asimple yes-or-no choice. Flavor datais for more complicated
configuration choices, for instance the size of an array or the name of adevice. Flavor
booldatais a combination of bool and data: the option can be enabled or disabled, and
there is some additional data associated with the option as well.

In the above example the user has not modified this particular option, as indicated by
the comment and by the commented-out user _val ue line. To disable this option the
file should be edited to:

cdl _option CYGSEM KERNEL SCHED M.QUEUE {

Fl avor: bool

No user value, unconment the following line to provide one.
user_value 0

val ue_source default

Default value: 1

80 m eCos User’s Guide eCos

Manual Configuration

The comment preceding the user _val ue 0 line can beremoved if desired, otherwise
it will be removed automatically the next time thefile is read and updated by the
configuration tools.

Much the same process should be used for options with the data flavor, for example:

cdl _option CYGNUM LI BC Tl ME_DST_DEFAULT_OFFSET {

Flavor: data

No user value, unconmment the following line to provide one.
user_val ue 3600

val ue_source default

Default val ue: 3600

Legal val ues: -90000 to 90000

b
can be changed to:

cdl _option CYGNUM LI BC TI ME_DST_DEFAULT_OFFSET {
Flavor: data

user _val ue 7200

val ue_source default

Default value: 3600

Legal values: -90000 to 90000 };

Note that the original text provides the default value in the user _val ue comment, on
the assumption that the desired new valueislikely to be similar to the default value.
Theval ue_source comment does not need to be updated, it will be fixed up if the
savefileisfed back into the configuration system and regenerated.

For options with the booldata flavor, the user _val ue line needs take two arguments.
Thefirst argument is for the boolean part, the second for the data part. For example:

cdl _conponent CYGNUM LI BM_COWPATI BI LI TY {

Fl avor: bool data

No user value, uncomment the following line to provide one.
user _val ue 1 POSI X

val ue_source default

Default value: 1 PCSIX

Legal values: “POCSI X' “IEEE" “XOPEN' “SVID

b
could be changed to:

cdl _conponent CYGNUM LI BM COWPATI BI LI TY {

Fl avor: bool data

user_value 1 | EEE

val ue_source default

Default value: 1 PCSIX

Legal values: “POCSI X' “IEEE" “XOPEN' “SVID

eCos eCos User's Guide = 81

Manual Configuration

or alternatively, if the whole component should be disabled, to:

cdl _conponent CYGNUM LI BM COWPATI BI LI TY {

Fl avor: bool data

user _value 0 PCSI X

val ue_source default

Default value: 1 PCSIX

Legal values: “POCSI X' “IEEE" “XOPEN' “SVID

b
Some options take values that span multiple lines. An example would be:

dl _option CYGDAT_ U TRON_MEMPOOLVAR I NI Tl ALI ZERS {

Fl avor: data

No user val ue, unconment the following line to provide one.

user _val ue \

“CYG_U T_MEMPOOLVAR(vpool 1, 2000), \\

CYG_Ul T_MEMPOOLVAR(vpool 2, 2000), \\

CYG Ul T_MEMPOOLVAR(vpool 3, 2000),”

val ue_source default

Def ault val ue: \
“CYG_U T_MEMPOOLVAR(vpool 1, 2000),
CYG_Ul T_MEMPOOLVAR(vpool 2, 2000),
CYG_Ul T_MEMPOOLVAR(vpool 3, 2000),”

\\
\\

THHBHHEHEFERBFHIEHRHO

Setting a user value for this option involves uncommenting and modifying all relevant
lines, for example:

cdl _option CYGDAT_U TRON_MEMPOOLVAR I NI TI ALI ZERS {
Flavor: data

user_val ue \

“CYG_U T_MEMPOOLVAR(vpool 1, 4000) \\

CYG U T_MEMPOOLVAR(vpool 2, 4000),

val ue_source default

Default val ue: \

“CYG_U T_MEMPOOLVAR(vpool 1, 2000), \\
CYG_Ul T_MEMPOOLVAR(vpool 2, 2000), \\
CYG_Ul T_MEMPOOLVAR(vpool 3, 2000),”

H

In such cases appropriate care has to be taken to preserve Tcl syntax, as discussed
below.

The configuration system has the ability to keep track of several different values for
any given option. All options start off with a default value, in other words their value
sourceis set to def aul t . If aconfiguration involves conflicts and the configuration
system’sinference engine is allowed to resolve these automatically then it may
provide ani nf err ed value instead, for example:

82 m eCos User’s Guide eCos

Manual Configuration

cdl _option CYGVWN_KERNEL_SYNCH CONDVAR Tl MED WAI T {

Fl avor: bool

No user value, uncomment the following line to provide one
user_value 1

The inferred value should not be edited directly.
inferred_value 0

val ue_source inferred

Default value: 1

b

Inferred values are calculated by the configuration system and should not be edited by
the user. If the inferred value is not correct then a user value should be substituted
instead:

cdl _option CYGVWN_KERNEL_SYNCH CONDVAR TI MED WAI T {
Fl avor: bool

user_value 1

The inferred value should not be edited directly.
inferred_value 0

val ue_source inferred

Default value: 1

H
The inference engine will not override a user value with an inferred one. Making a
change like this may well re-introduce a conflict, since the inferred value was only
calculated to resolve a conflict. Another run of the inference engine may find a
different and more acceptable way of resolving the conflict, but thisis not guaranteed
and it may be up to the user to examine the various dependencies and work out an
acceptable solution.

Inferred values are listed in the savefile because the exact inferred val ue may depend
on the order in which changes were made and conflicts were resolved. If the inferred
values were absent then it is possible that reloading a savefile would not exactly
restore the configuration. Default values on the other hand are entirely deterministic
so there is no actual need for the valuesto be listed in the savefile. However, the
default value can be very useful information so it is provided in a comment.

Occasionally the user will want to do some experimentation, and temporarily switch
an option from a user value back to a default or inferred one to see what the effect
would be. This could be achieved by simply commenting out the user value. For
instance, if the current savefile contains:

cdl _option CYGVWN_KERNEL_SYNCH CONDVAR TI MED WAI T {
Fl avor: bool

user_value 1

The inferred value should not be edited directly.
inferred_value 0

val ue_source user

eCos eCos User's Guide = 83

Manual Configuration

Default value: 1
b

then the inferred value could be restored by commenting out or removing the
user _val ue line

cdl _option CYGVWN_KERNEL_SYNCH CONDVAR TI MED WAI T {
Fl avor: bool

user_value 1

The inferred value should not be edited directly.
inferred_value 0

val ue_source user

Default value: 1

I

Thisisfine for simple values. However if the value is complicated then thereisa
problem: commenting out the user _val ue line or lines means that the user value
becomes invisible to the configuration system, so if the savefile isloaded and then
regenerated the information will be lost. An alternative approach is to keep the
user _val ue but explicitly set theval ue_sour ce line, for example:

cdl _option CYGVWN_KERNEL_SYNCH CONDVAR TI MED WAI T {
Fl avor: bool

user_value 1

The inferred value should not be edited directly.
inferred_value 0

val ue_source inferred

Default value: 1

}i

In this case the configuration system will use the inferred value for the purposes of
dependency analysis etc., even though a user valueis present. To restore the user
value the val ue_sour ce line can be commented out again. If thereis no explicit

val ue_sour ce then the configuration system will just use the highest priority one: the
user valueif it exists; otherwise the inferred value if it exists; otherwise the default
value which always exists.

The default value for an option can be a simple constant, or it can be an expression
involving other options. In the latter case the expression will be listed, together with
the values for all options referenced in the expression and the current result of
evaluating that expression. Thisisfor informational purposesonly, the default valueis
always recalculated deterministically when loading in a savefile.

cdl _option CYGBLD_GLOBAL_COMVAND_PREFI X {
Flavor: data
No user value, uncomment the following line to provide one.

84 m eCos User’s Guide eCos

Manual Configuration

user_value armelf
val ue_source default

Default value: CYGHWR THUMB ? “thunb-elf” : “armelf”
CYGHWR_THUMB ==

-->armelf

b

For options with the data or booldata flavor, there are likely to be constraints on the
possible vaues. If the value is supposed to be a number in a given range and a user
value of “hel I o wor | d” is provided instead then there are likely to be compile-time
failures. Component developers can specify constraints on the legal values, and these
will belisted in the savefile.

cdl _option X TLGSS {

Flavor: data

No user value, uncomment the following line to provide one.
user _val ue 1.41484755040569E+16

val ue_source default

Default value: 1.41484755040569E+16

Legal values: 1 to 1e308

cdl _conmponent CYGNUM LI BM COVPATI BI LI TY {

Fl avor: bool data

No user value, uncomment the following line to provide one.
user_value 1 PCsSI X

val ue_source default

Default value: 1 PCSIX

Legal values: “POSI X' “lIEEE’ “XOPEN' “SVID’

}

In some cases the legal values list may be an expression involving other options. If so
then the current values of the referenced options will be listed, together with the result
of evaluating the list expression, just as for default value expressions.

If anillegal valueis provided then thiswill result in a conflict, listed in the conflicts
section of the savefile. For more complicated options asimple legal valueslist is not
sufficient to allow the current value to be validated, and the configuration system will
be unable to flag conflicts. Thisissue will be addressed in future releases of the
configuration system.

Following the value-related fields for a given option, any requires constraints
belonging to this option will be listed. These constraints are only effective if the
option is active and, for bool and booldata flavors, enabled. If some aspect of eCos
functionality isinactive or disabled then it cannot impose any constraints on the rest of
the system. Asusual, the full expression will be listed followed by the current values
of all options that are referenced and the result of evaluating the expression:

cdl _option CYGSEM LI BC TI ME_TI ME_WORKI NG {

eCos eCos User's Guide = 85

Manual Configuration

Requires: CYGPKG DEVI CES_WALLCLOCK

CYGPKG_DEVI CES_WALLCLOCK == current
o> 1

}

When modifying the value of an option it is useful to know not only what constraints
the option imposes on the rest of the system but also what other optionsin the system
depend in some way on this one. The savefile provides this information:

cdl _option CYGFUN KERNEL_ THREADS TI MER {

The fol | owi ng properties are affected by this val ue
option CYGVWN_KERNEL_SYNCH CONDVAR Tl MED WAI T

Requi res: CYGFUN_KERNEL_ THREADS TI MER

option CYd MP_U TRON_STRI CT_CONFORVANCE

Requi res: CYGFUN_KERNEL_THREADS Tl MER

option CYGSEM LI BC_TI ME_CLOCK_WORKI NG

Requi res: CYGFUN_KERNEL_THREADS_ TI MER
Tcl Syntax

eCos savefiles are implemented as Tcl scripts, and are read in by running the data
through a standard Tcl interpreter that has been extended with a small number of
additional commands such ascdl _opti on and cdl _confi gur ati on. In many cases
thisis an implementation detail that can be safely ignored while editing a savefile:
simply replacing a1 with a0 to disable some functionality is not going to affect
whether or not the savefileis still avalid Tcl script and can be processed by aTcl
interpreter. However, there are more complicated cases where an understanding of Tcl
syntax is at least desirable, for example:

cdl _opti on CYGDAT_U TRON_MEMPOOLVAR_EXTERNS {
Flavor: data
user _val ue \
“static char vpool 1\[2000 \], \\
vpool 2\[2000 \], \\
vpool 3\[2000 \];”
val ue_source default
Default value: \

“static char vpool 1\[2000 \], \\
vpool 2\[2000 \], \\
vpool 3\[2000 \];"”

I

The backslash at the end of the user _val ue lineis processed by the Tcl interpreter as
aline continuation character. The quote marks around the user data are also
interpreted by the Tcl interpreter and serve to turn the entire data field into asingle
argument. The backslashes preceding the opening and closing sgquare brackets prevent

86 m eCos User’s Guide eCos

Manual Configuration

the Tcl interpreter from treating these characters specially, otherwise there would be
an attempt at command substitution as described below. The double backslashes at the
end of each line of the data will be turned into a single backslash by the Tcl
interpreter, rather than escaping the newline character, so that the actual data seen by
the configuration systemis:

static char vpool 1[2000], \

vpool 2[2000], \
vpool 3[2000];

Thisis of course the data that should end up in the Wl TRON configuration header file.
The opening and closing braces surrounding the entire body of the option data are also
significant and cause this body to be passed as a single argument to the cdl _opt i on
command. The closing semicolon is optional in this example, but provides a small
amount of additional robustnessif the savefileis edited such that it isno longer avalid
Tcl script. If the data contained any $ characters then these would have to be treated
specialy aswell, via a backslash escape.

In spite of what all the above might seem to suggest, Tcl is actually avery simple yet
powerful scripting language: the syntax is defined by just eleven rules. On occasion
this simplicity meansthat Tcl’s behaviour is subtly different from other languages,
which can confuse newcomers.

When the Tcl interpreter is passed some data such as puts Hel | o, it splits this data
into acommand and its arguments. The command will be terminated by a newline or
by a semicolon, unless one of the quoting mechanismsis used. The command and
each of its arguments are separated by white space. So in the following example:

puts Hello
set x 42

will result in two separate commands being executed. The first command is put s and
is passed a single argument, Hel | 0. The second command isset and is passed two
arguments, x and 42. The intervening newline character serves to terminate the first
command, and a semi-colon separator could be used instead:

puts Hello;set x 42
Any white space surrounding the semicolon isjust ignored because it does not serveto
Separate arguments.

Now consider the following:
set x Hello world
Thisisnot valid Tcl. It is an attempt to invoke the set command with three
arguments: x, Hel | o, and wor | d. The set only takes two arguments, a variable name
and avalue, so it is necessary to combine the datainto a single argument by quoting:
set x “Hello world”

eCos

eCos User’'s Guide = 87

Manual Configuration

When the Tcl interpreter encounters the first quote character it treats all subsequent
data up to but not including the closing quote as part of the current argument. The
guote marks are removed by the interpreter, so the second argument passed to the set
command isjust Hel | o wor | d without the quote characters. This can be significant in
the context of eCos savefiles. For instance, consider the following configuration
option:

cdl _option CYGDAT LI BC STDI O DEFAULT_CONSOLE {

Flavor: data

No user value, uncoment the following line to provide one
user_value “\”"/dev/ttydiag\"”

val ue_source default

Default value: “\”/dev/ttydiag\"”

h

The desired value of the configuration option should be avalid C string, complete
with quote characters. If the savefile was edited to:

cdl _option CYGDAT_LI BC STDI O DEFAULT_CONSOLE {
Flavor: data

user _val ue “/dev/ttydi ag”

val ue_source default

Default value: “\”/dev/ttydiag\””

h

then the Tcl interpreter would remove the quote marks when the savefile is read back
in, so the option’s value would not have any quote marks and would not be avalid C
string. The configuration system is not yet able to perform the required validation so
the following #def i ne would be generated in the configuration header file:

#def i ne CYGDAT_LI BC_STDI O DEFAULT_CONSOLE / dev/ttydi ag
Thisislikely to cause a compile-time failure when building eCos.

A gquoted argument continues until the closing quote character is encountered, which
means that it can span multiple lines. This can aso be encountered in eCos savefiles,
for instance, in the CYGDAT_UITRON_MEMPOOLVAR_EXTERNS example
mentioned earlier. Newline or semicolon characters do not terminate the current
command in such cases.

The Tcl interpreter supports much the same forms of backslash substitution as other
common programming languages. Some backs ash sequences such as\ n will be
replaced by the appropriate character. The sequence\\ will be replaced by asingle
backsash. A backslash at the very end of alinewill cause that backslash, the newline
character, and any white space at the start of the next line to be replaced by asingle
space. Hence the following two Tcl commands are equivalent:

puts “Hell o\ nworld\n”
puts \
“Hel l o

88 m eCos User’s Guide eCos

Manual Configuration

wor | d

In addition to quote and backslash characters, the Tcl interpreter treats square
brackets, the $ character, and braces specially. Square brackets are used for command
substitution, for example:

puts “The answer is [expr 6 * 9]~
When the Tcl interpreter encounters the square brackets it will treat the contents as
another command that should be executed first, and the result of executing that is used
when continuing to process the script. In this case the Tcl interpreter will execute the
commandexpr 6 * 9,Yyielding aresult of 54, and then the Tcl interpreter will execute
puts “The answer is 54”. It should be noted that the interpreter contains only one
level of substitution: if the result of performing command substitution performs
further special characters such as square brackets then these will not be treated
specially.
Command line substitution is very unlikely to prove useful in the context of an eCos
savefile, but it is part of the Tcl language and hence cannot be easily suppressed while
reading in a savefile. As aresult care has to be taken when savefile datainvolves
sguare brackets. Consider the following:

cdl _opti on CYGDAT_U TRON_MEMPOOLFI XED_EXTERNS {

user _val ue \

“static char fpool 1[2000],
f pool 2[2000];”

I

The Tcl interpreter will interpret the square brackets as an attempt at command
substitution and hence it will attempt to execute the command 2000 with no
arguments. No such command is defined by the Tcl language or by the savefile-related
extensions provided by the configuration system, so thiswill result in an error when
an attempt is made to read back the savefile. Instead it is necessary to

backs ash-escape the square brackets and thus suppress command substitution:

cdl _option CYGDAT_U TRON_MEMPOOLFI XED EXTERNS {

user _val ue \

“static char fpool 1\[2000 \],
fpool 2\[2000 \];”

}

Similarly the $ character isused in Tcl scripts to perform variable substitution:

set x [expr 6 * 9]
puts “The answer is $x”

eCos

eCos User’'s Guide = 89

Manual Configuration

Variable substitution, like command substitution, is very unlikely to prove useful in
the context of an eCos savefile. Should it be necessary to have a$ character in
configuration data then again a backdash escape needs to be used.

cdl _opti on FOODAT_MONI TOR_PROWPT {

user_value “\'$ *“

Braces are used to collect a sequence of charactersinto a single argument, just like
guotes. The difference is that variable, command and backd ash substitution do not
occur inside braces (with the sole exception of backslash substitution at the end of a
line). So, for example, the

CYGDAT _UITRON_MEMPOOL_EXTERNFIXED EXTERNSvalue could be written
as.

cdl _opti on CYGDAT_U TRON_MEMPOOLFI XED_EXTERNS {

user _val ue \

{static char fpool1[2000],
f pool 2[2000];}

I

The configuration system does not use this when generating savefiles because for
simple edits of asavefile by inexperienced users the use of brace charactersislikely to
be alittle bit more confusing than the use of quotes.

At this stage it isworth noting that the basic format of each configuration option in the
savefile makes use of braces:
cdl _option <name> {

b
The configuration system extends the Tcl language with a small number of additional
commands such as cdl _opt i on. These commands take two arguments, a name and a
body, where the body consists of all the text between the braces. First a check is made
that the specified option is actually present in the configuration. Then the body is
executed in arecursive invocation of the Tcl interpreter, this time with additional
commands such asuser _val ue and val ue_sour ce. If, after editing, the braces are not
correctly matched up then the savefile will no longer be avalid Tcl script and errors
will be reported when the savefile is loaded again.

Commentsin Tcl scripts are introduced by a hash character #. However, a hash
character only introduces a comment if it occurs where acommand is expected.
Consider the following:

This is a coment
puts “Hello” # world

90 = eCos User’s Guide eCos

Manual Configuration

Thefirst lineis avalid comment, since the hash character occursright at the start
where a command name is expected. The second line does not contain a comment.
Instead it is an attempt to invoke the put s command with three arguments: Hel | o, #
and wor | d. These are not valid arguments for the put s command so an error will be
raised.
If the second line was rewritten as:

puts “Hello”; # world
then thisisavalid Tcl script. The semicolon identifies the end of the current
command, so the hash character occurs at a point where the next command would start
and henceit isinterpreted as the start of a comment.

This handling of comments can lead to subtle behaviour. Consider the following:

cdl _opti on WHATEVER ({

This is a coment }
user _val ue 42

Consider the way the Tcl interpreter processes this. The command name and the first
argument do not pose any special difficulties. The opening brace isinterpreted as the
start of the next argument, which continues until aclosing braceis encountered. Inthis
case the closing brace occurs on the second line, so the second argument passed to
cdl _optionis\n # This is a comment . Thissecond argument is processed in
arecursive invocation of the Tcl interpreter and does not contain any commands, just
acomment. Toplevel savefile processing then resumes, and the next command that is
encountered isuser _val ue. Since the relevant savefile code is not currently
processing a configuration option thisis an error. Later on the Tcl interpreter would
encounter aclosing brace by itself, which isalso an error. Fortunately this sequence of
eventsis very unlikely to occur when editing generated savefiles.

This should be sufficient information about Tcl to allow for safe editing of eCos
savefiles. Further information is available from awide variety of sources, for example
the book Tcl and the Tk Toolkit by John K Ousterhout.

Editing the Sources

For many users, controlling the packages and manipulating the available configuration
options will be sufficient to create an embedded operating system that meets the
application’s requirements. However, since eCos is shipped entirely in source form, it
is possible to go further when necessary: you can edit the eCos sources themselves.
This requires some understanding of the way the eCos build system works.

eCos

eCos User’'s Guide = 91

Manual Configuration

The most obvious placeto edit the source codeis directly in the component repository.
For example, you could edit thefileker nel / v1_3_x/ src/ sync/ mut ex. cxx to change
the way kernel mutexes work, or possibly just to add some extra diagnostics or
assertions. Once the file has been edited, it is possible to invoke make at the top level
of the build tree and the target library will be rebuilt as required. A small optimization
ispossible: the build treeislargely amirror of the component repository, so it too will
contain asubdirectory ker nel / v1_3_x; if make isinvoked inthisdirectory thenit will
only check for changes to the kernel sources, which is abit more efficient than
checking for changes throughout the component repository.

Editing afile in the component repository isfineif thistreeis used for only one eCos
configuration. If the repository is used for several different configurations, however,
and especially if it is shared by multiple users, then making what may be experimental
changes to the master sources would be a bad idea. The build system provides an
aternative. It is possible to make a copy of thefilein the build tree, in other words
copy mut ex. cxx from the ker nel / v1_3_x/ src/ sync directory in the component
repository to ker nel / vi_3_x/ src/ sync in the build tree, and edit the file in the build
tree. When make isinvoked it will pick up local copies of any of the sourcesin
preference to the master versionsin the component repository. Once you have finished
modifying the eCos sources you can install the final version back in the component
repository. If the changes were temporary in nature and only served to aid the
debugging process, then you can discard the modified version of the sources.

The situation is slightly more complicated for the header files that a package may
export, such asthe C library’s st di o. h header file, which can be found in the
directory | anguage/ ¢/ 1 i be/ vi_3_x/i ncl ude. If such aheader file is changed, either
directly in the component repository or after copying it to the build tree, then make
must be invoked at the top level of the build tree. In caseslike thisit is not safe to
rebuild just the C library because other packages may depend on the contents of
stdio. h.

Modifying the Memory Layout

Each eCos platform package is supplied with linker script fragments which describe
the location of memory regions on the evaluation board and the location of memory
sections within these regions. The correct linker script fragment is selected and
included in the eCos linker script t ar get . | d when eCosiis built.

It is not necessary to modify the default memory layouts in order to start development
with eCos. However, it will be necessary to edit alinker script fragment when the
memory map of the evaluation board is changed. For example, if additional memory is
added, the linker must be notified that the new memory is available for use. Asa

92 m eCos User’s Guide eCos

Manual Configuration

minimum, this would involve modifying the length of the corresponding memory
region. Where the available memory is non-contiguous, it may be necessary to declare
anew memory region and reassign certain linker output sections to the new region.

Linker script fragments and memory layout header files should be edited within the
eCosinstall tree. They arelocated at i ncl ude/ pkgconf/ i t _*. *. Where multiple
start-up types arein use, it will be necessary to edit multiple linker script fragments
and header files. The information provided in the header file and the corresponding
linker script fragment must always match. A typical linker script fragment is shown
below:

Table 9: eCoslinker script fragment

VEMORY
rom: ORI G N = 0x40000000, LENGTH = 0x80000
ram: ORIG N = 0x48000000, LENGTH = 0x200000
}
SECTI ONS

{
SECTI ONS_BEG N
SECTI ON_rom vectors (rom 0x40000000, LMA EQ VMR)
SECTI ON_text (rom ALIGN (0x1), LMA EQVI\/A)
SECTION fini (rom ALIGN (0x1), LNMA_EQ VMA)
SECTI ON rodata (rom ALIGN (Oxl) LMVA EQ VMR
SECTI ON_rodatal (rom ALIGN (Oxl) LMA_EQ VMA)
SECTI ON fixup (rom ALIGN (0x1), LMA EQ VMA)
SECTI ON_gcc_except _table (rom ALIGN (0x1), LMA EQ VMVA)
SECTI ON_data (ram 0x48000000, FOLLOW NG (.gcc_except_table))
SECTI ON_bss (ram ALIGN (0x4), LMA EQ VMA)
SECTI ONS_END

Thefile consists of two blocks, the MEMORY block contains lines describing the address
(ORI @ N) and the size (LENGTH) of each memory region. The MEMORY block isfollowed
by the secTI oNs block which contains lines describing each of the linker output
sections. Each section is represented by a macro call. The arguments of these macros
are ordered asfollows:

1. Thememory region in which the section will finally reside.

2. Thefinal address (VM) of the section. Thisis expressed using one of the following
forms:

at the absolute address specified by the unsigned integer n
ALIGN (n)

following the final location of the previous section with alignment to the next
n-byte boundary

eCos

eCos User’'s Guide = 93

Manual Configuration

3. Theinitia address (LMa) of the section. Thisis expressed using one of the
following forms:

LMA_EQ VMA

the LMA equals the VWA (no relocation)
AT (n)

at the absol ute address specified by the unsigned integer n
FOLLOWING (.name)

following theinitial location of section name

In order to maintain compatibility with linker script fragments and header files
exported by the eCos Configuration Tool, the use of other expressions within these
filesis not recommended.

Note that the names of the linker output sections will vary between target

architectures. A description of these sections can be found in the specific GNUPro
Toolkit Reference manual for your architecture.

94 m eCos User’s Guide eCos

Managing the Package Repository

15

Managing the Package
Repository

A source distribution of eCos consists of anumber of packages, such asthe kernel, the
C library, and the pI TRON subsystems. These are individually versioned in the tree
structure of the source code, to support distribution on a per-package basis and to
support third party packages whose versioning systems might be different. The eCos
Package Administration Tool is used to manage the installation and removal of
packages from a variety of sources with potentially multiple versions.

The presence of the version information in the source tree structure might be a
hindrance to the use of a separate source control system such as CVS or
SourceSafeld. To work in this way, you can rename al the version components to
some common name (such as “current”) thus unifying the structure of source trees
from distinct eCos releases.

The eCos build system will treat any such name as just another version of the
package(s), and support building in exactly the same way. However, performing this
rename invalidates any existing build trees that referred to the versioned source tree,
so0 do the rename first, before any other work, and do a complete rebuild afterwards.

Package Installation

Package installation and removal is performed using the eCos Package
Adminstration Tool. Thistool isaTcl script named ecosadni n. t cI which allowsthe
user to add new eCos packages and new versions of existing packagesto an eCos

eCos eCos User's Guide = 95

Managing the Package Repository

repository. Such packages must be distributed as a single file in the eCos package
distribution format. Unwanted packages may also be removed from the repository
using thistool. A graphical version of thetool is provided as part of the eCos
Developer’sKit.

Using the Administration Tool

The graphical version of the eCos Package Administration Tool, provided as part of
the eCos Developer'sKit, provides functions equival ent to the command-line version
for those who prefer a Windows-based interface.

It may be invoked in one of two ways:

« from the start menu (by default Sart->Programs->Red Hat eCos->Package
Administration Tool)

« from the eCos Configuration Tool viathe Tools->Administration menu item
elCoz Package Administration Tool

HaL
744 ARM development board (PID)
o3 ARM evaluation board [AEE-1]
A48 C library
E-"' Ciruz Logic development board
A2 Cogent CMAZ30/222 board
> Cogent CMAZE6/287 board
= Comman ermor code support

> Coghdon support via eCos
r eCos common HaL

" eCos kemel
Fuiitzu MEBES00-MADT board
B /0 sub-zpstem
L 1396 common HAL
" Infrastucture
A2 Intel EBSA285 StongdPM board
A2 Linux synthetic target
e Math library

The main window of thetool displaysthe packages which are currently installed in the
form of atree. Theinstalled versions of each package may be examined by expanding
the tree.

96 m eCos User’s Guide eCos

Managing the Package Repository

Packages may be added to the eCos repository by clicking on the Add button. The
eCos package distribution file to be added is then selected viaa File Open dialog box.

Packages may be removed by selecting a package in the tree and then clicking on the
Remove button. If a package nodeis selected, all versions of the selected package will
be removed. If a package version node is selected, only the selected version of the
package will be removed.

Using the command line

Theecosadni n. t ¢l script islocated in the base of the eCos repository. Use a
command of the following form under versions of UNIX:
$ tclsh ecosadnin.tcl <command>
Under Windows, a command of the following form may be used at the Cygwin
command line prompt:
$ cygtcl sh80 ecosadnmin.tcl <conmmand>
The following commands are available:
add <file>
Adds the packages contained with the specified package distribution file to the
eCos repository and updates the package database accordingly. By convention,
eCos package distribution files are given the . epk suffix.
renove <package> [--version=<version>]
Removes the specified package from the eCos repository and updates the package
database accordingly. Where the optional version qualifier isused, only the
specified version of the package is removed.
list
Produces alist of the packages which are currently installed and their versions.
The available templates and hardware targets are also listed.

Note that isis possible to remove critical packages such asthe common HAL package
using thistool. Users should take care to avoid such errors since core eCos packages
may only bere-installed in the context of a complete re-installation of eCos.

Package Structure

Thefilesin an installed eCos source tree are organized in anatural tree structure,
grouping together files which work together into Packages. For example, the kernel
files are al together in:

BASE DI R/ kernel /vl 3 X/include/
BASE DI R/ kernel /vl _3 X/src/
BASE DI R kernel /vl 3 X/tests/

eCos

eCos User’'s Guide = 97

Managing the Package Repository

and pITRON compatibility layer filesarein:

BASE DI R/ conpat / uit ron/ v1l_3_X/incl ude/
BASE_DI R/ conpat/uitron/v1l_3_x/src/
BASE DI R/ conpat/uitron/vl_3_ X/tests/

The feature of these nameswhich is of interest hereisthevl 3 x near the end. If you
start using eCos after the Version 1.2 release, you might see adifferent name here, e.g.
vl 4 for version 1.4; if you received pre-release Beta versions you might have seen
v0 2 or vO_3for versions 0.2 and 0.3.

It may seem odd to place a version number deep in the path, rather than having
something like BASE_DI R/ vi_3_x/ ... everything...

or leaving it up to you to choose a different install-place when a new release of the
system arrives.

Thereisarationale for this organization: as indicated, the kernel and the uI TRON
compatibility subsystem are examples of software packages. For the first few releases
of eCos, al the Red Hat packages will move along in step, i.e. Release 1.3.x will
feature Version 1.3.x of every package, and so forth. But in future, especially when
third party packages become available, it isintended that the package be the unit of
software distribution, so it will be possible to build a system from a selection of
packages with different version numbers, and even differing versioning schemes. A
Tcl script ecosadni n. t ¢l isprovided in the eCos repository to manage the
installation and removal of packagesin thisway.

Many users will have their own source code control system, version control system or
equivalent, and will want to use it with eCos sources. In that case, since anew release
of eCos comes with different pathnames for all the source files, abit of work is
necessary to import a new release into your source repository.

One way of handling the import is to rename all the version parts to some common
name, for example “current”, and continue to work. “current” is suggested because
ecosconfi g recognizesit and placesit first in any list of versions. In the future, Red
Hat may provide atool to help with this, or an option in the install wizard.
Alternatively, in aPOSI X shell environment (Linux or Cygwin on Windows) use the
following command:

find . -name v1_3 x -type d -printf "mv % 9%/ current\n | sh

Having carried out such arenaming operation, your source tree will now look like
this:
BASE DI R/ kernel / current/i ncl ude/

BASE_DI R/ kernel / current/src/
BASE DI R/ kernel /current/tests/

98 m eCos User’s Guide eCos

Managing the Package Repository

BASE_DI R/ conpat/ ui tron/current/include/
BASE DI R/ conpat/ uitron/current/src/
BASE_DI R/ conpat/uitron/current/tests/

which isasuitable format for import into your own source code control system. When

you get a subsequent release of eCos, do the same thing and use your own source code

control system to manage the new source base, by importing the new version from
NEW BASE DI R/ ker nel / current/incl ude/

and so on.

The eCos build tool will now offer only the “current” version of each package; select
this for the packages you wish to use.

Making such a change has implications for any build trees you already havein use. A
configured build tree contains information about the selected packages and their
selected versions. Changing the name of the “versioning” folder in the source tree
invalidates this information, and in consequence it also invalidates any local
configuration options you have set up in this build tree. So if you want to change the
version information in the source tree, do it first, before investing any serioustimein
configuring and building your system. When you create a new build tree to deal with
the new source layout, it will contain default settings for all the configuration options,
just like the old build tree did before you configured it. Y ou will need to redo that
configuration work in the new tree.

Moving source code around also invalidates debugging information in any programs
or libraries built from the old tree; these will need to be rebuilt.

eCos

eCos User’'s Guide = 99

Managing the Package Repository

Part IV: Special Topics

100 = eCos User’s Guide eCos

Real-time Characterization

16

Real-time Characterization

When building areal-time system, care must be taken to ensure that the system will be
ableto perform properly within the constraints of that system. One of these constraints
may be how fast certain operations can be performed. Another might be how
deterministic the overall behavior of the systemis. Lastly the memory footprint (size)
and unit cost may be important.

One of the major problems encountered while evaluating a system will be how to
compare it with possible alternatives. Most manufacturers of real-time systems
publish performance numbers, ostensibly so that users can compare the different
offerings. However, what these numbers mean and how they were gathered is often
not clear. The values are typically measured on a particular piece of hardware, so in
order to truly compare, one must obtain measurements for exactly the same set of
hardware that were gathered in asimilar fashion.

Two magjor items need to be present in any given set of measurements. First, the raw
values for the various operations; these are typically quite easy to measure and will be
available for most systems. Second, the determinacy of the numbers; in other words
how much the value might change depending on other factors within the system. This
valueis affected by a number of factors: how long interrupts might be masked,
whether or not the function can be interrupted, even very hardware-specific effects
such as cache locality and pipeline usage. It is very difficult to measure the
determinacy of any given operation, but that determinacy is fundamentally important
to proper overall characterization of a system.

In the discussion and numbers that follow, three key measurements are provided. The
first measurement is an estimate of theinterrupt latency: thisisthe length of time from
when a hardware interrupt occurs until its Interrupt Service Routine (ISR) is called.

eCos

eCos User’'s Guide = 101

Real-time Characterization

The second measurement is an estimate of overall interrupt overhead: thisisthelength
of time average interrupt processing takes, as measured by the real-time clock
interrupt (other interrupt sourceswill certainly take adifferent amount of time, but this
data cannot be easily gathered). The third measurement consists of the timings for the
various kernel primitives.

Methodology

Key operations in the kernel were measured by using a simple test program which
exercises the various kernel primitive operations. A hardware timer, normally the one
used to drive the real-time clock, was used for these measurements. In most cases this
timer can be read with quite high resolution, typically in the range of afew
microseconds. For each measurement, the operation was repeated a number of times.
Time stamps were obtained directly before and after the operation was performed. The
data gathered for the entire set of operations was then analyzed, generating average
(mean), maximum and minimum values. The sample variance (a measure of how
close most samples are to the mean) was also calculated. The cost of obtaining the
real-time clock timer values was also measured, and was subtracted from all other
times.

Most kerndl functions can be measured separately. In each case, a reasonable number
of iterations are performed. Where the test case involves a kernel object, for example
creating atask, each iteration is performed on a different object. There is also a set of
tests which measures the interactions between multiple tasks and certain kernel
primitives. Most functions are tested in such away as to determine the variations
introduced by varying numbers of objects in the system. For example, the mailbox
tests measure the cost of a’peek’ operation when the mailbox is empty, hasasingle
item, and has multiple items present. In thisway, any effects of the state of the object
or how many itemsit contains can be determined.

There are afew things to consider about these measurements. Firstly, they are quite
micro in scale and only measure the operation in question. These measurements do not
adequately describe how the timings would be perturbed in areal system with
multiple interrupting sources. Secondly, the possible aberration incurred by the
real-time clock (system heartbeat tick) is explicitly avoided. Virtually al kernel
functions have been designed to be interruptible. Thusthe times presented are typical,
but best case, since any particular function may be interrupted by the clock tick
processing. This number is explicitly calculated so that the value may be included in
any deadline calculations required by the end user. Lastly, the reported measurements
were obtained from a system built with all options at their default values. Kernel
instrumentation and asserts are also disabled for these measurements. Any number of

102 = eCos User’s Guide eCos

Real-time Characterization

configuration options can change the measured results, sometimes quite dramatically.
For example, mutexes are using priority inheritance in these measurements. The
numberswill changeif the system is built with priority inheritance on mutex variables
turned off.

Thefina value that is measured is an estimate of interrupt latency. This particular
value isnot explicitly calculated in the test program used, but rather by instrumenting
the kernel itself. The raw number of timer ticksthat elapse between the time the timer
generates an interrupt and the start of the timer ISR iskept in the kernel. These values
are printed by the test program after al other operations have been tested. Thus this
should be a reasonabl e estimate of the interrupt latency over time.

Using these Measurements

These measurements can be used in anumber of ways. The most typical use will beto
compare different real-time kernel offerings on similar hardware, another will be to
estimate the cost of implementing atask using eCos (applications can be examined to
see what effect the kernel operations will have on the total execution time). Another
use would be to observe how the tuning of the kernel affects overall operation.

Influences on Performance

A number of factors can affect real-time performance in a system. One of the most
common factors, yet most difficult to characterize, is the effect of device drivers and
interrupts on system timings. Different device drivers will have differing requirements
as to how long interrupts are suppressed, for example. The eCos system has been
designed with thisin mind, by separating the management of interrupts (ISR handlers)
and the processing required by the interrupt (DSR—Deferred Service Routine—
handlers). However, since there is so much variability here, and indeed most device
drivers will come from the end users themselves, these effects cannot be reliably
measured. Attempts have been made to measure the overhead of the single interrupt
that eCos relies on, the real-time clock timer. This should give you areasonable idea
of the cost of executing interrupt handling for devices.

eCos

eCos User’'s Guide = 103

Real-time Characterization

Measured Items

This section describes the various tests and the numbers presented. All testsusethe C
kernel API (available by way of cyg/ ker nel / kapi . h). Thereisasingle main thread
in the system that performsthe various tests. Additional threads may be created as part
of the testing, but these are short lived and are destroyed between tests unless
otherwise noted. The terminology “lower priority” means a priority that isless
important, not necessarily lower in numerical value. A higher priority thread will run
in preference to alower priority thread even though the priority value of the higher
priority thread may be numerically less than that of the lower priority thread.

Thread Primitives

Create thread

Thistest measuresthecyg_t hread_create() cal. Each call creates atotally new
thread. The set of threads created by this test will be reused in the subsequent
thread primitive tests.

Yield thread

Thistest measuresthecyg t hread_yi el d() call. For thistest, there are no other
runnable threads, thus the test should just measure the overhead of trying to give
up the CPU.

Suspend [suspended)] thread
Thistest measuresthe cyg_t hread_suspend() call. A thread may be suspended
multiple times; each thread is already suspended from itsinitial creation, and is
suspended again.

Resume thread

Thistest measuresthe cyg t hread_resune() call. All of the threads have a
suspend count of 2, thus this call does not make them runnable. This test just
measures the overhead of resuming athread.

Set priority
Thistest measuresthe cyg_t hread_set _priority() call. Each thread, currently
suspended, hasits priority set to a new value.

Get priority
Thistest measuresthe cyg thread_get _priority() cal.

Kill [suspended] thread
Thistest measuresthecyg thread_kill () call. Eachthread in the set iskilled.
All threads are known to be suspended before being killed.

104 = eCos User’s Guide eCos

Real-time Characterization

Yield [no other] thread

Thistest measuresthe cyg_t hread_yi el d() call again. Thisisto demonstrate
that thecyg_t hread_yi el d() call has afixed overhead, regardless of whether
there are other threads in the system.

Resume [suspended low priority] thread

Thistest measuresthe cyg_t hread_r esune() call again. In this case, the thread

being resumed is lower priority than the main thread, thusit will ssmply become
ready to run but not be granted the CPU. This test measures the cost of making a
thread ready to run.

Resume [runnable low priority] thread

Thistest measuresthe cyg_t hread_r esune() call again. In this case, the thread
being resumed islower priority than the main thread and has already been made
runnable, so in fact the resume call has no effect.

Suspend [runnable] thread

Thistest measuresthe cyg_t hread_suspend() call again. In this case, each
thread has already been made runnable (by previous tests).

Yield [only low priority] thread
Thistest measuresthe cyg_t hread_yi el d() call. In this case, there are many

other runnabl e threads, but they are all lower priority than the main thread, thus no
thread switches will take place.

Suspend [runnable->not runnable] thread
Thistest measuresthe cyg_t hread_suspend() call again. The thread being
suspended will become non-runnable by this action.
Kill [runnabl€] thread
Thistest measuresthe cyg_t hread_ki I | () call again. In this case, the thread
being killed is currently runnable, but lower priority than the main thread.
Resume [high priority] thread
Thistest measuresthe cyg_t hread_r esune() call. The thread being resumed is
higher priority than the main thread, thus a thread switch will take place on each

call. In fact there will be two thread switches; one to the new higher priority
thread and a second back to the test thread. The test thread exits immediately.

Thread switch

Thistest attempts to measure the cost of switching from one thread to another.
Two equal priority threads are started and they will each yield to the other for a
number of iterations. A time stamp is gathered in one thread before the
cyg_thread_yi el d() cal and after the call in the other thread.

eCos

eCos User’'s Guide = 105

Real-time Characterization

Scheduler Primitives

Scheduler lock
Thistest measuresthe cyg_schedul er _| ock() call.
Scheduler unlock [0 threads]

Thistest measuresthecyg_schedul er _unl ock() call. There are no other threads
in the system and the unlock happensimmediately after alock so there will be no
pending DSR’s to run.

Scheduler unlock [1 suspended thread]

Thistest measuresthe cyg_schedul er _unl ock() call. Thereis one other thread
in the system which is currently suspended.

Scheduler unlock [many suspended threads]
Thistest measuresthe cyg_schedul er _unl ock() call. There are many other
threads in the system which are currently suspended. The purpose of thistest isto
determine the cost of having additional threads in the system when the scheduler
is activated by way of cyg_schedul er _unl ock().

Scheduler unlock [many low priority threads]
Thistest measuresthe cyg_schedul er _unl ock() call. There are many other
threads in the system which are runnable but are lower priority than the main
thread. The purpose of thistest is to determine the cost of having additional
threads in the system when the scheduler is activated by way of
cyg_schedul er _unl ock() .

Mutex Primitives

Init mutex
Thistest measuresthe cyg_nut ex_i nit () call. A number of separate mutex
variables are created. The purpose of thistest isto measure the cost of creating a
new mutex and introducing it to the system.

Lock [unlocked] mutex
Thistest measuresthe cyg_mut ex_| ock() call. The purpose of thistestisto
measure the cost of locking a mutex which is currently unlocked. There are no
other threads executing in the system while this test runs.

Unlock [locked] mutex
Thistest measuresthe cyg_mut ex_unl ock() call. The purpose of thistestisto

measure the cost of unlocking a mutex which is currently locked. There are no
other threads executing in the system while this test runs.

106 = eCos User’s Guide eCos

Real-time Characterization

Trylock [unlocked] mutex

Thistest measuresthe cyg_mutex_t ryl ock() call. The purpose of thistest isto
measure the cost of locking amutex which is currently unlocked. There are no
other threads executing in the system while this test runs.

Trylock [locked] mutex

Thistest measuresthe cyg_nut ex_t ryl ock() call. The purpose of thistest isto
measure the cost of locking a mutex which is currently locked. There are no other
threads executing in the system while this test runs.

Destroy mutex

Thistest measuresthe cyg_nut ex_dest roy() call. The purpose of thistest isto
measure the cost of deleting a mutex from the system. There are no other threads
executing in the system while thistest runs.

Unlock/Lock mutex

Thistest attempts to measure the cost of unlocking a mutex for which thereis
another higher priority thread waiting. When the mutex is unlocked, the higher
priority waiting thread will immediately take the lock. The time from when the
unlock isissued until after the lock succeeds in the second thread is measured,
thus giving the round-trip or circuit time for this type of synchronizer.

Mailbox Primitives
Create mbox

Thistest measuresthe cyg_nbox_creat e() call. A number of separate mailboxes
is created. The purpose of thistest isto measure the cost of creating a new
mailbox and introducing it to the system.

Peek [empty] mbox
Thistest measuresthe cyg_mbox_peek() call. An attempt is made to peek the
value in each mailbox, which is currently empty. The purpose of thistest isto
measure the cost of checking a mailbox for a value without blocking.

Put [first] mbox

Thistest measuresthe cyg_mbox_put () cal. Oneitem is added to a currently
empty mailbox. The purpose of thistest isto measure the cost of adding an item to
amailbox. There are no other threads currently waiting for mailbox items to
arrive.

Peek [1 msg] mbox

This test measures the cyg_nbox_peek() call. An attempt is made to peek the
value in each mailbox, which contains a single item. The purpose of thistest isto
measure the cost of checking a mailbox which has datato deliver.

eCos eCos User's Guide = 107

Real-time Characterization

Put [second] mbox
Thistest measuresthecyg_mbox_put () call. A second item is added to amailbox.
The purpose of thistest isto measure the cost of adding an additional itemto a
mailbox. There are no other threads currently waiting for mailbox itemsto arrive.

Peek [2 msgs] mbox
This test measures the cyg_nbox_peek() call. An attempt is made to peek the
value in each mailbox, which contains two items. The purpose of thistest isto
measure the cost of checking a mailbox which has datato deliver.

Get [first] mbox
Thistest measuresthe cyg _nbox_get () cal. Thefirst item isremoved from a
mailbox that currently contains two items. The purpose of thistest isto measure
the cost of obtaining an item from a mailbox without blocking.

Get [second] mbox
Thistest measuresthe cyg nbox_get () call. Thelast item isremoved from a
mailbox that currently contains one item. The purpose of thistest isto measure the
cost of obtaining an item from a mailbox without blocking.

Tryput [first] mbox
Thistest measuresthe cyg_nbox_t ryput () cal. A singleitem isadded to a
currently empty mailbox. The purpose of this test is to measure the cost of adding
an item to a mailbox.

Peek item [non-empty] mbox
Thistest measuresthecyg_nbox_peek_i t em() call. A singleitem isfetched from
amailbox that contains a single item. The purpose of thistest isto measure the
cost of obtaining an item without disturbing the mailbox.

Tryget [non-empty] mbox
Thistest measuresthe cyg_nbox_tryget () cal. A singleitemisremoved from a
mailbox that contains exactly one item. The purpose of thistest isto measure the
cost of obtaining one item from a non-empty mailbox.

Peek item [empty] mbox
This test measuresthe cyg_nbox_peek_i tem() cal. An attempt is made to fetch
an item from amailbox that is empty. The purpose of thistest isto measure the
cost of trying to obtain an item when the mailbox is empty.

Tryget [empty] mbox
This test measuresthe cyg_nbox_t ryget () cal. An attempt is made to fetch an
item from a mailbox that is empty. The purpose of thistest isto measure the cost
of trying to obtain an item when the mailbox is empty.

108 = eCos User’s Guide eCos

Real-time Characterization

Waiting to get mbox
Thistest measuresthecyg_nbox_wai ting_t o_get () cal. The purpose of thistest
isto measure the cost of determining how many threads are waiting to obtain a
message from this mailbox.

Waiting to put mbox
Thistest measuresthe cyg_nbox_wai ti ng_t o_put () call. The purpose of thistest
isto measure the cost of determining how many threads are waiting to put a
message into this mailbox.

Delete mbox
This test measuresthe cyg_nbox_del et e() call. The purpose of thistest isto
measure the cost of destroying a mailbox and removing it from the system.

Put/Get mbox

In this round-trip test, one thread is sending datato a mailbox that is being
consumed by another thread. The time from when the dataiis put into the mailbox
until it has been delivered to the waiting thread is measured. Note that this time
will contain athread switch.

Semaphore Primitives

Init semaphore
Thistest measuresthe cyg_semaphore_i nit () call. A number of separate
semaphore objects are created and introduced to the system. The purpose of this
test is to measure the cost of creating a new semaphore.

Post [0] semaphore
Thistest measuresthe cyg_semaphor e_post () call. Each semaphore currently
has avalue of 0 and there are no other threads in the system. The purpose of this
test is to measure the overhead cost of posting to a semaphore. This cost will
differ if there is athread waiting for the semaphore.

Wait [1] semaphore
Thistest measuresthe cyg_semaphor e_wai t () call. The semaphore has a current
value of 1 so the cal is non-blocking. The purpose of the test is to measure the
overhead of “taking” a semaphore.

Trywait [0] semaphore
Thistest measuresthe cyg_semaphore_t rywai t () cal. The semaphore hasa
value of 0 when the call is made. The purpose of thistest isto measure the cost of
seeing if a semaphore can be “taken” without blocking. In this case, the answer
would be no.

eCos eCos User's Guide = 109

Real-time Characterization

Trywait [1] semaphore
Thistest measuresthe cyg_semaphore_t rywai t () call. The semaphore has a
value of 1 when the call ismade. The purpose of thistest isto measure the cost of
seeing if a semaphore can be “taken” without blocking. In this case, the answer
would be yes.

Peek semaphore
Thistest measuresthe cyg_semaphor e_peek() call. The purpose of thistest isto
measure the cost of obtaining the current semaphore count val ue.

Destroy semaphore
Thistest measuresthecyg_semaphor e_dest roy() call. The purpose of thistestis
to measure the cost of deleting a semaphore from the system.

Post/Wait semaphore

In this round-trip test, two threads are passing control back and forth by using a
semaphore. The time from when one thread calls cyg_semaphor e_post () until
the other thread completesits cyg_semaphore_wai t () ismeasured. Note that
each iteration of thistest will involve athread switch.

Counters

Create counter

Thistest measuresthe cyg_count er _create() call. A number of separate
counters are created. The purpose of thistest isto measure the cost of creating a

new counter and introducing it to the system.

Get counter value
Thistest measuresthecyg_counter_current _val ue() call. The current value of
each counter is obtained.

Set counter value
Thistest measuresthe cyg counter _set _val ue() call. Each counter is set to a
new value.

Tick counter
Thistest measuresthecyg counter _tick() call. Each counter is“ticked” once.

Delete counter
Thistest measuresthecyg_count er _del et e() call. Each counter isdeleted from
the system. The purpose of thistest isto measure the cost of deleting a counter
object.

110 = eCos User’s Guide eCos

Real-time Characterization

Alarms

Create alarm

Thistest measuresthe cyg_al arm creat e() call. A number of separate alarms

are created, all attached to the same counter object. The purpose of thistest isto

measure the cost of creating a new counter and introducing it to the system.
Initialize alarm

Thistest measuresthecyg_al arminitialize() cal. Eachalarmisinitializedto
asmall value.

Disable alarm
Thistest measuresthe cyg_al ar m di sabl e() call. Each alarm is explicitly
disabled.

Enable alarm
Thistest measuresthe cyg_al ar m enabl e() call. Each darmis explicitly
enabled.

Delete alarm
Thistest measuresthe cyg_al ar m del et e() call. Each alarm is destroyed. The
purpose of thistest isto measure the cost of deleting an alarm and removing it
from the system.

Tick counter [1 alarm]
Thistest measuresthe cyg counter _tick() cal. A counter iscreated that has a
single alarm attached to it. The purpose of this test isto measure the cost of
“ticking” a counter when it has a single attached alarm. In thistest, thealarmis
not activated (fired).

Tick counter [many alarmg]
Thistest measuresthe cyg counter _tick() cal. A counter iscreated that has
multiple alarms attached to it. The purpose of thistest isto measure the cost of
“ticking” a counter when it has many attached alarms. In thistest, the dlarms are
not activated (fired).

Tick & fire counter [1 alarm]
Thistest measuresthe cyg counter _tick() call. A counter iscreated that hasa
single alarm attached to it. The purpose of this test isto measure the cost of
“ticking” a counter when it has asingle attached alarm. In thistest, thealarmis
activated (fired). Thus the measured time will include the overhead of calling the
alarm callback function.

Tick & fire counter [many alarms]
Thistest measuresthe cyg counter _tick() call. A counter iscreated that has

eCos

eCos User’'s Guide = 111

Real-time Characterization

multiple alarms attached to it. The purpose of thistest isto measure the cost of
“ticking” a counter when it has many attached alarms. In thistest, the dlarms are
activated (fired). Thus the measured time will include the overhead of calling the
alarm callback function.

Alarm latency [0 threads]

Thistest attempts to measure the latency in calling an alarm callback function.
Thetime from the clock interrupt until the alarm function is called is measured. In
this test, there are no threads that can be run, other than the system idle thread,
when the clock interrupt occurs (all threads are suspended).

Alarm latency [2 threads]

Thistest attempts to measure the latency in calling an alarm callback function.
Thetime from the clock interrupt until the alarm function is called is measured. In
thistest, there are exactly two threads which are running when the clock interrupt
occurs. They are simply passing back and forth by way of the

cyg_thread_yi el d() cal. The purpose of thistest isto measure the variationsin
the latency when there are executing threads.

Alarm latency [many threads]

Thistest attempts to measure the latency in calling an alarm callback function.
Thetime from the clock interrupt until the alarm function is called is measured. In
this test, there are a number of threads which are running when the clock interrupt
occurs. They are simply passing back and forth by way of the

cyg_thread_yi el d() call. The purpose of thistest isto measure the variationsin
the latency when there are many executing threads.

Sample Numbers

For sampleresults, see Appendix 1 of Getting Started with eCos

112 = eCos User’s Guide eCos

Real-time Characterization

eCos eCos User’'s Guide = 113

Real-time Characterization

114 = eCos User’s Guide eCos

Real-time Characterization

eCos eCos User’'s Guide = 115

Real-time Characterization

116 = eCos User’s Guide eCos

A

application build tree 54

B

Build and Install Trees 7

build tools 33

build tree 52
application 54

creating manually 65
build tree (application) 54
building 32, 71
building eCos 71

C

compiler options 55
compiling

C applications 55

C++ applications 56
Component Repository 3
component repository 50, 64, 92
configuration

coarse-grained 72

fine-grained 73

updating 23
configuration item integer format 12
configuration item labels 12
Configuration Tool

Index

documents 4

Getting Started 2

Introduction 2

invoking 2

keyboard accelerators 42
configuration window 14
conflicts 27
conflictswindow 16
connection 37
customization 11

D

debugging 57
Deferred Service Routine (DSR) 103
download timeout 36

E

eCos

sources, editing 91
ecosconfig 63
ecosconfig commands 67
ecosconfig qualifiers 65
event record 60
events

monitoring 59
example programs

accessing a user-defined memory section 22

eCos

eCos User’'s Guide = 117

eCos linker script fragment 93
hello world with tracing 58
instrument buffer output 62
using instrument buffers 61
executablestab 37
execution 35

F
fonts 12

H

Hardware Abstraction Layer (HAL) 72
Help 8

install tree 53

tests subdirectory 71
instrumentation buffers 57, 59
Interrupt Service Routine (ISR) 101

K

kernel instrumentation buffers 59
keyboard accelerators 42

L

linker scripts
editing 93
example linker script fragment 93
target.ld 92

M

measuring
kernel functions 102
methodology 102
sample numbers 112
system performance 101
tests peformed 104
memory
layout
modifying 92
memory access 22
memory layout window 18

memory regions 19
memory sections 20
monitoring

events 59

O

output tab 39
output window 17

P

package repository 95
packages 72
adding and removing 23
performance
sample numbers 112
system
influenceson 103
measuring 101
testsperformed 104
pkgconf.tcl 65, 72
--builddir 68, 97
--defaults 68
--disable 67
--enable 67
--help 65
--packages 67
--platform 67
--prefix 66
--srcdir 66
--target, --targets 66, 67
---version 67
properties (connectivity) 35
propertieswindow 17

R

real-time characterization 101
run timetimeout 36
running tests 35

S

Save File 4
screen layout 14
searching 31
selective linking

118 = eCos User's Guide

eCos

gt+ 56
gcc 56
shell
creating 41
short description window 18
summary tab 39
system performance
influenceson 103
measuring 101
sample numbers 112
testsperformed 104

T

templates 27
test execution 35
tests

dams 111

counters 110
mailbox primitives 107
mutex primitives 106
scheduler primitives 106
semaphore primitives 109
thread primitives 104
Toolbars 11
tracing 57

U

updating configuration 23
user tools 34

w

window placement 11

eCos

eCos User’'s Guide = 119

120 = eCos User's Guide eCos

	eCos‘User’s Guide
	Contents
	Part I: The eCos Configuration Tool
	Getting Started
	Getting Help
	Customization
	Screen Layout
	Updating the Configuration
	Searching
	Building
	Execution
	Creating a Shell

	Part II: eCos Programming Concepts and Techniques
	CDL Concepts
	The Component Repository and Working Directories
	Compiler and Linker Options
	Debugging Techniques

	Part III: Configuration and the Package Repository
	Manual Configuration
	Managing the Package Repository

	Part IV: Special Topics
	Real-time Characterization
	Index

